Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **25:2** (2011), 33–51 DOI: 10.2298/FIL1102033M

ON SOME NEW SEQUENCE SPACES OF NON-ABSOLUTE TYPE RELATED TO THE SPACES ℓ_p AND ℓ_{∞} I

M. Mursaleen and Abdullah K. Noman

Abstract

In the present paper, we introduce the sequence space ℓ_p^{λ} of non-absolute type and prove that the spaces ℓ_p^{λ} and ℓ_p are linearly isomorphic for 0 . $Further, we show that <math>\ell_p^{\lambda}$ is a *p*-normed space and a *BK*-space in the cases of $0 and <math>1 \leq p \leq \infty$, respectively. Furthermore, we derive some inclusion relations concerning the space ℓ_p^{λ} . Finally, we construct the basis for the space ℓ_p^{λ} , where $1 \leq p < \infty$.

1 Introduction

By w, we denote the space of all real or complex valued sequences. Any vector subspace of w is called a *sequence space*.

A sequence space X with a linear topology is called a K-space provided each of the maps $p_n : X \to \mathbb{C}$ defined by $p_n(x) = x_n$ is continuous for all $n \in \mathbb{N}$, where \mathbb{C} denotes the complex field and $\mathbb{N} = \{0, 1, 2, ...\}$. A K-space X is called an FKspace provided X is a complete linear metric space. An FK-space whose topology is normable is called a BK-space [9, pp.272-273].

We shall write ℓ_{∞} , c and c_0 for the sequence spaces of all bounded, convergent and null sequences, respectively, which are *BK*-spaces with the same sup-norm given by

$$\|x\|_{\ell_{\infty}} = \sup_{k} |x_k|,$$

where, here and in the sequel, the supremum \sup_k is taken over all $k \in \mathbb{N}$. Also by ℓ_p (0 , we denote the sequence space of all sequences associated with*p* $-absolutely convergent series. It is known that <math>\ell_p$ is a complete *p*-normed space and a *BK*-space in the cases of $0 and <math>1 \le p < \infty$ with respect to the usual *p*-norm and ℓ_p -norm defined by

$$||x||_{\ell_p} = \sum_k |x_k|^p; \quad (0$$

²⁰¹⁰ Mathematics Subject Classifications. 40C05, 40H05, 46A45.

Key words and Phrases. Sequence space; BK-space; Schauder basis; Matrix mapping.

Received: December 12, 2010

Communicated by Vladimir Rakocevic

and

$$||x||_{\ell_p} = \left(\sum_k |x_k|^p\right)^{1/p}; \quad (1 \le p < \infty),$$

respectively (see [11, pp.217-218]). For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ .

Let X and Y be sequence spaces and $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk} , where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from X into Y if for every sequence $x = (x_k) \in X$ the sequence $Ax = \{A_n(x)\}$, the A-transform of x, exists and is in Y, where

$$A_n(x) = \sum_k a_{nk} x_k; \quad (n \in \mathbb{N}).$$
(1)

By (X : Y), we denote the class of all infinite matrices that map X into Y. Thus $A \in (X : Y)$ if and only if the series on the right side of (1) converges for each $n \in \mathbb{N}$ and every $x \in X$, and $Ax \in Y$ for all $x \in X$.

For a sequence space X, the *matrix domain* of an infinite matrix A in X is defined by

$$X_A = \left\{ x \in w : Ax \in X \right\} \tag{2}$$

which is a sequence space.

We shall write $e^{(k)}$ for the sequence whose only non-zero term is a 1 in the k^{th} place for each $k \in \mathbb{N}$.

The approach of constructing a new sequence space by means of the matrix domain of a particular limitation method has recently been employed by several authors, e.g., Wang [19], Ng and Lee [18], Malkowsky [12], Başar and Altay [7], Malkowsky and Savaş [13], Aydın and Başar [3, 4, 5, 6], Altay and Başar [1], Altay, Başar and Mursaleen [2, 14] and Mursaleen and Noman [15, 16], respectively. They introduced the sequence spaces $(\ell_{\infty})_{N_q}$ and c_{N_q} in [19], $(\ell_{\infty})_{C_1} = X_{\infty}$ and $(\ell_p)_{C_1} =$ Insoluted the sequence spaces $(c_{\infty})_{N_q}$ and $(c_{N_q})_{R_1} = r_{\infty}^{t}$, $(c_{\infty})_{C_1} = A_{\infty}$ and $(c_p)_{C_1} = X_p$ in [18], $(\ell_{\infty})_{R^t} = r_{\infty}^t$, $c_{R^t} = r_c^t$ and $(c_0)_{R^t} = r_0^t$ in [12], $(\ell_p)_{\Delta} = bv_p$ in [7], $\mu_G = Z(u, v; \mu)$ in [13], $(c_0)_{A^r} = a_0^r$ and $c_{A^r} = a_c^r$ in [3], $[c_0(u, p)]_{A^r} = a_0^r(u, p)$ and $[c(u, p)]_{A^r} = a_c^r(u, p)$ in [4], $(a_0^r)_{\Delta} = a_0^r(\Delta)$ and $(a_c^r)_{\Delta} = a_c^r(\Delta)$ in [5], $(\ell_p)_{A^r} = a_p^r$ a_p^r and $(\ell_{\infty})_{A^r} = a_{\infty}^r$ in [6], $(c_0)_{E^r} = e_0^r$ and $c_{E^r} = e_c^r$ in [1], $(\ell_p)_{E^r} = e_p^r$ and $(\ell_{\infty})_{E^r} = e_{\infty}^r$ in [2, 14], $(c_0)_{\Lambda} = c_0^{\lambda}$ and $c_{\Lambda} = c^{\lambda}$ in [15] and $(c_0^{\lambda})_{\Delta} = c_0^{\lambda}(\Delta)$ and $(c_{\lambda})_{\alpha} = c_{\lambda}^{\lambda}(\Delta)$ in [16], where $N = C_{\alpha} = B^t$ and E^r denotes the Nörlund. General Properties (1) and $(c^{\lambda})_{\Delta} = c^{\lambda}(\Delta)$ in [16], where N_q, C_1, R^t and E^r denote the Nörlund, Cesàro, Riesz and Euler means, respectively, Δ denotes the band matrix defining the difference operator, G and A^r are defined in [13] and [3], respectively, Λ is defined in Section 2, below, $\mu \in \{c_0, c, \ell_p\}$ and $1 \le p < \infty$. Also $c_0(u, p)$ and c(u, p) denote the sequence spaces generated from the Maddox's spaces $c_0(p)$ and c(p) by Başarır [8]. The main purpose of the present paper, following [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 18] and [19], is to introduce the sequence spaces ℓ_p^{λ} and ℓ_{∞}^{λ} of non-absolute type and is to derive some results related to them. Further, we establish some inclusion relations concerning the spaces ℓ_p^{λ} and ℓ_{∞}^{λ} , where 0 . Moreover, we construct thebasis for the space ℓ_p^{λ} , where $1 \leq p < \infty$.

2 λ -boundedness and *p*-absolute convergence of type λ

Throughout this paper, let $\lambda = (\lambda_k)_{k=0}^{\infty}$ be a strictly increasing sequence of positive reals tending to ∞ , that is

$$0 < \lambda_0 < \lambda_1 < \cdots$$
 and $\lambda_k \to \infty$ as $k \to \infty$. (3)

We say that a sequence $x = (x_k) \in w$ is λ -bounded if $\sup_n |\Lambda_n(x)| < \infty$, where

$$\Lambda_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) x_k; \quad (n \in \mathbb{N}).$$
(4)

Also, we say that the associated series $\sum_k x_k$ is *p*-absolutely convergent of type λ if $\sum_n |\Lambda_n(x)|^p < \infty$, where 0 .

Here and in the sequel, we shall use the convention that any term with a negative subscript is equal to zero, e.g., $\lambda_{-1} = 0$ and $x_{-1} = 0$.

Now, let $x = (x_k)$ be a bounded sequence in the ordinary sense of boundedness, i.e., $x \in \ell_{\infty}$. Then, there is a constant M > 0 such that $|x_k| \leq M$ for all $k \in \mathbb{N}$. Thus, we have for every $n \in \mathbb{N}$ that

$$\begin{aligned} \Lambda_n(x) &| \le \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) |x_k| \\ &\le \frac{M}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) = M \end{aligned}$$

which shows that x is λ -bounded. Therefore, we deduce that the ordinary boundedness implies the λ -boundedness. This leads us to the following basic result:

Lemma 2.1. Every bounded sequence is λ -bounded.

We shall later show that the converse implication need not be true. Further, we shall show that for every $0 there is a sequence <math>\lambda = (\lambda_k)$ satisfying (3) such that the convergence of the series $\sum_n |x_k|^p$ does not imply the convergence of the series $\sum_n |\Lambda_n(x)|^p$, and conversely. Before that, we define the infinite matrix $\Lambda = (\lambda_{nk})_{n,k=0}^{\infty}$ by

$$\lambda_{nk} = \begin{cases} \frac{\lambda_k - \lambda_{k-1}}{\lambda_n}; & (0 \le k \le n), \\ 0; & (k > n) \end{cases}$$
(5)

for all $n, k \in \mathbb{N}$. Then, for any sequence $x = (x_k) \in w$, the Λ -transform of x is the sequence $\Lambda(x) = \{\Lambda_n(x)\}$, where $\Lambda_n(x)$ is given by (4) for all $n \in \mathbb{N}$. Therefore, the sequence x is λ -bounded if and only if $\Lambda(x) \in \ell_{\infty}$. Also, the notion of p-absolute convergence of type λ of the sequence x is equivalent to say that $\Lambda(x) \in \ell_p$, where $0 . Further, it is obvious by (5) that the matrix <math>\Lambda = (\lambda_{nk})$ is a triangle, i.e., $\lambda_{nn} \neq 0$ and $\lambda_{nk} = 0$ for all k > n $(n \in \mathbb{N})$.

Recently, the sequence spaces c_0^{λ} and c^{λ} have been defined in [15] as the matrix domains of the triangle Λ in the spaces c_0 and c, respectively, that is

$$c_0^{\lambda} = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \left(\frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) x_k \right) = 0 \right\}$$

and

$$c^{\lambda} = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \left(\frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) x_k \right) \text{ exists} \right\}.$$

Also, it has been shown that the inclusions $c_0 \subset c_0^{\lambda}$ and $c \subset c^{\lambda}$ hold and the inclusion $c_0^{\lambda} \subset c^{\lambda}$ strictly holds.

Finally, we define the sequence $y(\lambda) = \{y_k(\lambda)\}$, which will be frequently used, as the Λ -transform of a sequence $x = (x_k)$, i.e., $y(\lambda) = \Lambda(x)$ and so we have

$$y_k(\lambda) = \sum_{j=0}^k \left(\frac{\lambda_j - \lambda_{j-1}}{\lambda_k}\right) x_j; \quad (k \in \mathbb{N}).$$
(6)

$3 \quad \text{The sequence spaces } \ell_p^\lambda \text{ and } \ell_\infty^\lambda \text{ of non-absolute type} \\$

In the present section, as a natural continuation of Mursaleen and Noman [15], we introduce the sequence spaces ℓ_p^{λ} and ℓ_{∞}^{λ} , as the sets of all sequences whose Λ -transforms are in the spaces ℓ_p and ℓ_{∞} , respectively, where 0 , that is

$$\ell_p^{\lambda} = \left\{ x = (x_k) \in w : \left| \sum_{n=0}^{\infty} \left| \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) x_k \right|^p < \infty \right\}; \quad (0 < p < \infty)$$

and

$$\ell_{\infty}^{\lambda} = \left\{ x = (x_k) \in w : \sup_{n} \left| \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) x_k \right| < \infty \right\}.$$

With the notation of (2), we can redefine the spaces ℓ_p^{λ} and ℓ_{∞}^{λ} as follows:

$$\ell_p^{\lambda} = (\ell_p)_{\Lambda} \quad (0 (7)$$

Then, it is obvious by (7) that ℓ_{∞}^{λ} and ℓ_{p}^{λ} (0 are sequence spaces $consisting of all sequences which are <math>\lambda$ -bounded and p-absolutely convergent of type λ , respectively. Further, we have the following result which is essential in the text.

Theorem 3.1. We have the following:

(a) If $0 , then <math>\ell_p^{\lambda}$ is a complete p-normed space with the p-norm $||x||_{\ell_p^{\lambda}} = ||\Lambda(x)||_{\ell_p}$, that is

$$\|x\|_{\ell_p^{\lambda}} = \sum_n |\Lambda_n(x)|^p; \quad (0
(8)$$

(b) If $1 \le p \le \infty$, then ℓ_p^{λ} is a BK-space with the norm $\|x\|_{\ell_p^{\lambda}} = \|\Lambda(x)\|_{\ell_p}$, that is

$$\|x\|_{\ell_p^{\lambda}} = \left(\sum_n |\Lambda_n(x)|^p\right)^{1/p}; \quad (1 \le p < \infty)$$

$$\tag{9}$$

and

$$\|x\|_{\ell^{\lambda}_{\infty}} = \sup_{n} |\Lambda_n(x)|.$$
(10)

Proof. Since the matrix Λ is a triangle, this result is immediate by (7) and Theorem 4.3.12 of Wilansky [20, p.63].

Remark 3.2. One can easily check that the absolute property does not hold on the space ℓ_p^{λ} , that is $||x||_{\ell_p^{\lambda}} \neq |||x|||_{\ell_p^{\lambda}}$ for at least one sequence in the space ℓ_p^{λ} , and this tells us that ℓ_p^{λ} is a sequence space of non-absolute type, where $|x| = (|x_k|)$ and 0 .

Theorem 3.3. The sequence space ℓ_p^{λ} of non-absolute type is isometrically isomorphic to the space ℓ_p , that is $\ell_p^{\lambda} \cong \ell_p$ for 0 .

Proof. To prove this, we should show the existence of an isometric isomorphism between the spaces ℓ_p^{λ} and ℓ_p , where 0 . For, let <math>0 and consider the transformation <math>T defined, with the notation of (6), from ℓ_p^{λ} to ℓ_p by $x \mapsto y(\lambda) = Tx$. Then, we have $Tx = y(\lambda) = \Lambda(x) \in \ell_p$ for every $x \in \ell_p^{\lambda}$. Also, the linearity of T is trivial. Further, it is easy to see that x = 0 whenever Tx = 0 and hence T is injective.

Furthermore, let $y = (y_k) \in \ell_p$ be given and define the sequence $x = \{x_k(\lambda)\}$ by

$$x_k(\lambda) = \sum_{j=k-1}^k (-1)^{k-j} \frac{\lambda_j}{\lambda_k - \lambda_{k-1}} y_j; \quad (k \in \mathbb{N}).$$

$$(11)$$

Then, by using (4) and (11), we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) x_k(\lambda)$$

= $\frac{1}{\lambda_n} \sum_{k=0}^n \sum_{j=k-1}^k (-1)^{k-j} \lambda_j y_j$
= $\frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k y_k - \lambda_{k-1} y_{k-1})$
= y_n .

This shows that $\Lambda(x) = y$ and since $y \in \ell_p$, we obtain that $\Lambda(x) \in \ell_p$. Thus, we deduce that $x \in \ell_p^{\lambda}$ and Tx = y. Hence T is surjective.

Moreover, for any $x \in \ell_p^{\lambda}$, we have by (8), (9) and (10) of Theorem 3.1 that

$$||Tx||_{\ell_p} = ||y(\lambda)||_{\ell_p} = ||\Lambda(x)||_{\ell_p} = ||x||_{\ell_p^{\lambda}}$$

which shows that T is p-norm and norm preserving in the cases of $0 and <math>1 \le p \le \infty$, respectively. Hence T is isometry. Consequently, the spaces ℓ_p^{λ} and ℓ_p are isometrically isomorphic for 0 . This concludes the proof.

Now, one may expect the similar result for the space ℓ_p^{λ} as was observed for the space ℓ_p , and ask the natural question: Is not the space ℓ_p^{λ} a Hilbert space with $p \neq 2$? The answer is positive and is given by the following theorem:

Theorem 3.4. Except the case p = 2, the space ℓ_p^{λ} is not an inner product space, hence not a Hilbert space for $1 \le p < \infty$.

Proof. We have to prove that the space ℓ_2^{λ} is the only Hilbert space among the ℓ_p^{λ} spaces for $1 \leq p < \infty$. Since the space ℓ_2^{λ} is a *BK*-space with the norm $||x||_{\ell_2^{\lambda}} = ||\Lambda(x)||_{\ell_2}$ by Theorem 3.1 and its norm can be obtained from an inner product, i.e., the equality

$$\|x\|_{\ell_{2}^{\lambda}} = \langle x, x \rangle^{1/2} = \langle \Lambda(x), \Lambda(x) \rangle_{2}^{1/2}$$

holds for every $x \in \ell_2^{\lambda}$, the space ℓ_2^{λ} is a Hilbert space, where $\langle \cdot, \cdot \rangle_2$ denotes the inner product on ℓ_2 .

Let us now consider the sequences

$$u = \{u_k(\lambda)\} = \left(1, 1, \frac{-\lambda_1}{\lambda_2 - \lambda_1}, 0, 0, \dots\right)$$

and

$$v = \{v_k(\lambda)\} = \left(1, -\frac{\lambda_1 + \lambda_0}{\lambda_1 - \lambda_0}, \frac{\lambda_1}{\lambda_2 - \lambda_1}, 0, 0, \dots\right).$$

Then, we have

$$\Lambda(u) = (1, 1, 0, 0, \ldots)$$
 and $\Lambda(v) = (1, -1, 0, 0, \ldots).$

Thus, it can easily be seen that

$$\|u+v\|_{\ell_p^{\lambda}}^2 + \|u-v\|_{\ell_p^{\lambda}}^2 = 8 \neq 4(2^{2/p}) = 2\Big(\|u\|_{\ell_p^{\lambda}}^2 + \|v\|_{\ell_p^{\lambda}}^2\Big); \quad (p \neq 2),$$

that is, the norm of the space ℓ_p^{λ} with $p \neq 2$ does not satisfy the parallelogram equality which means that this norm cannot be obtained from an inner product. Hence, the space ℓ_p^{λ} with $p \neq 2$ is a Banach space which is not a Hilbert space, where $1 \leq p < \infty$. This completes the proof.

Remark 3.5. It is obvious that ℓ_{∞}^{λ} is also a Banach space which is not a Hilbert space.

4 Some inclusion relations

In the present section, we establish some inclusion relations concerning the spaces ℓ_p^{λ} and ℓ_{∞}^{λ} , where $0 . We essentially prove that the inclusion <math>\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ holds and characterize the case in which the inclusion $\ell_p \subset \ell_p^{\lambda}$ holds for $1 \leq p < \infty$.

We may begin with quoting the following two lemmas (see [15]) which are needed in the proofs of our main results.

Lemma 4.1. For any sequence $x = (x_k) \in w$, the equalities

$$S_n(x) = x_n - \Lambda_n(x); \quad (n \in \mathbb{N})$$
(12)

and

$$S_n(x) = \frac{\lambda_{n-1}}{\lambda_n - \lambda_{n-1}} \left[\Lambda_n(x) - \Lambda_{n-1}(x) \right]; \quad (n \in \mathbb{N})$$
(13)

hold, where $S(x) = \{S_n(x)\}$ is the sequence defined by

$$S_0(x) = 0$$
 and $S_n(x) = \frac{1}{\lambda_n} \sum_{k=1}^n \lambda_{k-1} (x_k - x_{k-1}); \quad (n \ge 1).$

Lemma 4.2. For any sequence $\lambda = (\lambda_k)_{k=0}^{\infty}$ satisfying (3), we have (a) $\left(\frac{\lambda_k}{\lambda_k - \lambda_{k-1}}\right)_{k=0}^{\infty} \notin \ell_{\infty}$ if and only if $\liminf_{k \to \infty} \frac{\lambda_{k+1}}{\lambda_k} = 1$. (b) $\left(\frac{\lambda_k}{\lambda_k - \lambda_{k-1}}\right)_{k=0}^{\infty} \in \ell_{\infty}$ if and only if $\liminf_{k \to \infty} \frac{\lambda_{k+1}}{\lambda_k} > 1$.

It is obvious that Lemma 4.2 still holds if the sequence $\{\lambda_k/(\lambda_k - \lambda_{k-1})\}$ is replaced by $\{\lambda_k/(\lambda_{k+1} - \lambda_k)\}$.

Now, we prove the following:

Theorem 4.3. If $0 , then the inclusion <math>\ell_p^{\lambda} \subset \ell_q^{\lambda}$ strictly holds.

Proof. Let $0 . Then, it follows by the inclusion <math>\ell_p \subset \ell_q$ that the inclusion $\ell_p^{\lambda} \subset \ell_q^{\lambda}$ holds. Further, since the inclusion $\ell_p \subset \ell_q$ is strict, there is a sequence $x = (x_k)$ in ℓ_q but not in ℓ_p , i.e., $x \in \ell_q \setminus \ell_p$. Let us now define the sequence $y = (y_k)$ in terms of the sequence x as follows:

$$y_k = \frac{\lambda_k x_k - \lambda_{k-1} x_{k-1}}{\lambda_k - \lambda_{k-1}}; \quad (k \in \mathbb{N}).$$

Then, we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(y) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k x_k - \lambda_{k-1} x_{k-1}) = x_n$$

which shows that $\Lambda(y) = x$ and hence $\Lambda(y) \in \ell_q \setminus \ell_p$. Thus, the sequence y is in ℓ_q^{λ} but not in ℓ_p^{λ} . Hence, the inclusion $\ell_p^{\lambda} \subset \ell_q^{\lambda}$ is strict. This concludes the proof. \Box

Theorem 4.4. The inclusions $\ell_p^{\lambda} \subset c_0^{\lambda} \subset c^{\lambda} \subset \ell_{\infty}^{\lambda}$ strictly hold, where 0 .

Proof. Since the inclusion $c_0^{\lambda} \subset c^{\lambda}$ strictly holds [15, Theorem 4.1], it is enough to show that the inclusions $\ell_p^{\lambda} \subset c_0^{\lambda}$ and $c^{\lambda} \subset \ell_{\infty}^{\lambda}$ are strict, where 0 .

Firstly, it is trivial that the inclusion $\ell_p^{\lambda} \subset c_0^{\lambda}$ holds for $0 , since <math>x \in \ell_p^{\lambda}$ implies $\Lambda(x) \in \ell_p$ and hence $\Lambda(x) \in c_0$ which means that $x \in c_0^{\lambda}$. Further, to show that this inclusion is strict, let $0 and consider the sequence <math>x = (x_k)$ defined by

$$x_k = \frac{1}{(k+1)^{1/p}}; \quad (k \in \mathbb{N}).$$
 (14)

Then $x \in c_0$ and hence $x \in c_0^{\lambda}$, since the inclusion $c_0 \subset c_0^{\lambda}$ holds. On the other hand, we have for every $n \in \mathbb{N}$ that

$$\begin{aligned} |\Lambda_n(x)| &= \frac{1}{\lambda_n} \sum_{k=0}^n \frac{\lambda_k - \lambda_{k-1}}{(k+1)^{1/p}} \\ &\ge \frac{1}{\lambda_n (n+1)^{1/p}} \sum_{k=0}^n (\lambda_k - \lambda_k - 1) \\ &= \frac{1}{(n+1)^{1/p}} \end{aligned}$$

which shows that $\Lambda(x) \notin \ell_p$ and hence $x \notin \ell_p^{\lambda}$. Thus, the sequence x is in c_0^{λ} but not in ℓ_p^{λ} . Therefore, the inclusion $\ell_p^{\lambda} \subset c_0^{\lambda}$ is strict for 0 .

Similarly, it is also clear that the inclusion $c^{\lambda} \subset \ell_{\infty}^{\lambda}$ holds. To show that this inclusion is strict, we define the sequence $y = (y_k)$ by

$$y_k = (-1)^k \left(\frac{\lambda_k + \lambda_{k-1}}{\lambda_k - \lambda_{k-1}}\right); \quad (k \in \mathbb{N}).$$

Then, we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(y) = \frac{1}{\lambda_n} \sum_{k=0}^n (-1)^k (\lambda_k + \lambda_{k-1}) = (-1)^n$$

which shows that $\Lambda(y) \in \ell_{\infty} \setminus c$. Thus, the sequence y is in ℓ_{∞}^{λ} but not in c^{λ} and hence $c^{\lambda} \subset \ell_{\infty}^{\lambda}$ is a strict inclusion. This completes the proof.

Lemma 4.5. The inclusion $\ell_p^{\lambda} \subset \ell_p$ holds if and only if $S(x) \in \ell_p$ for every sequence $x \in \ell_p^{\lambda}$, where 0 .

Proof. Suppose that the inclusion $\ell_p^{\lambda} \subset \ell_p$ holds, where $0 , and take any <math>x = (x_k) \in \ell_p^{\lambda}$. Then $x \in \ell_p$ by the hypothesis. Thus, we obtain from (12) that

$$\|S(x)\|_{\ell_p} \le \|x\|_{\ell_p} + \|\Lambda(x)\|_{\ell_p} = \|x\|_{\ell_p} + \|x\|_{\ell_p^{\lambda}} < \infty$$

which yields that $S(x) \in \ell_p$.

Conversely, let $x \in \ell_p^{\lambda}$ be given, where $0 . Then, we have by the hypothesis that <math>S(x) \in \ell_p$. Again, it follows by (12) that

$$\|x\|_{\ell_p} \le \|S(x)\|_{\ell_p} + \|\Lambda(x)\|_{\ell_p} = \|S(x)\|_{\ell_p} + \|x\|_{\ell_p^{\lambda}} < \infty$$

which shows that $x \in \ell_p$. Hence, the inclusion $\ell_p^{\lambda} \subset \ell_p$ holds and this concludes the proof.

Theorem 4.6. The inclusion $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ holds. Further, the equality holds if and only if $S(x) \in \ell_{\infty}$ for every sequence $x \in \ell_{\infty}^{\lambda}$.

Proof. The first part of the theorem is immediately obtained from Lemma 2.1, and so we turn to the second part. For, suppose firstly that the equality $\ell_{\infty}^{\lambda} = \ell_{\infty}$ holds. Then, the inclusion $\ell_{\infty}^{\lambda} \subset \ell_{\infty}$ holds which leads us with Lemma 4.5 to the consequence that $S(x) \in \ell_{\infty}$ for every $x \in \ell_{\infty}^{\lambda}$.

Conversely, suppose that $S(x) \in \ell_{\infty}$ for every $x \in \ell_{\infty}^{\lambda}$. Then, we deduce by Lemma 4.5 that the inclusion $\ell_{\infty}^{\lambda} \subset \ell_{\infty}$ holds. Combining this with the inclusion $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$, we get the equality $\ell_{\infty}^{\lambda} = \ell_{\infty}$. This completes the proof.

Now, the following theorem gives the necessary and sufficient condition for the matrix Λ to be stronger than boundedness, i.e., for the inclusion $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ to be strict.

Theorem 4.7. The inclusion $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ strictly holds if and only if $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$.

Proof. Suppose that the inclusion $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ is strict. Then, Theorem 4.6 implies the existence of a sequence $x \in \ell_{\infty}^{\lambda}$ such that $S(x) = \{S_n(x)\} \notin \ell_{\infty}$. Since $x \in \ell_{\infty}^{\lambda}$, we have $\Lambda(x) = \{\Lambda_n(x)\} \in \ell_{\infty}$ and hence $\{\Lambda_n(x) - \Lambda_{n-1}(x)\} \in \ell_{\infty}$. Combining this with the fact that $\{S_n(x)\} \notin \ell_{\infty}$, we obtain by (13) that $\{\lambda_{n-1}/(\lambda_n - \lambda_{n-1})\} \notin \ell_{\infty}$ and hence $\{\lambda_n/(\lambda_n - \lambda_{n-1})\} \notin \ell_{\infty}$. This leads us with Lemma 4.2 (a) to the consequence that $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$ which shows the necessity of the condition.

Conversely, suppose that $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$. Then, we have by Lemma 4.2 (a) that $\{\lambda_n/(\lambda_n - \lambda_{n-1})\} \notin \ell_{\infty}$. Let us now consider the sequence $x = (x_k)$ defined by $x_k = (-1)^k \lambda_k/(\lambda_k - \lambda_{k-1})$ for all $k \in \mathbb{N}$. Then, it is obvious that $x \notin \ell_{\infty}$. On the other hand, we have for every $n \in \mathbb{N}$ that

$$|\Lambda_n(x)| = \frac{1}{\lambda_n} \left| \sum_{k=0}^n (-1)^k \lambda_k \right| \le \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) = 1$$

which shows that $\Lambda(x) \in \ell_{\infty}$ and hence $x \in \ell_{\infty}^{\lambda}$. Thus, the sequence x is in ℓ_{∞}^{λ} but not in ℓ_{∞} . Therefore, by combining this with the inclusion $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$, we deduce that this inclusion is strict. This concludes the proof.

Now, as a consequence of Theorem 4.7, the following corollary presents the necessary and sufficient condition for the matrix Λ to be equivalent to boundedness.

Corollary 4.8. The equality $\ell_{\infty}^{\lambda} = \ell_{\infty}$ holds if and only if $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n > 1$.

Proof. The necessity follows immediately from Theorem 4.7. For, if the equality $\ell_{\infty}^{\lambda} = \ell_{\infty}$ holds, then $\liminf_{n \to \infty} \lambda_{n+1}/\lambda_n \neq 1$ and hence $\liminf_{n \to \infty} \lambda_{n+1}/\lambda_n > 1$.

Conversely, suppose that $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n > 1$. Then, Lemma 4.2 (b) gives us the bounded sequence $\{\lambda_n/(\lambda_n - \lambda_{n-1})\}$ and so $\{\lambda_{n-1}/(\lambda_n - \lambda_{n-1})\} \in \ell_{\infty}$.

Now, let $x \in \ell_{\infty}^{\lambda}$. Then $\Lambda(x) = \{\Lambda_n(x)\} \in \ell_{\infty}$ and hence $\{\Lambda_n(x) - \Lambda_{n-1}(x)\} \in \ell_{\infty}$. Thus, we obtain by (13) that $\{S_n(x)\} \in \ell_{\infty}$. This shows that $S(x) \in \ell_{\infty}$ for every $x \in \ell_{\infty}^{\lambda}$, which leads us with Theorem 4.6 to the equality $\ell_{\infty}^{\lambda} = \ell_{\infty}$.

Although the inclusions $c_0 \subset c_0^{\lambda}$, $c \subset c^{\lambda}$ and $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ always hold, the inclusion $\ell_p \subset \ell_p^{\lambda}$ need not be held, where $0 . In fact, we are going to show, in the following lemma, that if <math>1/\lambda \notin \ell_p$, then the inclusion $\ell_p \subset \ell_p^{\lambda}$ fails, where $1/\lambda = (1/\lambda_k)$ and 0 .

Lemma 4.9. The spaces ℓ_p and ℓ_p^{λ} overlap. Further, if $1/\lambda \notin \ell_p$ then neither of them includes the other one, where 0 .

Proof. Obviously, the spaces ℓ_p and ℓ_p^{λ} overlap, since $(\lambda_1 - \lambda_0, -\lambda_0, 0, 0, ...) \in \ell_p \cap \ell_p^{\lambda}$ for 0 .

Now, suppose that $1/\lambda \notin \ell_p$, where $0 , and consider the sequence <math>x = e^{(0)} = (1, 0, 0, \ldots) \in \ell_p$. Then, we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) e_k^{(0)} = \frac{\lambda_0}{\lambda_n}$$

which shows that $\Lambda(x) \notin \ell_p$ and hence $x \notin \ell_p^{\lambda}$. Thus, the sequence x is in ℓ_p but not in ℓ_p^{λ} . Hence, the inclusion $\ell_p \subset \ell_p^{\lambda}$ does not hold when $1/\lambda \notin \ell_p$ (0 .

On the other hand, let $1 \le p < \infty$ and define the sequence $y = (y_k)$ by

$$y_{k} = \begin{cases} \frac{1}{\lambda_{k}}; & (k \text{ is even}); \\ -\frac{1}{\lambda_{k-1}} \left(\frac{\lambda_{k-1} - \lambda_{k-2}}{\lambda_{k} - \lambda_{k-1}} \right); & (k \text{ is odd}) \end{cases}$$

for all $k \in \mathbb{N}$. Since $1/\lambda \notin \ell_p$, we have $y \notin \ell_p$. Besides, we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(y) = \begin{cases} \frac{1}{\lambda_n} \left(\frac{\lambda_n - \lambda_{n-1}}{\lambda_n} \right); & (n \text{ is even}), \\ 0; & (n \text{ is odd}) \end{cases}$$

and hence

$$\sum_{n} |\Lambda_n(y)|^p = \sum_{n} |\Lambda_{2n}(y)|^p$$

$$= \sum_{n} \frac{1}{\lambda_{2n}^p} \left(\frac{\lambda_{2n} - \lambda_{2n-1}}{\lambda_{2n}}\right)^p$$

$$\leq \frac{1}{\lambda_0^p} + \sum_{n=1}^{\infty} \frac{1}{\lambda_{2n-2}^p} \left(\frac{\lambda_{2n} - \lambda_{2n-2}}{\lambda_{2n}}\right)^p$$

$$\leq \frac{1}{\lambda_0^p} + \sum_{n=1}^{\infty} \frac{1}{\lambda_{2n-2}^p} \left(\frac{\lambda_{2n}^p - \lambda_{2n-2}^p}{\lambda_{2n}^p}\right)$$

$$= \frac{1}{\lambda_0^p} + \sum_{n=1}^{\infty} \left(\frac{1}{\lambda_{2n-2}^p} - \frac{1}{\lambda_{2n}^p}\right)$$

$$= \frac{2}{\lambda_0^p} < \infty.$$

This shows that $\Lambda(y) \in \ell_p$ and so $y \in \ell_p^{\lambda}$. Thus, the sequence y is in ℓ_p^{λ} but not in ℓ_p , where $1 \leq p < \infty$.

Similarly, one can construct a sequence belonging to the set $\ell_p^{\lambda} \setminus \ell_p$ for 0 . $Therefore, the inclusion <math>\ell_p^{\lambda} \subset \ell_p$ also fails when $1/\lambda \notin \ell_p$ $(0 . Hence, if <math>1/\lambda \notin \ell_p$ then neither of the spaces ℓ_p and ℓ_p^{λ} includes the other one, where 0 . This completes the proof.

Lemma 4.10. If the inclusion $\ell_p \subset \ell_p^{\lambda}$ holds, then $1/\lambda \in \ell_p$ for 0 .

Proof. Suppose that the inclusion $\ell_p \subset \ell_p^{\lambda}$ holds, where $0 , and consider the sequence <math>x = e^{(0)} = (1, 0, 0, \ldots) \in \ell_p$. Then $x \in \ell_p^{\lambda}$ and hence $\Lambda(x) \in \ell_p$. Thus, we obtain that

$$\lambda_0^p \sum_n \left(\frac{1}{\lambda_n}\right)^p = \sum_n |\Lambda_n(x)|^p < \infty$$

which shows that $1/\lambda \in \ell_p$ and this concludes the proof.

We shall later show that the condition $1/\lambda \in \ell_p$ is not only necessary but also sufficient for the inclusion $\ell_p \subset \ell_p^{\lambda}$ to be held, where $1 \leq p < \infty$. Before that, by taking into account the definition of the sequence $\lambda = (\lambda_k)$ given by (3), we find that

$$0 < \frac{\lambda_k - \lambda_{k-1}}{\lambda_n} < 1; \quad (0 \le k \le n)$$

for all $n, k \in \mathbb{N}$ with n + k > 0. Furthermore, if $1/\lambda \in \ell_1$ then we have the following lemma which is easy to prove.

Lemma 4.11. If $1/\lambda \in \ell_1$, then

$$\sup_{k} \left((\lambda_k - \lambda_{k-1}) \sum_{n=k}^{\infty} \frac{1}{\lambda_n} \right) < \infty.$$

Theorem 4.12. The inclusion $\ell_1 \subset \ell_1^{\lambda}$ holds if and only if $1/\lambda \in \ell_1$.

Proof. The necessity is immediate by Lemma 4.10. Conversely, suppose $1/\lambda \in \ell_1$. Then $M = \sup_k \left[(\lambda_k - \lambda_{k-1}) \sum_{n=k}^{\infty} 1/\lambda_n \right] < \infty$ by Lemma 4.11. Also, let $x = (x_k) \in \ell_1$ be given. Then, we have

$$\begin{aligned} \|x\|_{\ell_1^{\lambda}} &= \sum_n |\Lambda_n(x)| \\ &\leq \sum_{n=0}^\infty \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) |x_k| \\ &= \sum_{k=0}^\infty |x_k| (\lambda_k - \lambda_{k-1}) \sum_{n=k}^\infty \frac{1}{\lambda_n} \\ &\leq M \sum_{k=0}^\infty |x_k| \\ &= M \|x\|_{\ell_1} < \infty. \end{aligned}$$

This shows that $x \in \ell_1^{\lambda}$. Hence, the inclusion $\ell_1 \subset \ell_1^{\lambda}$ holds.

Corollary 4.13. If $1/\lambda \in \ell_1$, then the inclusion $\ell_p \subset \ell_p^{\lambda}$ holds for $1 \leq p < \infty$.

Proof. The inclusion trivially holds for p = 1, which is obtained by Theorem 4.12, above. Thus, let $1 and take any <math>x = (x_k) \in \ell_p$. Then, for every $n \in \mathbb{N}$, we obtain by applying the Hölder's inequality that

$$\begin{split} |\Lambda_n(x)|^p &\leq \left[\sum_{k=0}^n \left(\frac{\lambda_k - \lambda_{k-1}}{\lambda_n}\right) |x_k|\right]^p \\ &\leq \left[\sum_{k=0}^n \left(\frac{\lambda_k - \lambda_{k-1}}{\lambda_n}\right) |x_k|^p\right] \left[\sum_{k=0}^n \frac{\lambda_k - \lambda_{k-1}}{\lambda_n}\right]^{p-1} \\ &= \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) |x_k|^p. \end{split}$$

Therefore, we derive that

$$\sum_{n} |\Lambda_n(x)|^p \le \sum_{n=0}^{\infty} \frac{1}{\lambda_n} \sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) |x_k|^p$$
$$= \sum_{k=0}^{\infty} |x_k|^p (\lambda_k - \lambda_{k-1}) \sum_{n=k}^{\infty} \frac{1}{\lambda_n}$$

and hence

$$||x||_{\ell_p^{\lambda}}^p \le M \sum_{k=0}^{\infty} |x_k|^p = M ||x||_{\ell_p}^p < \infty,$$

where $M = \sup_k \left[(\lambda_k - \lambda_{k-1}) \sum_{n=k}^{\infty} 1/\lambda_n \right] < \infty$ by Lemma 4.11. This shows that $x \in \ell_p^{\lambda}$. Hence, we deduce that the inclusion $\ell_p \subset \ell_p^{\lambda}$ also holds for 1 . This completes the proof.

Corollary 4.14. The inclusion $\ell_p \subset \ell_p^{\lambda}$ holds if and only if $1/\lambda \in \ell_p$, where $1 \leq p < \infty$.

Proof. The necessity is immediate by Lemma 4.10.

Conversely, suppose that $1/\lambda \in \ell_p$, where $1 \leq p < \infty$. Then $1/\lambda^p = (1/\lambda_k^p) \in \ell_1$. Thus, it follows by Lemma 4.11 that

$$\sup_{k} \left((\lambda_k - \lambda_{k-1})^p \sum_{n=k}^{\infty} \frac{1}{\lambda_n^p} \right) \le \sup_{k} \left((\lambda_k^p - \lambda_{k-1}^p) \sum_{n=k}^{\infty} \frac{1}{\lambda_n^p} \right) < \infty.$$

Further, we have for every fixed $k \in \mathbb{N}$ that

$$\Lambda_n(e^{(k)}) = \begin{cases} \frac{\lambda_k - \lambda_{k-1}}{\lambda_n}; & (n \ge k), \\ & & (n \in \mathbb{N}) \\ 0; & & (n < k). \end{cases}$$

Thus, we obtain that

$$\left|e^{(k)}\right\|_{\ell_{p}^{\lambda}}^{p} = (\lambda_{k} - \lambda_{k-1})^{p} \sum_{n=k}^{\infty} \frac{1}{\lambda_{n}^{p}} < \infty; \quad (k \in \mathbb{N})$$

which yields that $e^{(k)} \in \ell_p^{\lambda}$ for every $k \in \mathbb{N}$, i.e., every basis element of the space ℓ_p is in ℓ_p^{λ} . This shows that the space ℓ_p^{λ} contains the Schauder basis of the space ℓ_p such that $\sup_k \|e^{(k)}\|_{\ell_p^{\lambda}} < \infty$. Hence, we deduce that the inclusion $\ell_p \subset \ell_p^{\lambda}$ holds and this concludes the proof.

Now, in the following example, we give an important special case of the space ℓ_p^{λ} , where $1 \leq p < \infty$.

Example 4.15. Consider the special case of the sequence $\lambda = (\lambda_k)$ given by $\lambda_k = k + 1$ for all $k \in \mathbb{N}$. Then $1/\lambda \notin \ell_1$ while $1/\lambda \in \ell_p$ for $1 . Hence, the inclusion <math>\ell_1 \subset \ell_1^{\lambda}$ does not hold by Lemma 4.9.

On the other hand, by applying the well-known inequality (see [10, p.239])

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{|x_k|}{n+1} \right)^p < \left(\frac{p}{p-1} \right)^p \sum_{n=0}^{\infty} |x_n|^p; \quad (1 < p < \infty),$$

we immediately deduce that the inequality

$$\|x\|_{\ell_p^{\lambda}} < \left(\frac{p}{p-1}\right) \|x\|_{\ell_p}$$

holds for every $x \in \ell_p$, where $1 . This shows that the inclusion <math>\ell_p \subset \ell_p^{\lambda}$ holds for 1 . Further, this inclusion is strict. For example, the sequence $y = \{(-1)^k\}$ is not in ℓ_p but in ℓ_p^{λ} , since

$$\sum_{n} |\Lambda_{n}(y)|^{p} = \sum_{n} \left| \frac{1}{n+1} \sum_{k=0}^{n} (-1)^{k} \right|^{p} = \sum_{n} \frac{1}{(2n+1)^{p}} < \infty; \quad (1 < p < \infty).$$

Remark 4.16. In the special case of the sequence $\lambda = (\lambda_k)$ given in Example 4.15, i.e., $\lambda_k = k+1$ for all $k \in \mathbb{N}$, we may note that the spaces ℓ_p^{λ} and ℓ_{∞}^{λ} are respectively reduced to the Cesàro sequence spaces X_p and X_∞ of non-absolute type, which are defined as the spaces of all sequences whose C_1 -transforms are in the spaces ℓ_p and ℓ_{∞} , respectively, where $1 \leq p < \infty$ (see [17, 18]).

Now, let $x = (x_k)$ be a null sequence of positive reals, that is

 $x_k > 0$ for all $k \in \mathbb{N}$ and $x_k \to 0$ as $k \to \infty$.

Then, as is easy to see, for every positive integer m there is a subsequence $(x_{k_r})_{r=0}^{\infty}$ of the sequence x such that

$$x_{k_r} = O\left(\frac{1}{\left(r+1\right)^{m+1}}\right)$$

and hence

$$(r+1)x_{k_r} = O\left(\frac{1}{(r+1)^m}\right).$$

Further, this subsequence can be chosen such that $k_{r+1} - k_r \ge 2$ for all $r \in \mathbb{N}$.

In general, if $x = (x_k)$ is a sequence of positive reals such that $\liminf_{k \to \infty} x_k = 0$, then there is a subsequence $x' = (x_{k'_r})_{r=0}^{\infty}$ of the sequence x such that $\lim_{r\to\infty} x_{k'_r} = 0$. Thus x' is a null sequence of positive reals. Hence, as we have seen above, for every positive integer m there is a subsequence $(x_{k_r})_{r=0}^{\infty}$ of the sequence x', and hence of the sequence x, such that $k_{r+1} - k_r \ge 2$ for all $r \in \mathbb{N}$ and

$$(r+1)x_{k_r} = O\left(\frac{1}{\left(r+1\right)^m}\right),$$

where $k_r = k'_{\theta(r)}$ and $\theta : \mathbb{N} \to \mathbb{N}$ is a suitable increasing function.

Now, let 0 . Then, we can choose a positive integer m such that

mp > 1. In this situation, the sequence $\{(r+1)x_{k_r}\}_{r=0}^{\infty}$ is in the space ℓ_p . Obviously, we observe that the subsequence $(x_{k_r})_{r=0}^{\infty}$ depends on the positive integer m which is, in turn, depending on p. Thus, our subsequence depends on p.

Hence, from the above discussion, we conclude the following result:

Lemma 4.17. Let $x = (x_k)$ be a positive real sequence such that $\liminf_{k\to\infty} x_k = 0$. Then, for every positive number $0 there is a subsequence <math>x^{(p)} = (x_{k_r})_{r=0}^{\infty}$ of x, depending on p, such that $k_{r+1} - k_r \ge 2$ for all $r \in \mathbb{N}$ and $\sum_r |(r+1)x_{k_r}|^p < \infty$.

Now, the following theorem gives the necessary and sufficient conditions for the matrix Λ to be stronger than *p*-absolute convergence, i.e., for the inclusion $\ell_p \subset \ell_p^{\lambda}$ to be strict, where $1 \leq p < \infty$.

Theorem 4.18. The inclusion $\ell_p \subset \ell_p^{\lambda}$ strictly holds if and only if $1/\lambda \in \ell_p$ and $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$, where $1 \leq p < \infty$.

Proof. Suppose that the inclusion $\ell_p \subset \ell_p^{\lambda}$ is strict, where $1 \leq p < \infty$. Then, the necessity of the first condition is immediate by Lemma 4.10. Further, since the inclusion $\ell_p^{\lambda} \subset \ell_p$ cannot be held, Lemma 4.5 implies the existence of a sequence $x \in \ell_p^{\lambda}$ such that $S(x) = \{S_n(x)\} \notin \ell_p$. Since $x \in \ell_p^{\lambda}$, we have $\sum_n |\Lambda_n(x)|^p < \infty$. Thus, it follows by applying the Minkowski's inequality that $\sum_n |\Lambda_n(x) - \Lambda_{n-1}(x)|^p < \infty$. This means that $\{\Lambda_n(x) - \Lambda_{n-1}(x)\} \in \ell_p$ and since $\{S_n(x)\} \notin \ell_p$, it follows by the relation (13) that $\{\lambda_{n-1}/(\lambda_n - \lambda_{n-1})\} \notin \ell_{\infty}$ and hence $\{\lambda_n/(\lambda_n - \lambda_{n-1})\} \notin \ell_{\infty}$. This leads us with Lemma 4.2 (a) to the necessity of the second condition.

Conversely, since $1/\lambda \in \ell_p$, we have by Corollary 4.14 that the inclusion $\ell_p \subset \ell_p^{\lambda}$ holds. Further, since $\liminf_{k\to\infty} \lambda_{k+1}/\lambda_k = 1$, we obtain by Lemma 4.2 (a) that

$$\liminf_{k \to \infty} \left(\frac{\lambda_k - \lambda_{k-1}}{\lambda_k} \right) = 0.$$

Thus, it follows by Lemma 4.17 that there is a subsequence $\lambda^{(p)} = (\lambda_{k_r})_{r=0}^{\infty}$ of the sequence $\lambda = (\lambda_k)$, depending on p, such that $k_{r+1} - k_r \geq 2$ for all $r \in \mathbb{N}$ and

$$\sum_{r} \left| (r+1) \left(\frac{\lambda_{k_r} - \lambda_{k_r-1}}{\lambda_{k_r}} \right) \right|^p < \infty.$$
(15)

Let us now define the sequence $y = (y_k)$ for every $k \in \mathbb{N}$ by

$$y_{k} = \begin{cases} r+1; & (k=k_{r}), \\ -(r+1)\left(\frac{\lambda_{k-1}-\lambda_{k-2}}{\lambda_{k}-\lambda_{k-1}}\right); & (k=k_{r}+1), & (r \in \mathbb{N}) \\ 0; & (\text{otherwise}). \end{cases}$$
(16)

Then, it is clear that $y \notin \ell_p$. On the other hand, we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(y) = \begin{cases} (r+1) \left(\frac{\lambda_n - \lambda_{n-1}}{\lambda_n} \right); & (n = k_r), \\ \\ 0; & (r \in \mathbb{N}) \end{cases}$$

This and (15) imply that $\Lambda(y) \in \ell_p$ and hence $y \in \ell_p^{\lambda}$. Thus, the sequence y is in ℓ_p^{λ} but not in ℓ_p . Therefore, we deduce by combining this with the inclusion $\ell_p \subset \ell_p^{\lambda}$ that this inclusion is strict, where $1 \leq p < \infty$. This completes the proof. \Box

Now, as an immediate consequence of Theorem 4.18, the following corollary presents the necessary and sufficient condition for the matrix Λ to be equivalent to *p*-absolute convergence, where $1 \leq p < \infty$.

Corollary 4.19. The equality $\ell_p^{\lambda} = \ell_p$ holds if and only if $\liminf_{n \to \infty} \lambda_{n+1}/\lambda_n > 1$, where $1 \le p < \infty$.

Proof. The necessity follows from Theorem 4.18. For, if the equality holds, then the inclusion $\ell_p \subset \ell_p^{\lambda}$ holds and hence $1/\lambda \in \ell_p$ by Lemma 4.10. Further, since the inclusion $\ell_p \subset \ell_p^{\lambda}$ cannot be strict, we have by Theorem 4.18 that $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n \neq 1$ and hence $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n > 1$.

Conversely, suppose that $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n > 1$. Then, there exists a constant a > 1 such that $\lambda_{n+1}/\lambda_n \ge a$ and hence $\lambda_n \ge \lambda_0 a^n$ for all $n \in \mathbb{N}$. This shows that $1/\lambda \in \ell_1$ which leads us with Corollary 4.13 to the consequence that the inclusion $\ell_p \subset \ell_p^\lambda$ holds for $1 \le p < \infty$.

On the other hand, we have by Lemma 4.2 (b) that $\{\lambda_n/(\lambda_n - \lambda_{n-1})\} \in \ell_{\infty}$ and hence $\{\lambda_{n-1}/(\lambda_n - \lambda_{n-1})\} \in \ell_{\infty}$.

Now, let $x \in \ell_p^{\lambda}$. Then $\Lambda(x) = \{\Lambda_n(x)\} \in \ell_p$ and hence $\{\Lambda_n(x) - \Lambda_{n-1}(x)\} \in \ell_p$. Thus, we obtain by the relation (13) that $\{S_n(x)\} \in \ell_p$, i.e., $S(x) \in \ell_p$ for every $x \in \ell_p^{\lambda}$. Therefore, we deduce by Lemma 4.5 that the inclusion $\ell_p^{\lambda} \subset \ell_p$ also holds. Hence, by combining the inclusions $\ell_p \subset \ell_p^{\lambda}$ and $\ell_p^{\lambda} \subset \ell_p$, we get the equality $\ell_p^{\lambda} = \ell_p$, where $1 \leq p < \infty$. This concludes the proof.

Remark 4.20. It can easily be shown that Corollary 4.19 still holds for 0 .

Finally, we end this section with the following corollary:

Corollary 4.21. Although the spaces ℓ_p^{λ} , c_0 , c and ℓ_{∞} overlap, the space ℓ_p^{λ} does not include any of the other spaces. Furthermore, if $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$, then none of the spaces c_0 , c and ℓ_{∞} includes the space ℓ_p^{λ} , where 0 .

Proof. Let $0 . Then, it is obvious that the spaces <math>\ell_p^{\lambda}$, c_0 , c and ℓ_{∞} overlap, since the sequence $(\lambda_1 - \lambda_0, -\lambda_0, 0, 0, ...)$ belongs to all these spaces.

Further, the space ℓ_p^{λ} does not include the space c_0 , since the sequence x defined by (14), in the proof of Theorem 4.4, is in c_0 but not in ℓ_p^{λ} . Hence, the space ℓ_p^{λ} does not include any of the spaces c_0 , c and ℓ_{∞} .

Furthermore, if $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$ then the space ℓ_{∞} does not include the space ℓ_p^{λ} . To see this, let 0 . Then, Lemma 4.17 implies that the sequence <math>y defined by (16), in the proof of Theorem 4.18, is in ℓ_p^{λ} but not in ℓ_{∞} . Therefore, none of the spaces c_0 , c and ℓ_{∞} includes the space ℓ_p^{λ} when $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$, where 0 . This completes the proof.

5 The basis for the space ℓ_n^{λ}

In this final section, we give a sequence of the points of the space ℓ_p^{λ} which forms a basis for this space, where $1 \leq p < \infty$.

If a normed space X contains a sequence (b_n) with the property that for every $x \in X$ there is a unique sequence (α_n) of scalars such that

$$\lim_{n \to \infty} \|x - (\alpha_0 b_0 + \alpha_1 b_1 + \dots + \alpha_n b_n)\| = 0,$$

then (b_n) is called a Schauder basis (or briefly basis) for X. The series $\sum_k \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) , and written as $x = \sum_k \alpha_k b_k$.

Now, because of the transformation T defined from ℓ_p^{λ} to ℓ_p , in the proof of Theorem 3.3, is an isomorphism, the inverse image of the basis $(e^{(k)})_{k=0}^{\infty}$ of the space ℓ_p is the basis for the new space ℓ_p^{λ} , where $1 \leq p < \infty$. Therefore, we have the following:

Theorem 5.1. Let $1 \leq p < \infty$ and define the sequence $e_{\lambda}^{(k)} \in \ell_p^{\lambda}$ for every fixed $k \in \mathbb{N}$ by

$$\left(e_{\lambda}^{(k)}\right)_{n} = \begin{cases} (-1)^{n-k} \frac{\lambda_{k}}{\lambda_{n} - \lambda_{n-1}}; & (k \le n \le k+1), \\ & & (n \in \mathbb{N}) \end{cases}$$

$$(17)$$

$$(17)$$

Then, the sequence $(e_{\lambda}^{(k)})_{k=0}^{\infty}$ is a basis for the space ℓ_p^{λ} and every $x \in \ell_p^{\lambda}$ has a unique representation of the form

$$x = \sum_{k} \Lambda_k(x) \, e_{\lambda}^{(k)}. \tag{18}$$

Proof. Let $1 \leq p < \infty$. Then, it is obvious by (17) that $\Lambda(e_{\lambda}^{(k)}) = e^{(k)} \in \ell_p \ (k \in \mathbb{N})$ and hence $e_{\lambda}^{(k)} \in \ell_p^{\lambda}$ for all $k \in \mathbb{N}$. Further, let $x \in \ell_p^{\lambda}$ be given. For every non-negative integer m, we put

$$x^{(m)} = \sum_{k=0}^{m} \Lambda_k(x) \, e_{\lambda}^{(k)}.$$

Then, we have that

$$\Lambda(x^{(m)}) = \sum_{k=0}^{m} \Lambda_k(x) \Lambda(e_\lambda^{(k)}) = \sum_{k=0}^{m} \Lambda_k(x) e^{(k)}$$

and hence

$$\Lambda_n(x - x^{(m)}) = \begin{cases} 0; & (0 \le n \le m), \\ & & (n, m \in \mathbb{N}) \\ \Lambda_n(x); & (n > m). \end{cases}$$

Now, for any given $\epsilon > 0$ there is a non-negative integer m_0 such that

$$\sum_{n=m_0+1}^{\infty} |\Lambda_n(x)|^p \le \left(\frac{\epsilon}{2}\right)^p.$$

Therefore, we have for every $m \ge m_0$ that

$$\|x - x^{(m)}\|_{\ell_p^{\lambda}} = \left(\sum_{n=m+1}^{\infty} |\Lambda_n(x)|^p\right)^{1/p}$$
$$\leq \left(\sum_{n=m_0+1}^{\infty} |\Lambda_n(x)|^p\right)^{1/p}$$
$$\leq \frac{\epsilon}{2} < \epsilon$$

which shows that $\lim_{m\to\infty} ||x-x^{(m)}||_{\ell_n^{\lambda}} = 0$ and hence x is represented as in (18).

Finally, let us show the uniqueness of the representation (18) of $x \in \ell_p^{\lambda}$. For this, suppose that $x = \sum_k \alpha_k(x) e_{\lambda}^{(k)}$. Since the linear transformation T defined from ℓ_p^{λ} to ℓ_p , in the proof of Theorem 3.3, is continuous, we have

$$\Lambda_n(x) = \sum_k \alpha_k(x) \Lambda_n(e_\lambda^{(k)}) = \sum_k \alpha_k(x) \,\delta_{nk} = \alpha_n(x); \quad (n \in \mathbb{N}).$$

Hence, the representation (18) of $x \in \ell_p^{\lambda}$ is unique. This completes the proof. \Box

Now, it is known by Theorem 3.1 (b) that ℓ_p^{λ} $(1 \le p < \infty)$ is a Banach space with its natural norm. This leads us together with Theorem 5.1 to the following corollary:

Corollary 5.2. The sequence space ℓ_p^{λ} of non-absolute type is separable for $1 \leq p < \infty$.

Finally, we conclude our work by expressing from now on that the aim of the next paper is to determine the α -, β - and γ -duals of the space ℓ_p^{λ} and is to characterize some related matrix classes, where $1 \leq p \leq \infty$.

References

- B. Altay and F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian Math. J. 57(1) (2005) 1–17.
- [2] B. Altay, F. Başar and M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_p and ℓ_∞ I, Inform. Sci. **176**(10) (2006) 1450–1462.
- [3] C. Aydın and F. Başar, On the new sequence spaces which include the spaces c₀ and c, Hokkaido Math. J. **33**(2) (2004) 383–398.
- [4] C. Aydın and F. Başar, Some new paranormed sequence spaces, Inform. Sci. 160(1-4) (2004) 27-40.
- [5] C. Aydın and F. Başar, Some new difference sequence spaces, Appl. Math. Comput. 157(3) (2004) 677–693.
- [6] C. Aydın and F. Başar, Some new sequence spaces which include the spaces ℓ_p and ℓ_∞, Demonstratio Math. 38(3) (2005) 641–656.

- [7] F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55(1) (2003) 136–147.
- [8] M. Başarır, On some new sequence spaces and related matrix transformations, Indian J. Pure Appl. Math. 26(10) (1995) 1003–1010.
- [9] B. Choudhary and S. Nanda, Functional Analysis with Applications, John Wiley & Sons Inc., New Delhi, 1989.
- [10] G. H. Hardy, J. E. Littlewood and G. Polya, *Inequalities*, Cambridge University Press, 1952.
- [11] I. J. Maddox, *Elements of Functional Analysis*, Cambridge University Press (2nd edition), 1988.
- [12] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49(3–4) (1997) 187–196.
- [13] E. Malkowsky and E. Savaş, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comput. 147(2) (2004) 333–345.
- [14] M. Mursaleen, F. Başar and B. Altay, On the Euler sequence spaces which include the spaces ℓ_p and ℓ_{∞} II, Nonlinear Analysis: TMA **65**(3) (2006) 707–717.
- [15] M. Mursaleen and A. K. Noman, On the spaces of λ-convergent and bounded sequences, Thai J. Math. 8(2) (2010) 311–329.
- [16] M. Mursaleen and A. K. Noman, On some new difference sequence spaces of nonabsolute type, Math. Comp. Mod. 52(3-4) (2010) 603-617.
- [17] P.-N. Ng, On modular space of a nonabsolute type, Nanta Math. 2 (1978) 84–93.
- [18] P.-N. Ng and P.-Y. Lee, Cesàro sequence spaces of non-absolute type, Comment. Math. Prace Mat. 20(2) (1978) 429–433.
- [19] C.-S. Wang, On Nörlund sequence spaces, Tamkang J. Math. 9 (1978) 269-274.
- [20] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, Elsevier Science Publishers, Amsterdam; New York; Oxford, 1984.

M. Mursaleen and Abdullah K. Noman

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India $\textit{E-mail:}\ \texttt{mursaleenm@gmail.com}$ akanoman@gmail.com