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§1. Introduction

The purpose of this paper is to give two theorems on the multiplicative
theory of p-adic Fourier analysis. Namely we shall treat operators M, with
Dirichlet characters y on the p-adic Banach algebra of p-adic uniformly
differentiable functions defined on the group U, of principal units in the
rational p-adic number field. Then we discuss several fundamental prop-
erties of IN,. Such operators I, for the analytic functions on U, are
already defined and investigated by Kubota-Leopoldt in order to introduce
their p-adic L-functions [1].

Recently C. F. Woodcock [4], [5] gave an additive theory of p-adic
Fourier analysis for p-adic Lipschitz functions. But we need the multi-
plicative theory to explain both the classical congruences of Kummer for
the Bernoulli numbers and the modules of continuity of the p-adic L-func-
tions clearly, and hence to extend our previous results [3] about the Bernoulli
numbers to the ones for more general p-adic functions.

§2. Preliminaries

Let Q, be the rational p-adic number field and Z, the ring of all rational
p-adic integers. The ring of rational integers is denoted by Z. We set
g=p for the prime p>2 and ¢=4 for p=2, and we use the normalized ex-
ponential valuation v, of @, such that v,(p)=1 and extend it to a valuation
on the completion 2, of the algebraic closure of @,. The ring of integers
in 2, is written by O,,.

We define a norm for 2,-valued continuous functions f defined on Z,
by

(1) v(f) =£relizn vo(f(2)).

Then we know that all such functions form a p-adic Banach algebra
¥(Z,, 2,) under the pointwise operations and the above norm.
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Now, we set
(2) Up={ue Q*;v,(u—1)=v,(}

Then U, is the group of all principal units of Q, (p>2) or its subgroup
of index 2 (p=2)-
The correspondence

log u
3 uelU r= eZ
(3) ? log(1+q) °

gives an isomorphism of the multiplicative group U, and the additive group

Z , algebraically and topologically. Hence there is an isomorphism between

the p-adic Banach algebra € (U,, 2,) under the norm »(f)=min v,(f(w)) for
u€Up

fe?U,, 2, and the p-adic Banach algebra 4(Z,, 2,).
By a Lipschitz function fe %(U,, 2,) we mean a function for which

there exists a real constant R such that vp(M)gR holds for all u,
U—2

ve U, u#v. If we set

(4) R(f)= inf (f_(u):i(i&)

“gspe N U0
and define a norm V(f) for a Lipschitz function f by
(5) V(f)=min u(f), R(f)),

then all 2,-valued Lipschitz functions defined on U, under the pointwise
operations and the norm V form a p-adic Banach algebra Zi» (U,, 2,).

If, for a given function f: U,—£,, there exists a continuous function
é,(u,v): Upyx U,—R, such that we have for all u,ve U,, u#v

(6) &, v)=— W =J®

uU—v

then we call f a uniformly differentiable function.
In this case we have

(7) E(N= E,I;fv vo(@s (U, v)) =v(dy)

and all uniformly differentiable functions make a subalgebra of the algebra
ZLip (Up, 2,). It is denoted by #2(U,, 2,).

Now, the dual group of U, in the sense of Pontrjagin is isomorphic to
the p-adic torus Tp—_—lir})l Z|p"Z and if we take the functions ¢,(u)=y(u) on

n
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U, corresponding to the elements y of 7', then we obtain, from the additive
theory of Woodcock and by the isomorphism (3), a Fourier series expansion
of fewaU, 2,

(3) A =le M(f$)9,(w).
Herein we denote by M( J$2), simply written by M :(/), the integral
M(fé)=1,(f ((1 + Q)”)sﬁx((l + )

_hm — Z S(@+ 99,1+ @),

p—oo

(9)

and the sum over y means the limit of partial sums over all elements x in
the cyclic subgroup T of order p” of T, under letting n tend to the infinity.
Finally y denotes the inverse character y~* of .

In the above we note that y can be regarded as a Dirichlet character of
the second kind, namely such character of the conductor p-power, that
satisfies y(x)=yx(<x>) for the canonical decomposition z= o@Xzy of xeZ,
(x, p)=1 with (x> € U,, where w(x)——hm x?* for p>2 or w(x)= +1=x (mod 4)

for p=2. We call any other Dlrlchlet character to be not of the second
kind, namely it does not satisfy these conditions. Furthermore we see at
once ¢,(u) € #2(U,, 2,) and ¢, (u)=0.

§3. The operator I,

Let x be a primitive Dirichlet character with conductor f,=f.
For any fe#2(U,, 2,) and any non-negative rational integer p we set

(10) Wﬁi”’(f)=—nl)T S x@) s,

where * denotes to take sum over all integers prime to p in the given range.
First we give an elementary lemma as follows.

LEMMA. If fe%U,, 2,), then we have
fpe
lim 3% () /(i) =0.

ProoF. Take a p-power p* arbitrarily and fix it. By continuity of f
there is a bound ¢, such that (¢>={i,> (mod p°) with ¢=¢, yields JKD)
= f(%,) (mod p*). Hence, for p sufficiently large we see

S @S @)= 53# 26 SN, (mod p,
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where N, =4 {ie Z; 1<i<fp?, (4, p)=1, i=1%, (mod fp”)}.
Thus we see

S A7 K= S 1@ Ciyp=* (mod p),
from which we have for p sufficiently large
ﬁ* 2@ f(E)=0 (mod p*).

This means our assertion.
Now, from the definition we see readily

D2 (f)= Z* 2(@) f(x))

T p+1

v ,W I RPIPCAF RS CR BN

e SRS,

where @ means also the inverse character o™ of w.
Therefore we have

EIR)(CPH)(f) EIR(")(_f)
o Z 2@ ax,)ipey L KEe2 + 8@ = FK,))

12 fpm ==t =0 a(z,)ip*y
Z* 1(@,) z o,y a2+ 3@ N =T K2) |
et a(z,)p*y

and we see

BT )
=2 S atw) 5ot )ugi e +o)ipry )

l‘p—-

A9 1 Shaie) ot us ) @)

wp—l

Because we have ¢,(u, u), ¢,(u+a@®)ip°y, w) € €(U,, 2,) we conclude by
Lemma and uniform continuity of ¢,(u,v) that ML(f)—MP()—0 as
p—)OO.

Furthermore we have
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(14) v (M2 () —MP(N=R(NH—1
for any p. It follows from this that the operator I, defined by

M, () =lim MP(f)

is a bounded operator, and hence a continuous operator on #2(U,, 2,).

§4. Fundamental properties of IV,

ForceZ, (¢,)=1and fe%#2(U,, 2,) we define f°(w)=f(c>u). Then
we see [ e #D(U,, 2,). By the condition cx=x,+fprr,(x,) with 1=z, <{p*,
1<z =<fp* the numbers r,(x,) € Z depending on ¢ are well determined. We
have easily

foe
M (f°)=7c(c)ﬁ17 S L) Ky + (@) o, @)
Tp=
(15) =7(0)MP(f)
1

PO S )0l )+ 0 )07 (), .

Therefore we obtain from Lemma as before

(16) M, (f)=2()M, (/) + x(c) lim f‘ﬁpl* 1@ )ax,)r,(@,) Kz,

p—o Tp=

In the case p=2 we readily see

2f
lim >3* y(x)a(x,)r,(2,)f (z,»)
an e oot
=@ +2(=1) lim 2 @)@, (@) [ Ke,)).
Consequently we obtain to fe#2(U,, 2,) such that f'(u)e O,, for any
ue U,

(18) 2B, (f)=M,(f) (mod p~g).

If § is a p-power, then y can be extended to a function on Z, naturally
and y(c) for ce Z,, (¢, )=1 is well determined. By the same argument as
above, but using cx=2z,+{p*r,(z,) with z,x, e Z, r,(x,) € Z,, we conclude the
congruence (18) for any such ¢. Thus, take ¢={,_, a primitive (p—1)-th
root of unity for p>2 and notice M, (f)=M,(f), then we have (1—x(,_))
M, (=0 (mod p°).

If y is not of the second kind, then we have y({,_;)#1 and 1—x(&,_,) is
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a unit and we see M,(/)=0 (mod p°). In the case p=2, if y is not of the
second kind, then y(—1)=—1 and IM,()=0 hold. In either case we have
M, (=0 (mod p~'q) for y not of the second kind.

Next, if f={p*, (f, P)=1, f,>>1, then the canonical decomposition y
=y, holds with f,,=f, f,,=p*.

When we set z=f+xp***+fpr, (2, 2), 1<2,<p*+e, 0<2,<f,—1,
1=<z=<f{p’, the numbers r,(x,, x,) € Z are also well determined. The condi-
tion (x, p)=1 is equivalent to (2, p)=1. Then we have similarly as above

19) <x> =<{ofoy + @(x,fy) (,p*+°+ fp"r,,(xo, z,)),
and
MP ()= f - EZ_}* Z. Xo(@ 0"+ ) (2§ o) f (2oFop + (@ ofo) (@ 0"+ + Toer, (20, 2,)))

=—p Z_: Xo(@,0"*?) F”Z_:; 1@ of0) S ((2ofo) + 0" *@(ofo) (x, + 107, (@, )

Z Xo(@:0%*°) Z* pACADNACET)

fp" d1=0
@) o+ f; PIPTCY LD HPACINCHNCRRINCHED)
X ¢ xofop + 0+ @2, (@, + fu”'p(xo’ 21), {&ofo))s
"‘T pli;} OZ:: Yo+ )3 (T ) (@, (@, +f07' (2, )

X & 7(2ofop 4 0* e (o) (@, + T (@5 1)), {Zofo ).

Hence we have

@D M, (f)=lim Z Xo(@D**°) Z* xl(wofo)r (@or 20) ' ({%of0)-

p—oo £1=0

In the case p=2 we see moreover

22) M, (N=Ilim 1+ x(-1)) Z @pr) Z* PACAN O CANNCIENYMCEHTIN

p—o .l'l—
Consequently, if f'(u) € O,, for any u e U,, then we obtain

(23) M, (=0 (mod p~'q).

For a character y of the second kind and p>2 we set x={;_,(1+p)*
+p°R,(a,p), 0Sa<p—2,0<p=<p*'—1,1=<x<p’ and determine K ,(a, ) € Z,.
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Then we have

M ()= p— Z x((1+10)")f((1+p)")

@D +5 ;j (A + DR, (@, g (L +) + 1T R (, B, (L+D)P).

a=0

Hence we have also

M, =L LA+ 1)) 7 (L +p)?)

(25) R
+lim Z Z= (L4 DR (a, B) S (1 +D)?).

PR a=
.Thus, for fe#2(U,, 2,) such that f/(u) e O,, for any u € U, we obtain
_p—1 0
(26) m,(f )=—p—Mz(f ) (mod p°).
Similarly in the case p=2 we have

ﬁvtx<f)=llo(x<5x)f(5m))
@7

pP—2-_1

+11m A 4x(— 1)) Z 2159)R,(0, p) ' (59).
Namely, we have for f/(u) e O,, for any ue U,
(28) ()= 3 M) (mod 2.
In the both cases we obtain finally

29) Wf)z”leMz(f) (mod p~g).

We summarize our results in the following

THEOREM 1. Let f be any function in #2(U,, 2,) such that f'(u) e O,,
for each we U,. Then we have the congruences:

(30) M, (=0 (mod p~q) if x is not of the second kind,

31 me(f)—_—“p—gl—Mx(f) (mod p~'q) if y is of the second kind.
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For any ce Z, (¢, f)=1 it holds that
(32) 2OM(f)=M,(f) (mod p~'¢).

Furthermore, when the function f(u) is multiplicative, i.e. f(uv)
= f(w) f(v) for any u, v € U,, we have the following Theorem 2.
From the definition we have

M,(F*7)=M,(f)+1im p—lp{f((lﬂo)-"”’)—f(l)}

33
) () 4 lim T QD) =T D) A4p—1

= D)1 P

Therefore we have
34) M,(f*?)=M,(f)+ Q) log 1+p).

By virtue of the multiplicative property M, (f**?)=x1+p)fA+p)M,(f)
it follows that

(35) A=A+ SA+pNM ()= —f'1) log (1+p).
In the case p=2 quite similarly it also holds:

(36) A—xA4+fA+M (f)=—f"(1) log A+ Q).
Thus we obtain

THEOREM 2. For any multiplicative function f e #2(U,, 2,) such that
S, f'(w) € Oy, for each u e U, we have

37 1—21+@fA+ )M, ()=0 (mod p~'9).

This is a generalization of determination of the denominators of the
Bernoulli numbers.

§5. Examples

1) As usual we define a linear difference operator 4 for any sequence
{an}in 2, by 4 @ =0n ,1—Cn.

We take the function f(u):ikd"_l—um for m>=1, where k& denotes an
q m

arbitrarily fixed non-negative rational integer. Then the formulas (30), (31)
in Theorem 1 reduce simply to the known congruences of Kummer.
In fact we see
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(38) 1) :71174'6 um‘lz_c}lk—um“(u—l)k cZ,

and

(39) O L O S
g m

where we put D7,_.=—1—yo ™P)p™ )B},-» with the m-th generalized
Bernoulli number B7,-. [3]. :

u'~%, seZ,, s+1, then Theorem 1 means

2) It we take /()= —— 1

a determination of the exact modules of continuity of p-adic L-functions of
Kubota-Leopoldt. Namely, we see

/ 1 d —5) log u 1-8,,—1 -8
(40) f(u):_——l——s%( U=9loguy — _ql-sy~le gV e Z,,
and
() ()= — T =Li(s, )

by the definition of the p-adic L-functions.
Thus we can know immediately :

42) L,(s,1)=0 (mod p~'q) for y not of the second kind,

43 L,(s,9)=— Up dp-
@) R B

p—1

with a constant u,=— log (1+ ¢q) for y of the second kind.

But these facts are already well known [2], [3].

3) When we select f(w) as f(u)=¢,,(w) =y,(w) with any Dirichlet char-
acter y, of the second kind, we have f/(w)=0. Therefore all the congruences
in Theorems 1, 2 are automatically equalities as can be seen in the preceding
section. Thus we have

(44) MN.(,,)=0 for y not of the second kind,
(45) me(gﬁ“):pTTlMx(qS“) for y of the second kind,
0 for y+#7,,
(46) M, (6,) =1 = s
1 for y=7,.
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4) Let y be a Dirichlet character of the second kind. Multiplying 7(u)
to the both hand sides in (25) and summing over the elements in 7™ we
have in the case p#2

> mw=L=1 3 LA+ DIA+ D,

xeT;") XGT;,"
. =2
+1lim p ey ) ; PR A (A+D)).
p—o a= SpspP—1-
1+p)B=u

Consequently we have
47) eZIT m,(f )szf,z(u)zp—;l ;; L(F (A +D0))$,(L+D0)))d,(w).

Note here that we regard (x) =¢,((1+ p)®) as a character of the additive
group Z,. Hence the sum

X;I L,(f (A +p))g,(1+ D))y (w)

is a Fourier series expansion of the function g(z)= f((1+p)?).
By making use of Woodcock’s theory [4] we obtain

48) b Wf)qsi(u):ﬁ;—lf(u).

In the case p=2 we have quite the same.

%', then we conclude from the

In particular, if we take f(u)=— i 1

—s
above
1 - /4
49 — U = L,(s, 1. (w).
(49) T g 5, Tl 06,
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