
On Some New Approaches to Practical Slepian-Wolf
Compression Inspired by Channel Coding

Todd P. Coleman ∗, Anna H. Lee, Muriel Médard †; Michelle Effros ‡

{colemant,annalee,medard}@mit.edu; effros@caltech.edu

Massachusetts Institute of Technology; California Institute of Technology

Laboratory for Information and Decision Systems; Data Compression Laboratory

Cambridge, MA 02139; Pasadena, CA 91125

Abstract

We introduce three new innovations for compression using LDPCs for the Slepian-Wolf
problem. The first is a general iterative Slepian-Wolf decoding algorithm that incorporates
the graphical structure of all the encoders and operates in a ‘turbo-like’ fashion. The second
innovation introduces source-splitting to enable low-complexity pipelined implementations
of Slepian-Wolf decoding at rates besides corner points of the Slepian-Wolf region. This
innovation can also be applied to single-source block coding for reduced decoder complexity.
The third approach is a linear programming relaxation to maximum-likelihood sequence
decoding that exhibits the ML-certificate property. This can be used for decoding a single
binary block-compressed source as well as decoding at vertex points for the binary Slepian-
Wolf problem. All three of these innovations were motivated by recent analogous results
in the channel coding domain.

1 Introduction

The problem of distributed lossless compression of correlated sources is relevant for numer-
ous applications, such as sensor networks. For a set of m memoryless sources (U1, . . . , Um)
with joint probability distribution P

(
u1, . . . , um

)
, the achievable rate region is given [1] by∑

i∈S

Ri > H (U(S)|U(Sc)) ∀ S ⊆ {1, 2, . . . , m}

where U(S) = {U j , j ∈ S}. Vertices are the rate tuples (R1, . . . , Rm) that are obtained
by expanding H(U1, . . . , , Um) into m terms by successive applications of the chain rule
and assigning to each rate the unique term in the expansion. Each unique vertex cor-
responds to a rate-tuple that is single-user decodable given side information of the pre-
viously decoded users. The vertices in the two-user setting correspond to the rate pairs
(R1, R2) =

(
H(U1),H(U2|U1)

)
and (R1, R2) =

(
H(U1|U2),H(U2)

)
.

∗supported by an NSF Graduate Research Fellowship
†supported by the HP-MIT Wireless Networking Alliance
‡supported by NSF Grant No. CCR-0220039 and Caltech’s Lee Center for Advanced Networking

Proceedings of the Data Compression Conference (DCC’04)
1068-0314/04 $ 20.00 © 2004 IEEE

In [2], Csiszár showed that random linear block codes asymptotically achieve the opti-
mal performance for the Slepian-Wolf problem under a universal minimum-entropy decod-
ing mechanism. Recent work has addressed the Slepian-Wolf problem using linear codes
and iterative decoding. Low-density parity-check code (LDPC) formulations [3, 4, 5] and
turbo code formulations [6, 7, 8, 9] have been shown to provide excellent performance with
low-complexity iterative decoding for the binary problem at vertex rate points.

In this paper, we consider three issues that we believe make the Slepian-Wolf source
coding problem more amenable to being used in practice. Section 2 discusses a general joint
iterative decoding algorithm for LDPCs that has a ‘turbo-style’ interpretation. Section 3
discusses source-splitting, which can be used to allow the decoder to operate in a pipelined
fashion with reduced complexity. Section 3.1 illustrates how source-splitting yields rates
besides vertices in the Slepian-Wolf region that can be decoded successively and shows
a simple MAP decoder exists based upon the outputs of iterative decoders. Section 3.2
illustrates how source-splitting can be applied to single-source block coding for reduced
decoder complexity. Again, it is shown that a simple MAP decoder exists based upon the
outputs of iterative decoders. Finally, section 4 discusses a linear programming relaxation
to the maximum-likelihood (ML) sequence decoding problem for source coding. It is shown
that this relaxation has the ML-certificate property: if an integral solution is found, it is
the ML solution. Formulations for both the binary single-source block coding case and
the binary Slepian-Wolf vertex case are constructed. All of these results stem from similar
results in the channel coding literature.

2 Iterative Decoding of LDPC codes for Slepian-

Wolf

We discuss in this section a general algorithm for the use of LDPCs as syndrome-formers
[10] for the two-user binary Slepian-Wolf problem. We note that the algorithm generalizes
to an arbitrary number n of users using LDPCs over GF (2m). The correlated memoryless
sources U and V are jointly distributed according to PU,V (u, v) and are independently
encoded using the same block length n. User u (v) uses a ku by n (kv by n) matrix Hu

(Hv) to construct the length ku (kv) syndrome su (sv):

su = Huu sv = Hvv

The resultant rates are ku
n and kv

n . The decoder’s job is to infer u and v from the syndromes.

2.1 Graphical Realizations

Graphical representations denote the dependencies between codewords based upon the
constraints they must satisfy. For a linear code, each local constraint is a smaller linear
code. The leftmost side of figure 1 illustrates a normal graph representation [11], where
bits are associated with edges and constraint codes are associated with nodes. A node
with a ‘+’ sign and degree d is a (d, d − 1, 2) single parity check code that imposes the
constraint that the bits lying on the d edges adjacent to that node must sum (modulo 2)
to 0. A node of degree d′ with an ‘=’ sign is a (d′, 1, 2) repetition code and imposes the
constraint that the bits lying on the d′ adjacent edges must be equal. There are n nodes
with a ‘=’ label for user u(v), each of which corresponds to a single repetition code and
has a connection to one of the input variable symbols. There are ku(kv) nodes with a ‘+’
label, each of which corresponds to a single parity-check code and has a connection to one

Proceedings of the Data Compression Conference (DCC’04)
1068-0314/04 $ 20.00 © 2004 IEEE

of the output syndrome symbols for user u(v). The ith parity-check node is connected to
the jth repetition node for user u(v) if and only if the i, j entry of Hu(Hv) is 1, i.e. if
the jth variable node is involved in the computation of the ith syndrome symbol. The set
of all valid (u, su) input-output sequences is the set of (u, su) pairs that satisfy all local
constraints. The same follows for (v, sv) input-output sequences.

2.2 Iterative Decoding Using the Joint Distribution

We consider a belief propagation-style iterative decoding approach, using a method anal-
ogous to the multiple access iterative decoding approach introduced in [12]. For the code
described by Hu (Hv), we assume all parity check and repetition nodes are labeled and
define a bipartite graph Gu = (Vu, Eu) (Gv = (Vv, Ev)). For any node iu ∈ Vu (iv ∈ Vv),
we define N(iu) (N(iv)) to be its set of neighbors: N(iu) = {ju ∈ Vu s.t. (iu, ju) ∈ Eu}
(N(iv) = {jv ∈ Vv s.t. (iv, jv) ∈ Ev}).
Check Nodes:
At a check node of Gu, the update rule is the same as in a single-user LDPC code. The
bit value of any edge is equal to the (modulo-2) sum of the remaining bits adjacent to a
check node. We assume the graph has no cycles so that we have a sum of independent
random variables [11]. Thus the outgoing message along any edge is the convolution of the
messages along all other incoming edges. The Fourier transforms of the distributions are
multiplied and the outgoing message along any edge (iu, ju) ∈ Eu for a parity check node
iu is given by

P̂iu→ju(u) =
∏

ku∈N(iu)\{ju}
P̂ku→iu(u) (1)

where P̂ is the Fourier transform of the distribution P . An analogous equation holds for
parity check nodes in Gv.
Variable Nodes:
At a variable node, each incoming message along the edges of Gu is assumed to be inde-
pendent of the estimate of u. Similarly, each incoming message along the edges of Gv is an
independent estimate of v. Moreover, for sufficiently distinct graphs, with high probability
the message coming in from both the graphs are independent of each other. In addition
to these messages, we also have the joint distribution between U and V . So for a variable
node ju ∈ Vu, there is a corresponding jv ∈ Vv which represents the same time index. This
is illustrated in the lefthand side of figure 1 with ovals around the corresponding nodes. By
the usual belief propagation rule, we get the outgoing joint message along an edge (ju, iu)
of the graph:

Pju→iu (u, v) ∝ PU,V (u, v)
∏

ku∈N(ju)\{iu}
Pku→ju (u)

∏
kv∈N(jv)

Pkv→jv (v) . (2)

Thus, the joint message passed along an edge of Gu depends on the joint distribution,
all the incoming messages along edges adjacent to variable node jv, and all the incoming
messages along edges adjacent to ju (except the edge along which the outgoing message is
passed). The next step is to marginalize this joint distribution along Gu since its messages
convey information about only u:

Proceedings of the Data Compression Conference (DCC’04)
1068-0314/04 $ 20.00 © 2004 IEEE

=

=

=

=

. . .

+

+

. . .

+

=

=

=

=

. . .

+

+

. . .

+

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
10

-4

10
-3

10
-2

10
-1

10
0

R
U
+R

V
-H(U,V) [bits/symbol]

S
y
m

b
o
l
E

rr
o
r

R
a
te

0 0.5 1 1.5 2
0

0.5

1

1.5

2

R
U
 [bits/symbol]

R
V
 [
b
it
s
/s

y
m

b
o
l]

Figure 1: (L) Normal Joint Decoding Graph; (R) SER for the Joint Decoding

Pju→iu (u) ∝
∏

ku∈N(ju)\{iu}
Pku→ju (u)

1∑
v=0

PU,V (u, v)

∏
kv∈N(jv)

Pkv→jv (v)

 (3)

= P ′
Ujoint

(u)
∏

ku∈N(ju)\{iu}
Pku→ju (u) (4)

where P ′
Ujoint

(u) ∝
1∑

v=0

PU,V (u, v)
∏

kv∈N(jv)

Pkv→jv (v) (5)

is the updated joint information and has the property that it does not depend on the edge
along which the message is to be passed. In this way, the updated joint information is
similar to channel information in a single user LDPC channel code. By exchanging the
roles of U and V , we obtain analogous results for the variable update equations for Gv.

We iteratively recalculate these values according to some schedule, until a criterion for
stopping is met. For example, the algorithm can be stopped when all parity checks are
satisfied or after a fixed number of iterations. Thus the decoding algorithm for the Slepian-
Wolf problem is the same as using two single-user LDPC decoders with each decoder
updating the effective prior distribution for the other code at each iteration. In a sense,
the two single-user LDPC decoders cooperate in ‘turbo-like’ fashion to work on the Slepian-
Wolf problem.

The rightmost plot of figure 1 shows the achievability of non-corner points using the
proposed joint decoding process. Regular LDPCs over GF (4) with blocklength n = 1000
were used to code two correlated memoryless sources U, V where |U | = |V | = 4. The
symbol error rate (SER) plots are shown for three non-vertex rate pairs, as a function of
the sum rate difference from the entropy boundary. The legend shows the location of these
rate pairs on the boundary of the Slepian-Wolf region. We note that this approach appears
to suffer as rate tuples deviate far away from vertices; this is in agreement with analogous
observations for the multiple access problem [12].

3 Source-Splitting

Let us now consider taking each symbol of a discrete memoryless source U of cardinality
Q and splitting it into a collection of random variables of smaller cardinality. We say that
Ui ↔ (U1

i , . . . , Uk
i) if there is a bijection between the random variables Ui and (U1

i , . . . , Uk
i).

Proceedings of the Data Compression Conference (DCC’04)
1068-0314/04 $ 20.00 © 2004 IEEE

Without loss of generality, we may assume that Ui takes on values in {0, 1, . . . , Q − 1}.
Examples of how we may construct splits go as follows:

Ui ∈ {0, 1, . . . , Q − 1} �→
(

U1
i = min(Ui, T)

U2
i = max(Ui, T) − T

)
�→ Ui = U1

i + U2
i (6)

Ui ∈ {0, 1, . . . , Q − 1} �→

U1
i = 1{Ui=1}

U2
i = 1{Ui=2}

...
UQ−1

i = 1{Ui=Q−1}

 �→ Ui =

Q−1∑
k=1

kUk
i (7)

where in (6), T ∈ {0, . . . , Q − 1} and in (7), 1{A} = 1 if event A occurs and 0 otherwise.
We note that definition (6) gives many possible splits, especially when we consider

re-ordering the alphabet. For nontrivial splits (T ∈ {1, . . . , Q − 2}), U1
i ∈ {0, . . . , T} and

U2
i ∈ {0, . . . , Q − 1 − T} and there are

(
Q
T

)
distinct ways to map the Q symbols to the

splitting sets in (6). This provides a total of
Q−2∑
i=1

(
Q

i

)
= 2Q −

(
Q

0

)
−

(
Q

Q − 1

)
−

(
Q

Q

)
= 2Q − Q − 2

distinct ways to perform the splitting mechanism and form the bijection Ui ↔ (U1
i , U2

i).
The definition in (7) might, for example, be used to perform fixed-to-fixed block coding

of a single non-binary source by transforming it to a set of binary sources. What makes
this attractive is not the encoding, but the benefits in decoding, which is simplified, as we
shall see. Each permutation of the indices of U yields new splits for the case of (7) and
thus there are Q! splits.

We call these operations source-splitting, in analogy with the rate-splitting ideas for
multiple access channels [13]. We note that there are other possible ways to perform
source-splitting, such as simple binary representation. As we shall see in section 3.1, the
two examples we provide have nice implications that lead to simple MAP decoders.

We note that an approach for source-splitting was discussed in [14], but it made the
assumption that i.i.d binary sources of common randomness were shared between the
decoder and each encoder that performed splitting. Furthermore, it assumed that the
splitting operation’s output variables had cardinalities strictly larger than the cardinality
of the original variable. Our approach gets around both of those issues.

3.1 Source-Splitting for Slepian-Wolf Coding

We note that, if we have two sources U and V , then we can split U to form (U1, U2) as
shown in (6). At this point, we have three sources, all of which can be encoded separately
using linear codes, as displayed in figure 2. We note that because U ↔ (U1, U2), we have
that H(U) = H(U1, U2) and furthermore, H(U, V) = H(U1, U2, V). As a consequence,
the rate triple (RU1 , RV , RU2) =

(
H(U1),H(V |U1),H(U2|V, U1)

)
where RU = RU1 +RU2

is not only achievable, but is also single-user decodable. What this means is that the
decoding operation defined in section 2.2 can be applied here in a successive fashion using
a schedule where first messages are passed only along one graph, then passed to the next
given by (4), and so forth. The order in which they perform this successive decoding
corresponds to the order in which the chain rule is expanded to arrive at the single-user
decodable rate-triple. This scheme yields a pipelined approach that in real time operates
at the rate of a lower-alphabet decoder (although decoders with side information need to
be reconfigurable). Figure 2 illustrates the encoding and decoding process. The MAP

Proceedings of the Data Compression Conference (DCC’04)
1068-0314/04 $ 20.00 © 2004 IEEE

encoderencoder

encoderencoder

encoderencoder

decoder

decoder

decoder M
A

P
 e

s
tim

a
to

r
Figure 2: Source Splitting and Decoding for a Two-Source Slepian-Wolf Problem

estimator for symbol i of U is given by
Ûi = arg max

u∈{0,1,...Q−1}
P

(
Ui = u|s1

u, s2
u, sv

)
We note that the sum-product algorithm for iterative decoding produces approximate a
posteriori probabilities (APPs) for U1

i , U2
i and Vi:

P
(
U1

i = u|s1
u, s2

u, sv

)
� appU1

i (u) ,

P
(
U2

i = u|s1
u, s2

u, sv

)
� appU2

i (u) ,

P
(
Vi = u|s1

u, s2
u, sv

)
� appV

i (u) .

We wish to use these probabilities to form an efficient MAP decoder for Ui. By noting
that in (6), the parameter T is fixed, we have that

j 	= T : U1
i = j ⇒ U2 = 0 (8)

j 	= 0 : U2
i = j ⇒ U1 = T . (9)

Thus we can arrive at the following for MAP decoding:
u < T : P

(
Ui = u|s1

u, s2
u, sv

)
= P

(
U1

i = u,U2
i = 0|s1

u, s2
u, sv

)
= P

(
U2

i = 0|U1
i = u, s1

u, s2
u, sv

)
P

(
U1

i = u|s1
u, s2

u, sv

)
= P

(
U1

i = u|s1
u, s2

u, sv

)
= appU1

i (u) owing to (8)
u > T : P

(
Ui = u|s1

u, s2
u, sv

)
= P

(
U1

i = T,U2
i = u − T |s1

u, s2
u, sv

)
= P

(
U1

i = T |U2
i = u − T, s1

u, s2
u, sv

)
P

(
U2

i = u − T |s1
u, s2

u, sv

)
= P

(
U2

i = u − T |s1
u, s2

u, sv

)
= appU2

i (u − T) owing to (9)

P
(
Ui = T |s1

u, s2
u, sv

)
= 1 −

∑
u�=T

P
(
Ui = u|s1

u, s2
u, sv

)

= 1 −
(

T−1∑
u=0

appU1

i (u)

)
−

(
Q−1∑

u=T+1

appU2

i (u − T)

)

Since the APP outputs of the sum-product decoder are approximate, this MAP decoder
that uses the APP outputs itself is approximate. In particular, we see that the final
equation above can be negative. In the event of it being negative, we may simply set it to
a small ε > 0 or 0. Nonetheless, the MAP estimator is simple.

3.2 Source Splitting a Single Source

For splits defined in terms of (7), we may transform the source coding of a single source
into a binary multiple source Slepian-Wolf problem corresponding to decoding at a vertex

Proceedings of the Data Compression Conference (DCC’04)
1068-0314/04 $ 20.00 © 2004 IEEE

point. The benefit of this approach lies in its low-complexity decoding (which is analogous
to figure 2).

The MAP estimator for symbol i of U is given by
Ûi = arg max

u∈{0,1,...Q−1}
P

(
Ui = u|s1

u, s2
u, . . . , sQ−1

u

)
We note that the sum-product algorithm for iterative decoding produces approximate a
posteriori posteriori probabilities (APPs) U1

i , U2
i , . . . , UQ−1

i :
P

(
U1

i = u|s1
u, s2

u, . . . , sQ−1
u

)
� appU1

i (u) ,

...
...

P
(
UQ−1

i = u|s1
u, s2

u, . . . , sQ−1
u

)
� appUQ−1

i
i (u) .

For splits defined in terms of (7) we notice that
k ∈ {1, . . . , Q − 1} and Uk

i = 1 ⇒ U r
i = 0, r 	= k (10)

Thus we can arrive at the following for MAP decoding:
k 	= 0 : P

(
Ui = k|s1

u, s2
u, . . . sQ−1

u

)
= P

(
Uk

i = 1, U r
i = 0, r 	= k|s1

u, s2
u, . . . sQ−1

u

)
= P

(
U r

i = 0, r 	= k|Uk
i = 1, s1

u, s2
u, . . . sQ−1

u

)
P

(
Uk

i = 1|s1
u, s2

u, . . . sQ−1
u

)
= P

(
Uk

i = 1|s1
u, s2

u, . . . sQ−1
u

)
= appUk

i (1) owing to (10)

P
(
Ui = 0|s1

u, s2
u, . . . sQ−1

u

)
= 1 −

Q−1∑
k=1

P
(
Ui = k|s1

u, s2
u, . . . sQ−1

u

)

= 1 −
Q−1∑
k=1

appUk

i (1) ,

giving another very simple MAP estimator.
Figure 3 illustrates the performance of the splitting approach using iterative sum-

product decoding. Regular LDPCs of length n = 500 over GF (4) were used to code
memoryless sources. The leftmost plot shows iterative decoding results for coding two
correlated sources U and V , where |U | = |V | = 4. The symbol error rate (SER) plots
are shown for four non-vertex rate pairs, as a function of the sum rate difference from the
entropy boundary. We note that in comparison to the joint decoding scheme proposed in
section 2 under a turbo-like decoding schedule, this scheme achieves lower SER for the
same rate. The rightmost plot shows iterative decoding results for splitting a single source
U , where |U | = 4, into binary sources and performing iterative decoding with the piplelined
approach. This is compared to block-compressing U and applying iterative decoding. We
note that these results are merely proof-of-concept illustrations: significant gains can be
acquired using irregular LDPCs, using larger block lengths, and applying density evolution.

4 Approximate ML Decoding Using Linear Pro-

gramming

The rationale for this section is provided by the recent work of Feldman et al [15, 16]. We
first show how ML decoding for block source coding using LDPCs can be approximated

Proceedings of the Data Compression Conference (DCC’04)
1068-0314/04 $ 20.00 © 2004 IEEE

0 0.2 0.4 0.6 0.8 1 1.2 1.4
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

R
U
+R

V
-H(U,V) [bits/symbol]

S
y
m

b
o
l
E

rr
o
r

R
a
te

0 0.5 1 1.5 2
0

0.5

1

1.5

2

R
U

 [bits/symbol]

R
V
 [

b
it
s
/s

y
m

b
o

l]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

-3

10
-2

10
-1

10
0

R-H(U) [bits/symbol]

S
y
m

b
o
l
E

rr
o
r

R
a
te

single-source block encoding/decoding

source-splitting a single source

Figure 3: SER for source-splitting (L) Slepian-Wolf; (R) a single source.

using a linear program with the ML-certificate property. We then extend this to the binary
Slepian-Wolf case for encoding at a vertex point. Suppose ui ∈ {0, 1}, i = 1, . . . , n and we
use a linear code with syndrome former matrix H to compress u into a length k syndrome
s. If we have that γ � ln

(
P (Ui=0)
P (Ui=1)

)
, then the ML estimate of u is given by:

u∗ = arg max
u∈{0,1}n

P (U = u|S = s) = arg max
u∈{0,1}n

P (S = s|U = u)P (U = u)

= arg max
u∈{0,1}n

1{Hu=s}
n∏

i=1

P (Ui = ui) = arg min
u : Hu=s

n∑
i=1

− lnP (Ui = ui)

= arg min
u : Hu=s

n∑
i=1

(
lnP (Ui = 0) − lnP (Ui = ui)

)

= arg min
u : Hu=s

∑
i:ui=1

ln
(

P (Ui = 0)
P (Ui = 1)

)

= arg min
u : Hu=s

n∑
i=1

ln
(

P (Ui = 0)
P (Ui = 1)

)
ui = arg min

u : Hu=s

n∑
i=1

γui

By defining P(s) = CH ({u : Hu = s}), where CH denotes the convex hull, the above
problem can be cast as a linear program:

u∗ = arg min
u∈P(s)

n∑
i=1

γui.

The polyhedron however is in general too complex to represent explicitly and thus the
problem is NP-hard. We propose using a relaxed polytope P̃(s) ⊇ P(s) that includes not
only valid codewords as vertices, but also fractional vertices. This relaxation exhibits the
ML-certificate property: if an integral LP solution is found, it is the ML-codeword.

We construct P̃(s) as the intersection of k polyhedra P̃j(sj), where each P̃j(sj) is the
convex hull of all code symbols consistent with the local parity check j and syndrome
sj . Note that (as in the left-hand side of figure 1), parity-check j is connected to one
syndrome symbol sj and a set of δj adjacent variable nodes, given by N̄(j). If sj = 0,
the valid configurations the δj adjacent variables form is a (δj , δj − 1, 2) binary linear code
Cj(0). We define [Cj(0)] to be the matrix with each codeword of Cj(0) as a column vector.

Proceedings of the Data Compression Conference (DCC’04)
1068-0314/04 $ 20.00 © 2004 IEEE

In the event that sj = 1, we see that Cj(1) = {0, 1}δj \Cj(0) and [Cj(1)] is defined similarly.
Then we have that

P̃j(sj) =

{
u ∈ R

δj s.t. u = [Cj(sj)]x, x ∈ R
2δj−1

, 0 ≤ xi ≤ 1,
∑

i

xi = 1

}

P̃(s) =
{

u ∈ R
n s.t. u|N̄(j) ∈ P̃j(sj), j = 1, . . . , k

}
,

where u|V is defined to be the restriction of u to the coordinates in V .
Interestingly, in the context of LP channel decoding, the input log likelihood ratios

change (and thus the objective function changes) as a function of the channel output, but
the polyhedron is fixed. In the source coding case, the log-likelihood ratio γ (and thus the
objective function) is fixed, but the polyhedron changes depending upon the syndrome.
Another interesting aspect to the source coding case is that it is essentially universal :
detailed information about γ need not be known - the optimization algorithm is invariant
to scaling γ by a positive constant.

We next show how this extends to decoding at vertex points of the Slepian-Wolf prob-
lem. Suppose that we have encoded at U at rate Ru > H(U) and V at rate Rv > H(V |U).
Suppose we decoded U correctly and must now decode binary V using U as side informa-
tion. Suppose U lies in {0, 1, . . . , Q − 1} and by assumption V ∈ {0, 1}. Then we define
the following likelihood ratios:

γ0 � ln
(

P (Vi = 0|Ui = 0)
P (Vi = 1|Ui = 0)

)
, . . . , γQ−1 � ln

(
P (Vi = 0|Ui = Q − 1)
P (Vi = 1|Ui = Q − 1)

)
.

By performing analysis similar to the above derivations, we arrive at the following Slepian-
Wolf ML relaxation

v∗ = arg min
v∈P̃(sv)

Q−1∑
k=0

∑
i:Ui=k

γkvi

and note that it also exhibits the ML-certificate property.

5 Conclusion

Much of this paper results from the duality between source and channel coding. We take
ideas developed for channel coding and transform them appropriately to construct new
source coding techniques. We can accomplish distributed source compression using codes
on graphs with appropriate message-passing between all graphs that takes into account
the joint distribution between the sources. The iterative decoding procedure has a ‘turbo-
like’ interpretation. We also illustrated how to achieve Slepian-Wolf rates besides vertices
with low-complexity iterative decoding by applying source-splitting. This operation was
also shown to be applicable for single-source block coding to reduce decoder complex-
ity. All of these multi-user source coding results were motivated by recent results in the
multiple access channel coding literature. Finally, we constructed linear programming re-
laxations to the maximum-likelihood decoding problem for source coding. We illustrated
these relaxations possess the ML-certificate property and showed relaxations for both the
single-source binary block coding case as well as the binary Slepian-Wolf vertex case. This
approach as well had its origins in the channel coding domain.

Proceedings of the Data Compression Conference (DCC’04)
1068-0314/04 $ 20.00 © 2004 IEEE

References

[1] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,” IEEE
Transactions on Information Theory, vol. 19, no. 4, pp. 471–480, 1973.

[2] I. Csiszár, “Linear codes for sources and source networks: Error exponents, universal
coding,” IEEE Transactions on Information Theory, vol. 28, no. 4, pp. 585–592, 1982.

[3] T. Tian, J. Garcia-Frias, and W. Zhong, “Compression of correlated sources using
LDPC codes,” in IEEE Data Compression Conference, 2003.

[4] D. Schonberg, S. S. Pradhan, and K. Ramchandran, “LDPC codes can approach the
Slepian-Wolf bound for general binary sources,” in Proceedings of the 40th Allerton
Conference on Communication, Control and Computing, October 2002.

[5] A. D. Liveris, Z. Xiong, and C. Georghiades, “Compression of binary sources with
side information at the decoder using LDPC codes,” IEEE Communications Letters,
vol. 6, pp. 440–442, October 2003.

[6] J. Garcia-Frias and Y. Zhao, “Compression of correlated binary sources using turbo
codes,” IEEE Communications Letters, vol. 5, pp. 417–419, October 2001.

[7] A. Aaron and B. Girod, “Compression with side information using turbo codes,” in
IEEE Data Compression Conference, April 2002, pp. 252–261.

[8] J. Bajcsy and P. Mitran, “Coding for the Slepian-Wolf problem with turbo codes,”
in IEEE GLOBECOM, November 2001, pp. 1400–1404.

[9] A. Liveris, Z. Xiong, and C. Georghiades, “Distributed compression of binary sources
using conventional parallel and serial concatenated convolutional codes,” in Proc.
IEEE DCC, Brest, France, March 2003, pp. 193–202.

[10] S. S. Pradhan and K. Ramchandran, “Distributed source coding using syndromes
(DISCUS): Design and construction,” IEEE Transactions on Information Theory,
vol. 49, no. 3, pp. 626–643, 2003.

[11] G. D. Forney, “Codes on graphs: Normal realizations,” IEEE Transactions on Infor-
mation Theory, pp. 101–112, 2001.

[12] R. Palanki, A. Khandekar, and R. McEliece, “Graph-based codes for synchronous
multiple access channels,” in Proceedings of the 39th Allerton Conference on Com-
munication, Control and Computing, October 2001.

[13] A. Grand, B. Rimoldi, R. Urbanke, and P. A. Whiting, “Rate-splitting multiple access
for discrete memoryless channels,” IEEE Transactions on Information Theory, vol.
47, no. 3, pp. 873–890, 2001.

[14] B. Rimoldi and R. Urbanke, “Asynchronous Slepian-Wolf coding via source-splitting,”
in IEEE International Symposium on Information Theory, Ulm, Germany, June 29–
July 4 1997, p. 271.

[15] J. Feldman, M. Wainwright, and D. R. Karger, “Using linear programming to decode
linear codes,” Proceedings of Conference on Information Sciences and Systems, The
John Hopkins University, March 2003.

[16] J. Feldman, Decoding Error-Correcting Codes via Linear Programming, PhD disser-
tation, Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, September 2003.

Proceedings of the Data Compression Conference (DCC’04)
1068-0314/04 $ 20.00 © 2004 IEEE

