# ON SOME NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR $m$ - CONVEX FUNCTIONS 

S. S. DRAGOMIR

Abstract. Some new inequalities for $m$-convex functions are obtained.

## 1. Introduction

In [71], G.H. Toader defined the $m$-convexity, an intermediate between the usual convexity and starshaped property.

In the first part of this section we shall present properties of $m$-convex functions in a similar manner to convex functions.

The following concept has been introduced in [71](see also [34]).
Definition 1. The function $f:[0, b] \rightarrow \mathbb{R}$ is said to be $m$-convex, where $m \in[0,1]$, if for every $x, y \in[0, b]$ and $t \in[0,1]$ we have:

$$
\begin{equation*}
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y) \tag{1.1}
\end{equation*}
$$

Denote by $K_{m}(b)$ the set of the $m$-convex functions on $[0, b]$ for which $f(0) \leq 0$.
Remark 1. For $m=1$, we recapture the concept of convex functions defined on $[0, b]$ and for $m=0$ we get the concept of starshaped functions on $[0, b]$. We recall that $f:[0, b] \rightarrow \mathbb{R}$ is starshaped if

$$
\begin{equation*}
f(t x) \leq t f(x) \text { for all } t \in[0,1] \text { and } x \in[0, b] . \tag{1.2}
\end{equation*}
$$

The following lemmas hold [71].
Lemma 1. If $f$ is in the class $K_{m}(b)$, then it is starshaped.
Proof. For any $x \in[0, b]$ and $t \in[0,1]$, we have:

$$
f(t x)=f(t x+m(1-t) \cdot 0) \leq t f(x)+m(1-t) f(0) \leq t f(x) .
$$

## Received March 15, 2001; revised May 29, 2001.

2000 Mathematics Subject Classification. Primary 26D15, 26D10; Secondary 26D99.
Key words and phrases. Hermite-Hadamard Inequality, $m$-Convex functions.

Lemma 2. If $f$ is $m$-convex and $0 \leq n<m \leq 1$, then $f$ is $n$-convex.
Proof. If $x, y \in[0, b]$ and $t \in[0,1]$, then

$$
\begin{aligned}
f(t x+n(1-t) y) & =f\left(t x+m(1-t)\left(\frac{n}{m}\right) y\right) \\
& \leq t f(x)+m(1-t) f\left(\left(\frac{n}{m}\right) y\right) \\
& \leq t f(x)+m(1-t) \frac{n}{m} f(y) \\
& =t f(x)+n(1-t) f(y)
\end{aligned}
$$

and the lemma is proved.
As in paper [48] due to V. G. Miheşan, for a mapping $f \in K_{m}(b)$ consider the function

$$
p_{a, m}(x):=\frac{f(x)-m f(a)}{x-m}
$$

defined for $x \in[0, b] \backslash\{m a\}$, for fixed $a \in[0, b]$, and

$$
r_{m}\left(x_{1}, x_{2}, x_{3}\right):=\frac{\left|\begin{array}{lll}
1 & 1 & 1 \\
m x_{1} & x_{2} & x_{3} \\
m f\left(x_{1}\right) & f\left(x_{2}\right) & f\left(x_{3}\right)
\end{array}\right|}{\left\lvert\, \begin{array}{lll}
1 & 1 & 1 \\
m x_{1} & x_{2} & x_{3} \\
m^{2} & x_{1}^{2} & x_{2}^{2}
\end{array} x_{3}^{2}\right.}| |,
$$

where $x_{1}, x_{2}, x_{3} \in[0, b],\left(x_{2}-m x_{1}\right)\left(x_{3}-m x_{1}\right)>0, x_{2} \neq x_{3}$.
The following theorem holds [48].
Theorem 1. The following assertions are equivalent:
$1^{\circ} . f \in K_{m}(b)$;
$2^{\circ} . p_{a, m}$ is increasing on the intervals $[0, m a),(m a, b]$ for all $a \in[0, b]$;
$3^{\circ} . r_{m}\left(x_{1}, x_{2}, x_{3}\right) \geq 0$.
Proof. $1^{\circ} \Rightarrow 2^{\circ}$. Let $x, y \in[0, b]$. If $m a<x<y$, then there exists $t \in(0,1)$ such that

$$
\begin{equation*}
x=t y+m(1-t) a \tag{1.3}
\end{equation*}
$$

We thus have

$$
\begin{aligned}
p_{a, m}(x) & =\frac{f(x)-m f(a)}{x-m a} \\
& =\frac{f(t y+m(1-t) a)-m f(a)}{t y+m(1-t) a-m a} \\
& \leq \frac{t f(y)+m(1-t) f(a)-m f(a)}{t(y-m a)} \\
& =\frac{f(y)-m f(a)}{y-m a} \\
& =p_{a, m}(y)
\end{aligned}
$$

If $y<x<m a$, there also exists $t \in(0,1)$ for which (1.3) holds.
Then we have:

$$
\begin{aligned}
p_{a, m}(x) & =\frac{f(x)-m f(a)}{x-m a} \\
& =\frac{m f(a)-f(t y+m(1-t) a)}{m a-t y-m(1-t) a} \\
& \geq \frac{m f(a)-t f(y)+m(1-t) f(a)}{t(m a-y)} \\
& =\frac{f(y)-m f(a)}{y-m a} \\
& =p_{a, m}(y)
\end{aligned}
$$

$2^{\circ} \Rightarrow 3^{\circ}$. A simple calculation shows that

$$
r_{m}\left(x_{1}, x_{2}, x_{3}\right)=\frac{p_{x_{1}, m}\left(x_{3}\right)-p_{x_{1}, m}\left(x_{2}\right)}{x_{3}-x_{2}}
$$

Since $p_{x_{1}, m}$ is increasing on the intervals $\left[0, m x_{1}\right),\left(m x_{1}, b\right]$, one obtains $r_{m}\left(x_{1}, x_{2}, x_{3}\right) \geq 0$.
$3^{\circ} \Rightarrow 1^{\circ}$. Let $x_{1}, x_{3} \in[0, b]$ and let $x_{2}=t x_{3}+m(1-t) x_{1}, t \in(0,1)$. Obviously $m x_{1}<x_{2}<x_{3}$ or $x_{3}<x_{2}<m x_{1}$, hence

$$
r_{m}\left(x_{1}, x_{2}, x_{3}\right)=\frac{t f\left(x_{3}\right)+m(1-t) f\left(x_{1}\right)-f\left(t x_{3}+m(1-t) x_{1}\right)}{t(1-t)\left(x_{3}-m x_{1}\right)^{2}}
$$

from where we obtain (1.1), i.e., $f \in K_{m}(b)$.
The following corollary holds for starshaped functions.
Corollary 1.Let $f:[0, b] \rightarrow \mathbb{R}$. The following statements are equivalent
(i) $f$ is starshaped;
(ii) The mapping $p(x):=\frac{f(x)}{x}$ is increasing on $(0, b]$.

The following lemma is also interesting in itself.
Lemma 3. If $f$ is differentiable on $[0, b]$, then $f \in K_{m}(b)$ if and only if:

$$
\left\{\begin{array}{l}
f^{\prime}(x) \geq \frac{f(x)-m f(y)}{x-m y} \text { for } x>m y, y \in(0, b]  \tag{1.4}\\
f^{\prime}(x) \leq \frac{f(x)-m f(y)}{x-m y} \text { for } 0 \leq x<m y, y \in(0, b]
\end{array}\right.
$$

Proof. The mapping $p_{y, m}$ is increasing on ( $\left.m y, b\right]$ iff $p_{y, m}^{\prime}(x) \geq 0$, which is equivalent with the condition (1.4).

Corollary 2. If $f$ is differentiable in $[0, b]$, then $f$ is starshaped iff $f^{\prime}(x) \geq \frac{f(x)}{x}$ for all $x \in(0, b]$.

The following inequalities of Hermite-Hadamard type for $m$-convex functions hold [34].

Theorem 2. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a $m$-convex function with $m \in(0,1]$. If $0 \leq a<b<\infty$ and $f \in L_{1}[a, b]$, then one has the inequality:

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \min \left\{\frac{f(a)+m f\left(\frac{b}{m}\right)}{2}, \frac{f(b)+m f\left(\frac{a}{m}\right)}{2}\right\} \tag{1.5}
\end{equation*}
$$

Proof. Since $f$ is $m$-convex, we have

$$
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y), \text { for all } x, y \geq 0
$$

which gives:

$$
f(t a+(1-t) b) \leq t f(a)+m(1-t) f\left(\frac{b}{m}\right)
$$

and

$$
f(t b+(1-t) a) \leq t f(b)+m(1-t) f\left(\frac{a}{m}\right)
$$

for all $t \in[0,1]$. Integrating on $[0,1]$ we obtain

$$
\int_{0}^{1} f(t a+(1-t) b) d t \leq \frac{\left[f(a)+m f\left(\frac{b}{m}\right)\right]}{2}
$$

and

$$
\int_{0}^{1} f(t b+(1-t) a) d t \leq \frac{\left[f(b)+m f\left(\frac{a}{m}\right)\right]}{2}
$$

However,

$$
\int_{0}^{1} f(t a+(1-t) b) d t=\int_{0}^{1} f(t b+(1-t) a) d t=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

and the inequality (1.5) is obtained.
Another result of this type which holds for differentiable functions is embodied in the following theorem [34].

Theorem 3. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a $m$-convex function with $m \in(0,1]$. If $0 \leq a<b<\infty$ and $f$ is differentiable on $(0, \infty)$, then one has the inequality:

$$
\begin{align*}
\frac{f(m b)}{m}-\frac{b-a}{2} f^{\prime}(m b) & \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x  \tag{1.6}\\
& \leq \frac{(b-m a) f(b)-(a-m b) f(a)}{2(b-a)}
\end{align*}
$$

Proof. Using Lemma 3, we have for all $x, y \geq 0$ with $x \geq m y$ that

$$
\begin{equation*}
(x-m y) f^{\prime}(x) \geq f(x)-m f(y) \tag{1.7}
\end{equation*}
$$

Choosing in the above inequality $x=m b$ and $a \leq y \leq b$, then $x \geq m y$ and

$$
(m b-m y) f^{\prime}(m b) \geq f(m b)-m f(y)
$$

Integrating over $y$ on $[a, b]$, we get

$$
m \frac{(b-a)^{2}}{2} f^{\prime}(m b) \geq(b-a) f(m b)-m \int_{a}^{b} f(y) d y
$$

thus proving the first inequality in (1.6).
Putting in (1.7) $y=a$, we have

$$
(x-m a) f^{\prime}(x) \geq f(x)-m f(a), x \geq m a
$$

Integrating over $x$ on $[a, b]$, we obtain the second inequality in (1.6).
Remark 2. The second inequality from (1.6) is also valid for $m=0$. That is, if $f:[0, \infty) \rightarrow \mathbb{R}$ is a differentiable starshaped function, then for all $0 \leq a<b<\infty$ one has:

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{b f(b)-a f(a)}{2(b-a)}
$$

which also holds from Corollary 2.

## 2. The New Results

We will now point out some new results of the Hermite-Hadamard type.
Theorem 4. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a $m$-convex function with $m \in(0,1]$ and $0 \leq a<b$. If $f \in L_{1}[a, b]$, then one has the inequalities

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{b-a} \int_{a}^{b} \frac{f(x)+m f\left(\frac{x}{m}\right)}{2} d x  \tag{2.1}\\
& \leq \frac{m+1}{4}\left[\frac{f(a)+f(b)}{2}+m \cdot \frac{f\left(\frac{a}{m}\right)+f\left(\frac{b}{m}\right)}{2}\right]
\end{align*}
$$

Proof. By the $m$-convexity of $f$ we have that

$$
f\left(\frac{x+y}{2}\right) \leq \frac{1}{2}\left[f(x)+m f\left(\frac{y}{m}\right)\right]
$$

for all $x, y \in[0, \infty)$.

If we choose $x=t a+(1-t) b, y=(1-t) a+t b$, we deduce

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{2}\left[f(t a+(1-t) b)+m f\left((1-t) \cdot \frac{a}{m}+t \cdot \frac{b}{m}\right)\right]
$$

for all $t \in[0,1]$.
Integrating over $t \in[0,1]$ we get

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{2}\left[\int_{0}^{1} f(t a+(1-t) b) d t+m \int_{0}^{1} f\left((1-t) \cdot \frac{a}{m}+t \cdot \frac{b}{m}\right) d t\right] \tag{2.2}
\end{equation*}
$$

Taking into account that

$$
\int_{0}^{1} f(t a+(1-t) b) d t=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

and

$$
\int_{0}^{1} f\left(t \cdot \frac{a}{m}+(1-t) \cdot \frac{b}{m}\right) d t=\frac{m}{b-a} \int_{\frac{a}{m}}^{\frac{b}{m}} f(x) d x=\frac{1}{b-a} \int_{a}^{b} f\left(\frac{x}{m}\right) d x
$$

we deduce from (2.2) the first part of (2.1).
By the $m$-convexity of $f$ we also have

$$
\begin{align*}
& \frac{1}{2}\left[f(t a+(1-t) b)+m f\left((1-t) \cdot \frac{a}{m}+t \cdot \frac{b}{m}\right)\right]  \tag{2.3}\\
\leq & \frac{1}{2}\left[t f(a)+m(1-t) f\left(\frac{b}{m}\right)+m(1-t) f\left(\frac{a}{m}\right)+m^{2} t f\left(\frac{b}{m^{2}}\right)\right]
\end{align*}
$$

for all $t \in[0,1]$.
Integrating the inequality (2.3) over $t$ on $[0,1]$, we deduce

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} \frac{f(x)+m f\left(\frac{x}{m}\right)}{2} d x \leq \frac{1}{2}\left[\frac{f(a)+m f\left(\frac{b}{m}\right)}{2}+\frac{m f\left(\frac{a}{m}\right)+m^{2} f\left(\frac{b}{m^{2}}\right)}{2}\right] \tag{2.4}
\end{equation*}
$$

By a similar argument we can state:

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b} \frac{f(x)+m f\left(\frac{x}{m}\right)}{2} d x  \tag{2.5}\\
\leq & \frac{1}{8}\left[f(a)+f(b)+2 m\left(f\left(\frac{a}{m}\right)+f\left(\frac{b}{m}\right)\right)+m^{2}\left(f\left(\frac{a}{m^{2}}\right)+f\left(\frac{b}{m^{2}}\right)\right)\right]
\end{align*}
$$

and the proof is completed.
Remark 3. For $m=1$, we can drop the assumption $f \in L_{1}[a, b]$ and (2.1) exactly becomes the Hermite-Hadamard inequality.

The following result also holds.
Theorem 5. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a $m$-convex function with $m \in(0,1]$. If $f \in L_{1}[a m, b]$ where $0 \leq a<b$, then one has the inequality:

$$
\begin{equation*}
\frac{1}{m+1}\left[\int_{a}^{m b} f(x) d x+\frac{m b-a}{b-m a} \int_{m a}^{b} f(x) d x\right] \leq(m b-a) \frac{f(a)+f(b)}{2} . \tag{2.6}
\end{equation*}
$$

Proof. By the $m$-convexity of $f$ we can write:

$$
\begin{aligned}
f(t a+m(1-t) b) & \leq t f(a)+m(1-t) f(b) \\
f((1-t) a+m t b) & \leq(1-t) f(a)+m t f(b) \\
f(t b+(1-t) m a) & \leq t f(b)+m(1-t) f(a)
\end{aligned}
$$

and

$$
f((1-t) b+t m a) \leq(1-t) f(b)+m t f(a)
$$

for all $t \in[0,1]$ and $a, b$ as above.
If we add the above inequalities we get

$$
\begin{aligned}
& f(t a+m(1-t) b)+f((1-t) a+m t b) \\
& +f(t b+(1-t) m a)+f((1-t) b+t m a) \\
\leq & f(a)+f(b)+m(f(a)+f(b))=(m+1)(f(a)+f(b)) .
\end{aligned}
$$

Integrating over $t \in[0,1]$, we obtain

$$
\begin{align*}
& \int_{0}^{1} f(t a+m(1-t) b) d t+\int_{0}^{1} f((1-t) a+m t b) d t  \tag{2.7}\\
& +\int_{0}^{1} f(t b+m(1-t) a) d t+\int_{0}^{1} f((1-t) b+m t a) d t \\
\leq & (m+1)(f(a)+f(b)) .
\end{align*}
$$

As it is easy to see that

$$
\int_{0}^{1} f(t a+m(1-t) b) d t=\int_{0}^{1} f((1-t) a+m t b) d t=\frac{1}{m b-a} \int_{a}^{m b} f(x) d x
$$

and

$$
\int_{0}^{1} f(t b+m(1-t) a) d t=\int_{0}^{1} f((1-t) b+m t a) d t=\frac{1}{b-m a} \int_{m a}^{b} f(x) d x
$$

from (2.7) we deduce the desired result, namely, the inequality (2.6).

Remark 4. For an extensive literature on Hermite-Hadamard type inequalities, see the references enclosed.

## Acknowledgements

The author would like to thank the anonymous referee for some valuable suggestions on improving the paper.

## References

[1] G. Allasia, C. Giordano, J. Pečarić, Hadamard-type inequalities for (2r)-convex functions with applications, Atti Acad. Sci. Torino-Cl. Sc. Fis., 133 (1999), 1-14.
[2] H. Alzer, A note on Hadamard's inequalities, C.R. Math. Rep. Acad. Sci. Canada, 11(1989), 255-258.
[3] H. Alzer, On an integral inequality, Math. Rev. Anal. Numer. Theor. Approx., 18(1989), 101-103.
[4] A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev.-Colombiana-Mat., 28(1994), 7-12.
[5] D. Barbu, S. S. Dragomir and C. Bușe, A probabilistic argument for the convergence of some sequences associated to Hadamard's inequality, Studia Univ. Babeş-Bolyai, Math., 38 (1993), 29-33.
[6] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc., 54(1948), 439-460.
[7] C. Borell, Integral inequalities for generalised concave and convex functions, J. Math. Anal. Appl., 43(1973), 419-440.
[8] C. Bușe, S. S. Dragomir and D. Barbu, The convergence of some sequences connected to Hadamard's inequality, Demostratio Math., 29 (1996), 53-59.
[9] L. J. Dedić, C. E. M. Pearce and J. Pečarić, The Euler formulae and convex functions, Math. Ineq. \& Appl., 2(2000), 211-221.
[10] L. J. Dedić, C. E. M. Pearce and J. Pečarić, Hadamard and Dragomir-Argarwal inequalities, high-order convexity and the Euler Formula, submitted.
[11] S. S. Dragomir, A mapping in connection to Hadamard's inequalities, An. Öster. Akad. Wiss. Math.-Natur., (Wien), 128(1991), 17-20. MR 934:26032. ZBL No. 747:26015.
[12] S. S. Dragomir, A refinement of Hadamard's inequality for isotonic linear functionals, Tamkang J. of Math. (Taiwan), 24(1993), 101-106. MR 94a: 26043. 2BL No. 799: 26016.
[13] S. S. Dragomir, On Hadamard's inequalities for convex functions, Mat. Balkanica, 6(1992), 215-222. MR: 934: 26033.
[14] S. S. Dragomir, On Hadamard's inequality for the convex mappings defined on a ball in the space and applications, Math. Ineq. \& Appl., 3 (2000), 177-187.
[15] S. S. Dragomir, On Hadamard's inequality on a disk, Journal of Ineq. in Pure \& Appl. Math., 1 (2000), No. 1, Article 2, http://jipam.vu.edu.au/
[16] S. S. Dragomir, On some integral inequalities for convex functions, Zb.-Rad. (Kragujevac),(1996), No. 18, 21-25.
[17] S. S. Dragomir, Some integral inequalities for differentiable convex functions, Contributions, Macedonian Acad. of Sci. and Arts, 13(1992), 13-17.
[18] S. S. Dragomir, Some remarks on Hadamard's inequalities for convex functions, Extracta Math., 9 (1994), 88-94.
[19] S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167(1992), 49-56. MR:934:26038, ZBL No. 758:26014.
[20] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Mat. Lett. 11(1998), 91-95.
[21] S. S. Dragomir and R. P. Agarwal, Two new mappings associated with Hadamard's inequalities for convex functions, Appl. Math. Lett., 11(1998), 33-38.
[22] S. S. Dragomir and C. Buşe, Refinements of Hadamard's inequality for multiple integrals, Utilitas Math (Canada), 47(1995), 193-195.
[23] S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. of Math. Anal. Appl., 245 (2000), 489-501.
[24] S. S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the first sense, Demonstratio Math., 31 (1998), 633-642.
[25] S. S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for $s$-convex functions in the second sense, Demonstratio Math., 32 (1999), 687-696.
[26] S. S. Dragomir and N. M. Ionescu, On some inequalities for convex-dominated functions, Anal. Num. Theor. Approx., 19 (1990), 21-28. MR 936: 26014 ZBL No. 733 : 26010.
[27] S. S. Dragomir and N. M. Ionescu, Some integral inequalities for differentiable convex functions, Coll. Pap. of the Fac. of Sci. Kragujevac (Yugoslavia), 13(1992), 11-16, ZBL No. 770.
[28] S. S. Dragomir, D. S. Milośević and J. Sándor, On some refinements of Hadamard's inequalities and applications, Univ. Belgrad, Publ. Elek. Fak. Sci. Math., 4(1993), 21-24.
[29] S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin, Indian J. Math., 39 (1997), 1-9.
[30] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc., 57 (1998), 377-385.
[31] S. S. Dragomir, C. E. M. Pearce and J. E. Pečarić, On Jessen's and related inequalities for isotonic sublinear functionals, Acta Math. Sci. (Szeged), 61(1995), 373-382.
[32] S. S. Dragomir, J. E. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. of Math. (Taiwan), 21 (1995), 335-341.
[33] S. S. Dragomir, J. E. Pečarić and J. Sándor, A note on the Jensen-Hadamard inequality, Anal. Num. Theor. Approx., 19(1990), 21-28. MR 93b: 260 14.ZBL No. $733: 26010$.
[34] S. S. Dragomir and G. H. Toader, Some inequalities for $m$-convex functions, Studia Univ. Babeş-Bolyai, Math., 38(1993), 21-28.
[35] A. M. Fink, A best possible Hadamard inequality, Math. Ineq. \& Appl., 2(1998), 223-230.
[36] A. M. Fink, Hadamard inequalities for logarithmic concave functions, Math. Comput. Modeling, to appear.
[37] A. M. Fink, Toward a theory of best possible inequalities, Nieuw Archief von Wiskunde, 12(1994), 19-29.
[38] A. M. Fink, Two inequalities, Univ. Beograd Publ. Elek. Fak. Ser. Mat., 6 (1995), 48-49.
[39] B. Gavrea, On Hadamard's inequality for the convex mappings defined on a convex domain in the space, Journal of Ineq. in Pure \& Appl. Math., 1 (2000), No. 1, Article 9, http://jipam.vu.edu.au/
[40] P. M. Gill, C. E. M. Pearce and J. Pečarić, Hadamard's inequality for $r$-convex functions, J. of Math. Anal. and Appl., 215(1997), 461-470.
[41] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd Ed., Cambridge University Press, 1952.
[42] K.-C. Lee and K.-L. Tseng, On a weighted generalisation of Hadamard's inequality for G-convex functions, Tamsui Oxford Journal of Math. Sci., 16(2000), 91-104.
[43] A. Lupaş, The Jensen-Hadamard inequality for convex functions of higher order, Octogon Math. Mag., 5 (1997), no. 2, 8-9.
[44] A. Lupaş, A generalisation of Hadamard inequalities for convex functions, ONLINE: (http://rgmia.vu.edu.au/authors/ALupas.htm).
[45] A. Lupaş, The Jensen-Hadamard inequality for convex functions of higher order, ONLINE: (http://rgmia.vu.edu.au/authors/ALupas.htm)
[46] A. Lupas, A generalisation of Hadamard's inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 544-576,(1976), 115-121.
[47] D. M. Makisimović, A short proof of generalized Hadamard's inequalities, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., (1979), No. 634-677 126-128.
[48] V. G Miheşan, A generalisation of the convexity, Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca, Romania, 1993.
[49] D. S. Mitrinović and I. Lacković, Hermite and convexity, Aequat. Math., 28 (1985), 229232.
[50] D. S. Mitrinović, J. E. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht/Boston/London.
[51] B. Mond and J. E. Pečarić, A companion to Fink's inequality, Octagon Math. Mag., to appear.
[52] E. Neuman, Inequalities involving generalised symmetric means, J. Math. Anal. Appl., 120(1986), 315-320.
[53] E. Neuman and J. E. Pečarić, Inequalities involving multivariate convex functions, J. Math. Anal. Appl., 137 (1989), 514-549.
[54] E. Neuman, Inequalities involving multivariate convex functions II, Proc. Amer. Math. Soc., 109(1990), 965-974.
[55] C. P. Niculescu, A note on the dual Hermite-Hadamard inequality, The Math. Gazette, July 2000.
[56] C. P. Niculescu, Convexity according to the geometric mean, Math. Ineq. \& Appl., 3 (2000), 155-167.
[57] C. E. M. Pearce, J. Pečarić and V. šimić, Stolarsky means and Hadamard's inequality, J. Math. Anal. Appl., 220(1998), 99-109.
[58] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions and Hadamardtype inequalities, J. Math. Anal. Appl., 240(1999), 92-104.
[59] J. E. Pečarić, Remarks on two interpolations of Hadamard's inequalities, Contributions, Macedonian Acad. of Sci. and Arts, Sect. of Math. and Technical Sciences, (Scopje), 13, (1992), 9-12.
[60] J. Pečarić and V. Čuljak, On Hadamard inequalities for logarithmic convex functions, submitted.
[61] J. Pečarić, V. Čuljak and A. M. Fink, On some inequalities for convex functions of higher order, submitted.
[62] J. Pečarić and S. S. Dragomir, A generalization of Hadamard's integral inequality for isotonic linear functionals, Rudovi Mat. (Sarajevo), 7(1991), 103-107. MR 924: 26026. 2BL
[63] J. Pečaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Inc., 1992.
[64] F. Qi and Q.-M. Luo, Refinements and extensions of an inequality, Mathematics and Informatics Quarterly, 9(1) (1999), 23-25.
[65] F. Qi, S.-L. Xu, and L. Debnath, A new proof of monotonicity for extended mean values, Intern. J. Math. Math. Sci., 22(1999), 415-420.
[66] A. W. Roberts and P. E. Varberg, Convex Functions, Academic Press, 1973.
[67] F. Saidi and R. Younis, Hadamard and Fejer-type Inequalities, Archiv der Mathematik., to appear.
[68] J. Sándor, A note on the Jensen-Hadamard inequality, Anal. Numer. Theor. Approx., 19 (1990), 29-34.
[69] J. Sándor, An application of the Jensen-Hadamard inequality, Nieuw-Arch.-Wisk., 8 (1990), 63-66.
[70] J. Sándor, On the Jensen-Hadamard inequality, Studia Univ. Babes-Bolyai, Math., 36 (1991), 9-15.
[71] G. H. Toader, Some generalisations of the convexity, Proc. Colloq. Approx. Optim, ClujNapoca (Romania), 1984, 329-338.
[72] P. M. Vasić, I. B. Lacković and D. M. Maksimović, Note on convex functions IV: OnHadamard's inequality for weighted arithmetic means, Univ. Beograd Publ. Elek. Fak., Ser. Mat. Fiz., No.678-715 (1980), 199-205.
[73] G. S Yang and M. C. Hong, A note on Hadamard's inequality, Tamkang J. Math., 28 (1997), 33-37.
[74] G. S Yang and K. L. Tseng, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl., 239(1999), 180-187.

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC, 8001, Victoria, Australia.
E-mail address: sever@matilda.vu.edu.au
URL: http://rgmia.vu.edu.au/SSDragomirWeb.html.

