On some operators for *p*-adic uniformly differentiable functions

By Katsumi Shiratani

(Received January 20, 1976)

§1. Introduction

The purpose of this paper is to give two theorems on the multiplicative theory of *p*-adic Fourier analysis. Namely we shall treat operators $\mathfrak{M}_{\mathfrak{x}}$ with Dirichlet characters \mathfrak{x} on the *p*-adic Banach algebra of *p*-adic uniformly differentiable functions defined on the group U_p of principal units in the rational *p*-adic number field. Then we discuss several fundamental properties of $\mathfrak{M}_{\mathfrak{x}}$. Such operators $\mathfrak{M}_{\mathfrak{x}}$ for the analytic functions on U_p are already defined and investigated by Kubota-Leopoldt in order to introduce their *p*-adic *L*-functions [1].

Recently C. F. Woodcock [4], [5] gave an additive theory of p-adic Fourier analysis for p-adic Lipschitz functions. But we need the multiplicative theory to explain both the classical congruences of Kummer for the Bernoulli numbers and the modules of continuity of the p-adic L-functions clearly, and hence to extend our previous results [3] about the Bernoulli numbers to the ones for more general p-adic functions.

§2. Preliminaries

Let Q_p be the rational *p*-adic number field and Z_p the ring of all rational *p*-adic integers. The ring of rational integers is denoted by *Z*. We set q=p for the prime p>2 and q=4 for p=2, and we use the normalized exponential valuation ν_p of Q_p such that $\nu_p(p)=1$ and extend it to a valuation on the completion Ω_p of the algebraic closure of Q_p . The ring of integers in Ω_p is written by O_{μ_p} .

We define a norm for Ω_p -valued continuous functions f defined on Z_p by

(1)
$$\nu(f) = \min_{\substack{x \in \mathbb{Z}_p \\ x \in \mathbb{Z}_p}} \nu_p(f(x)).$$

Then we know that all such functions form a *p*-adic Banach algebra $\mathscr{C}(Z_p, \Omega_p)$ under the pointwise operations and the above norm.

Now, we set

(2)
$$U_p = \{ u \in Q_p^* ; \nu_p(u-1) \ge \nu_p(q) \}.$$

Then U_p is the group of all principal units of Q_p ($p \ge 2$) or its subgroup of index 2 (p=2).

The correspondence

$$(3) u \in U_p \longleftrightarrow x = \frac{\log u}{\log (1+q)} \in Z_p$$

gives an isomorphism of the multiplicative group U_p and the additive group Z_p algebraically and topologically. Hence there is an isomorphism between the *p*-adic Banach algebra $\mathscr{C}(U_p, \Omega_p)$ under the norm $\nu(f) = \min_{u \in U_p} \nu_p(f(u))$ for $f \in \mathscr{C}(U_p, \Omega_p)$ and the *p*-adic Banach algebra $\mathscr{C}(Z_p, \Omega_p)$.

By a Lipschitz function $f \in \mathscr{C}(U_p, \Omega_p)$ we mean a function for which there exists a real constant R such that $\nu_p \left(\frac{f(u) - f(v)}{u - v} \right) \ge R$ holds for all u, $v \in U_p$, $u \ne v$. If we set

(4)
$$R(f) = \inf_{\substack{u,v \in U_p \\ u \neq v}} \nu_p \left(\frac{f(u) - f(v)}{u - v} \right)$$

and define a norm V(f) for a Lipschitz function f by

(5)
$$V(f) = \min(\nu(f), R(f)),$$

then all Ω_p -valued Lipschitz functions defined on U_p under the pointwise operations and the norm V form a p-adic Banach algebra $\mathscr{L}_{ip}(U_p, \Omega_p)$.

If, for a given function $f: U_p \to \Omega_p$, there exists a continuous function $\phi_f(u, v): U_p \times U_p \to \Omega_p$ such that we have for all $u, v \in U_p, u \neq v$

(6)
$$\phi_f(u, v) = \frac{f(u) - f(v)}{u - v},$$

then we call f a uniformly differentiable function.

In this case we have

(7)
$$R(f) = \inf_{\substack{u,v \in U_p \\ u \neq v}} \nu_p(\phi_f(u,v)) = \nu(\phi_f)$$

and all uniformly differentiable functions make a subalgebra of the algebra $\mathscr{L}_{ip}(U_p, \Omega_p)$. It is denoted by $\mathscr{UD}(U_p, \Omega_p)$.

Now, the dual group of U_p in the sense of Pontrjagin is isomorphic to the *p*-adic torus $T_p = \lim_{\longrightarrow} Z/p^n Z$ and if we take the functions $\phi_z(u) = \chi(u)$ on

 U_p corresponding to the elements χ of T_p , then we obtain, from the additive theory of Woodcock and by the isomorphism (3), a Fourier series expansion of $f \in \mathscr{UD}(U_p, \Omega_p)$

(8)
$$f(u) = \sum_{\chi} M_0(f\phi_{\bar{\chi}})\phi_{\chi}(u).$$

Herein we denote by $M_0(f\phi_{\bar{x}})$, simply written by $M_{\bar{x}}(f)$, the integral

(9)
$$M_{0}(f\phi_{\bar{\chi}}) = I_{0}(f((1+q)^{x})\phi_{\bar{\chi}}((1+q)^{x})))$$
$$= \lim_{\rho \to \infty} \frac{1}{p^{\rho}} \sum_{i=0}^{p^{\rho}-1} f((1+q)^{i})\phi_{\bar{\chi}}((1+q)^{i}),$$

and the sum over χ means the limit of partial sums over all elements χ in the cyclic subgroup $T_p^{(n)}$ of order p^n of T_p under letting *n* tend to the infinity. Finally $\bar{\chi}$ denotes the inverse character χ^{-1} of χ .

In the above we note that χ can be regarded as a Dirichlet character of the second kind, namely such character of the conductor *p*-power, that satisfies $\chi(x) = \chi(\langle x \rangle)$ for the canonical decomposition $x = \omega(x)\langle x \rangle$ of $x \in Z$, (x, p) = 1 with $\langle x \rangle \in U_p$, where $\omega(x) = \lim_{p \to \infty} x^{p^p}$ for p > 2 or $\omega(x) = \pm 1 \equiv x \pmod{4}$ for p=2. We call any other Dirichlet character to be not of the second kind, namely it does not satisfy these conditions. Furthermore we see at once $\phi_{\chi}(u) \in \mathscr{UD}(U_p, \Omega_p)$ and $\phi'_{\chi}(u) = 0$.

§ 3. The operator \mathfrak{M}_{r}

Let χ be a primitive Dirichlet character with conductor $f_{\chi} = f$. For any $f \in \mathscr{UD}(U_p, \Omega_p)$ and any non-negative rational integer ρ we set

(10)
$$\mathfrak{M}_{\chi}^{(\rho)}(f) = \frac{1}{\mathrm{f}p^{\rho}} \sum_{x=1}^{\mathrm{f}p^{\rho}} \chi(x) f(\langle x \rangle),$$

where * denotes to take sum over all integers prime to p in the given range.

First we give an elementary lemma as follows.

LEMMA. If $f \in \mathscr{C}(U_p, \Omega_p)$, then we have

$$\lim_{\rho\to\infty}\sum_{i=1}^{p\rho} \chi(i)f(\langle i\rangle)=0.$$

PROOF. Take a *p*-power p^{μ} arbitrarily and fix it. By continuity of f there is a bound σ_0 such that $\langle i \rangle \equiv \langle i_0 \rangle \pmod{p^{\sigma}}$ with $\sigma \geq \sigma_0$ yields $f(\langle i \rangle) \equiv f(\langle i_0 \rangle) \pmod{p^{\mu}}$. Hence, for ρ sufficiently large we see

$$\sum_{i=1}^{\frac{p}{p}} \chi(i) f(\langle i \rangle) \equiv \sum_{i_0=1}^{\frac{p}{p}} \chi(i_0) f(\langle i_0 \rangle) N_{\sigma} \pmod{p^{\mu}},$$

where $N_{\sigma} = \# \{i \in \mathbb{Z}; 1 \leq i \leq p^{\rho}, (i, p) = 1, i \equiv i_0 \pmod{p^{\sigma}} \}$. Thus we see

$$\sum_{i=1}^{\frac{p}{p}} \chi(i) f(\langle i \rangle) \equiv \sum_{i_0=1}^{\frac{p}{p}} \chi(i_0) f(\langle i_0 \rangle) p^{\rho-\sigma} \pmod{p^{\mu}},$$

from which we have for ρ sufficiently large

$$\sum_{i=1}^{p_{\ell}} \chi(i) f(\langle i \rangle) \equiv 0 \pmod{p^{\mu}}.$$

This means our assertion.

Now, from the definition we see readily

(11)

$$\mathfrak{M}_{z}^{(\rho+1)}(f) = \frac{1}{[p^{\rho+1}]} \sum_{x=1}^{p^{\rho+1}} \chi(x) f(\langle x \rangle)$$

$$= \frac{1}{[p^{\rho+1}]} \sum_{x_{\rho=1}}^{p^{\rho+1}} \chi(x_{\rho}) \{f(\langle x_{\rho} \rangle + \overline{\omega}(x_{\rho})[p^{\rho}y] - f(\langle x_{\rho} \rangle)\}$$

$$+ \frac{1}{[p^{\rho}]} \sum_{x_{\rho=1}}^{p^{\rho}} \chi(x_{\rho}) f(\langle x_{\rho} \rangle),$$

where $\bar{\omega}$ means also the inverse character ω^{-1} of ω .

Therefore we have

(12)

$$\mathfrak{M}_{\chi}^{(\rho+1)}(f) - \mathfrak{M}_{\chi}^{(\rho)}(f) = \frac{1}{\lceil p^{\rho+1}} \sum_{x_{\rho=1}^{p-1}}^{p^{\rho}} \chi(x_{\rho}) \overline{\omega}(x_{\rho}) \lceil p^{\rho}y + \frac{f(\langle x_{\rho} \rangle + \overline{\omega}(x_{\rho}) \lceil p^{\rho}y) - f(\langle x_{\rho} \rangle)}{\overline{\omega}(x_{\rho}) \lceil p^{\rho}y} = \frac{1}{p} \sum_{x_{\rho=1}^{p^{\rho}}}^{p^{\rho}} \chi(x_{\rho}) \sum_{y=0}^{p^{-1}} \overline{\omega}(x_{\rho}) y + \frac{f(\langle x_{\rho} \rangle + \overline{\omega}(x_{\rho}) \lceil p^{\rho}y) - f(\langle x_{\rho} \rangle)}{\overline{\omega}(x_{\rho}) \lceil p^{\rho}y},$$

and we see

$$\mathfrak{M}_{\chi}^{(\rho+1)}(f) - \mathfrak{M}_{\chi}^{(\rho)}(f) = \frac{1}{p} \sum_{x_{\rho}=1}^{f_{\rho}^{p}} \chi(x_{\rho}) \sum_{y=0}^{p-1} \overline{\omega}(x_{\rho}) y \phi_{f}(\langle x_{\rho} \rangle + \overline{\omega}(x_{\rho}) \tilde{p}^{\rho}y, \langle x_{\rho} \rangle)$$

$$(13) = \frac{1}{p} \sum_{x_{\rho}=1}^{f_{\rho}^{p}} \chi(x_{\rho}) \sum_{y=0}^{p-1} \overline{\omega}(x_{\rho}) y \phi_{f}(\langle x_{\rho} \rangle, \langle x_{\rho} \rangle)$$

$$+ \frac{1}{p} \sum_{x_{\rho}=1}^{f_{\rho}^{p}} \chi(x_{\rho}) \sum_{y=0}^{p-1} \overline{\omega}(x_{\rho}) y \{\phi_{f}(\langle x_{\rho} \rangle + \overline{\omega}(x_{\rho}) \tilde{p}^{\rho}y, \langle x_{\rho} \rangle) - \phi_{f}(\langle x_{\rho} \rangle, \langle x_{\rho} \rangle)\}.$$

Because we have $\phi_f(u, u)$, $\phi_f(u + \overline{\omega}(x) \dagger p^{\rho} y, u) \in \mathscr{C}(U_p, \Omega_p)$ we conclude by Lemma and uniform continuity of $\phi_f(u, v)$ that $\mathfrak{M}_{\mathfrak{c}}^{(\rho+1)}(f) - \mathfrak{M}_{\mathfrak{c}}^{(\rho)}(f) \to 0$ as $\rho \to \infty$.

Furthermore we have

(14)
$$\nu_p(\mathfrak{M}_{\chi}^{(\rho+1)}(f) - \mathfrak{M}_{\chi}^{(\rho)}(f)) \ge R(f) - 1$$

for any ρ . It follows from this that the operator \mathfrak{M}_r defined by

$$\mathfrak{M}_{\chi}(f) = \lim_{\rho \to \infty} \mathfrak{M}_{\chi}^{(\rho)}(f)$$

is a bounded operator, and hence a continuous operator on $\mathscr{UD}(U_p, \Omega_p)$.

§ 4. Fundamental properties of \mathfrak{M}_{r}

For $c \in Z$, $(c, \mathfrak{f}) = 1$ and $f \in \mathscr{UD}(U_p, \Omega_p)$ we define $f^c(u) = f(\langle c \rangle u)$. Then we see $f^c \in \mathscr{UD}(U_p, \Omega_p)$. By the condition $cx = x_\rho + \mathfrak{f}p^\rho r_\rho(x_\rho)$ with $1 \leq x_\rho \leq \mathfrak{f}p^\rho$, $1 \leq x \leq \mathfrak{f}p^\rho$ the numbers $r_\rho(x_\rho) \in Z$ depending on c are well determined. We have easily

$$\mathfrak{M}_{\mathfrak{x}}^{(\rho)}(f^{c}) = \overline{\chi}(c) \frac{1}{\lceil p^{\rho}} \sum_{x_{\rho=1}}^{\lceil p^{\rho} *} \chi(x_{\rho}) f(\langle x_{\rho} \rangle + \overline{\omega}(x_{\rho}) \restriction p^{\rho} r_{\rho}(x_{\rho}))$$

$$(15) \qquad = \overline{\chi}(c) \mathfrak{M}_{\mathfrak{x}}^{(\rho)}(f)$$

$$+ \overline{\chi}(c) \frac{1}{\lceil p^{\rho}} \sum_{x_{\rho=1}}^{\lceil p^{\rho} *} \chi(x_{\rho}) \restriction p^{\rho} \overline{\omega}(x_{\rho}) r_{\rho}(x_{\rho}) \phi_{f}(\langle x_{\rho} \rangle + \overline{\omega}(x_{\rho}) \restriction p^{\rho} r_{\rho}(x_{\rho}), \langle x_{\rho} \rangle).$$

Therefore we obtain from Lemma as before

(16)
$$\mathfrak{M}_{\chi}(f^{c}) = \overline{\chi}(c) \mathfrak{M}_{\chi}(f) + \overline{\chi}(c) \lim_{\rho \to \infty} \sum_{x_{\rho}=1}^{p \rho} \chi(x_{\rho}) \overline{\omega}(x_{\rho}) r_{\rho}(x_{\rho}) f'(\langle x_{\rho} \rangle).$$

In the case p=2 we readily see

(17)
$$\lim_{\rho \to \infty} \sum_{x_{\rho}=1}^{\frac{12^{\rho}}{2}} \chi(x_{\rho})\overline{\omega}(x_{\rho})r_{\rho}(x_{\rho})f'(\langle x_{\rho} \rangle) \\= (1+\chi(-1)) \lim_{\rho \to \infty} \sum_{x_{\rho}=1}^{\frac{12^{\rho-1}}{2}} \chi(x_{\rho})\overline{\omega}(x_{\rho})r_{\rho}(x_{\rho})f'(\langle x_{\rho} \rangle).$$

Consequently we obtain to $f \in \mathscr{UD}(U_p, \Omega_p)$ such that $f'(u) \in O_{g_p}$ for any $u \in U_p$

(18)
$$\chi(c)\mathfrak{M}_{\chi}(f^{c}) \equiv \mathfrak{M}_{\chi}(f) \pmod{p^{-1}q}.$$

If f is a *p*-power, then χ can be extended to a function on Z_p naturally and $\chi(c)$ for $c \in Z_p$, $(c, \mathfrak{f})=1$ is well determined. By the same argument as above, but using $cx=x_p+\mathfrak{f}p^er_p(x_p)$ with $x, x_p \in Z$, $r_p(x_p) \in Z_p$, we conclude the congruence (18) for any such *c*. Thus, take $c=\zeta_{p-1}$ a primitive (p-1)-th root of unity for p>2 and notice $\mathfrak{M}_{\chi}(f^c)=\mathfrak{M}_{\chi}(f)$, then we have $(1-\chi(\zeta_{p-1}))$ $\mathfrak{M}_{\chi}(f)\equiv 0 \pmod{p^o}$.

If χ is not of the second kind, then we have $\chi(\zeta_{p-1}) \neq 1$ and $1 - \chi(\zeta_{p-1})$ is

a unit and we see $\mathfrak{M}_{\chi}(f) \equiv 0 \pmod{p^0}$. In the case p=2, if χ is not of the second kind, then $\chi(-1) = -1$ and $\mathfrak{M}_{\chi}(f) = 0$ hold. In either case we have $\mathfrak{M}_{\chi}(f) \equiv 0 \pmod{p^{-1}q}$ for χ not of the second kind.

Next, if $f = f_0 p^{\mu}$, $(f_0, p) = 1$, $f_0 > 1$, then the canonical decomposition $\chi = \chi_0 \chi_1$ holds with $f_{\chi_0} = f_0$, $f_{\chi_1} = p^{\mu}$.

When we set $x=x_0\mathfrak{f}_0+x_1p^{\mu+\rho}+\mathfrak{f}p^\rho r_\rho(x_0,x_1)$, $1\leq x_0\leq p^{\mu+\rho}$, $0\leq x_1\leq \mathfrak{f}_0-1$, $1\leq x\leq \mathfrak{f}p^\rho$, the numbers $r_\rho(x_0,x_1)\in \mathbb{Z}$ are also well determined. The condition (x,p)=1 is equivalent to $(x_0,p)=1$. Then we have similarly as above

(19)
$$\langle x \rangle = \langle x_0 \mathfrak{f}_0 \rangle + \overline{\omega}(x_0 \mathfrak{f}_0) \ (x_1 p^{\mu+\rho} + \mathfrak{f} p^{\rho} r_{\rho}(x_0, x_1)),$$

and

$$\begin{split} \mathfrak{M}_{z}^{(\rho)}(f) &= \frac{1}{\lceil p^{\rho}} \sum_{x_{0}=1}^{p^{\mu+\rho}} \chi_{0}(x_{1}p^{\mu+\rho}) \chi_{1}(x_{0}^{\dagger}) f(\langle x_{0}^{\dagger}\rangle + \overline{\omega}(x_{0}^{\dagger})(x_{1}p^{\mu+\rho} + \frac{1}{\gamma}p^{\rho}r_{\rho}(x_{0}, x_{0}))) \\ &= \frac{1}{\lceil p^{\rho}} \sum_{x_{1}=0}^{\mathfrak{f}_{0}-1} \chi_{0}(x_{1}p^{\mu+\rho}) \sum_{x_{0}=1}^{p^{\mu+\rho}} \chi_{1}(x_{0}^{\dagger}) f(\langle x_{0}^{\dagger}\rangle + p^{\mu+\rho}\overline{\omega}(x_{0}^{\dagger})(x_{1} + \frac{1}{\gamma}p^{\rho}r_{\rho}(x_{0}, x_{1}))) \\ &= \frac{1}{\lceil p^{\rho}} \sum_{x_{1}=0}^{\mathfrak{f}_{0}-1} \chi_{0}(x_{1}p^{\mu+\rho}) \sum_{x_{0}=1}^{p^{\mu+\rho}} \chi_{1}(x_{0}^{\dagger}) f(\langle x_{0}^{\dagger}\rangle + p^{\mu+\rho}\overline{\omega}(x_{0}^{\dagger})(x_{1} + \frac{1}{\gamma}p^{\rho}r_{\rho}(x_{0}, x_{1}))) \\ &+ \frac{1}{\mathfrak{f}_{0}} \sum_{x_{1}=0}^{\mathfrak{f}_{0}-1} \chi_{0}(x_{1}p^{\mu+\rho}) \sum_{x_{0}=0}^{p^{\mu+\rho}} \chi_{1}(x_{0}^{\dagger})\overline{\omega}(x_{0}^{\dagger})(x_{1} + \frac{1}{\gamma}p^{\rho}r_{\rho}(x_{0}, x_{1})) \\ &\times \phi_{f}(\langle x_{0}^{\dagger}\rangle + p^{\mu+\rho}\overline{\omega}(x_{0}^{\dagger})(x_{1} + \frac{1}{\gamma}p^{\rho}r_{\rho}(x_{0}, x_{1})), \langle x_{0}^{\dagger}\rangle), \\ &= \frac{1}{\mathfrak{f}_{0}} \sum_{x_{0}=1}^{p^{\mu+\rho}} \sum_{x_{1}=0}^{\mathfrak{f}_{0}-1} \chi_{0}(x_{1}p^{\mu+\rho})(x_{0}^{\dagger})(x_{0}^{\dagger})(x_{1} + \frac{1}{\gamma}p^{\rho}r_{\rho}(x_{0}, x_{1}))) \\ &\times \phi_{f}(\langle x_{0}^{\dagger}\rangle + p^{\mu+\rho}\overline{\omega}(x_{0}^{\dagger})(x_{1} + \frac{1}{\gamma}p^{\rho}r_{\rho}(x_{0}, x_{1})), \langle x_{0}^{\dagger}\rangle). \end{split}$$

Hence we have

(21)
$$\mathfrak{M}_{\chi}(f) = \lim_{\rho \to \infty} \sum_{x_1=0}^{\mathfrak{f}_0-1} \chi_0(x_1 p^{\mu+\rho}) \sum_{x_0=1}^{p^{\mu+\rho}} \chi_1(x_0 \mathfrak{f}_0) r_{\rho}(x_0, x_1) f'(\langle x_0 \mathfrak{f}_0 \rangle).$$

In the case p=2 we see moreover

(22)
$$\mathfrak{M}_{\chi}(f) = \lim_{\rho \to \infty} (1 + \chi(-1)) \sum_{x_1=0}^{\mathfrak{f}_0-1} \chi_0(x_1 p^{\mu+\rho}) \sum_{x_0=1}^{2^{\mu+\rho-1}} \chi_1(x_0 \mathfrak{f}_0) \overline{\omega}(x_0 \mathfrak{f}_0) r_{\rho}(x_0, x_1) f'(\langle x_0 \mathfrak{f}_0 \rangle).$$

Consequently, if $f'(u) \in O_{\mathcal{Q}_p}$ for any $u \in U_p$, then we obtain

(23)
$$\mathfrak{M}_{r}(f) \equiv 0 \pmod{p^{-1}q}.$$

For a character χ of the second kind and p > 2 we set $x = \zeta_{p-1}^{\alpha} (1+p)^{\beta} + p^{\rho}R_{\rho}(\alpha,\beta), 0 \leq \alpha \leq p-2, 0 \leq \beta \leq p^{\rho-1}-1, 1 \leq x \leq p^{\rho}$ and determine $R_{\rho}(\alpha,\beta) \in \mathbb{Z}_{p}$.

Then we have

(24)
$$\mathfrak{M}_{\chi}^{(\rho)}(f) = \frac{p-1}{p^{\rho}} \sum_{\beta=0}^{p^{\rho-1-1}} \chi((1+p)^{\beta}) f((1+p)^{\beta}) + \sum_{\alpha=0}^{p-2} \sum_{\beta=0}^{p^{\rho-1-1}} \zeta_{p-1}^{-\alpha} \chi((1+p)^{\beta}) R_{\rho}(\alpha,\beta) \phi_{f}((1+p)^{\beta} + p^{\rho} \zeta_{p-1}^{-\alpha} R_{\rho}(\alpha,\beta), (1+p)^{\beta}).$$

Hence we have also

(25)
$$\mathfrak{M}_{\chi}(f) = \frac{p-1}{p} I_{0}(\chi((1+p)^{x})f((1+p)^{x})) + \lim_{\rho \to \infty} \sum_{\alpha=0}^{p-2} \sum_{\beta=0}^{p^{\rho-1-1}} \zeta_{p-1}^{-\alpha} \chi((1+p)^{\beta}) R_{\rho}(\alpha,\beta) f'((1+p)^{\beta}).$$

Thus, for $f \in \mathscr{UD}(U_p, \Omega_p)$ such that $f'(u) \in O_{\mathfrak{g}_p}$ for any $u \in U_p$ we obtain

(26)
$$\mathfrak{M}_{\mathfrak{x}}(f) \equiv \frac{p-1}{p} M_{\mathfrak{x}}(f) \pmod{p^{\mathfrak{0}}}.$$

Similarly in the case p=2 we have

(27)
$$\mathfrak{M}_{\chi}(f) = \frac{1}{2} I_{0}(\chi(5^{x}) f(5^{x})) + \lim_{\rho \to \infty} (1 + \chi(-1)) \sum_{\beta=0}^{2\rho-2-1} \chi(5^{\beta}) R_{\rho}(0, \beta) f'(5^{\beta}).$$

Namely, we have for $f'(u) \in O_{\mathcal{Q}_p}$ for any $u \in U_p$

(28)
$$\mathfrak{M}_{\mathfrak{x}}(f) \equiv \frac{1}{2} M_{\mathfrak{x}}(f) \pmod{2}$$

In the both cases we obtain finally

(29)
$$\mathfrak{M}_{\chi}(f) \equiv \frac{p-1}{p} M_{\chi}(f) \pmod{p^{-1}q}.$$

We summarize our results in the following

THEOREM 1. Let f be any function in $\mathscr{UD}(U_p, \Omega_p)$ such that $f'(u) \in O_{\mathfrak{Q}_p}$ for each $u \in U_p$. Then we have the congruences:

(30)
$$\mathfrak{M}_{\chi}(f) \equiv 0 \pmod{p^{-1}q}$$
 if χ is not of the second kind,

(31)
$$\mathfrak{M}_{\chi}(f) \equiv \frac{p-1}{p} M_{\chi}(f) \pmod{p^{-1}q}$$
 if χ is of the second kind.

For any $c \in Z$, (c, f) = 1 it holds that

(32)
$$\chi(c)\mathfrak{M}_{\chi}(f^{c}) \equiv \mathfrak{M}_{\chi}(f) \pmod{p^{-1}q}.$$

Furthermore, when the function f(u) is multiplicative, i.e. f(uv) = f(u)f(v) for any $u, v \in U_p$, we have the following Theorem 2.

From the definition we have

$$\begin{split} M_{\chi}(f^{1+p}) = & M_{\chi}(f) + \lim_{\rho \to \infty} \frac{1}{p^{\rho}} \{ f((1+p)^{p\rho}) - f(1) \} \\ = & M_{\chi}(f) + \lim_{\rho \to \infty} \frac{f((1+p)^{p\rho}) - f(1)}{(1+p)^{p\rho} - 1} \frac{(1+p)^{p\rho} - 1}{p^{\rho}}. \end{split}$$

Therefore we have

(34)
$$M_{\chi}(f^{1+p}) = M_{\chi}(f) + f'(1) \log (1+p).$$

By virtue of the multiplicative property $M_z(f^{1+p}) = \chi(1+p)f(1+p)M_z(f)$ it follows that

(35)
$$(1-\chi(1+p)f(1+p))M_{\chi}(f) = -f'(1)\log(1+p).$$

In the case p=2 quite similarly it also holds:

(36)
$$(1 - \chi(1+q)f(1+q))M_{\chi}(f) = -f'(1)\log(1+q).$$

Thus we obtain

THEOREM 2. For any multiplicative function $f \in \mathscr{UD}(U_p, \Omega_p)$ such that $f(u), f'(u) \in O_{\mathfrak{G}_p}$ for each $u \in U_p$ we have

(37)
$$(1-\chi(1+q)f(1+q))\mathfrak{M}_{\chi}(f) \equiv 0 \pmod{p^{-1}q}.$$

This is a generalization of determination of the denominators of the Bernoulli numbers.

§ 5. Examples

1) As usual we define a linear difference operator Δ for any sequence $\{a_m\}$ in Ω_p by $\Delta a_m = a_{m+1} - a_m$.

We take the function $f(u) = \frac{1}{q^k} \Delta^k \frac{1}{m} u^m$ for $m \ge 1$, where k denotes an

arbitrarily fixed non-negative rational integer. Then the formulas (30), (31) in Theorem 1 reduce simply to the known congruences of Kummer.

In fact we see

350

(33)

p-adic uniformly differentiable functions

(38)
$$f'(u) = \frac{1}{q^k} \Delta^k u^{m-1} = \frac{1}{q^k} u^{m-1} (u-1)^k \in \mathbb{Z}_p$$

and

(39)
$$\mathfrak{M}_{\mathfrak{x}}(f) = \frac{1}{q^{k}} \varDelta^{k} \mathfrak{M}_{\mathfrak{x}}\left(\frac{1}{m} u^{m}\right) = \frac{1}{q^{k}} \varDelta^{k} \frac{1}{m} D^{m}_{\mathfrak{x}w^{-m}},$$

where we put $D_{\chi\omega^{-m}}^{m} = -(1-\chi\omega^{-m}(p)p^{m-1})B_{\chi\omega^{-m}}^{m}$ with the *m*-th generalized Bernoulli number $B_{\chi\omega^{-m}}^{m}$ [3].

2) If we take $f(u) = -\frac{1}{1-s}u^{1-s}$, $s \in Z_p$, $s \neq 1$, then Theorem 1 means

a determination of the exact modules of continuity of p-adic L-functions of Kubota-Leopoldt. Namely, we see

(40)
$$f'(u) = -\frac{1}{1-s} \frac{d}{du} (e^{(1-s)\log u}) = -u^{1-s} u^{-1} = -u^{-s} \in Z_p,$$

and

(41)
$$\mathfrak{M}_{\chi}(f) = -\frac{1}{1-s} \mathfrak{M}_{\chi}(u^{1-s}) = L_{p}(s,\chi)$$

by the definition of the *p*-adic *L*-functions.

Thus we can know immediately:

(42)
$$L_p(s,\chi) \equiv 0 \pmod{p^{-1}q}$$
 for χ not of the second kind,

(43)
$$L_p(s,\chi) \equiv -\frac{u_p}{1-\chi(1+q)(1+q)^{1-s}} \pmod{p^{-1}q}$$

with a constant $u_p = -\frac{p-1}{p} \log (1+q)$ for χ of the second kind.

But these facts are already well known [2], [3].

3) When we select f(u) as $f(u) = \phi_{\chi_2}(u) = \chi_2(u)$ with any Dirichlet character χ_2 of the second kind, we have f'(u) = 0. Therefore all the congruences in Theorems 1, 2 are automatically equalities as can be seen in the preceding section. Thus we have

(44)
$$\mathfrak{M}_{\chi}(\phi_{\chi_2})=0$$
 for χ not of the second kind,

(45)
$$\mathfrak{M}_{\chi}(\phi_{\chi_2}) = \frac{p-1}{p} M_{\chi}(\phi_{\chi_2})$$
 for χ of the second kind,

(46)
$$M_{\chi}(\phi_{\chi_2}) = I_0(\phi_{\chi\chi_2}) = \begin{cases} 0 & \text{for } \chi \neq \bar{\chi}_2, \\ 1 & \text{for } \chi = \bar{\chi}_2. \end{cases}$$

4) Let χ be a Dirichlet character of the second kind. Multiplying $\bar{\chi}(u)$ to the both hand sides in (25) and summing over the elements in $T_p^{(m)}$ we have in the case $p \neq 2$

$$\sum_{\chi \in T_p^{(n)}} \mathfrak{M}_{\chi}(f) \bar{\chi}(u) = \frac{p-1}{p} \sum_{\chi \in T_p^{(n)}} I_0(f((1+p)^x)\phi_{\chi}((1+p)^x))\phi_{\bar{\chi}}(u) \\ + \lim_{\rho \to \infty} \sum_{\alpha=0}^{p-2} \zeta_{p-1}^{-\alpha} \sum_{\substack{0 \le \beta \le p^{\rho} - 1 - 1 \\ (1+p)^{\beta} = u}} p^n R_{\rho}(\alpha, \beta) f'((1+p)^{\beta}).$$

Consequently we have

(47)
$$\sum_{\boldsymbol{\chi}\in \mathcal{T}_p}\mathfrak{M}_{\boldsymbol{\chi}}(f)\phi_{\bar{\boldsymbol{\chi}}}(u) = \frac{p-1}{p}\sum_{\boldsymbol{\chi}\in \mathcal{T}_p}I_0(f((1+p)^x)\phi_{\boldsymbol{\chi}}((1+p)^x))\phi_{\bar{\boldsymbol{\chi}}}(u).$$

Note here that we regard $\psi(x) = \phi_z((1+p)^x)$ as a character of the additive group Z_p . Hence the sum

$$\sum_{\alpha \in T_p} I_0(f((1+p)^x)\phi_{\alpha}((1+p)^x))\phi_{\bar{\alpha}}(u)$$

is a Fourier series expansion of the function $g(x) = f((1+p)^x)$.

By making use of Woodcock's theory [4] we obtain

(48)
$$\sum_{\mathbf{x}\in T_p}\mathfrak{M}_{\mathbf{x}}(f)\phi_{\mathbf{x}}(u) = \frac{p-1}{p}f(u).$$

In the case p=2 we have quite the same.

In particular, if we take $f(u) = -\frac{1}{1-s}u^{1-s}$, then we conclude from the above

(49)
$$-\frac{1}{1-s}u^{1-s}=\frac{p}{p-1}\sum_{\boldsymbol{\chi}\in T_p}L_p(s,\boldsymbol{\chi})\phi_{\boldsymbol{\chi}}(u).$$

References

- T. Kubota and H. W. Leopoldt, Eine p-adische Theorie der Zetawerte: I, J. Reine Angew. Math., 214/215 (1964), 328-339.
- [2] J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, Lecture Notes in Math., 350 (1973), 191-268.
- [3] K. Shiratani, Kummer's congruence for generalized Bernoulli numbers and its application, Mem. Fac. Sci. Kyushu Univ. Ser. A, 26 (1972), 119-138.
- [4] C. F. Woodcock, Fourier analysis for p-adic Lipschitz functions, J. London Math. Soc., 7 (1974), 681-693.

 [5] C. F. Woodcock, An invariant p-adic integral on Z_p, J. London Math. Soc., 8 (1974), 731-734.

> DEPARTMENT OF MATHEMATICS KYUSHU UNIVERSITY 812 FUKUOKA