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special means of real numbers using the newly proved inequalities.

Keywords: Hermite-Hadamard inequality, Ostrowski inequality, (p, g)-integral, post-quantum calculus,
s-convex functions

MSC 2020: 26D10, 26D15, 26A51

1 Introduction

The Hermite-Hadamard (HH) inequality, which was independently found by Hermite and Hadamard (see,
also [1], and [2, p. 137]), is particularly important in convex functions theory:

L+ 17 F(m) + F(my)
F( ) < IF(x)dx R (1)

2 -1

where f is a convex function on [, 7] in this case. The aforementioned inequality is true in reverse order
for concave mappings.

In [3], Hudzik and Maligranda defined s-convex functions in the second sense as follows: a mapping
F:R* - R, where R* = [0, 00) is called s-convex in the second sense if

Flitx + (1 - t)y) < t°p(x) + (1 = O°F(y)
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forall x,y e R* and t € [0, 1] and s € (0, 1]. Dragomir and Fitzpatrick [4] then used this newly discovered
class of functions to prove the HH inequality on [, 1,] as follows:

2571,:(7'[1 + 7T2) < 1 IF(X)dX < F(ﬂl) + F(ITZ) . (2)

2 T m-m s+1

On the other hand, several works in the field of g-analysis are being carried out, beginning with Euler,
to achieve mastery in the mathematics that underpins quantum computing. The link between physics and
mathematics is referred to as g-calculus. It has a wide range of applications in different areas of pure and
applied mathematics [5,6]. Euler is thought to be the inventor of this significant branch of mathematics. In
Newton’s work on infinite series, he used the g parameter. Later, Jackson [7,8] presented the g-calculus that
knew without limits calculus in a logical approach. Al-Salam [9] presented the g-analogue of the g-frac-
tional integral and the g-Riemann-Liouville fractional in 1966. Since then, the amount of study in this area
has steadily expanded. In particular, in 2013, Tariboon and Ntouyas introduced ,, D,-difference operator

and g, -integral in [10]. In 2020, Bermudo et al. introduced the notion of ”ZDq derivative and g™-integral in
[11]. Sadjang generalized to quantum calculus and introduced the notions of post-quantum calculus or
shortly (p, g)-calculus in [12]. Soontharanon and Sitthiwirattham [13] introduced the notions of fractional
(p, g)-calculus later on. In [14], Tung and G6v gave the post-quantum variant of , D -difference operator
and g, -integral. Recently, in 2021, Vivas-Cortez et al. introduced the notions of ”ZDp,q derivative and
(p, @)™-integral in [15].

Many integral inequalities have been studied using quantum integrals for various types of functions.
For example, in [16-19,11,20-23], the authors used m Dq, "ZDq—derivatives and g, g™ -integrals to prove HH
integral inequalities and their left-right estimates for convex and coordinated convex functions. In [24],
Noor et al. presented a generalized version of quantum HH integral inequalities. For generalized quasi-
convex functions, Nwaeze and Tameru proved certain parameterized quantum integral inequalities in [25].
Khan et al. proved quantum HH inequality using the green function in [26]. Budak et al. [27], Ali et al.
[28,29] and Vivas-Cortez et al. [30] developed new quantum Simpson’s and quantum Newton’s type
inequalities for convex and coordinated convex functions. For quantum Ostrowski’s inequalities for convex
and co-ordinated convex functions, readers refer to [31-33]. Kunt et al. [34] generalized the results of [18]
and proved Hermite-Hadamard type inequalities and their left estimates using , D, ,-difference operator
and (p, q)n,-integral. Recently, Latif et al. [35] found the right estimates of Hermite-Hadamard type inequal-
ities proved by Kunt et al. [34].

Inspired by these ongoing studies, in the context of (p, q)-calculus, we prove several new Hermite-
Hadamard and Ostrowski type inequalities for s-convex functions in the second sense.

The following is the structure of this article: Section 2 provides a brief overview of the fundamentals of
g-calculus as well as other related studies in this field. In Section 3, we go over some basic (p, g)-calculus
notions and inequalities. In Section 4, we show the relationship between the results presented here and
related results in the literature by proving post-quantum HH inequalities for s-convex functions in the
second sense. Post-quantum Ostrowski type inequalities for s-convex functions in the second are presented
in Section 5. In Section 6, we present some applications to special means of real numbers for newly
established inequalities. Section 7 concludes with some recommendations for future research.

2 Preliminaries of g-calculus and some inequalities

In this section, we revisit several previously regarded ideas. In addition, throughout the paper, s € (0, 1],
and we use the following notations (see, [6]):

_1-q
1-¢g

[nlq =l+q+q +-+q"", qe(0,).
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In [8], Jackson gave the g-Jackson integral from O to 71, for 0 < g < 1 as follows:
m S
[ r0dpe = a - o Y. aetma 3)
0 n=0

provided the sum converge absolutely.

Definition 1. [10] For a function f : [m, @] — R, the g, -derivative of f at x € [m, ] is characterized by the

expression:

F) - plgx + (1 - g)m)
1 -q)x-m)

If x = m, we define _ D_f(m) = lim,_,, . D, fF(x) if it exists, and it is finite.
m qF vy qF

ﬂlDlIF(X) =

, X #m. (4)

Definition 2. [11] For a functionf : [m, m] — R, the g™-derivative of r at x € [m, m,] is characterized by the
expression:

Flgx + 1 - @)m) - F(x)
A -q)m-x)

If x = m,, we define "2DqF(n2) = limy_, -, DqF(x) if it exists and it is finite.

nquF(X) =

» X FMm. 5)

Definition 3. [10] Let f : [m, m] — R be a function. Then, the g,-definite integral on [m, m;] is defined
as follows:

m

1
[ Fo0mdp = - @) - ) Y 'R + (- @) = (o - m) [ - O+ it (@)
0

n=0
m

Definition 4. [11] Let f : [m, m] — R be a function. Then, the g™-definite integral on [, ] is defined
as follows:

M, s 1
IF(X)ﬂquX =(1-m-m)Y qFg'm+ (1 - gYm) = (m - m) j F(tm + (1 - Om)dgt. %)
n=0 0

m

In [11], Bermudo et al. established the following quantum HH type inequality.

Theorem 1. For the convex mapping f : [m, m] — R, the following inequality holds

m+ 1 K K ,,2 F(m) + p(m)
F( )< - jF(x)nldqx + jF(x) dx| < ————. (8)

2 )7 2Am - 2

In [33], Budak et al. proved the following Ostrowski inequality by using the concepts of quantum
derivatives and integrals.

Theorem 2. Let f : [m, ;] ¢ R — R be a function and ™D, and , d,f be two continuous and integrable
functions on [m, m]. If I”ZDqF(t)|, I, Dgr()l < M for all t € [m, m], then we have the following quantum
quantum Ostrowski inequality:

X ) ~ , e
1 - J‘F(t)nldqt + IF(t)ﬂqut < qM (X r[l) + (ﬂz X) . (9)
1
m X

Fe0 - m - S (m-m) [2]4
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Recently, Asawasamrit et al. [36] gave the following generalizations of inequalities (8) and (9) using the
s-convexity.

Theorem 3. Assume that the mapping f : [0, c0) — R is s-convex in the second sense and m, i, € [0, c0)
with my < m, then the following inequality holds for s € (0, 1]:

) F( . )g e .[F(x)ﬂldq“ﬁ(x) de| < e (10)

Theorem 4. Let f : [m, m] c R — R be function and ™D, and = DqF be two continuous and integrable
functions on [m, m). If |”2DqF(t)|, I, DgF()l < M for all t € [m, m], then we have the following quantum
Ostrowski inequality for s-convex functions in the second sense:

0 - ——| [rO,dg+ [rorag | < ﬂ( L. 911)[()( CP e m-0d, D

m—m\[s+ 2]

where

1

Oy = J.t(l e
0

3 Post-quantum calculus and some inequalities

In this section, we review some fundamental notions and notations of (p, q)-calculus.
The [n], 4 is said to be (p, q)-integers and expressed as follows:
pn _ qn
pP-q

[n]p,q =

n

with 0 < g < p < 1. The [n],,! and [k

]!are called (p, q)-factorial and (p, g)-binomial, respectively,
and expressed as follows:

n
[n]p’q! = H[k]p,q’ n= 1, [O]p’q! = 1’
k=1

[n]l = [n]#'
k1l [n = klpq![klp,q!

Definition 5. [12] The (p, g)-derivative of mapping f : [m, ] — R is given as follows:

F(px) - Flgx)

x+0
(p-agx *

Dyp,qf(x) =
withO<g<p<1.

Definition 6. [14] The (p, q).,-derivative of mapping r : [m, m] — R is given as follows:

F(px + (1 - p)m) - F(gx + (1 - @)m)
(p - )x -m)

nle,qF(X) = , X#7m (12)

with 0 < g < p < 1. For x = m, we state , D, ,r(mm) = limy_n, D, ;r(x) if it exists and it is finite.
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Definition 7. [15] The (p, g)™-derivative of mapping f : [m, @] — R is given as follows:

Flgx + (1 - @)m) - F(px + (1 - p)my)
(p - @)(m - x)

"Dy, qF(X) = , X #Th. (13)
with 0 < g < p < 1. For x = m,, we state "ZDp,qF(rrz) = limXHHZ”ZDp,qF(x) if it exists and it is finite.

Remark 1. It is clear that if we use p = 1in (12) and (13), then the equalities (12) and (13) reduce to (4) and
(5), respectively.

Definition 8. [14] The definite (p, q)-integral of mapping f : [m, 1] — R on [m, ] is stated as follows:

jr(r)mdp,qr - -m)Y %F( T x+ (1 - %)m] (14)
- n-oP b )4

withO<g<p<1.

Definition 9. [15] The definite (p, g)™-integral of mapping f : [m, @] — R on [m, ] is stated as follows:

g © n n n
jr(r)”ldp,qr - (P - Qm - %) ZO qHF(pC{,HX + (1 - pi+1)nz) (15)
X

pn
withO<g<p<1.

Remark 2. It is evident that if we pick p = 1 in (14) and (15), then the equalities (14) and (15) change into
(6) and (7), respectively.

Remark 3. If we take 1 = 0 and x = 7, = 1 in (14), then we have

1

[rondyr= -0y L F( i )
n=0

pn+1 pn+1
0 =

Similarly, by taking x = m = 0 and 7, = 1 in (15), then we obtain that

F & n n

1 q q
IF(T) dp,qT = (p N Q)Z pn+1F(1 - pn+1)'
0 n=0

Lemma 1. [15] We have the following equalities:

m
(m — m)**!
(- ), x = 2T
Jl P [a + 1,4
™ ( )a+1
Hh -7
x —m)%_ d == "~
J R TS

m

where a € R — {-1}.

Recently, Vivas-Cortez et al. [15] proved the following HH type inequalities for convex functions using
the (p, g@)™-integral:

Theorem 5. [15] For a convex mapping f : [m, m] — R, which is differentiable on [m, m], the following
inequalities hold for (p, q)™-integral:
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m

F(pﬂl + qﬂz) < 1 J‘ FOO™d, X < pr(m) + CIF(ﬂz)’ 16)

g ) pim-m) [2]p.q
pm+(1-p)m

where0 < g<p<1.

Theorem 6. [15] For a convex function f : [m, ;] — R, the following inequality holds:

) p+(1-p)m ) (m) ()

m+ 7 s Fim) + FUn

< x).d + I x)"d < —F7, 17

F( 2 ) zp(ﬂz _ 771) I F( )ﬂl p,qx F( ) pvqx 2 ( )
m pm+(1-p)m

where0 <qg<p<1.

4 Hermite-Hadamard inequalities

In this section, we prove HH inequalities for s-convex functions in the second kind using the post-quantum
integrals.

Theorem 7. Assume that the mappingf : [0, c0) — R is s-convex in the second sense and mj, 0, € [0, c0) with
m < m, then the following inequality holds for s € (0, 1]:

m m
B 1 Flm) + F(my)
251 (”1 * ”2) < j 0O d, x+ J ooed, x| < B F D) (18)
> 2p(m, — ) J FX0m .o J F P [s + 1.4
Proof. We have s-convexity, as we know from s-convexity
X+
2“2 ) < p0 + 0. (19)

We obtain the following by putting x = tm, + (1 — t)m and y = tm + (1 — t)m, in (19)
25;(#) < F(tm + (1 - Om) + ptm + (1 - Om).

From Definitions 8 and 9, we have

1 pi+(1-p)m o)

M+ T

e e I I R R
m pm+(1-p)m,

and the first inequality in (18) is proved.
To prove the second inequality, we use the s-convexity, and we have

Ftm + (1 - Hm) < °p(m) + (1 - O)°F(m) (20)
and
F(tﬂl + (1 — t)ﬂz) < tSF(Tﬂ) + (1 - t)sF(T[z). (21)

By adding (20) and (21), from Definitions 8 and 9, we have

1 pm+(1-p)m m (7'[) N (7‘[ )
1 O d. x+ J d < ) + plm)
2p(m, — m) Fn dp. PO ¢ [s + 1lpgq

m pm+(1-p)m,

and the proof is completed. O



DE GRUYTER On some new Hermite-Hadamard and Ostrowski type inequalities = 713

Example 1. For s-convex function f(x) = x5, from inequality (18) witha=s=1,b=2,p = %, and q = %,

we have
(57)- 3
st Jroorana (-5 GGV, [, 6
s | |0t [ () 2 (e |
1\ 1\n 1\n
" (é - %) z ((132+1 (<132+1 +11- ((132” 2|1=3
n=0 3 3 3
and
Fom) + () _ 1+2
[1+ slpq % %
Thus,
% <3 <4,

which shows that the inequality proved in Theorem 7 is true.
Remark 4. If we set s = 1 in Theorem 7, then we recapture the inequality (17).
Remark 5. In Theorem 7, if we take the limit as p = 1, then inequality (18) becomes the inequality (10).

Remark 6. In Theorem 7, if we take p = 1 and later take the limit as g — 17, then inequality (18) becomes the
inequality (2).

5 Ostrowski’s inequalities

In this section, we prove post-quantum Ostrowski type inequalities for s-convex functions in the second
sense.
We begin with the following identity.

Lemma 2. Let f : [m, ;] ¢ R — R be a function. If ™D, ,r and Dy, 4f are two continuous and integrable
functions on [m, m], then for all x € [m, m], we have

px+(1-p)m m
X) - —————— O d, t+ j H"d, t
F( ) p(ﬂ2 _ n_l) F( )ﬂ1 p,q F( ) D.q
m px+(1-p)m 22)

1 1
_ 2 — v)2
= GO Dy giex+ (@ - Omdody gt - L2 [, o+ (1= O ot
-1 ’ > m—-m 4 s

0 0

Proof. From Definitions 6 and 7, we have

F(ptx + (1 - pt)m) - F(gtx + (1 - qt)m)
tx - m)(p - q)

nle,qF(tX +(1-tm) =
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and

Flgtx + (1 - gt)m) — p(ptx + A - phm)

Dpaf(t (= Om) = (- 00 - 9)

By using Definition 9, we have

1
L= J‘t”sz’qF(tx +(1- Om'd, t
0

1
_ 1 B _ _ 1
—G;BGTEJMW+O abm) - F(ptx + (1 - pOm)l'd, ¢

1 [ oo n n+1 n+1 © n n n
= Z qn+1F qn+1X + (1 - qn+1)ﬂ2 - Z qn+1F(q_nX + (1 - q_n)nz)
m-x|,op\p p =\ p
[ © _n+l n+1 n+1 X n n n
lzq 1Fq 1x+(1—q )nz —lzq—p q—x+(1—q—)nz (23)
- X i q n:Oer pn+ p pn pn n
[ X n n n
-1 (l - l) q—,,F q—nx + (1 - q—n)rrz - lF(x)
m-x|\a p)Zp"\p p q

I _ O _n n n
e T i kol (e Rt
m-x| pq ,p"\p p q

)

- : J FOO)™d,, x ~ éF(X) .

" m - x| pg(m - x)

px+(1-p)m

Similarly, from Definition 8, we have

1 px+(1-p)m
1 1 1
L=\t D tx+(A-t)m)d, t = ——| —f(x) - —— I x)..d . 24
= [t Dpapttx + 4 = Omdndy gt = | 2500 - s FO00n g (24
0 m
Thus, we obtain the resultant equality (22) by subtracting (23) from (24). (|

Remark 7. In Lemma 2, if we set p = 1, then we obtain the equality:
X m ( )2 1
1 qx —m
X) - ——— t dt+It”2dt=7ItD tx + (1 — )m)yd,t
F()(m_m)jﬂ%q ro7dt|= L [ D e (- Do,
m b'e 0

1
_ 2
_ 4l - x) It”quF(tx + (1 - Om)dt,
-1
0

which is proved by Budak et al. in [33].
Remark 8. In Lemma 2, if we set p = 1 and later taking the limit as ¢ — 17, then we obtain [37, Lemma 1].

Theorem 8. Assume that the mapping g : I c [0, 0c0) — R is differentiable and m, m € I with m < m.
If |5, Dy qFl and |”2Dp, qF| are s-convex mappings in the second sense, then the following inequality holds:

prei-pym nz
O d, ot + I H)"d, ¢ (25)

m px+(1-p)m

F) = Sm —



DE GRUYTER On some new Hermite-Hadamard and Ostrowski type inequalities
q(x - m)? 1
< D x)| + 04, D T
n-m [S N 2]p,q |rr1 p,qF( )| 1|rr1 p,qF( l)l
Q(TIZ - X)2 1 T T
+ Dy, gF OOl + 02D, (F(m)| |,
m-m |[s+2, p.a
where
1
01 = [ - 0d t
0
and

1

0, = It(l - t)5'd, .t
0

Proof. From Lemma 2 and properties of the modulus, we have

1 px+(1-p)m nz
o) - — I O d, ot + j KO t
p(m - m) P P
m px+(1-p)m

m

Since the mapping |, D,, ;| and |”2Dp, oF| are s-convexities in the second sense, therefore

1 1 1
[t Dpaptx + 0 = Omlady gt = [ 591D, FNadgt + [0 = 081, D, F 0ty f
0 o d
1
o 2y D0+ O i)
and
1 1 .
J-tlﬂsz,qF(tX +(0- t)ﬂz)|1dpyqt < J-ts+1|nsz,qF(X)|1dp,qt N It(l B t)slnsz,qF(ﬂz)Pdp,qt
0 o .
1

= WFZDP,(;F(XN + @D, ,f(m)|.
p.g

We obtain the resultant inequality (25) by putting (27) and (28) in (26).

1 1
X — m)>? 1 — Xx)?
< % Itlﬂle,qF(tX + (1 - t)ﬂl)lodp,qt + q(ﬂZf) It|n2Dp,qF(tX + (1 - t)ﬂz)lldp’
1 5 h — T )

— 715

(26)

o

27)

(28)

O

Corollary 1. If we set s = 1 in Theorem 8, then we obtain the following new Ostrowski type inequality for

convex functions:
1 px+(1-p)m iy
x) - —— j (O)pd, t+ _[ ®"d, t
N b - m) P P
m px+(1-p)m
qlx - m)? 1 [B]p,q - [z]p,q
< | g Dp,gF OOl + ———— |, Dy, gr(m)|
m-m | Bl " Blpg[2pq ™ P

Blp.g = [2lpq

Q(HZ_X)Z 1 Ley))
+ —[—[3 Dy, gFOOI + Bho2he

™D, F(m)| |.
m-m | p,qF( Z)I]

]P,ll



716 —— Xue-Xiao You et al. DE GRUYTER

Remark 9. In Theorem 8, if we set p = 1, then Theorem 8 reduces to [36, Theorem 4.1].

Remark 10. In Corollary 1, if we set p = 1, then we obtain the following inequality:

P00 = | [ROndyt + [ p0rde || < L0 - 721201 DypCO] + @l D))
1

m - - (m - m)l2],[3],
+ (1 = )X([2]g*Dgr(0)| + g*I*Dyr(m)D],

which is given by Budak et al. in [33].

Corollary 2. If we assume |, Dy, ;r(X)|, |, Dy, ;r(x)| < M in Theorem 8, then we have following post-quantum
Ostrowski type inequality for s-convex functions in the second sense:

px+(1-p)m o)
X)— — t).d, t+ I H™d, .t
F( ) p(ﬂz ~ 7'[1) F( )IT1 D,q F( ) 0.q
m px+(1-p)m (29)
— 2 — ¥)2
CMao-mp[ 1 o) Mam-x?[ 1 o
-1 [S + 2]p’q m—-1m [S + z]p,q

Remark 11. In Corollary 2, if we set p = 1, then Corollary 2 reduces to [36, Corollary 4.1].
Remark 12. If we set s = p = 1 in Corollary 2, then we recapture inequality (9).

Remark 13. In Corollary 2, if we set p = 1 and later take the limit as ¢ — 1~, then Corollary 2 reduces to [38,
Theorem 2].

Theorem 9. Assume that the mapping f : I c [0, 00) —» R is differentiable and m, m € I with m < m.
If |, D, ,FIP* and |"2Dp,qF|p1, p1 = 1 are s-convex mappings in the second sense, then the following inequality
holds:

px+(1-p)m nz

1

X) - ———— ) d, t + _[ t)y"d, t

0~ [ O (0",
m px+(1-p)m

_1 1

p

151
g ( ! ) [(x—nl){% 1 Dp.gFCOIP +@1|n1Dp,qF(7T1)|pl) (30)
[s + 2pq

S om-m [z]p,q 2]p

1

- )
+ (m - x) ([s 2,

4
D, JFCOIP + O,%D,, ()| ) ]

Proof. From Lemma 2, by using properties of the modulus and power mean inequality, we have

1 px+(1-p)m o)
X) - —— t),.d, t+ J‘ H®d, t
-l | RO, Yo,
m px+(1-p)m (31)

1
)2
< qx - m)

1
T — Xx)32
tly Dy F(tX + (1 = Om)lod,, it + 9(m = X)° f tD, r(tx + (1 — Om)|'d, 4t
-1 m-1m
0
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1
1 -5

2
L |
m—-m ’
0
(1
+ Q(ﬂz - X) Itldp qt
- m ’
0

On some new Hermite-Hadamard and Ostrowski type inequalities

1
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[ 1Dy e + @ = Om)Prod ot

1
1 p1

It D, F(tx + (1 - Hm)|Pd, ¢
0

Since the mapping |, D,, ,f|"* and |”2Dp,qF|P1 are s-convexities in the second sense, therefore

1 15

1
[tod ot

0 0

ey
<
[2]p,q [s + 2]p,q

and

1
I=pif 1

1

1
[ £t
0

0
1

p1
|n1Dp,qF(X)|p1 + ellnle,qF(nl)lpl )

( )1 1(
<
[z]p,q [ ]p,q

1

131

[ €Dy grex + @ = OmIPod

1

1
p1

[erD, grtec+ @ - ompd,

1

n
|nsz,qF(X)|p1 + ®2|nsz,qF(n2)|pl ) .

We obtain the resultant inequality (30) by putting (32) and (33) in (31).
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(€Y

(32)

33)

O

Corollary 3. If we set s = 1 in Theorem 9, then we obtain the following new Ostrowski type inequality for

convex functions:

px+(1-p)m

) - p(m, — m)

m

1

1
+ =07 G PRyt
p,q

F(t)ﬂ] dp,qt +

1---
q 1 P B ) 1
= m - 771( [2]p.4 ) [(X ) ([3]p,q

[3[];11 - []Z]p,q |n2Dp,qF(iT2)|p1)m}'

m

TT;
| rora,
px+(1-p)m

1

[Blp.q — [2], z
=24 24| D, Fm)P

|z Dp, g FCOIPT +
nopa [31p,q[2lp.q

p.q [2 p.q

Remark 14. In Theorem 9, if we set p = 1, then Theorem 9 reduces to [36, Theorem 4.2].

Remark 15. In Corollary 3, if we set p = 1, then we obtain the following inequality:

FOX) -
m -

q

X m
! J.F(t)nldqt + J.F(t)nqut
m
m X

[2]q|n1DqF(X)|p + qz |n1DqF(7Tl)|p

- 2 _ 2
* -, | ”1)(

3, ]

L x)z( [21"Dg 0 + g2 "Dyp(m)P )'1’
2~ s

[3]q

which is proved by Budak et al. in [33].
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Corollary 4. If we assume | Dp qf(X)|, |5 Dp,qf(x)| < M in Theorem 9, then we have following post-quantum
Ostrowski type inequality for s-convex functions in the second sense:

px+(1-p)m m
FO) - —— FOndnet + [ FO
P - ) e pa
m px+(1-p)m

1

1-L 1 1
Mg 1 e e 1 P . 1 PI
= oo m([z]p,q) [(X ) ([s 2l 81) + = x) ([s 2y 82) ]

Remark 16. In Corollary 4, if we set p = 1, then Corollary 4 reduces to [36, Corollary 4.2].

Remark 17. In Corollary 4, if we set p = 1 and later take the limit as ¢ — 1, then Corollary 4 reduces to [38,
Theorem 4].

Theorem 10. Assume that the mapping f : I c [0, c0) — R is differentiable and m, m, € I with m < m.
If |, Dy, 4F|Prand |”2Dp, qFIP'; p1 > 1ares-convex mappings in the second sense, then the following inequality holds:

px+(1-p)m o)

1 o
LR I IR S I G

m px+(1-p)m

1 1

1 ( ! )[(x-m)z(ﬁqmnp,mx)m+|,,1Dp,qF(m)|Pl))l (34)
J)

T om-m\[n+ 1y,

4 (m - x){ﬁ(r@p,qr(x)m ¥ |”2Dp,qF(ﬂz)|”1)) ]
\D,q

wherer;! + p;! = 1.

Proof. From Lemma 2, by using properties of the modulus and Holder’s inequality, we have

px+(1-p)m o)
X)) - — . d t+ I "d, .t
F(x) P F(O)ndp q F(O)™d, 4
m px+(1-p)m

) 1
x — m)? = X)’
A -m) i Dy g (0 + (1 = Olod ot + % jﬂnsz,qF(tX + (1 - Om)|'d, t
p 0

-1
N N (35)
( )2 1 rf 1 p1
X — T,
< qﬂsz;l Itrlodp,qt I|ﬂ1Dp,qF(tx + (1= OmPod,  t
0 0
1 1
(- 2 | (1 )
T — X
« L [, o | | [Py gptec+ (1= D,
0 0
Since the mapping |, D,, ,f|P* and |”2Dp,qF|1"1 are s-convexities in the second sense, therefore
1 1
1 i 1 1
[t | | [1nDparter + @ - Omoprod, o
0 0 (36)

1

[r1+1

1 i 1
< ( ]M) ([s N 1]p’q(|;11Dp,qF(X)|Iﬂl + |n1Dp’qF(r[1)|P1)]
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and

1 Al 1 i

J‘trlldp,qt J‘lnsz,qF(tX + (1 - Om)P'd, t

0 0 (37)

i 1
1
< (1D, gFOOIP1 + [2D, (F(m)[P1) |.
([n N 1]p,q) ([s FETIR paf

We obtain the resultant inequality (34) by putting (36) and (37) in (35). O

Corollary 5. If we set s = 1 in Theorem 10, then we obtain the following new Ostrowski type inequality for
convex functions:

px+(1-p)m o)

X) - —— t),d, t+ J. t®d, t
F( ) p(n_z — 7-[1) F( )771 p.q F( ) D.q
m px+(1-p)m,
q 1 711 ) 1 131
< x - m)| ——(,.D x)|Pr + |, D m)|P
- m [l’1 N 1]p’q ( l) [3]p’q (lﬂ1 p,qF( )l |n1 p,qF( 1)| )

+ (m - X)z(ﬁ(l”sz,qF(X)l‘”1 + Insz,qF(ﬂz)lpl)) 1}.
p,q

Remark 18. In Theorem 9, if we set p = 1, then Theorem 9 reduces to [36, Theorem 4.3].

Remark 19. In Corollary 5, if we set p = 1, then we obtain the following inequality:

. X oy i
0 - —— [FOndt+ [rerma

q ( 1 )’11 - n)z( | DgFCOIP + q |, Dyp(m)|P );’ Y. DO + q "D ()P \|

T om-m\[n+1], ' 2] ? 2], '

which is proved by Budak et al. in [33].

Corollary 6. If we assume |, D), ;r(x)|, | D, qF(X)| < M in Theorem 10, then we have following post-quantum
Ostrowski type inequality for s-convex functions in the second sense:

px+(1-p)m m
X) — — t).d t+ I t)=d, t
FOO) o ) F(O)rdp g F(™d, ,
m px+(1-p)m (38)

1

Mg L ’ 2 M- 2 ~ x)2
< nz_nl([r1+1]p’q) ([S+1]p,q) [(x = m)? + (- x)?].

Remark 20. In Corollary 6, if we set p = 1, then Corollary 6 reduces to [36, Corollary 4.3].

1

Remark 21. In Corollary 6, if we set p = 1 and later take the limit as ¢ — 17, then Corollary 6 reduces to [38,
Theorem 3].
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6 Applications to special means

For arbitrary positive numbers m, m(/m # m,), we consider the means as follows:
1. The arithmetic mean
m+ 7

A= ﬂ(nly n2) = >

2. The logarithmic mean

n_a+1 _ n,o'+1
Ly = LYm,m) = ——T1—.
’ ’ (0 + D(m, - m)

Proposition 1. For 0 < m < m, and 0 < q < p < 1, the following inequality is true:

1 q(m - m) 1 (772—7'[1) (ﬂz—ﬂl)
ﬂsﬂ s - A(ky, k < 3 - ’
N 1[ (m, m) (ky, ko)) > [[s 2y {Ls(q B +m, p B +m
+ Lﬁ(nz - q(ﬂz ; ﬂl), - p(%))} + QAT 113) + O A(T, 7125)],
where
[e%] 1
q" qn(ﬂz - 7T1) o
ki=(p - =]+ m ,
1=(p Q),;)p"“(p" > 1

n _ s+1
_ q_(u) ,
p"\ 2

Proof. The inequality (25) in Theorem 8 with x = % for p(x) = :%, where x > 0 leads to this conclu-
sion. O

(e 9] qn
]](2 = (p - q) Z pn+1
n=0

Proposition 2. For 0 < m < m, and 0 < q < p < 1, the following inequality is true:

L i, m) - A, k)| < ML 2 g g, .
+1 4 [s + 2lpq
Proof. The inequality (29) in Corollary 2 with x = % for p(x) = :S—:;, where x > 0 leads to this conclu-
sion. O

Proposition 3. For 0 < m < m, and 0 < q < p < 1, the following inequality is true:

S + 1[ﬂs+l(n1’ 7T2) - \7[(“(1’ u<2)]

1

P P1
+ Oy | [P

s -1 -1
+ 1m, + T,
LS(Q( ) 4 )

_1
gm-m)( 1 ) (1
< — -
2 [2]p.4 [s + 2]
-7 -1 P Pil
Lg(ﬂz - Q( ), Yo P( )) + 0, || .
2 2
xS+l

Proof. The inequality (30) in Theorem 9 with x = # for p(x) = 7, where x > 0 leads to this conclu-

sion. O

1
+ —
([s + 2lpq
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Proposition 4. For 0 < m < m, and 0 < q < p < 1, the following inequality is true:

L Asim, m) - Ak, k)]

1

P n
+ ||

L:(Q(—ﬂz ; 7'[1) + m, p(_ﬂz ; 7'[1) + 771)

s+1
q(m — m) 1 " 1
2 [+ 1] [s+1]4
1
141 )21
+ Iﬂflpl)] .

1 f.. (M- m _ (ﬂz—ﬂl))
Jr([s+1]p,q(Ls(ﬂ2 q( 2 ),712 P

Proof. The inequality (34) in Theorem 10 with x = 7 for (x) = -, where x > 0 leads to this conclusion.
O

Proposition 5. For 0 < m < m, and 0 < q < p < 1, the following inequality is true:

1

- Mq(m, - nl)( 1 )'11( 2 )”'
B 2 [+ g [s + 1lpq

s+1
%, where x > 0 leads to this conclusion.

° O

1

S + 1[ﬂs+1(nl’ ﬂz) - ﬂ(lklx IkZ)]

Proof. The inequality (38) in Corollary 6 with x = % for p(x) =

7 Conclusion

In this work, we proved some new variants of post-quantum Hermite-Hadamard and Ostrowski type
inequalities using the (p, g)-differentiable s-convex functions in the second sense. We also proved that
the newly established results are strong generalizations of the related existing results. Finally, we presented
various applications based on the newly established inequalities to demonstrate the utility of our findings.
It is a new and interesting problem that upcoming researchers can obtain similar inequalities for different
kinds of convexity in their future work.
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