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ON SOME NEW SEQUENCE SPACES
OF NON-ABSOLUTE TYPE

RELATED TO THE SPACES `p AND `∞ I

M. Mursaleen and Abdullah K. Noman

Abstract

In the present paper, we introduce the sequence space `λ
p of non-absolute

type and prove that the spaces `λ
p and `p are linearly isomorphic for 0 < p ≤ ∞.

Further, we show that `λ
p is a p-normed space and a BK-space in the cases

of 0 < p < 1 and 1 ≤ p ≤ ∞, respectively. Furthermore, we derive some
inclusion relations concerning the space `λ

p . Finally, we construct the basis for
the space `λ

p , where 1 ≤ p < ∞.

1 Introduction

By w, we denote the space of all real or complex valued sequences. Any vector
subspace of w is called a sequence space.

A sequence space X with a linear topology is called a K-space provided each
of the maps pn : X → C defined by pn(x) = xn is continuous for all n ∈ N, where
C denotes the complex field and N = {0, 1, 2, . . .}. A K-space X is called an FK-
space provided X is a complete linear metric space. An FK-space whose topology
is normable is called a BK-space [9, pp.272-273].

We shall write `∞, c and c0 for the sequence spaces of all bounded, convergent
and null sequences, respectively, which are BK-spaces with the same sup-norm
given by

‖x‖`∞ = sup
k
|xk|,

where, here and in the sequel, the supremum supk is taken over all k ∈ N. Also
by `p (0 < p < ∞), we denote the sequence space of all sequences associated with
p-absolutely convergent series. It is known that `p is a complete p-normed space
and a BK-space in the cases of 0 < p < 1 and 1 ≤ p < ∞ with respect to the usual
p-norm and `p-norm defined by

‖x‖`p
=

∑

k

|xk|p; (0 < p < 1)
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and

‖x‖`p
=

( ∑

k

|xk|p
)1/p

; (1 ≤ p < ∞),

respectively (see [11, pp.217-218]). For simplicity in notation, here and in what
follows, the summation without limits runs from 0 to ∞.

Let X and Y be sequence spaces and A = (ank) be an infinite matrix of real
or complex numbers ank, where n, k ∈ N. Then, we say that A defines a matrix
mapping from X into Y if for every sequence x = (xk) ∈ X the sequence Ax =
{An(x)}, the A-transform of x, exists and is in Y , where

An(x) =
∑

k

ankxk; (n ∈ N). (1)

By (X : Y ), we denote the class of all infinite matrices that map X into Y .
Thus A ∈ (X : Y ) if and only if the series on the right side of (1) converges for each
n ∈ N and every x ∈ X, and Ax ∈ Y for all x ∈ X.

For a sequence space X, the matrix domain of an infinite matrix A in X is
defined by

XA =
{
x ∈ w : Ax ∈ X

}
(2)

which is a sequence space.
We shall write e(k) for the sequence whose only non-zero term is a 1 in the kth

place for each k ∈ N.
The approach of constructing a new sequence space by means of the matrix

domain of a particular limitation method has recently been employed by several
authors, e.g., Wang [19], Ng and Lee [18], Malkowsky [12], Başar and Altay [7],
Malkowsky and Savaş [13], Aydın and Başar [3, 4, 5, 6], Altay and Başar [1], Altay,
Başar and Mursaleen [2, 14] and Mursaleen and Noman [15, 16], respectively. They
introduced the sequence spaces (`∞)Nq and cNq in [19], (`∞)C1 = X∞ and (`p)C1 =
Xp in [18], (`∞)Rt = rt

∞, cRt = rt
c and (c0)Rt = rt

0 in [12], (`p)∆ = bvp in [7],
µG = Z(u, v; µ) in [13], (c0)Ar = ar

0 and cAr = ar
c in [3], [c0(u, p)]Ar = ar

0(u, p)
and [c(u, p)]Ar = ar

c(u, p) in [4], (ar
0)∆ = ar

0(∆) and (ar
c)∆ = ar

c(∆) in [5], (`p)Ar =
ar

p and (`∞)Ar = ar
∞ in [6], (c0)Er = er

0 and cEr = er
c in [1], (`p)Er = er

p and
(`∞)Er = er

∞ in [2, 14], (c0)Λ = cλ
0 and cΛ = cλ in [15] and (cλ

0 )∆ = cλ
0 (∆) and

(cλ)∆ = cλ(∆) in [16], where Nq, C1, Rt and Er denote the Nörlund, Cesàro, Riesz
and Euler means, respectively, ∆ denotes the band matrix defining the difference
operator, G and Ar are defined in [13] and [3], respectively, Λ is defined in Section 2,
below, µ ∈ {c0, c, `p} and 1 ≤ p < ∞. Also c0(u, p) and c(u, p) denote the sequence
spaces generated from the Maddox’s spaces c0(p) and c(p) by Başarır [8]. The main
purpose of the present paper, following [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 18] and
[19], is to introduce the sequence spaces `λ

p and `λ
∞ of non-absolute type and is to

derive some results related to them. Further, we establish some inclusion relations
concerning the spaces `λ

p and `λ
∞, where 0 < p < ∞. Moreover, we construct the

basis for the space `λ
p , where 1 ≤ p < ∞.



On some new sequence spaces of non-absolute type 35

2 λ-boundedness and p-absolute convergence of type λ

Throughout this paper, let λ = (λk)∞k=0 be a strictly increasing sequence of positive
reals tending to ∞, that is

0 < λ0 < λ1 < · · · and λk →∞ as k →∞. (3)

We say that a sequence x = (xk) ∈ w is λ-bounded if supn |Λn(x)| < ∞, where

Λn(x) =
1
λn

n∑

k=0

(λk − λk−1)xk; (n ∈ N). (4)

Also, we say that the associated series
∑

k xk is p-absolutely convergent of type
λ if

∑
n |Λn(x)|p < ∞, where 0 < p < ∞.

Here and in the sequel, we shall use the convention that any term with a negative
subscript is equal to zero, e.g., λ−1 = 0 and x−1 = 0.

Now, let x = (xk) be a bounded sequence in the ordinary sense of boundedness,
i.e., x ∈ `∞. Then, there is a constant M > 0 such that |xk| ≤ M for all k ∈ N.
Thus, we have for every n ∈ N that

|Λn(x)| ≤ 1
λn

n∑

k=0

(λk − λk−1)|xk|

≤ M

λn

n∑

k=0

(λk − λk−1) = M

which shows that x is λ-bounded. Therefore, we deduce that the ordinary bound-
edness implies the λ-boundedness. This leads us to the following basic result:

Lemma 2.1. Every bounded sequence is λ-bounded.

We shall later show that the converse implication need not be true. Further, we
shall show that for every 0 < p < ∞ there is a sequence λ = (λk) satisfying (3)
such that the convergence of the series

∑
n |xk|p does not imply the convergence of

the series
∑

n |Λn(x)|p, and conversely. Before that, we define the infinite matrix
Λ = (λnk)∞n,k=0 by

λnk =





λk − λk−1

λn
; (0 ≤ k ≤ n),

0 ; (k > n)
(5)

for all n, k ∈ N. Then, for any sequence x = (xk) ∈ w, the Λ-transform of x is the
sequence Λ(x) = {Λn(x)}, where Λn(x) is given by (4) for all n ∈ N. Therefore, the
sequence x is λ-bounded if and only if Λ(x) ∈ `∞. Also, the notion of p-absolute
convergence of type λ of the sequence x is equivalent to say that Λ(x) ∈ `p, where
0 < p < ∞. Further, it is obvious by (5) that the matrix Λ = (λnk) is a triangle,
i.e., λnn 6= 0 and λnk = 0 for all k > n (n ∈ N).
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Recently, the sequence spaces cλ
0 and cλ have been defined in [15] as the matrix

domains of the triangle Λ in the spaces c0 and c, respectively, that is

cλ
0 =

{
x = (xk) ∈ w : lim

n→∞

(
1
λn

n∑

k=0

(λk − λk−1)xk

)
= 0

}

and

cλ =

{
x = (xk) ∈ w : lim

n→∞

(
1
λn

n∑

k=0

(λk − λk−1)xk

)
exists

}
.

Also, it has been shown that the inclusions c0 ⊂ cλ
0 and c ⊂ cλ hold and the

inclusion cλ
0 ⊂ cλ strictly holds.

Finally, we define the sequence y(λ) = {yk(λ)}, which will be frequently used,
as the Λ-transform of a sequence x = (xk), i.e., y(λ) = Λ(x) and so we have

yk(λ) =
k∑

j=0

(λj − λj−1

λk

)
xj ; (k ∈ N). (6)

3 The sequence spaces `λ
p and `λ

∞ of non-absolute type

In the present section, as a natural continuation of Mursaleen and Noman [15],
we introduce the sequence spaces `λ

p and `λ
∞, as the sets of all sequences whose

Λ-transforms are in the spaces `p and `∞, respectively, where 0 < p < ∞, that is

`λ
p =

{
x = (xk) ∈ w :

∞∑
n=0

∣∣∣∣∣
1
λn

n∑

k=0

(λk − λk−1)xk

∣∣∣∣∣

p

< ∞
}

; (0 < p < ∞)

and

`λ
∞ =

{
x = (xk) ∈ w : sup

n

∣∣∣∣∣
1
λn

n∑

k=0

(λk − λk−1)xk

∣∣∣∣∣ < ∞
}

.

With the notation of (2), we can redefine the spaces `λ
p and `λ

∞ as follows:

`λ
p = (`p)Λ (0 < p < ∞) and `λ

∞ = (`∞)Λ. (7)

Then, it is obvious by (7) that `λ
∞ and `λ

p (0 < p < ∞) are sequence spaces
consisting of all sequences which are λ-bounded and p-absolutely convergent of
type λ, respectively. Further, we have the following result which is essential in the
text.

Theorem 3.1. We have the following:

(a) If 0 < p < 1, then `λ
p is a complete p-normed space with the p-norm ‖x‖`λ

p
=

‖Λ(x)‖`p
, that is

‖x‖`λ
p

=
∑

n

|Λn(x)|p; (0 < p < 1). (8)
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(b) If 1 ≤ p ≤ ∞, then `λ
p is a BK-space with the norm ‖x‖`λ

p
= ‖Λ(x)‖`p

, that is

‖x‖`λ
p

=
(∑

n

|Λn(x)|p
)1/p

; (1 ≤ p < ∞) (9)

and
‖x‖`λ∞

= sup
n
|Λn(x)|. (10)

Proof. Since the matrix Λ is a triangle, this result is immediate by (7) and Theorem
4.3.12 of Wilansky [20, p.63]. ¤

Remark 3.2. One can easily check that the absolute property does not hold on
the space `λ

p , that is ‖x‖`λ
p
6= ‖|x|‖`λ

p
for at least one sequence in the space `λ

p , and
this tells us that `λ

p is a sequence space of non-absolute type, where |x| = (|xk|) and
0 < p ≤ ∞.

Theorem 3.3. The sequence space `λ
p of non-absolute type is isometrically isomor-

phic to the space `p, that is `λ
p
∼= `p for 0 < p ≤ ∞.

Proof. To prove this, we should show the existence of an isometric isomorphism
between the spaces `λ

p and `p, where 0 < p ≤ ∞. For, let 0 < p ≤ ∞ and
consider the transformation T defined, with the notation of (6), from `λ

p to `p by
x 7−→ y(λ) = Tx. Then, we have Tx = y(λ) = Λ(x) ∈ `p for every x ∈ `λ

p . Also,
the linearity of T is trivial. Further, it is easy to see that x = 0 whenever Tx = 0
and hence T is injective.

Furthermore, let y = (yk) ∈ `p be given and define the sequence x = {xk(λ)} by

xk(λ) =
k∑

j=k−1

(−1)k−j λj

λk − λk−1
yj ; (k ∈ N). (11)

Then, by using (4) and (11), we have for every n ∈ N that

Λn(x) =
1
λn

n∑

k=0

(λk − λk−1)xk(λ)

=
1
λn

n∑

k=0

k∑

j=k−1

(−1)k−jλjyj

=
1
λn

n∑

k=0

(λkyk − λk−1yk−1)

= yn.

This shows that Λ(x) = y and since y ∈ `p, we obtain that Λ(x) ∈ `p. Thus, we
deduce that x ∈ `λ

p and Tx = y. Hence T is surjective.
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Moreover, for any x ∈ `λ
p , we have by (8), (9) and (10) of Theorem 3.1 that

‖Tx‖`p = ‖y(λ)‖`p = ‖Λ(x)‖`p = ‖x‖`λ
p

which shows that T is p-norm and norm preserving in the cases of 0 < p < 1 and
1 ≤ p ≤ ∞, respectively. Hence T is isometry. Consequently, the spaces `λ

p and `p

are isometrically isomorphic for 0 < p ≤ ∞. This concludes the proof. ¤

Now, one may expect the similar result for the space `λ
p as was observed for the

space `p, and ask the natural question: Is not the space `λ
p a Hilbert space with

p 6= 2 ? The answer is positive and is given by the following theorem:

Theorem 3.4. Except the case p = 2, the space `λ
p is not an inner product space,

hence not a Hilbert space for 1 ≤ p < ∞.

Proof. We have to prove that the space `λ
2 is the only Hilbert space among the `λ

p

spaces for 1 ≤ p < ∞. Since the space `λ
2 is a BK-space with the norm ‖x‖`λ

2
=

‖Λ(x)‖`2
by Theorem 3.1 and its norm can be obtained from an inner product, i.e.,

the equality
‖x‖`λ

2
= 〈x, x〉1/2 = 〈Λ(x), Λ(x)〉1/2

2

holds for every x ∈ `λ
2 , the space `λ

2 is a Hilbert space, where 〈·, ·〉2 denotes the
inner product on `2.

Let us now consider the sequences

u = {uk(λ)} =
(
1, 1,

−λ1

λ2 − λ1
, 0, 0, . . .

)

and

v = {vk(λ)} =
(
1,−λ1 + λ0

λ1 − λ0
,

λ1

λ2 − λ1
, 0, 0, . . .

)
.

Then, we have

Λ(u) = (1, 1, 0, 0, . . .) and Λ(v) = (1,−1, 0, 0, . . .).

Thus, it can easily be seen that

‖u + v‖2`λ
p

+ ‖u− v‖2`λ
p

= 8 6= 4(22/p) = 2
(
‖u‖2`λ

p
+ ‖v‖2`λ

p

)
; (p 6= 2),

that is, the norm of the space `λ
p with p 6= 2 does not satisfy the parallelogram

equality which means that this norm cannot be obtained from an inner product.
Hence, the space `λ

p with p 6= 2 is a Banach space which is not a Hilbert space,
where 1 ≤ p < ∞. This completes the proof. ¤

Remark 3.5. It is obvious that `λ
∞ is also a Banach space which is not a Hilbert

space.
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4 Some inclusion relations

In the present section, we establish some inclusion relations concerning the spaces
`λ
p and `λ

∞, where 0 < p < ∞. We essentially prove that the inclusion `∞ ⊂ `λ
∞

holds and characterize the case in which the inclusion `p ⊂ `λ
p holds for 1 ≤ p < ∞.

We may begin with quoting the following two lemmas (see [15]) which are needed
in the proofs of our main results.

Lemma 4.1. For any sequence x = (xk) ∈ w, the equalities

Sn(x) = xn − Λn(x); (n ∈ N) (12)

and
Sn(x) =

λn−1

λn − λn−1

[
Λn(x)− Λn−1(x)

]
; (n ∈ N) (13)

hold, where S(x) = {Sn(x)} is the sequence defined by

S0(x) = 0 and Sn(x) =
1
λn

n∑

k=1

λk−1(xk − xk−1); (n ≥ 1).

Lemma 4.2. For any sequence λ = (λk)∞k=0 satisfying (3), we have

(a)
( λk

λk − λk−1

)∞
k=0

/∈ `∞ if and only if lim inf
k→∞

λk+1

λk
= 1.

(b)
( λk

λk − λk−1

)∞
k=0

∈ `∞ if and only if lim inf
k→∞

λk+1

λk
> 1.

It is obvious that Lemma 4.2 still holds if the sequence {λk/(λk − λk−1)} is
replaced by {λk/(λk+1 − λk)}.

Now, we prove the following:

Theorem 4.3. If 0 < p < q < ∞, then the inclusion `λ
p ⊂ `λ

q strictly holds.

Proof. Let 0 < p < q < ∞. Then, it follows by the inclusion `p ⊂ `q that the
inclusion `λ

p ⊂ `λ
q holds. Further, since the inclusion `p ⊂ `q is strict, there is a

sequence x = (xk) in `q but not in `p, i.e., x ∈ `q \ `p. Let us now define the
sequence y = (yk) in terms of the sequence x as follows:

yk =
λkxk − λk−1xk−1

λk − λk−1
; (k ∈ N).

Then, we have for every n ∈ N that

Λn(y) =
1
λn

n∑

k=0

(λkxk − λk−1xk−1) = xn

which shows that Λ(y) = x and hence Λ(y) ∈ `q \ `p. Thus, the sequence y is in `λ
q

but not in `λ
p . Hence, the inclusion `λ

p ⊂ `λ
q is strict. This concludes the proof. ¤
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Theorem 4.4. The inclusions `λ
p ⊂ cλ

0 ⊂ cλ ⊂ `λ
∞ strictly hold, where 0 < p < ∞.

Proof. Since the inclusion cλ
0 ⊂ cλ strictly holds [15, Theorem 4.1], it is enough to

show that the inclusions `λ
p ⊂ cλ

0 and cλ ⊂ `λ
∞ are strict, where 0 < p < ∞.

Firstly, it is trivial that the inclusion `λ
p ⊂ cλ

0 holds for 0 < p < ∞, since x ∈ `λ
p

implies Λ(x) ∈ `p and hence Λ(x) ∈ c0 which means that x ∈ cλ
0 . Further, to show

that this inclusion is strict, let 0 < p < ∞ and consider the sequence x = (xk)
defined by

xk =
1

(k + 1)1/p
; (k ∈ N). (14)

Then x ∈ c0 and hence x ∈ cλ
0 , since the inclusion c0 ⊂ cλ

0 holds. On the other
hand, we have for every n ∈ N that

|Λn(x)| = 1
λn

n∑

k=0

λk − λk−1

(k + 1)1/p

≥ 1

λn(n + 1)1/p

n∑

k=0

(λk − λk − 1)

=
1

(n + 1)1/p

which shows that Λ(x) /∈ `p and hence x /∈ `λ
p . Thus, the sequence x is in cλ

0 but
not in `λ

p . Therefore, the inclusion `λ
p ⊂ cλ

0 is strict for 0 < p < ∞.
Similarly, it is also clear that the inclusion cλ ⊂ `λ

∞ holds. To show that this
inclusion is strict, we define the sequence y = (yk) by

yk = (−1)k

(
λk + λk−1

λk − λk−1

)
; (k ∈ N).

Then, we have for every n ∈ N that

Λn(y) =
1
λn

n∑

k=0

(−1)k(λk + λk−1) = (−1)n

which shows that Λ(y) ∈ `∞ \ c. Thus, the sequence y is in `λ
∞ but not in cλ and

hence cλ ⊂ `λ
∞ is a strict inclusion. This completes the proof. ¤

Lemma 4.5. The inclusion `λ
p ⊂ `p holds if and only if S(x) ∈ `p for every sequence

x ∈ `λ
p , where 0 < p ≤ ∞.

Proof. Suppose that the inclusion `λ
p ⊂ `p holds, where 0 < p ≤ ∞, and take any

x = (xk) ∈ `λ
p . Then x ∈ `p by the hypothesis. Thus, we obtain from (12) that

‖S(x)‖`p
≤ ‖x‖`p

+ ‖Λ(x)‖`p
= ‖x‖`p

+ ‖x‖`λ
p

< ∞

which yields that S(x) ∈ `p.
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Conversely, let x ∈ `λ
p be given, where 0 < p ≤ ∞. Then, we have by the

hypothesis that S(x) ∈ `p. Again, it follows by (12) that

‖x‖`p
≤ ‖S(x)‖`p

+ ‖Λ(x)‖`p
= ‖S(x)‖`p

+ ‖x‖`λ
p

< ∞

which shows that x ∈ `p. Hence, the inclusion `λ
p ⊂ `p holds and this concludes the

proof. ¤

Theorem 4.6. The inclusion `∞ ⊂ `λ
∞ holds. Further, the equality holds if and

only if S(x) ∈ `∞ for every sequence x ∈ `λ
∞.

Proof. The first part of the theorem is immediately obtained from Lemma 2.1, and
so we turn to the second part. For, suppose firstly that the equality `λ

∞ = `∞
holds. Then, the inclusion `λ

∞ ⊂ `∞ holds which leads us with Lemma 4.5 to the
consequence that S(x) ∈ `∞ for every x ∈ `λ

∞.
Conversely, suppose that S(x) ∈ `∞ for every x ∈ `λ

∞. Then, we deduce by
Lemma 4.5 that the inclusion `λ

∞ ⊂ `∞ holds. Combining this with the inclusion
`∞ ⊂ `λ

∞, we get the equality `λ
∞ = `∞. This completes the proof. ¤

Now, the following theorem gives the necessary and sufficient condition for the
matrix Λ to be stronger than boundedness, i.e., for the inclusion `∞ ⊂ `λ

∞ to be
strict.

Theorem 4.7. The inclusion `∞ ⊂ `λ
∞ strictly holds if and only if lim infn→∞

λn+1/λn = 1.

Proof. Suppose that the inclusion `∞ ⊂ `λ
∞ is strict. Then, Theorem 4.6 implies

the existence of a sequence x ∈ `λ
∞ such that S(x) = {Sn(x)} 6∈ `∞. Since x ∈ `λ

∞,
we have Λ(x) = {Λn(x)} ∈ `∞ and hence {Λn(x)− Λn−1(x)} ∈ `∞. Combining
this with the fact that {Sn(x)} /∈ `∞, we obtain by (13) that {λn−1/(λn−λn−1)} 6∈
`∞ and hence {λn/(λn − λn−1)} 6∈ `∞. This leads us with Lemma 4.2 (a) to
the consequence that lim infn→∞ λn+1/λn = 1 which shows the necessity of the
condition.

Conversely, suppose that lim infn→∞ λn+1/λn = 1. Then, we have by Lemma
4.2 (a) that {λn/(λn − λn−1)} 6∈ `∞. Let us now consider the sequence x = (xk)
defined by xk = (−1)kλk/(λk−λk−1) for all k ∈ N. Then, it is obvious that x /∈ `∞.
On the other hand, we have for every n ∈ N that

|Λn(x)| = 1
λn

∣∣∣∣∣
n∑

k=0

(−1)kλk

∣∣∣∣∣ ≤
1
λn

n∑

k=0

(λk − λk−1) = 1

which shows that Λ(x) ∈ `∞ and hence x ∈ `λ
∞. Thus, the sequence x is in `λ

∞ but
not in `∞. Therefore, by combining this with the inclusion `∞ ⊂ `λ

∞, we deduce
that this inclusion is strict. This concludes the proof. ¤

Now, as a consequence of Theorem 4.7, the following corollary presents the
necessary and sufficient condition for the matrix Λ to be equivalent to boundedness.



42 M. Mursaleen and A. K. Noman

Corollary 4.8. The equality `λ
∞ = `∞ holds if and only if lim infn→∞ λn+1/λn > 1.

Proof. The necessity follows immediately from Theorem 4.7. For, if the equality
`λ
∞ = `∞ holds, then lim infn→∞ λn+1/λn 6= 1 and hence lim infn→∞ λn+1/λn > 1.

Conversely, suppose that lim infn→∞ λn+1/λn > 1. Then, Lemma 4.2 (b) gives
us the bounded sequence {λn/(λn − λn−1)} and so {λn−1/(λn − λn−1)} ∈ `∞.

Now, let x ∈ `λ
∞. Then Λ(x) = {Λn(x)} ∈ `∞ and hence {Λn(x)− Λn−1(x)} ∈

`∞. Thus, we obtain by (13) that {Sn(x)} ∈ `∞. This shows that S(x) ∈ `∞ for
every x ∈ `λ

∞, which leads us with Theorem 4.6 to the equality `λ
∞ = `∞. ¤

Although the inclusions c0 ⊂ cλ
0 , c ⊂ cλ and `∞ ⊂ `λ

∞ always hold, the inclusion
`p ⊂ `λ

p need not be held, where 0 < p < ∞. In fact, we are going to show,
in the following lemma, that if 1/λ /∈ `p, then the inclusion `p ⊂ `λ

p fails, where
1/λ = (1/λk) and 0 < p < ∞.

Lemma 4.9. The spaces `p and `λ
p overlap. Further, if 1/λ /∈ `p then neither of

them includes the other one, where 0 < p < ∞.

Proof. Obviously, the spaces `p and `λ
p overlap, since (λ1−λ0,−λ0, 0, 0, . . .) ∈ `p∩`λ

p

for 0 < p < ∞.

Now, suppose that 1/λ /∈ `p, where 0 < p < ∞, and consider the sequence
x = e(0) = (1, 0, 0, . . .) ∈ `p. Then, we have for every n ∈ N that

Λn(x) =
1
λn

n∑

k=0

(λk − λk−1)e
(0)
k =

λ0

λn

which shows that Λ(x) /∈ `p and hence x /∈ `λ
p . Thus, the sequence x is in `p but

not in `λ
p . Hence, the inclusion `p ⊂ `λ

p does not hold when 1/λ /∈ `p (0 < p < ∞).

On the other hand, let 1 ≤ p < ∞ and define the sequence y = (yk) by

yk =





1
λk

; (k is even),

− 1
λk−1

(λk−1 − λk−2

λk − λk−1

)
; (k is odd)

for all k ∈ N. Since 1/λ /∈ `p, we have y /∈ `p. Besides, we have for every n ∈ N that

Λn(y) =





1
λn

(λn − λn−1

λn

)
; (n is even),

0 ; (n is odd)
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and hence
∑

n

|Λn(y)|p =
∑

n

|Λ2n(y)|p

=
∑

n

1
λp

2n

(λ2n − λ2n−1

λ2n

)p

≤ 1
λp

0

+
∞∑

n=1

1
λp

2n−2

(λ2n − λ2n−2

λ2n

)p

≤ 1
λp

0

+
∞∑

n=1

1
λp

2n−2

(λp
2n − λp

2n−2

λp
2n

)

=
1
λp

0

+
∞∑

n=1

( 1
λp

2n−2

− 1
λp

2n

)

=
2
λp

0

< ∞.

This shows that Λ(y) ∈ `p and so y ∈ `λ
p . Thus, the sequence y is in `λ

p but not
in `p, where 1 ≤ p < ∞.

Similarly, one can construct a sequence belonging to the set `λ
p \`p for 0 < p < 1.

Therefore, the inclusion `λ
p ⊂ `p also fails when 1/λ /∈ `p (0 < p < ∞). Hence,

if 1/λ /∈ `p then neither of the spaces `p and `λ
p includes the other one, where

0 < p < ∞. This completes the proof. ¤

Lemma 4.10. If the inclusion `p ⊂ `λ
p holds, then 1/λ ∈ `p for 0 < p < ∞.

Proof. Suppose that the inclusion `p ⊂ `λ
p holds, where 0 < p < ∞, and consider

the sequence x = e(0) = (1, 0, 0, . . .) ∈ `p. Then x ∈ `λ
p and hence Λ(x) ∈ `p. Thus,

we obtain that
λp

0

∑
n

( 1
λn

)p

=
∑

n

|Λn(x)|p < ∞

which shows that 1/λ ∈ `p and this concludes the proof. ¤

We shall later show that the condition 1/λ ∈ `p is not only necessary but also
sufficient for the inclusion `p ⊂ `λ

p to be held, where 1 ≤ p < ∞. Before that, by
taking into account the definition of the sequence λ = (λk) given by (3), we find
that

0 <
λk − λk−1

λn
< 1; (0 ≤ k ≤ n)

for all n, k ∈ N with n+k > 0. Furthermore, if 1/λ ∈ `1 then we have the following
lemma which is easy to prove.

Lemma 4.11. If 1/λ ∈ `1, then

sup
k

(
(λk − λk−1)

∞∑

n=k

1
λn

)
< ∞.



44 M. Mursaleen and A. K. Noman

Theorem 4.12. The inclusion `1 ⊂ `λ
1 holds if and only if 1/λ ∈ `1.

Proof. The necessity is immediate by Lemma 4.10.
Conversely, suppose 1/λ ∈ `1. Then M = supk

[
(λk − λk−1)

∑∞
n=k 1/λn

]
< ∞

by Lemma 4.11. Also, let x = (xk) ∈ `1 be given. Then, we have

‖x‖`λ
1

=
∑

n

|Λn(x)|

≤
∞∑

n=0

1
λn

n∑

k=0

(λk − λk−1)|xk|

=
∞∑

k=0

|xk|(λk − λk−1)
∞∑

n=k

1
λn

≤ M

∞∑

k=0

|xk|

= M‖x‖`1
< ∞.

This shows that x ∈ `λ
1 . Hence, the inclusion `1 ⊂ `λ

1 holds. ¤

Corollary 4.13. If 1/λ ∈ `1, then the inclusion `p ⊂ `λ
p holds for 1 ≤ p < ∞.

Proof. The inclusion trivially holds for p = 1, which is obtained by Theorem 4.12,
above. Thus, let 1 < p < ∞ and take any x = (xk) ∈ `p. Then, for every n ∈ N, we
obtain by applying the Hölder’s inequality that

|Λn(x)|p ≤
[

n∑

k=0

(λk − λk−1

λn

)
|xk|

]p

≤
[

n∑

k=0

(λk − λk−1

λn

)
|xk|p

] [
n∑

k=0

λk − λk−1

λn

]p−1

=
1
λn

n∑

k=0

(λk − λk−1)|xk|p.

Therefore, we derive that

∑
n

|Λn(x)|p ≤
∞∑

n=0

1
λn

n∑

k=0

(λk − λk−1)|xk|p

=
∞∑

k=0

|xk|p(λk − λk−1)
∞∑

n=k

1
λn

and hence

‖x‖p
`λ

p
≤ M

∞∑

k=0

|xk|p = M ‖x‖p
`p

< ∞,
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where M = supk

[
(λk − λk−1)

∑∞
n=k 1/λn

]
< ∞ by Lemma 4.11. This shows that

x ∈ `λ
p . Hence, we deduce that the inclusion `p ⊂ `λ

p also holds for 1 < p < ∞. This
completes the proof. ¤

Corollary 4.14. The inclusion `p ⊂ `λ
p holds if and only if 1/λ ∈ `p, where

1 ≤ p < ∞.

Proof. The necessity is immediate by Lemma 4.10.
Conversely, suppose that 1/λ ∈ `p, where 1 ≤ p < ∞. Then 1/λp = (1/λp

k) ∈ `1.
Thus, it follows by Lemma 4.11 that

sup
k

(
(λk − λk−1)p

∞∑

n=k

1
λp

n

)
≤ sup

k

(
(λp

k − λp
k−1)

∞∑

n=k

1
λp

n

)
< ∞.

Further, we have for every fixed k ∈ N that

Λn

(
e(k)

)
=





λk − λk−1

λn
; (n ≥ k),

(n ∈ N)
0 ; (n < k).

Thus, we obtain that

‖e(k)‖p

`λ
p

= (λk − λk−1)p
∞∑

n=k

1
λp

n
< ∞; (k ∈ N)

which yields that e(k) ∈ `λ
p for every k ∈ N, i.e., every basis element of the space

`p is in `λ
p . This shows that the space `λ

p contains the Schauder basis of the space
`p such that supk ‖e(k)‖`λ

p
< ∞. Hence, we deduce that the inclusion `p ⊂ `λ

p holds
and this concludes the proof. ¤

Now, in the following example, we give an important special case of the space
`λ
p , where 1 ≤ p < ∞.

Example 4.15. Consider the special case of the sequence λ = (λk) given by
λk = k + 1 for all k ∈ N. Then 1/λ /∈ `1 while 1/λ ∈ `p for 1 < p < ∞. Hence, the
inclusion `1 ⊂ `λ

1 does not hold by Lemma 4.9.
On the other hand, by applying the well-known inequality (see [10, p.239])

∞∑
n=0

(
n∑

k=0

|xk|
n + 1

)p

<
( p

p− 1

)p ∞∑
n=0

|xn|p; (1 < p < ∞),

we immediately deduce that the inequality

‖x‖`λ
p

<
( p

p− 1

)
‖x‖`p
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holds for every x ∈ `p, where 1 < p < ∞. This shows that the inclusion `p ⊂ `λ
p

holds for 1 < p < ∞. Further, this inclusion is strict. For example, the sequence
y = {(−1)k} is not in `p but in `λ

p , since

∑
n

|Λn(y)|p =
∑

n

∣∣∣∣∣
1

n + 1

n∑

k=0

(−1)k

∣∣∣∣∣

p

=
∑

n

1
(2n + 1)p < ∞; (1 < p < ∞).

Remark 4.16. In the special case of the sequence λ = (λk) given in Example 4.15,
i.e., λk = k+1 for all k ∈ N, we may note that the spaces `λ

p and `λ
∞ are respectively

reduced to the Cesàro sequence spaces Xp and X∞ of non-absolute type, which are
defined as the spaces of all sequences whose C1-transforms are in the spaces `p and
`∞, respectively, where 1 ≤ p < ∞ (see [17, 18]).

Now, let x = (xk) be a null sequence of positive reals, that is

xk > 0 for all k ∈ N and xk → 0 as k →∞.

Then, as is easy to see, for every positive integer m there is a subsequence
(xkr )

∞
r=0 of the sequence x such that

xkr = O

(
1

(r + 1)m+1

)

and hence

(r + 1)xkr = O

(
1

(r + 1)m

)
.

Further, this subsequence can be chosen such that kr+1 − kr ≥ 2 for all r ∈ N.
In general, if x = (xk) is a sequence of positive reals such that lim infk→∞ xk = 0,

then there is a subsequence x′ = (xk′r )
∞
r=0

of the sequence x such that limr→∞ xk′r =
0. Thus x′ is a null sequence of positive reals. Hence, as we have seen above, for
every positive integer m there is a subsequence (xkr )

∞
r=0 of the sequence x′, and

hence of the sequence x, such that kr+1 − kr ≥ 2 for all r ∈ N and

(r + 1)xkr = O

(
1

(r + 1)m

)
,

where kr = k′θ(r) and θ : N→ N is a suitable increasing function.
Now, let 0 < p < ∞. Then, we can choose a positive integer m such that

mp > 1. In this situation, the sequence {(r + 1)xkr}∞r=0 is in the space `p.
Obviously, we observe that the subsequence (xkr )

∞
r=0 depends on the positive

integer m which is, in turn, depending on p. Thus, our subsequence depends on p.
Hence, from the above discussion, we conclude the following result:

Lemma 4.17. Let x = (xk) be a positive real sequence such that lim infk→∞ xk = 0.
Then, for every positive number 0 < p < ∞ there is a subsequence x(p) = (xkr )

∞
r=0

of x, depending on p, such that kr+1−kr ≥ 2 for all r ∈ N and
∑

r |(r+1)xkr |p < ∞.
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Now, the following theorem gives the necessary and sufficient conditions for the
matrix Λ to be stronger than p-absolute convergence, i.e., for the inclusion `p ⊂ `λ

p

to be strict, where 1 ≤ p < ∞.

Theorem 4.18. The inclusion `p ⊂ `λ
p strictly holds if and only if 1/λ ∈ `p and

lim infn→∞ λn+1/λn = 1, where 1 ≤ p < ∞.

Proof. Suppose that the inclusion `p ⊂ `λ
p is strict, where 1 ≤ p < ∞. Then,

the necessity of the first condition is immediate by Lemma 4.10. Further, since the
inclusion `λ

p ⊂ `p cannot be held, Lemma 4.5 implies the existence of a sequence x ∈
`λ
p such that S(x) = {Sn(x)} /∈ `p. Since x ∈ `λ

p , we have
∑

n |Λn(x)|p < ∞. Thus,
it follows by applying the Minkowski’s inequality that

∑
n |Λn(x)−Λn−1(x)|p < ∞.

This means that {Λn(x)− Λn−1(x)} ∈ `p and since {Sn(x)} /∈ `p, it follows by the
relation (13) that {λn−1/(λn − λn−1)} /∈ `∞ and hence {λn/(λn − λn−1)} /∈ `∞.
This leads us with Lemma 4.2 (a) to the necessity of the second condition.

Conversely, since 1/λ ∈ `p, we have by Corollary 4.14 that the inclusion `p ⊂ `λ
p

holds. Further, since lim infk→∞ λk+1/λk = 1, we obtain by Lemma 4.2 (a) that

lim inf
k→∞

(λk − λk−1

λk

)
= 0.

Thus, it follows by Lemma 4.17 that there is a subsequence λ(p) = (λkr )
∞
r=0 of

the sequence λ = (λk), depending on p, such that kr+1 − kr ≥ 2 for all r ∈ N and

∑
r

∣∣∣(r + 1)
(λkr − λkr−1

λkr

)∣∣∣
p

< ∞. (15)

Let us now define the sequence y = (yk) for every k ∈ N by

yk =





r + 1 ; (k = kr),

−(r + 1)
(λk−1 − λk−2

λk − λk−1

)
; (k = kr + 1), (r ∈ N)

0 ; (otherwise).

(16)

Then, it is clear that y /∈ `p. On the other hand, we have for every n ∈ N that

Λn(y) =





(r + 1)
(λn − λn−1

λn

)
; (n = kr),

(r ∈ N)
0 ; (n 6= kr).

This and (15) imply that Λ(y) ∈ `p and hence y ∈ `λ
p . Thus, the sequence y

is in `λ
p but not in `p. Therefore, we deduce by combining this with the inclusion

`p ⊂ `λ
p that this inclusion is strict, where 1 ≤ p < ∞. This completes the proof. ¤

Now, as an immediate consequence of Theorem 4.18, the following corollary
presents the necessary and sufficient condition for the matrix Λ to be equivalent to
p-absolute convergence, where 1 ≤ p < ∞.
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Corollary 4.19. The equality `λ
p = `p holds if and only if lim infn→∞ λn+1/λn > 1,

where 1 ≤ p < ∞.

Proof. The necessity follows from Theorem 4.18. For, if the equality holds, then the
inclusion `p ⊂ `λ

p holds and hence 1/λ ∈ `p by Lemma 4.10. Further, since the inclu-
sion `p ⊂ `λ

p cannot be strict, we have by Theorem 4.18 that lim infn→∞ λn+1/λn 6=
1 and hence lim infn→∞ λn+1/λn > 1.

Conversely, suppose that lim infn→∞ λn+1/λn > 1. Then, there exists a constant
a > 1 such that λn+1/λn ≥ a and hence λn ≥ λ0a

n for all n ∈ N. This shows that
1/λ ∈ `1 which leads us with Corollary 4.13 to the consequence that the inclusion
`p ⊂ `λ

p holds for 1 ≤ p < ∞.
On the other hand, we have by Lemma 4.2 (b) that {λn/(λn−λn−1)} ∈ `∞ and

hence {λn−1/(λn − λn−1)} ∈ `∞.
Now, let x ∈ `λ

p . Then Λ(x) = {Λn(x)} ∈ `p and hence {Λn(x)−Λn−1(x)} ∈ `p.
Thus, we obtain by the relation (13) that {Sn(x)} ∈ `p, i.e., S(x) ∈ `p for every
x ∈ `λ

p . Therefore, we deduce by Lemma 4.5 that the inclusion `λ
p ⊂ `p also holds.

Hence, by combining the inclusions `p ⊂ `λ
p and `λ

p ⊂ `p, we get the equality `λ
p = `p,

where 1 ≤ p < ∞. This concludes the proof. ¤

Remark 4.20. It can easily be shown that Corollary 4.19 still holds for 0 < p < 1.

Finally, we end this section with the following corollary:

Corollary 4.21. Although the spaces `λ
p , c0, c and `∞ overlap, the space `λ

p does
not include any of the other spaces. Furthermore, if lim infn→∞ λn+1/λn = 1, then
none of the spaces c0, c and `∞ includes the space `λ

p , where 0 < p < ∞.

Proof. Let 0 < p < ∞. Then, it is obvious that the spaces `λ
p , c0, c and `∞ overlap,

since the sequence (λ1 − λ0,−λ0, 0, 0, . . .) belongs to all these spaces.
Further, the space `λ

p does not include the space c0, since the sequence x defined
by (14), in the proof of Theorem 4.4, is in c0 but not in `λ

p . Hence, the space `λ
p

does not include any of the spaces c0, c and `∞.
Furthermore, if lim infn→∞ λn+1/λn = 1 then the space `∞ does not include the

space `λ
p . To see this, let 0 < p < ∞. Then, Lemma 4.17 implies that the sequence

y defined by (16), in the proof of Theorem 4.18, is in `λ
p but not in `∞. Therefore,

none of the spaces c0, c and `∞ includes the space `λ
p when lim infn→∞ λn+1/λn = 1,

where 0 < p < ∞. This completes the proof. ¤

5 The basis for the space `λ
p

In this final section, we give a sequence of the points of the space `λ
p which forms a

basis for this space, where 1 ≤ p < ∞.
If a normed space X contains a sequence (bn) with the property that for every

x ∈ X there is a unique sequence (αn) of scalars such that

lim
n→∞

‖x− (α0b0 + α1b1 + · · ·+ αnbn)‖ = 0,
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then (bn) is called a Schauder basis (or briefly basis) for X. The series
∑

k αkbk

which has the sum x is then called the expansion of x with respect to (bn), and
written as x =

∑
k αkbk.

Now, because of the transformation T defined from `λ
p to `p, in the proof of

Theorem 3.3, is an isomorphism, the inverse image of the basis (e(k))
∞
k=0 of the

space `p is the basis for the new space `λ
p , where 1 ≤ p < ∞. Therefore, we have

the following:

Theorem 5.1. Let 1 ≤ p < ∞ and define the sequence e
(k)
λ ∈ `λ

p for every fixed
k ∈ N by

(
e
(k)
λ

)
n

=





(−1)n−k λk

λn − λn−1
; (k ≤ n ≤ k + 1),

(n ∈ N)
0 ; (otherwise).

(17)

Then, the sequence
(
e
(k)
λ

)∞
k=0

is a basis for the space `λ
p and every x ∈ `λ

p has a
unique representation of the form

x =
∑

k

Λk(x) e
(k)
λ . (18)

Proof. Let 1 ≤ p < ∞. Then, it is obvious by (17) that Λ(e(k)
λ ) = e(k) ∈ `p (k ∈ N)

and hence e
(k)
λ ∈ `λ

p for all k ∈ N.
Further, let x ∈ `λ

p be given. For every non-negative integer m, we put

x(m) =
m∑

k=0

Λk(x) e
(k)
λ .

Then, we have that

Λ(x(m)) =
m∑

k=0

Λk(x) Λ(e(k)
λ ) =

m∑

k=0

Λk(x) e(k)

and hence

Λn(x− x(m)) =





0 ; (0 ≤ n ≤ m),
(n,m ∈ N)

Λn(x) ; (n > m).

Now, for any given ε > 0 there is a non-negative integer m0 such that

∞∑
n=m0+1

|Λn(x)|p ≤
( ε

2

)p

.
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Therefore, we have for every m ≥ m0 that

‖x− x(m)‖`λ
p

=

( ∞∑
n=m+1

|Λn(x)|p
)1/p

≤
( ∞∑

n=m0+1

|Λn(x)|p
)1/p

≤ ε

2
< ε

which shows that limm→∞ ‖x− x(m)‖`λ
p

= 0 and hence x is represented as in (18).

Finally, let us show the uniqueness of the representation (18) of x ∈ `λ
p . For this,

suppose that x =
∑

k αk(x) e
(k)
λ . Since the linear transformation T defined from `λ

p

to `p, in the proof of Theorem 3.3, is continuous, we have

Λn(x) =
∑

k

αk(x) Λn(e(k)
λ ) =

∑

k

αk(x) δnk = αn(x); (n ∈ N).

Hence, the representation (18) of x ∈ `λ
p is unique. This completes the proof. ¤

Now, it is known by Theorem 3.1 (b) that `λ
p (1 ≤ p < ∞) is a Banach space

with its natural norm. This leads us together with Theorem 5.1 to the following
corollary:

Corollary 5.2. The sequence space `λ
p of non-absolute type is separable for 1 ≤

p < ∞.

Finally, we conclude our work by expressing from now on that the aim of the next
paper is to determine the α-, β- and γ-duals of the space `λ

p and is to characterize
some related matrix classes, where 1 ≤ p ≤ ∞.
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[4] C. Aydın and F. Başar, Some new paranormed sequence spaces, Inform. Sci. 160(1-4)
(2004) 27–40.
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