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ON SOME L;-FINITE TYPE (HYPER)SURFACES IN R"+1

SEYED MOHAMMAD BAGHER KASHANI

ABSTRACT. We say that an isometric immersed hypersurface z : M"™ —
R is of Ly-finite type (Ly-f.t.) if z = > _omi for some positive
integer p < o0, z; : M — Rt is smooth and Lyz; = \izi, A € R,0 <
i < p, Lif = trP, o V2f for f € C®(M), where P is the kth Newton
transformation, V2§ is the Hessian of f, Lz = (Lgz',..., Lpa™tl),
z = (z',...,z"T!). In this article we study the following (hyper)surfaces
in R™*! from the view point of Li-finiteness type: totally umbilic ones,
generalized cylinders S™(r) x R®~™, ruled surfaces in R"™! and some
revolution surfaces in R3.

1. Introduction

Finite type submanifolds have been introduced in the late seventies by
B. Y. Chen [2] to find the best possible estimate of the total mean curvature
of a compact submanifold of a Euclidean space and to find a notion of degree
for submanifolds of Euclidean space. Since then the subject has had a rapid
development and so many mathematicians contribute to it, see the excellent
survey of B. Y. Chen [3]. We recall that an isometrically immersed submani-
fold z : M™ — R™"¥ is said to be of finite type if 2 has a finite decomposition
as r = Zf:o x;, for some positive integer p < +0o, such that Az; = Az,
Ai € R,0 < ¢ < p, where A is the Laplacian operator of M. If all )\;,s are
mutually different, then M™ is said to be of p-type. If in particular one of A;,s
is zero, then M is said to be of null p-type.

As it is well known, the Laplacian operator of an isometrically immersed
hypersurface M™ C R"! is an (intrinsic) 2nd-order linear differential operator
which arises naturally as the linearized operator of the first variation of the
mean curvature for normal variation of the hypersurface. From this point of
view, the Laplacian operator A can be seen as the first one of n operators
Lo=A,Ly,...,L,_, where L stands for the linearized operator of the first
variation of the (k4 1)th mean curvature (the (k + 1)th elementary symmetric
function in terms of the principal curvatures of M) arising from normal varia-
tion of the hypersurface. These operators are given by L (f) = tr(PyoV2f) for
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any real smooth function f on M, where Py denotes the kth Newton transfor-
mation associated to the 2nd fundamental form of the hypersurface and V2 f
is the Hessian of f. Although in general the operators Ly, are not elliptic, they
still share nice properties with the Laplacian operator of M, see [1]. So, it seems
natural to consider isometrically immersed hypersurfaces z : M™ — R"*! in
Euclidean space satisfying the condition « = }"?_ z;, for some positive integer
p such that Lyz; = Az, A € R,0 < i < p,. We call such hypersurfaces, Lj-
finite type. This is an important and interesting generalization of finite type
hypersurfaces, and with this paper, we begin to study such hypersurfaces. Here
we consider totally umbilic hypersurfaces, generalized cylinders, ruled surfaces
and some revolution hypersurfaces from the point of view of L;- finiteness type.

We should mention that similar to Proposition 1 of [5] we have the following
fact. If M is an L,-k-type surface, and if p(T) = Hle(T — i), then p(L1 )}z —
zo) = 0. The polynomial p is called the minimal polynomial of M.

2. Main result

Proposition 2.1. Ifz : M™ — R™*! is q totally umbilic isometric immersion,
then either it is of Ly-null 1-type for every k,0 < k < n—1, or it is of Ly-1-
type for 1 <k <n-—1.

Proof. If M is totally geodesic, then its shape operator Sis S=0= H, =0
for 0 < k <n= Lyx = cgHg1 N = 0, Hy is the kth mean curvature of M,
see [1], so M is of Li-null 1-type for every k, 0 < k <n — 1.

If M is totally umbilic, but not totally geodesic, then its shape operator
S is § = Xid, for some A € R, A # 0,< z,z == A%, so Lyx = ¢z Hy N =
k(% )AFTIN = ¢ (R )AF~1g, see [6, Proposition 4.36]. So M is of Li-1-type for
every k, 1<k<n-1. ]

Proposition 2.2. If the isometrically immersed hypersurface M™ C R*t! s g
generalized cylinder S™(r) x R*™™, then M is of Li-null 1-type, if k+1 > m,
and it is of Ly-null 2-type, if k+1 < m.

Proof. Since Lyx = cxHy1 N and the shape operator of M, S is

S = diag(%,...,%,O,...,O),
where the multiplicity of % ism. ¥k+1>m= Hyy1 =0,80 Lyx =0
hence M is of Ly-null 1-type. If k+ 1 < m = Hiy1 = (§11 ), N(z) =
T 2

(15, Zmt1,0,...,0) = & = zr + 271, 21 = (T1,-. ., Tmy1) X {0} € R?HL

zir = {0} X (Tm+2,- -+, Tnt1) € R, Lyzy = ck(kq’-ll)_k_]:zl-_l xr, Lyzrr = 0
r

hence M is of Li-null 2-type. O

3. Ruled surfaces in R*+!

In this section we want to consider the ruled surfaces of R™t!, Here we
follow [4] and give the result via Propositions 3.1 and 3.2.
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Proposition 3.1. If M is a cylinderical ruled surface in R"*', then M is of
Li-finite type if and only if it is a cylinder over a curve of Li-finite type.

Proof. Let M be a cylinder over a curve v in an affine hyperplane E™ which
we can choose to have the equation z,.7, = 0. We can assume that + is
parameterized by its arc length, then a parametrization x of M is given by
z(s,t) = y(s) + tent1. The induced metric on z is [(7,67,> %], L1 of M is of
the form L; = tr(2H1I — S) o H, where S is the shape operator of M which
is of the form [} §], A € C*(R), H = (H,;) is the Hessian operator. To find
L4, it is enough to know Hy1, Hgs. By the formula of the metric one gets that
Hy, = %, Hoy = %25. By L] of v, we mean Ll"y and Lixp+1 = L1t = 0. Thus
as in [4], one obtains that M is of Li-finite type if and only if each component
of ¥(s) is a finite sum of eigenfunctions of L1, that is v(s) =To+ > ; ; L'i(s,¢)
where L1I'; = \;T'y, it can be seen that I'; does not depend on ¢t and (L |7)I‘i =
LTy = My, 1 £4 < p, then M is of Li-(p + 1)-type, unless one of the
eigenfunctions which appear in the decomposition of v has eigenvalue 0, in
which case M is of Li-p-type. O

Proposition 8.2. If M is a non cylinderical ruled surface in R**!, then M is
of Ly-null-1-type if and only if its Gaussian curvature is zero, i.e., M is flat.

Proof. If M is not cylindrical, we can decompose M into open pieces such that
on each piece we can find a parametrization x of the form z(s,t) = a(s)+£6(s),
where a, 3 are curves in R**! such that {(¢/,8) =0, (3,3) = 1 and (8, 3') = 1,
ie., the induced metric on x is [19] where ¢ = t* + 2(c/, 8"}t + (o/, &) =
e/ +t3'||2. We have that

52
H, — S 2 i<igk<e,
Buidz; 4= xy L<igks2
9 _9 9 _9
dr, 0Os Ozy Ot
0 Oz
5 =) +tB(s), S =Bls),
3z, ” 0z 0%z y
@—a(s)+t6 (s), W_O’ %—ﬂ(s)-

To calculate L1z, we need to know Hy1, Ha and the shape operator of M. We
obtain that

.92 1099 q0q9 _
U= 9s2  28s0s 20tot 2T o
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We have
{
S(zs) = Exs + gxt, S(z:) = %zs + %xt,
Te X T m
1= (8(zs), ) = (N,zs5), N = m S(ze) = 5,
S
oz or

Ts = s’ Ty = B
I, m are polynomials in ¢ of degree at most 2, with coefficients, functions in s,
E is a polynomial in ¢ of degree 2, with coefficients functions in s, G =constant,
so the entries of S are rational functions in ¢ with coefficients, functions in s.
The nominators are of degree at most 2. Hence if P is a polynomial in ¢ with
coefficients, functions in s and deg P = d, then

P(t)
°Q
where P is a polynomial in ¢ with functions in s as coefficients, and deg]3 <

d+ 6, @ is a polynomial in ¢t with functions as coefficients, deg Q = 2.
If M is of Li-k-type, Jc1,...,cx €ER, s.t.,

Li(P(t)) =

(3.1) LMzt lfe+ - +epliz=0

We know that every component of z is a linear function in ¢ with functions in
s as coefficients. By the relation

Pt P.(t
Li(P() = 54 = L = 2,
where P, is a vector field whose components are polynomial in ¢ with functions
in s as coefficients, deg P, < 1+ 6r. Hence if r goes up by one, the degree of the
numerator of any component of L]z goes up by at most 6, while the degree of
the denominator goes up by 8. Hence the sum 3.1 can never be zero, unless of
course Lz = 0, this means that Hy, the sectional (here the Gaussian) curvature
of M is zero, (since dim M = 2, M C R™*!). The converse is trivial. O

4. Revolution hypersurfaces

In the final section we consider some of the revolution hypersurfaces. We
follow [5] and study such hypersurfaces in two different cases, polynomial and
rational kind revolution hypersurfaces. We begin with the first case.

Definition 4.1. Let M? C R? be a revolution hypersurface given by z(u,v) =
((g(u), h(u) cosv), h(u) sinv), (u,v) € R2. Then M is called of polynomial
(resp. rational) kind if ¢ and h are polynomials in u (resp. if g is a ratio-
nal function in h).
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4.1. Polynomial kind revolution hypersurfaces

Let M? C R® be parameterized by z(u,v) = (g(u), h(u)cosv, h(u)sinv)
where g, h are polynomials, (u,v) € R?, we also assume that g’ + h'? = A?
where A is a polynomial in . Then E = (&, zy) = ¢ +h'?, G = (x4, T,) = h?,

F = (zy,z,) = 0, so the matrix of the induced metric on M is [9'2‘5"/2 9] If

S is the shape operator of M, then S = % g] where
G
—d'h" ax —a'h
_ g g —gh
/gIQ + h/2 /912 + h/2

In order to find L f = tr(2H, I — S)o HY,| f € C*°(M), it is enough to calculate
H {1 and HQfQ, we obtain that
82 / " + h/h// o 82
b~ a5 M2
ou g%+ hn? Ou Ov
Following [5], we prove the next lemma.

Hy =

Lemma 4.2. Let F(u), G(u) be polynomial functions in v and M as introduced
in the subsection (4.1). Then Ll(g) = Z;F_ll for some polynomial functions 1, G
with

d(F1) — d(Gy) < d(F) = d(G) — d(h) — 2

Proof. By applying L; and straightforward computation, we obtain that
(F(u)) Fl(u) , where

Fi=g¢g [ +h?)(F'G - FG'YG - 2(g” + W*)G'(F'G - FG')
_ G(gl 1" + h/hll)(FlG _ FGI)],
G1 = G*h(g? + K37 = G3hA>.
Then we get that
d(G1) = 3d(G) + d(h) + 3max{d(g),d(h)} —
d(F1) < 2d(G) + d(F) + 3max{d(g),d(h)} — 5
= d(F) —d(G1) < d(F) —d(G) — d(h) — 2. O
Theorem 4.3. Let M be a surface of revolution of the polynomial kind as
introduced in the subsection (4.1). Then M is a surface of Li-finite type if

and only if M is either an open piece of a plane or an open piece of a circular
cylinder, or it is flat.

Proof. Let

FA
(4.1) —i=1,2,3,...,

19 = G,
then similar to (3.5) of [5], we have

42)  d(Fip1) = d(Gi1) < d(Fy) — d(Gi) < - < d(Fy) — d(G1) < d(g)-
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Assume that M of L;-finite type, say of Li-k-type. Let
(4.3) p(T)=TF+e1T* '+ -+ 1T +

be the minimal polynomial of M, then p has k distinct real roots, and from the
relations 4.1 and 4.3 we have that

for some constant a. Let K = G; --- Gy, then

Fy Fp 4 F
K—+akK +- e K=
Gr ' Gra AN

+¢K(g—a)=0.
If d(g) = 0, M is an open portion of a plane. If d(g) > 0, then by (4.2) we get
the inequalities

Fp,
Gr—1

ﬂ
G

d(K(g—a)) > d(K-gil) s> dr Ly S gk

which is impossible unless
p(T)=T%4¢,T,¢1 # 0,119 =0,
since the minimal polynomial p has k distinct real roots. That is
L%:L‘ +c1Lix =0,

so we get that M is either of L;-1-type or of Li-null 2-type. If M is of L;-1-
type, then Lix = ¢ HoN = Az for some A € R, if A =0= Hys = 0,50 M is
flat. If A # 0, then M has to be an open portion of an sphere, which is not
possible, since M is a revolution hypersurface of polynomial kind in R3. If M
is of Li-null 2-type, we characterize it as follows. We have that ¢ = ¢+, + x4
where ¢ € R3, z,,z, : M — R® are smooth, L1z, = 0,

Llillq = )\qa:q,)\q S R, )\q 75 0= Ll.’Eq = )\q.'l,'q =Liz=cHN

L g, = BN
)‘q
caaH;N c
(4.4) = L1(Z227) = Ly (HaN) Az, = ¢ HaN.

Ag Ag

Now we calculate L;(HyN) directly.
X.(HoN,a) = ((X.H2)N, a) — Ha(SX,a)

4.5) - = V(H3N,a) = (N,a)VHy — S(a¥)
= Vx(v<H2N, a))
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= X.(N,a)VH; + (N,a)VxVHs — Vx(S(a"))
= —(5X,a)VHy + (N,a)VxVHy - VS(aT,X) - S(VxaTl)
=—(S(a™), X)VHy + (N,a)VxVHy — (V,rS)X — (N,a)S?X
= Li(H2N, a) = tr(p1 0 VorS) — (N, a)tr S o Py = Y ((Sa”,e;)VHy, Pre;)

+ (N, a) Z (P1(V,VHy),e;)

= Li(HzN,a) = Li(N,a) + (N,a) Y " Hp,(e;, Pre;) — (S o Pi(VH>), a)
= Li(H2N) = LiN + (3 _ Hm,(e:, Pre))N — S o Py(VHy)

using the formula of L1 N and comparing (4.5), (4.4) one gets that SoP; (VHz) =
—VHj,. By using the relation P, = 2HI — S and that S = [% é] with respect
to the ordered basis {x,,z,} one obtains that the relation S o P(VH2) =
—VH; (by counting the degrees of the polynomials involved in this equation)
holds only when h equals some constant A, A € R,\ # 0, ie., z(u,v) =

(g(u), Acosv, Asinv), A € R\ # 0, so M is a circular cylinder. We leave
the proof of the converse to the reader as an easy exercise. O

4.2. Revolution hypersurfaces of rational kind

Let M be parameterized by z(u,v) = (g(u), h{u) cosv, h(u)sinv), we recall
that M is said to be of rational kind if g is a rational function in A, i.e., g is
the quotient of two polynomial functions in A.

Following [5], we get the final result.

Theorem 4.4. Let M be a surface of revolution of the rational kind such that
if g = %, (Q,R) =1, then Q* + R? = A2, where A is a polynomial. Then M
s a surface of Li-finite type if and only if M is flat.

In fact Theorem 4.4 follows from the following more general result.

Theorem 4.5. Let M be an Li-finite type surface of revolution parameterized
by z(t,v) = (g(t),tcosv,tsinv), where g is a rational function in t and if
g @) = %, (Q,R) =1, then Q*+ R? = A?, where A is a polynomial in t. Then
M is flat or deg Q = deg R = 2 + deg(Q + R).

Proof of Theorem 4.4. Without loss of generality, we may assume that M is
parameterized by xz(t,v) = (g(t),tcosv,tsinv), where g(t) = % for some
polynomial functions G, H, (G, H) = 1. Assume that M is of L;-finite type,
then by Theorem 4.5, M is flat. The converse is trivial. 0

Proof of Theorem 4.5. Let M be a surface of revolution parameterized by
z(t,v) = (g(t),tcosv,tsinv) as in Theorem 4.5. In order to find L; we need
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the metric, the shape operator S and Hi1, Hoe. The induced metric on z is
2

[¢°+1 01 the shape operator S is
0 t

s

0
(g"2+1)2 ,
8g2+1)2
We obtain that
82 g/g// ¥ a
Hj)=—-5—--22 — Hopy=—.
W7o gzr10t P af
So,
H *
Ly = tr(s1 HI — S) oH, H= l: *11 H22]
—a 0 92 ‘q" 8
=Ly = tr | H07+D2 w o lﬁﬁ EGE ]
(97+1)F * 27
=L, = _g'_(_o”'i_i’giﬁ) g &
tg?2+1)3 02 g2+10t" ' (g2 4 1)3 Ov2
th . _ 9_1 & — _glzg//_tzg// _ _gll(gl2+t2) . ’
en 1f L (tcos) Ry €08V = R, t(g%+1)% t(g?+1)3 it g

Q . @1 _ (QR-Q'R)(@Q*$*R?) 2 2 _ a2 . . i+l
5= 5 P S Q° + R® = A°. If inductively LT (¢t cosv)

—g:: cosv, 1t 1,2,3,... for some polynomial functions Q;, R;, put Q,

Q.Ri — QiR!, Q; = (Q/R; — Q:R})'R? — 2R, R\(Q,R; — Q:R!), then have

Qn __ ¢ i__9%" @ 9" Qi

Rii  g?+ )} B] 42+ )IR? (@2 + DE R,
___ Q@ 8 _QQR-RQ Q RQR-RQQ

CHQ2+R2)I Rl tR@Q*+R)} R} (Q+R)f R
_ QR(Q*+ R)Q, - Q°RAQ'R— R'Q)Q, — tR’R}Q'R -~ R'Q)Q;
{RRHQ? + B?)]

=Qir1 = QR(Q* + R)Q, - Q*RAQ'R - R'Q)Q; — tR*R} Q'R ~ R'Q)Q;,
Riy1 =tRRYQ® + R?)? = tRR1A%.

Assume that M is of Li-finite type, say of k-type, let p(T) = T* + ¢, T* +

-+++ cg-1T + ¢ be the minimal polynomial of M, then p has k distinct real
roots. We have that

Qr Qi1 o
=k 1 t=0.
Rk+C1Rk_1+ + Ck 1R1+Ck
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Let K = Ry --- Ry, then we get

Qk Qr—1

KRk + C1KRk_1

Following ([5], cases i-iii of Theorem 3) by similar discussion about deg(Q),
deg(R) according to the cases deg(Q) > deg(R) or deg(Q) < deg(R) or
deg(Q) = deg(R), we see that the only possibility is that either p(T) = T
or deg(Q) = deg(R) = 2+ deg(Q + R). When p(T) =T = Hy = 0, in this
case, M is flat. O

bt o K9 4 etk = 0.
R,
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