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•˜ 1. Introduction

The purpose of this paper is to give two theorems on the multiplicative 

theory of p-adic Fourier analysis. Namely we shall treat operators _??_x with 

Dirichlet characters x on the p-adic Banach algebra of p-adic uniformly 

differentiable functions defined on the group Up of principal units in the 

rational p-adic number field. Then we discuss several fundamental prop

erties _??_x. Such operators _??_x for the analytic functions on Up are 

already defined and investigated by Kubota-Leopoldt in order to introduce 

their p-adic L-functions [1].

Recently C. F. Woodcock [4], [5] gave an additive theory of p-adic 

Fourier analysis for p-adic Lipschitz functions. But we need the multi

plicative theory to explain both the classical congruences of Kummer for 

the Bernoulli numbers and the modules of continuity of the p-adic L-func

tions clearly, and hence to extend our previous results [3] about the Bernoulli 

numbers to the ones for more general p-adic functions.•˜

2. Preliminaries

Let Qp be the rational p-adic number field and Zp the ring of all rational 

p-adic integers. The ring of rational integers is denoted by Z. We set 

q=p for the prime p>2 and q=4 for p=2, and we use the normalized ex

ponential valuation vp of Qp such that vp(p)=1 and extend it to a valuation 

on the completion Qp of the algebraic closure of Qp. The ring of integers 

in Qp is written by Oƒ¶p.

We define a norm for ƒ¶p-valued continuous functions f defined on Zp 

by

(1) v(f)=minvpx•¸Zp(f(x)).

Then we know that all such functions form a p-adic Banach algebra 

_??_(Zp, ƒ¶p) under the pointwise operations and the above norm.
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Now, we set

(2) Up={u•¸Q*p; vp(u-1)•†vp(q)}.

Then Up is the group of all principal units of Qp (p>2) or its subgroup 

of index 2 (p=2).
The correspondence

(3)

gives an isomorphism of the multiplicative group Up and the additive group 

Zp algebraically and topologically. Hence there is an isomorphism between 

the p-adic Banach algebra _??_(Up, Qp) under the norm v(f)=minvpu•¸Up(f(u)) for

 

f•¸_??_(Up, ƒ¶p) and the p-adic Banach algebra _??_(Zp, ƒ¶p).

By a Lipschitz function f•¸_??_(Up, ƒ¶p) we mean a function for which 

there exists a real constant R such that vp f(u)-f(v)>R holds for all u,
 p u-v 

v e Up, u•‚v. If we set

(4)

and define a norm V(f) for a Lipschitz function f by

(5) V(f)=min (v(f ), R(f )),

then all Q -valued Lipschitz functions defined on Up under the pointwise 

operations and the norm V form a p-adic Banach algebra _??_ip (Up, ƒ¶p).

If, for a given function f:Up•¨ƒ¶p, there exists a continuous function 

ƒÓf(u, v): Up•~Up•¨ƒ¶p such that we have for all u, v•¸Up, u•‚v

(6)

then we call f a uniformly differentiable function.
In this case we have

(7) R(f)=infu,v•¸Upu•‚v vp(ƒÓf(u, v))=v(ƒÓf)

and all uniformly differentiable functions make a subalgebra of the algebra

 (Up, ƒ¶p). It is denoted by _??__??_(Up, ƒ¶p).

Now, the dual group of Up in the sense of Pontrjagin is isomorphic to 

the p-adic torus Tp=lim•¨n Z/pnZ and if we take the functions ƒÓx(u)=x(u) on
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Up corresponding to the elements x of Tp, then we obtain, from the additive 

theory of woodcock and by the isomorphism (3), a Fourier series expansion 

of f•¸_??_??_(Up, ƒ¶p)

(8) f(u)=ƒ°x M0(fƒÓx)ƒÓx(u).

Herein we denote by Mo(fƒÓx), simply written by M
x(f), the integral

(9)

and the sum over x means the limit of partial sums over all elements x in 

the cyclic subgroup T(n)p of order pn of Tp under letting n tend to the infinity
. 

Finally x denotes the inverse character x-1 of x .

In the above we note that x can be regarded as a Dirichlet character of 

the second kind, namely such character of the conductor p-power
, that 

satisfies x(x)=x(<x>) for the canonical decomposition x=ƒÖ(x)<x> of x•¸Z
, 

(x, p)=1 with <x>•¸ Up, where ƒÖ(x)=limƒÏ•¨•‡ xpƒÏ for p>2 or ƒÖ(x)=•}1•ßx (mod 4) 

for p=2. We call any other Dirichlet character to be not of the second 

kind, namely it does not satisfy these conditions. Furthermore we see at 

once ƒÓ(u)•¸_??__??_(U p, ƒ¶p) and ƒÓ'x(u)=0.

•˜ 3. The operator _??_x

Let x be a primitive Dirichlet character with conductor _?/_
x=_??_. F

or any f•¸_??__??_(Up, ƒ¶p) and any non-negative rational integer ƒÏ we set

(10)

where * denotes to take sum over all integers prime to p in the given range .
First we give an elementary lemma as follows .

LEMMA. If f•¸_??_(Up, ƒ¶p), then we have

fpp
lim*x(2)f(<i>)=0.
p-.~ 1=1

PROOF. Take a p-power pƒÊ arbitrarily and fix it . By continuity of f 

there is a bound ƒÐ0 such that <i>=<i0> (mod pƒÐ) with ƒÐ>ƒÐ0 yields f(<i>)

 •ß f(<i0>) (mod pƒÊ). Hence, for ƒÏ sufficiently large we see

fpp*x(i)f(<2>)=fpa*x(i
o)f(<2o>)N(mod~ p),

20=1
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where NƒÐ=#{i•¸Z; 1•…i•…_??_pƒÏ, (i, p)=1, i•ßi0 (mod _??_pƒÐ)}.

Thus we see

fpPfp°

~*x(i)f(<i>)=x(i0)f(<i0>)p'(mod pu), 
i=1 io=1

from which we have for p sufficiently large

~*x(i)f(<i>).0 (mod pP).
i=1

This means our assertion.

Now, from the definition we see readily

(11)

where ƒÖ means also the inverse character ƒÖ-1 of ƒÖ.

Therefore we have

(12)

and we see

(13)

Because we have ƒÓf(u, u), ƒÓf(u+ƒÖ(x)_??_pƒÏy, u)•¸_??_(Up, ƒ¶p) we conclude by 

Lemma and uniform continuity of ƒÓf(u, v) that _??_(xƒÏ+1)(f)-_??_(ƒÏ)x (f)•¨0 as 

ƒÏ•¨•‡.

Furthermore we have
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(14) vp(xp+1)(f)-9J(p)(f))>R(f)-1

for any ƒÏ. It follows from this that the operator Lx defined by

~x(f)=1im~zp)(f)

is a bounded operator, and hence a continuous operator on _??__??_(Up, ƒ¶p).

•˜ 4. Fundamental properties of _??_x

For c•¸Z, (c, _??_)=1 and f•¸_??__??_(Up, ƒ¶p) we define fc(u)=f(<c>u). Then 

we see fc•¸_??__??_(Up, ƒ¶p). By the condition cx=xƒÏ+_??_ pƒÏrƒÏ(xƒÏ) with 1•ßxƒÏ•…_??_fpƒÏ, 

1•…x•…_??_pƒÏ the numbers rƒÏ(xƒÏ)•¸Z depending on c are well determined. We 

have easily

(15)

Therefore we obtain from Lemma as before

fpp 

(16) "3~g(fC)=(e)J(f)x+x(c)limx(xp)~(xp)rp(xp)f'(~xp>).
p xp=1

In the case p=2 we readily see

(17)

 f2p
_lim ~*x(xp)~(xp)rp(xp)f'(Cxp>)

p-.~ xp=1

f2p-1
=(1+x(-1))lim:*x(xp)~(xp)r p(xp)f'(<xp>).

p-*~xp=1

Consequently we obtain to f•¸_??__??_(Up, ƒ¶p) such that f'(u)•¸0ƒ¶p for any 

u•¸Up

(18) x(c)J(fC)=U(f)(modp-1q),

If _??_ is a p-power, then x can be extended to a function on Zp naturally 

and x(c) for c•¸Zp, (c, _??_)=1 is well determined. By the same argument as 

above, but using cx=xƒÏ+_??_pr(xƒÏ) with x, xƒÏ•¸Z, rƒÏ(xƒÏ)•¸Zp, we conclude the 

congruence (18) for any such c. Thus, take c=ƒÄp-1 a primitive (p-1)-th 

root of unity for p>2 and notice _??_x(fc)=_??_x(f), then we have (1-x(ƒÄp-1)) 

_??_x(f)•ß0 (mod p0).

If x is not of the second kind, then we have x(ƒÄp-1)•‚1 and 1-x(ƒÄp-1) is
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a unit and we see _??_x(f)•ß0 (mod p0). In the case p=2, if x is not of the 

second kind, then x(-1)=-1 and _?_x(f)=0 hold. In either case we have 

_??_x(f)•ß0 (mod p-lq) for x not of the second kind.

Next, if _??_= _??_0pƒÊ, (_??_0, p)=1, _??_0>1, then the canonical decomposition x

=x0xl holds with _??_
0=_??_0, _??_x1=pƒÊ.

When we set x=x0_??_0+xlpƒÊ+ƒÏ+_??_pƒÏrƒÏ(x0, xl), 1•…x0•…pƒÊ+ƒÏ, 0•…x1•…_??_0-1, 

1•…x•…_??_pƒÏ, the numbers rƒÏ(x0, x1)•¸Z are also well determined. The condi

tion (x, p)=1 is equivalent to (x0, p)=1. Then we have similarly as above

(19) ~x>\x0f0>ii(x,f0)(xlpp+p+fYrp(x0, x1)),

and

(20)

Hence we have

fo-1 pfd+P 

(21) IT(f)=limxo(xlpp+p)LI*xl(xOf0)rp(x0, xl)f'(<x0f0>).
p-~ xi=0 xo=1

In the case p=2 we see moreover

fo-1 2,P+P-i 

(22) II&(f)=lim(1+x(-1))x0(x1p+P)~j*xl(x0f0)~(x,f,)rp(x0,xl)f'(<x0f0>).
 p-i~xi=0xo=1

Consequently, if f'(u)•¸Oƒ¶p for any u•¸Up, then we obtain

(23) IT(f)0=(mod p-1q)

For a character x of the second kind and p>2 we set x=ƒÄƒ¿p-1(1+p)ƒÀ

+pƒÏRƒÏ(ƒ¿,ƒÀ,), 0•…ƒ¿•…p-2, O•…ƒÀ•…pƒÏ-1-1, 1•…x•…pƒÏ and determine RƒÏ(ƒ¿, ƒÀ)•¸Zp.
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Then we have

(24)

Hence we have also

(25)

Thus, for f•¸_??__??_(Up, ƒ¶p) such that f'(u)•¸Oƒ¶
p for any u•¸Up we obtain

(26)

Similarly in the case p=2 we have

(27)

Namely, we have for f'(u)•¸Oƒ¶p for any u•¸Up

(28)

In the both cases we obtain finally

(29)

We summarize our results in the following

THEOREM 1. Let f be any function in _??__??_(Up, ƒ¶p) such that f'(u)•¸Oƒ¶
p 

for each u•¸Up. Then we have the congruences

(30) J(f)=0(mod p-'q)if x is not of the second kind,

(31)
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For any c•¸Z, (c, f)=1 it holds that

(32) x(c)R(f')=R(f)(modp~lq).

Furthermore, when the function f(u) is multiplicative, i.e. f(wv)

=f(u)f(v) for any u, v•¸Up, we have the following Theorem 2.

From the definition we have

(33)

Therefore we have

(34) Mx(fl+p)=Mx(f)+f'(1) log (1+p).

By virtue of the multiplicative property Mx(f1+p)=x(1+p)f(1+p)Mx(f) 

it follows that

(35) (1-x(1+p)f(1+p))Mx(f)=-f'(1) log (1+p)

In the case p=2 quite similarly it also holds:

(36) (1-x(1+q)f(1+q))Mx(f)=f'(1) log (1+q).

Thus we obtain

THEOREM 2. For any multiplicative function f•¸Q _??__??_(Up, ƒ¶p) such that 

f(u), f'(u) e Oƒ¶p for each u•¸Up we have

(37) (1-x(1+q)f(1+q))_??_x(f)=0(mod p-lq).

This is a generalization of determination of the denominators of the 

Bernoulli numbers.

•˜ 5. Examples

1) As usual we define a linear difference operator ƒ¢ for any sequence 

{am} in ƒ¶p by ƒ¢am=am+1-am.

We take the function f(u)=1/qkƒ¢k1/mum for m•†1, where k denotes an

arbitrarily fixed non-negative rational integer. Then the formulas (30), (31) 
in Theorem 1 reduce simply to the known congruences of Kummer.

In fact we see
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(38)

and

(30)

where we put DmxƒÖm=-(1-xƒÖ-m(p)pm-1)BmxƒÖ-m with the m-th generalized 

Bernoulli number BmxƒÖ-m [3].

2) If we take f(u)=-1/1-su1-s, s•¸Zp, s•‚1, then Theorem 1 means

a determination of the exact modules of continuity of p-adic L-functions of 

Kubota-Leopoldt. Namely, we see

(40)

and

(41)

by the definition of the p-adic L-functions.

Thus we can know immediately:

(42) Lp(s, x)•ß0 (mod p-1q) for x not of the second kind,

(43)

with a constant up=-p-1/p log (1+q) for x of the second kind.

But these facts are already well known [2], [3].

3) when we select f(u) as f(u)=ƒÓx2(u)=x2(u) with any Dirichlet char

acter x2 of the second kind, we have f'(u)=0. Therefore all the congruences 

in Theorems 1, 2 are automatically equalities as can be seen in the preceding 

section. Thus we have

(44) _??_x(ƒÓx2)=0 for x not of the second kind,

(45) for x of the second kind,

(46)
 for

for
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4) Let x be a Dirichlet character of the second kind. Multiplying x(u) 

to the both hand sides in (25) and summing over the elements in Tp we 

have in the case p•‚2

Consequently we have

(47)

Note here that we regard ƒµ(x)=ƒÕx((1+p)x) as a character of the additive 

group Zp. Hence the sum

ƒ°x•¸TpI0(f((l+p)x)ƒÓx((1+p)x))ƒÓx(u)

is a Fourier series expansion of the function g(x)=f((1+p)x)

. By making use of Woodcock's theory [4] we obtain

(48)

In the case p=2 we have quite the same.

In particular, if we take f(u)=-1/1-su1-s, then we conclude from the

(49)
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