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ON SOME INEQUALITIES FOR THE INCOMPLETE

GAMMA FUNCTION

HORST ALZER

Abstract. Let p 6= 1 be a positive real number. We determine all real num-
bers α = α(p) and β = β(p) such that the inequalities

[1− e−βx
p
]1/p <

1

Γ(1 + 1/p)

∫ x

0
e−t

p
dt < [1− e−αx

p
]1/p

are valid for all x > 0. And, we determine all real numbers a and b such that

− log(1− e−ax) ≤
∫ ∞
x

e−t

t
dt ≤ − log(1− e−bx)

hold for all x > 0.

1. Introduction

In 1955, J. T. Chu [1] presented sharp upper and lower bounds for the error

function erf(x) = 2√
π

∫ x
0
e−t

2

dt. He proved that the inequalities

[1− e−rx
2

]1/2 ≤ erf(x) ≤ [1− e−sx
2

]1/2(1.1)

are valid for all x ≥ 0 if and only if 0 ≤ r ≤ 1 and s ≥ 4/π. The right-hand
inequality of (1.1) (with s = 4/π) was proved independently by J. D. Williams
(1946) and G. Pólya (1949); see [1].

An interesting survey on inequalities involving the complementary error function

erfc(x) = 2√
π

∫∞
x
e−t

2

dt and related functions is given in [4, pp. 177–181]. In

particular, one can find inequalities for Mills’ ratio ex
2/2
∫∞
x e−t

2/2 dt, derived by
several authors.

In 1959, W. Gautschi [3] provided upper and lower bounds for the more general
expression

Ip(x) = ex
p

∫ ∞
x

e−t
p

dt.(1.2)

He established that the double-inequality

1

2
[(xp + 2)1/p − x] < Ip(x) ≤ cp[(xp + 1/cp)

1/p − x](1.3)

(with cp = [Γ(1 + 1/p)]p/(p−1)) holds for all real numbers p > 1 and x ≥ 0. It has
been pointed out in [3] that the integral in (1.2) for p = 3 occurs in heat transfer
problems, and for p = 4 in the study of electrical discharge through gases. We note
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that the integral
∫∞
x
e−t

p

dt can be expressed in terms of the incomplete gamma
function

Γ(a, x) =

∫ ∞
x

ta−1e−t dt,

namely, ∫ ∞
x

e−t
p

dt =
1

p
Γ

(
1

p
, xp
)
.

Gautschi [3] showed that the inequalities (1.3) can be used to derive bounds for the
exponential integral E1(x) = Γ(0, x). Indeed, if p tends to ∞, then (1.3) leads to

1

2
log

(
1 +

2

x

)
≤ exE1(x) ≤ log

(
1 +

1

x

)
(0 < x <∞).(1.4)

It is the main purpose of this paper to establish new inequalities for
∫ x

0 e
−tp dt and∫∞

x e−t
p

dt. In Section 2 we present sharp upper and lower bounds for

1

Γ(1 + 1/p)

∫ x

0

e−t
p

dt and
1

Γ(1 + 1/p)

∫ ∞
x

e−t
p

dt,

which are valid not only for p > 1, but also for p ∈ (0, 1). In particular, we obtain an
extension of Chu’s double-inequality (1.1). Moreover, we provide sharp inequalities
for the exponential integral E1(x). Finally, in Section 3 we compare our bounds
with those given in (1.3) and (1.4).

2. Main results

First, we generalize the inequalities (1.1).

Theorem 1. Let p 6= 1 be a positive real number, and let α = α(p) and β = β(p)
be given by

α = 1, β = [Γ(1 + 1/p)]−p, if 0 < p < 1,

and

α = [Γ(1 + 1/p)]−p, β = 1, if p > 1.

Then we have for all positive real x:

[1− e−βxp ]1/p < 1

Γ(1 + 1/p)

∫ x

0

e−t
p

dt < [1− e−αxp ]1/p.(2.1)

Proof. We have to show that the functions

Fp(x) =

∫ x

0

e−t
p

dt− Γ(1 + 1/p)[1− e−xp ]1/p

and

Gp(x) = −
∫ x

0

e−t
p

dt+ Γ(1 + 1/p)[1− e−axp ]1/p (a = [Γ(1 + 1/p)]−p)

are both positive on (0,∞), if p > 1, and are both negative on (0,∞), if 0 < p < 1.
First, we determine the sign of Fp(x). Differentiation yields

ex
p ∂

∂x
Fp(x) = 1− Γ(1 + 1/p)[L(z(x))](1−p)/p,
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where

L(z) = (z − 1)/ log(z) and z(x) = e−x
p

.

Setting fp(x) = ex
p ∂
∂xFp(x), we obtain

∂

∂x
fp(x) =

p− 1

p
Γ(1 + 1/p)(L(z(x)))−2+1/p d

dx
z(x)

d

dz
L(z)|z=z(x).(2.2)

Since

d

dz
L(z) = [log(z)− 1 + 1/z]/(log(z))2 > 0 (0 < z 6= 1)

and

d

dx
z(x) < 0,

we conclude from (2.2) that

∂

∂x
fp(x) < 0, if p > 1,

and

∂

∂x
fp(x) > 0, if 0 < p < 1.

If p > 1, then we have

fp(0) = 1− Γ(1 + 1/p) > 0 and lim
x→∞

fp(x) = −∞,

which implies that there exists a number x0 > 0 such that fp(x) > 0 for x ∈ (0, x0)
and fp(x) < 0 for x ∈ (x0,∞). Hence, the function x 7→ Fp(x) is strictly increasing
on [0, x0] and strictly decreasing on [x0,∞). Since Fp(0) = limx→∞ Fp(x) = 0, we
obtain Fp(x) > 0 for all x > 0.

If 0 < p < 1, then we have

fp(0) = 1− Γ(1 + 1/p) < 0 and lim
x→∞

fp(x) = 1.

This implies that there exists a number x1 > 0 such that x 7→ Fp(x) is strictly de-
creasing on [0, x1] and strictly increasing on [x1,∞). From Fp(0) = limx→∞ Fp(x) =
0 we conclude that Fp(x) < 0 for all x > 0.

Next, we consider Gp(x). Differentiation leads to

ex
p ∂

∂x
Gp(x) = −1 + (y(x))1−1/a[L(y(x))](1−p)/p,(2.3)

where

L(y) = (y − 1)/ log(y) and y(x) = e−ax
p

with a = a(p) = [Γ(1 + 1/p)]−p. To determine the sign of ∂
∂xGp(x) we need the

inequalities

0 <

(
1− 1

a(p)

)
p

p− 1
<

1

2
for 0 < p 6= 1.(2.4)

The left-hand inequality of (2.4) is obviously true. A simple calculation reveals
that the second inequality of (2.4) is equivalent to

(1− x)

[
Γ(x + 1)−

(
x+ 1

2

)x]
> 0 for 0 < x 6= 1.(2.5)
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To establish (2.5) we define for x > 0:

g(x) = log Γ(x+ 1)− x log
x+ 1

2
.

Then we have

d2

dx2
g(x) =

d

dx
ψ(x+ 1)− x+ 2

(x+ 1)2
=
∞∑
n=2

1

(x + n)2
− 1

x+ 1

<

∫ ∞
1

dt

(x+ t)2
− 1

x+ 1
= 0.

Thus, g is strictly concave on [0,∞). Since g(0) = g(1) = 0, we conclude that g is
positive on (0, 1) and negative on (1,∞). This implies (2.5).

Let 0 < r < 1/2; we define for y ∈ (0, 1):

hr(y) = yr log(y)/(y − 1).

Then we get

(y − 1)2y1−r ∂

∂y
hr(y) = [(r − 1)y − r] log(y) + y − 1

= ϕr(y), say.

Since

∂2

∂y2
ϕr(y) =

r − 1

y2

[
y − r

1− r

]
,

it follows that ϕr is strictly convex on (0, r
1−r ) and strictly concave on ( r

1−r , 1).

From limy→0 ϕr(y) =∞,

ϕr(1) =
∂

∂y
ϕr(y)|y=1 = 0 and

∂2

∂y2
ϕr(y)|y=1 = 2r − 1 < 0,

we conclude that there exists a number y0 ∈ (0, 1) such that ϕr is positive on (0, y0)
and negative on (y0, 1). This implies that y 7→ hr(y) is strictly increasing on (0, y0)
and strictly decreasing on (y0, 1). Since limy→0 hr(y) = 0 and limy→1 hr(y) = 1, we
conclude that there exists a number y1 ∈ (0, 1) such that hr(y) < 1 for y ∈ (0, y1)
and hr(y) > 1 for y ∈ (y1, 1). The function y(x) = e−ax

p

is strictly decreasing on
[0,∞). Since y(0) = 1 and limx→∞ y(x) = 0, there exists a number x∗ > 0 such
that

y1 < y(x) < 1 for x ∈ (0, x∗),

and

0 < y(x) < y1 for x ∈ (x∗,∞).

Hence, we have:
If 0 < x < x∗, then hr(y(x)) > 1, and, if x∗ < x, then hr(y(x)) < 1. We set

r = (1− 1
a(p) ) p

p−1 ; then we obtain from (2.3) that

hr(y(x)) =

[
1 + ex

p ∂

∂x
Gp(x)

]p/(p−1)

.

Therefore, if p > 1, then

∂

∂x
Gp(x) > 0 for x ∈ (0, x∗) and

∂

∂x
Gp(x) < 0 for x ∈ (x∗,∞);
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and, if 0 < p < 1, then

∂

∂x
Gp(x) < 0 for x ∈ (0, x∗) and

∂

∂x
Gp(x) > 0 for x ∈ (x∗,∞).

Since Gp(0) = limx→∞Gp(x) = 0, we conclude that

Gp(x) > 0 for x ∈ (0,∞), if p > 1,

and

Gp(x) < 0 for x ∈ (0,∞), if 0 < p < 1.

This completes the proof of Theorem 1.

Remark. It is natural to ask whether the double-inequality (2.1) can be refined by
replacing α by a positive number which is smaller than

max{1, [Γ(1 + 1/p)]−p} =

{
1, if 0 < p < 1,

[Γ(1 + 1/p)]−p, if p > 1,

or by replacing β by a number which is greater than

min{1, [Γ(1 + 1/p)]−p} =

{
[Γ(1 + 1/p)]−p, if 0 < p < 1,

1, if p > 1.

We show that the answer is “no”! Let α > 0 be a real number such that the
right-hand inequality of (2.1) holds for all x > 0. This implies that the function

F̃p(x) =

∫ x

0

e−t
p

dt− Γ(1 + 1/p)[1− e−αxp ]1/p

is negative on (0,∞). Since F̃p(0) = 0, we obtain

∂

∂x
F̃p(x)|x=0 = 1− α1/pΓ(1 + 1/p) ≤ 0,

which leads to α ≥ [Γ(1 + 1/p)]−p. If α ∈ (0, 1), then we conclude from

lim
x→∞

ex
p ∂

∂x
F̃p(x) = −∞

that there exists a number x > 0 such that x 7→ F̃p(x) is negative and strictly

decreasing on [x,∞). This contradicts limx→∞ F̃p(x) = 0. Thus, we have α ≥
max{1, [Γ(1 + 1/p)]−p}.

Next, we suppose that β > 0 is a real number such that the first inequality of
(2.1) is valid for all x > 0. This implies

G̃p(x) = −
∫ x

0

e−t
p

dt+ Γ(1 + 1/p)[1− e−βxp ]1/p < 0

for all x > 0. Since G̃p(0) = 0, we obtain

∂

∂x
G̃p(x)|x=0 = β1/pΓ(1 + 1/p)− 1 ≤ 0,

which yields β ≤ [Γ(1 + 1/p)]−p. If β > 1, then we get

lim
x→∞

ex
p ∂

∂x
G̃p(x) = −1.
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This implies that there exists a number x̃ > 0 such that x 7→ G̃p(x) is negative and

strictly decreasing on [x̃,∞). This contradicts limx→∞ G̃p(x) = 0. Hence, we get
β ≤ min{1, [Γ(1 + 1/p)]−p}.

As an immediate consequence of Theorem 1, the Remark, and the representation∫∞
x e−t

p

dt = Γ(1 + 1/p)−
∫ x

0 e
−tp dt, we obtain the following sharp bounds for the

ratio
∫∞
x e−t

p

dt/
∫∞

0 e−t
p

dt.

Corollary. Let p 6= 1 be a positive real number. The inequalities

1− [1− e−αxp ]1/p < 1

Γ(1 + 1/p)

∫ ∞
x

e−t
p

dt < 1− [1− e−βxp ]1/p(2.6)

are valid for all positive x if and only if

α ≥ max{1, [Γ(1 + 1/p)]−p} and 0 ≤ β ≤ min{1, [Γ(1 + 1/p)]−p}.
Now, we provide new upper and lower bounds for the exponential integral

E1(x) =
∫∞
x

e−t

t dt.

Theorem 2. The inequalities

− log(1− e−ax) ≤ E1(x) ≤ − log(1− e−bx)(2.7)

are valid for all positive real x if and only if

a ≥ eC and 0 < b ≤ 1,

where C = 0.5772 . . . is Euler’s constant.

Proof. The function t 7→ − log(1 − e−tx) (x > 0) is strictly decreasing on (0,∞).
Therefore, it suffices to prove (2.7) with a = eC and b = 1. Let p > 1; from (2.6)
with α = [Γ(1 + 1/p)]−p, β = 1, and x instead of xp, we obtain

Γ(1/p)[1− (1− e−αx)1/p] <

∫ ∞
x

t−1+1/pe−t dt < Γ(1/p)[1− (1− e−x)1/p].

If p tends to ∞, then we get

− log(1− e−ax) ≤ E1(x) ≤ − log(1− e−x)

with a = eC .
We assume that there exists a real number b > 1 such that

E1(x) ≤ − log(1− e−bx)

holds for all x > 0. Since

exE1(x) =
n∑
k=1

(−1)k−1(k − 1)!x−k + rn(x) (x > 0)

with

|rn(x)| < n!x−n−1

(see [2, pp. 673–674]), we obtain

exx log(1− e−bx) ≤ −1− xr1(x).(2.8)

If we let x tend to ∞, then inequality (2.8) implies 0 ≤ −1. Hence, we have b ≤ 1.
Using the representation

E1(x) = −C − log(x) −
∞∑
n=1

(−1)n
xn

n!n
(x > 0)
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(see [2, p. 674]), we conclude from the left-hand inequality of (2.7) that

log
x

1− e−ax ≤ −C −
∞∑
n=1

(−1)n
xn

n!n
.

If x tends to 0, then we obtain

log(1/a) ≤ −C or a ≥ eC .
The proof of Theorem 2 is complete.

3. Concluding remarks

In the final part of this paper we want to compare the bounds for the integrals∫∞
x
e−t

p

dt (p > 1) and
∫∞
x

e−t

t dt which are given in (1.3), (2.6) and (1.4), (2.7),

respectively. First, we consider the bounds for
∫∞
x e−t

p

dt. We define

Rp(x) = Γ(1 + 1/p){1− [1− e−αx
p

]1/p} − e−x
p

2
[(xp + 2)1/p − x]

with

α = [Γ(1 + 1/p)]−p and p > 1.

Then we have

Rp(0) = Γ(1 + 1/p)− 2−1+1/p > 0,

lim
x→∞

Rp(x) = 0 and lim
x→∞

ex
p ∂

∂x
Rp(x) = 1.

This implies

Rp(x) > 0 for all sufficiently small x > 0,

and

Rp(x) < 0 for all sufficiently large x.

Let

Sp(x) = Γ(1 + 1/p){1− [1− e−xp ]1/p} − ce−xp [(xp + 1/c)1/p − x]

with

c = [Γ(1 + 1/p)]p/(p−1) and p > 1.

From Sp(0) = 0,

lim
x→0

∂

∂x
Sp(x) = [Γ(1 + 1/p)]p/(p−1) − Γ(1 + 1/p) < 0,

lim
x→∞

Sp(x) = 0 and lim
x→∞

ex
p ∂

∂x
Sp(x) = −∞,

we conclude

Sp(x) < 0 for all sufficiently small x > 0,

and

Sp(x) > 0 for all sufficiently large x.

Hence, for small x > 0 the bounds for
∫∞
x e−t

p

dt (p > 1) which are given in (2.6)
are better than those presented in (1.3), whereas for large values of x the opposite
is true.
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Next, we compare the bounds for the exponential integral E1(x). First, we show
that for all x > 0 the upper bound given in (1.4) is better than the upper bound
given in (2.7). This means, we have to prove that

e−x log(1 + 1/x) < − log(1− e−x)(3.1)

for all x > 0. Using the extended Bernoulli inequality

(1 + z)t ≥ 1 + tz (t > 1; z > −1)

(see [4, p. 34]), and the elementary inequality et > 1 + t (t 6= 0), we obtain for
x > 0: (

1 +
1

ex − 1

)ex
≥ 1 +

ex

ex − 1
= 1 +

1

1− e−x > 1 +
1

x
,

which leads immediately to (3.1).
Finally, we compare the lower bounds for E1(x) given in (2.7) and (1.4). Let

T (x) =
e−x

2
log(1 + 2/x) + log(1− e−ax)

with a = eC . Since limx→0 T (x) = −∞, we obtain T (x) < 0 for all sufficiently
small x. And, from

lim
x→∞

T (x) = 0 and lim
x→∞

eax
d

dx
T (x) = −∞,

we conclude that T (x) > 0 for all sufficiently large x. Thus, for small x > 0 the
lower bound for E1(x) which is given in (2.7) is better than the bound given in
(1.4), while for large values of x the latter is better.
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