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Abstract

In our note we discuss some strongly elliptic modifications of the total variation
inpainting model formulated in the space BV(Ω) and investigate the corresponding
dual variational problems.

Remarkable features are the uniqueness of the dual solution and the uniqueness
of the absolutely continuous part∇au of the gradient of BV-solutions u on the whole
domain. Additionally, any BV-minimizer u automatically satisfies the inequality
0 ≤ u ≤ 1, which means that u measures the intensity of the grey level.

Outside of the damaged region we even have the uniqueness of BV-solutions,
whereas on the damaged domain the L2-deviation ∥u − v∥L2 of different solutions
is governed by the the total variation of the singular part ∇s(u − v) of the vector
measure ∇(u− v).

Moreover, the dual solution is related to the BV-solutions through an equation
of stress strain type.

1 Introduction

In this note we continue the analysis of some perturbations of the total variation image
inpainting method started in [BF2]. There is a variety of different image inpainting
techniques (see, e.g., [ACS], [BHS], [BCMS], [CKS], [CS], [PSS], [Sh] and the references
quoted therein), one of them being the variational approach, where the reconstructed
image is found as a minimizer of the functional

J [u] =

∫
Ω

Ψ(|∇u|) dx+
λ

2

∫
Ω−D

(u− f)2 dx . (1.1)

Here and in what follows Ω denotes a bounded Lipschitz domain in R2, and D is a L2-
measurable subset of Ω with the property

0 < L2(D) < L2(Ω) , (1.2)

where L2 stands for Lebesgue’s measure in the plane.

We further assume that Int(D) ̸= ∅, where Int(D) is the set of interior points of D. On
Ω − D we are given a measurable function f with values in [0, 1], f(x) measuring the
intensity of the grey level at x ∈ Ω−D.

Now one wants to restore the missing part D → [0, 1] of the black and white image by
minimizing the functional J from (1.1) for suitable choices of densities Ψ and with free
parameter λ > 0.
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A very popular choice is Ψ (|∇u|) := |∇u|, i.e. one considers the total variation (TV)
inpainting model. In this case the correct space for the functional J is the class BV(Ω)
consisting of all functions u ∈ L1(Ω) whose distributional gradient is a vector valued
Radon measure on Ω with finite total variation

∫
Ω
|∇u|. For details concerning the space

BV(Ω) we refer to [Gi] or [AFP].

In our paper we are going to replace the unpleasant quantity
∫
Ω
|∇u| through a strictly

convex functional
∫
Ω
F (∇u) of the vector measure ∇u. For this case it is possible to give

a rather complete picture of the set of solutions of the problem∫
Ω

F (∇u) +
λ

2

∫
Ω−D

(u− f)2 dx → min in BV(Ω) .

Moreover, we can pass to the dual variational problem for which we show unique
solvability and establish some regularity properties of the maximizer.

Let us fix our assumptions and notation: suppose that F : R2 → [0,∞) is of class C2

satisfying

F (0) = 0 , DF (0) = 0 , F (−p) = F (p) , (1.3)

0 < D2F (p)(q, q) ≤ ν1 (1 + |p|)−1 |q|2 , (1.4)

|DF (p)| ≤ ν2 , (1.5)

F (p) ≥ ν3|p| − ν4 (1.6)

with constants ν1, ν2, ν3 > 0, ν4 ∈ R, for all p, q ∈ R2, q ̸= 0. Note that (1.5) together
with F (0) = 0 gives the validity of F (p) ≤ ν2|p| for all p ∈ R2.

It is often convenient to replace (1.4) by the stronger condition of µ-ellipticity

ν0 (1 + |p|)−µ |q|2 ≤ D2F (p) (q, q) ≤ ν1 (1 + |p|)−1 |q|2 (1.4µ)

with ν0 > 0 and exponent µ > 1. As it is outlined in [Bi], Remark 4.2, p. 97, the
inequality (1.6) then follows from (1.3), (1.4µ) and (1.5).

In the TV-case, the density just depends on the modulus of ∇u, which also motivates the
study of integrands F being of the special form

F (p) = Φ (|p|) , p ∈ R2 , (1.7)

with Φ: [0,∞) → [0,∞) of class C2. In order to have (1.3) - (1.6) we then require (with
suitable constants νi > 0)

Φ(0) = 0 = Φ′(0) , (1.3∗)

0 < min

{
Φ′(t)

t
,Φ′′(t)

}
, max

{
Φ′(t)

t
,Φ′′(t)

}
≤ ν1

1

1 + t
, (1.4∗)
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Φ(t) ≥ ν3t− ν4 (1.6∗)

for all t ≥ 0. Note that 0 ≤ Φ′(t) ≤ ν2 directly follows from the second inequality in
(1.4∗), and (1.4µ) is implied by the requirement

ν0 (1 + t)−µ ≤ min

{
Φ′(t)

t
,Φ′′(t)

}
. (1.4∗µ)

In the paper [BF1] we constructed examples of densities satisfying all these conditions:
for µ > 1 let

Fµ(p) := Φµ (|p|) , p ∈ R2 , (1.8)

Φµ(t) :=

∫ t

0

∫ s

0

(1 + r)−µ dr ds, t ≥ 0 , (1.9)

where in (1.9) the integrand (1 + r)−µ can be replaced by (ε+ r)−µ or (ε+ r2)
−µ/2

for
some parameter ε > 0. We have the explicit formulas

Φµ(t) =
t

µ− 1
+

1

µ− 1

1

µ− 2
(t+ 1)−µ+2 − 1

µ− 1

1

µ− 2
, µ ̸= 2 ,

Φ2(t) = t− ln (1 + t) , t ≥ 0 ,

and the energy density Fµ from (1.8) approximates the TV-density in the sense that

lim
µ→∞

[(µ− 1)Fµ(p)] = |p| , p ∈ R2 .

Assuming that F satisfies (1.3) - (1.6) we next look at the variational problem

I[u] :=

∫
Ω

F (∇u) dx+
λ

2

∫
Ω−D

(f − u)2 dx → min , (1.10)

which due to the linear growth of F has to be formulated in the Sobolev space W 1
1 (Ω)

(see, e.g., [Ad] for definitions) but in general is not solvable in this non-reflexive class.

However we could show in [BF2], Theorem 1.3 and 1.4:

Theorem 1.1. Let (1.2) hold and suppose that we have (1.3), (1.4µ) with 1 < µ < 2 and
(1.5), where the validity of F (−p) = F (p) is not required.

i) Then the problem (1.10) admits a unique solution u ∈ W 1
1 (Ω).

ii) The function u satisfies u(x) ∈ [0, 1] (i.e. u(x) measures the intensity of the grey
level at x ∈ Ω).
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iii) The quantity σ := DF (∇u) is continuous in the interior of Ω. Moreover, there is
an open subset Ω0 of Ω such Hε (Ω− Ω0) = 0 for any ε > 0 and u ∈ C1,α(Ω0) for
all α < 1, where Hs is the s-dimensional Hausdorff-measure. In particular we have
Int(D) ⊂ Ω0.

Theorem 1.1 can be understood in the sense that for µ-elliptic integrands with exponent
1 < µ < 2 our variational problem is uniquely solvable in the framework of the classical
Sobolev space W 1

1 (Ω), the solution satisfies the natural constraint 0 ≤ u(x) ≤ 1 and in
addition has a high degree of regularity.

As outlined in [Bi], p. 132, Theorem 1.1 can not be expected to hold at least for µ > 3
(we conjecture that µ = 2 in general is the best possible choice in the presence of a data
term

∫
|u− f |2 dx), thus the question arises how to deal with problem (1.10) in general,

e.g. for exponents µ > 2, if we have a µ-elliptic density.

A very natural approach is to use the notion of a convex function of a measure as done
in e.g. [AG], [DT] or [GMS1], [GMS2] by letting for w ∈ BV(Ω)

K[w] :=

∫
Ω

F (∇aw) dx+

∫
Ω

F∞
(

∇sw

|∇sw|

)
d|∇sw|+ λ

2

∫
Ω−D

(w − f)2 dx . (1.11)

Due to the embedding BV(Ω) ↩→ L2(Ω) (for the 2D case) the third integral is well defined.
For vector valued Radon measures ρ we let ρa(ρs) denote the regular (singular) part of ρ
w.r.t. to the measure L2, and F∞ is the recession function of F , i.e.

F∞(p) := lim
t→∞

1

t
F (tp) , p ∈ R2 .

If F satisfies in addition (1.7), then it holds

F∞(p) = Φ∞|p| , Φ∞ := lim
t→∞

1

t
Φ(t) ,

and for the particular case
F (p) := (µ− 1)Φµ (|p|)

with Φµ defined in (1.9) we obtain F∞(p) = |p|.

Now we can state our first theorem which shows solvability in BV(Ω) and gives the
uniqueness of the absolutely continuous part ∇au of the gradient of BV-solutions on the
whole domain and additionally the uniqueness of BV-solutions outside of the damaged
region.

Theorem 1.2. Let D satisfy (1.2) and let (1.3), (1.4), (1.5), (1.6) hold for F , which in
particular is true for Fµ(p) = Φµ (|p|) with Φµ from (1.9) with µ > 1.

Then it holds:
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i) The problem K → min in BV(Ω), K defined in (1.11), admits at least one solution
and each solution satisfies the inequality 0 ≤ u(x) ≤ 1 a.e.

ii) Suppose that u and ũ are K-minimizing in BV(Ω). Then

u = ũ a.e. on Ω−D and ∇au = ∇aũ a.e. on Ω .

If F is of the form (1.7) (with Φ satisfying (1.3∗), (1.4∗) and (1.6∗)), then we deduce

|∇su| (Ω) = |∇sũ| (Ω) .

iii) If I is defined according to (1.10), then

inf
W 1

1 (Ω)
I = inf

BV(Ω)
K .

iv) Let M denote the set of all L1(Ω)-cluster points of I-minimizing sequences from
the space W 1

1 (Ω). Then M coincides with the set of all BV(Ω)-minimizers of the
functional K.

v) For any u ∈ M there exists an open subset Gu of G := Int(D) such that u ∈
C1,α(Gu) for any α ∈ (0, 1) and L2(G−Gu) = 0.

From ii) of Theorem 1.2 we deduce the uniqueness in the case of W 1
1 -solvability and in

the general case an estimate for the L2-deviation ∥u − v∥L2 of different solutions on the
damaged domain in terms of ∇s(u− v), precisely:

Corollary 1.1. i) If there exists u ∈ M such that u ∈ W 1
1 (Ω), then we must have

M = {u}.

ii) Suppose that D ⊂ Ω. Then it holds for u, v ∈ M

∥u− v∥L2(Ω) = ∥u− v∥L2(D) ≤
1

2
√
π
|∇s(u− v)| (D) .

In particular, the constant on the r.h.s. is not depending on the free parameter λ.

To justify i) of Corollary 1.1 we consider u, v ∈ M and assume u ∈ W 1
1 (Ω). From

K[u] = K[v] we get with Theorem 1.2 ii): 0 =
∫
Ω
F∞

(
∇sv
|∇sv|

)
d |∇sv|, hence ∇sv = 0 and

thereby v ∈ W 1
1 (Ω) together with ∇u = ∇v. But then u = v on Ω since u = v on Ω−D.

For ii) we just observe that due to D ⊂ Ω and u − v = 0 on Ω − D the function u − v
has compact support, thus we can apply the Sobolev-Poincarè inequality Theorem 1.28,
p. 24, from [Gi] with optimal constant stated on p. 151 in [GT].

Remark 1.1. From iii) and iv) in Theorem 1.2 we see that the minimization of K in
BV(Ω) is a natural extension of the original problem (1.10) being in general unsolvable in
W 1

1 (Ω). Moreover, we clearly have I = K on W 1
1 (Ω).
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Remark 1.2. Since minimizers automatically satisfy 0 ≤ u(x) ≤ 1 a.e., they can be
interpreted as measures for the intensity of the grey level.

Remark 1.3. According to Theorem 1.2 ii) we have “uniqueness on Ω − D”, and the
measures ∇u, ∇ũ may only differ in their singular parts.

For the µ-elliptic case we can construct K-minimizers which show a nice behaviour in the
interior of the inpainting region.

Theorem 1.3. Suppose that D satisfies (1.2) and let (1.3), (1.4µ) and (1.5) hold for the
density F , in particular we may choose F = Fµ defined according to (1.8) and (1.9).

i) In case µ < 3 we can find a K-minimizer u ∈ BV(Ω) such that u ∈ C1,α (Int(D))
for any 0 < α < 1.

ii) If µ = 3, then there exists a K-minimizer u ∈ BV(Ω) such that u ∈ W 1
1,loc (Int(D)).

We even have
∫
C
|∇u| ln

(
1 + |∇u|2

)
dx < ∞ for each compact subset C of Int(D).

In the theory of perfect plasticity (see, e.g. [FS]) the underlying variational problem is
formulated on the non-reflexive space BD(Ω) of functions having bounded deformation
and for the same reasons as outlined above one has to pass to a suitable relaxed version
of the original problem. But in plasticity there is a natural alternative: if one looks at
the dual variational problem, then it turns out that there is unique maximizer, namely
the stress tensor σ.

In analogy to this mechanical point of view we now will also consider the problem dual
to “K → min in BV(Ω)”, whose solution σ in the widest sense equals DF (∇au), if u is a
K-minimizer from BV(Ω).

Let us note that this analogy is not only formal, although the given data f are not
related to any mechanical quantities, at least we do not know such an interpretation.

Nevertheless, the dual solution σ is a part of the regularized problem in the sense that now
the gradient of the grey level produces a stress tensor obeying the constitutive law (stress-
strain relation) of the particular regularization. Here the data term

∫
Ω−D

(u − f)2 dx
in fact plays the role of a volume force for the given regularization. For instance, the
constitutive law of the TV regularization allows sharp edges in correspondence to perfect
plasticity or perfectly plastic fluids, where we may have jumps of the tangential velocities
of different layers. It would be interesting to know, if the dual solution is a significant
quantity in image analysis and if the mechanical point of view might lead to new results.

Let F satisfy (1.3) - (1.6) (of course partially the following considerations work under
much weaker requirements). We define the Lagrangian

l(v, τ) :=

∫
Ω

[τ · ∇v − F ∗ (τ)] dx+
λ

2

∫
Ω−D

(v − f)2 dx
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for v ∈ W 1
1 (Ω) and τ ∈ L∞(Ω,R2). Here F ∗ is the function conjugate to F , i.e.

F ∗(q) := sup
p∈R2

[p · q − F (p)] , q ∈ R2 .

According to [ET], Proposition 2.1, p. 271, it holds∫
Ω

F (p) dx = sup
τ∈L∞(Ω,R2)

∫
Ω

[τ · p− F ∗(τ)] dx

for functions p ∈ L1(Ω,R2), and this leads to the representation

I[u] = sup
τ∈L∞(Ω,R2)

ℓ(u, τ), u ∈ W 1
1 (Ω) , (1.12)

for the functional I from (1.10). We now introduce the dual functional

R : L∞ (
Ω,R2

)
−→ [−∞,∞] , R[τ ] := inf

v∈W 1
1 (Ω)

l (v, τ) .

Our main result on the dual variational problem is

Theorem 1.4. Suppose that we have (1.2) - (1.6) for the data. Then it holds:

i) The dual problem
R → max in L∞(Ω,R2)

admits at least one solution. Moreover, the inf - sup relation

inf
v∈W 1

1 (Ω)
I[v] = sup

σ∈L∞(Ω,R2)

R[σ] ,

I from (1.10), is satisfied.

ii) We have uniqueness if the conjugate function F ∗ is strictly convex on the set
{p ∈ R2 : F ∗(p) < ∞}.
This in particular is true for F = Fµ with Fµ from (1.8) and (1.9). More generally,
we can look at F of the type (1.7) with Φ of class C3 satisfying (1.3∗), (1.4∗) and
(1.6∗).

iii) If the condition for uniqueness holds, then the unique maximizer satisfies

σ ∈ W 1
2,loc(Int(D),R2) as well as σ(x) = DF (∇au(x)) a.e. on Int(D) ,

where u is any K-minimizer from the space BV(Ω).

In addition, σ is Hölder continuous on an open subset of Int(D) with full measure
for any exponent α ∈ (0, 1).
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iv) Suppose that the condition for uniqueness is satisfied and that in addition we have
(1.4µ) with 1 < µ < 3. Then the dual solution is of class C0,α (Int(D),R2) for any
α < 1.

If the observed intensity f : Ω − D → [0, 1] has a certain degree of regularity, then for
u ∈ M the possible singular part of the measure ∇u is supported on D, moreover, the
maximal solution from Theorem 1.4 ii) is in the space W 1

2,loc

(
Ω−D,R2

)
, more precisely

it holds:

Theorem 1.5. Let (1.2) - (1.6) be satisfied and assume that f ∈ W 1
2,loc

(
Ω−D

)
. Then

we have:

i) The unique restriction v of any u ∈ M to the set Ω − D belongs to the class
W 1

2,loc(Ω−D).

ii) If the condition for uniqueness stated in Theorem 1.4 ii) is satisfied, then the unique
R-maximizer σ is an element of the space W 1

2,loc

(
Ω−D,R2

)
. It holds

div σ = λ(v − f) a.e. on Ω−D .

Moreover, we have the duality relation

σ = DF (∇v) a.e. on Ω−D .

Our paper is organized as follows: in Section 2 we give the proof of Theorem 1.2 studying
the relaxed version of the original problem (1.10). The dual problem is investigated in
Section 3, i.e. we present the proof of Theorem 1.4. The discussion of Theorem 1.3 is the
subject of Section 4, and in Section 5 we finally establish Theorem 1.5.

2 Minimization in BV. Proof of Theorem 1.2

We start with some auxiliary results assuming from now on the validity of our hypotheses
(1.2) - (1.6).

Lemma 2.1. Let u ∈ BV(Ω) be given. Then there exists a sequence un ∈ C∞(Ω)∩W 1
1 (Ω)

such that (as n → ∞)

un → u in L1(Ω),∫
Ω

√
1 + |∇un|2 dx →

∫
Ω

√
1 + |∇u|2,∫

Ω

∇un dx →
∫
Ω
∇u .


(2.1)

Proof. See [AG], Proposition 2.3. Here the quantity
∫
Ω

√
1 + |∇u|2 is defined according

to [AG], Definition 2.1, or [DT], p. 675. �

8



Lemma 2.2. For u ∈ BV(Ω) let

K̃[u] :=

∫
Ω

F (∇au) dx+

∫
Ω

F∞
(

∇su

|∇su|

)
d |∇su| .

i) Suppose that un, u ∈ BV(Ω) such that un → u in L1(Ω). Then it holds:

K̃[u] ≤ lim inf
n→∞

K̃[un] . (2.2)

ii) If we know in addition ∫
Ω

√
1 + |∇un|2 −→

∫
Ω

√
1 + |∇u|2 ,

then it follows
lim
n→∞

K̃[un] = K̃[u] . (2.3)

Proof.

i) From un → u in L1
(loc)(Ω) we immediately get K[u] ≤ lim infn→∞ K[un], where K

is the relaxed functional defined in [AFP], formula (5.60), p. 298 (compare also
Remark 5.46 on p. 303 in this reference).

However, as it was shown in [GS], we have K̃ = K on BV(Ω) (see also [AFP],
Theorem 5.4.7, p. 304), thus (2.2) follows.

ii) Now assume in addition to un → u in L1(Ω) that

lim
n→∞

∫
Ω

√
1 + |∇un|2 =

∫
Ω

√
1 + |∇u|2

holds. Then from Proposition 3.13, p. 125, in [AFP] we deduce that (un) weakly*
converges to u in BV(Ω), so that in particular ([AFP], Definition 3.11, p. 124)∫

Ω

ϕ d(∇un) →
∫
Ω

ϕ d(∇u)

for ϕ ∈ C0
0(Ω). Thus we may quote [AG], Proposition 2.2, to get our claim (2.3).

For further details we also refer to [BS], Theorem 2.4 and Remark 2.5. �

Let un ∈ BV(Ω) denote a K-minimizing sequence. Then we follow the arguments used

in the proof of Theorem 2 in [BF3] to see that K̃ [max (un, 0)] ≤ K̃[un]. Alternatively we
observe that this inequality is immediate for u ∈ W 1

1 (Ω) and extends via approximation
quoting Lemma 2.1 to the BV-case.
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At the same time we get from 0 ≤ f(x) ≤ 1 a.e. on Ω−D that |max(u, 0)− f | ≤ |u− f |
on Ω−D for any u ∈ BV(Ω), thus

K [max(un, 0)] ≤ K[un]

for the functional K defined in (1.11). We may therefore assume w.l.o.g. that un ≥ 0.
By considering min(un, 1) and using analogous arguments we can replace our minimizing
sequence through a minimizing sequence with the property

0 ≤ un ≤ 1 a.e. on Ω . (2.4)

From assumption (1.6) it is clear that

sup
n

∫
Ω

|∇un| < ∞ . (2.5)

Putting together (2.4) and (2.5) and quoting the BV-compactness theorem (see [AFP],
Theorem 3.23, p. 132) we find u ∈ BV(Ω) such that for a subsequence un → u in L1(Ω)
and a.e. From (2.2) it follows

K̃(u) ≤ lim inf
n→∞

K̃[un] ,

and Lebesgue’s theorem on dominated convergence (recall (2.4)) finally shows

K[u] ≤ lim inf
n→∞

K[un] .

Thus u ∈ BV(Ω) is K-minimizing with the additional property

0 ≤ u(x) ≤ 1 . (2.6)

Let w ∈ BV(Ω) denote any K-minimizer. With Ψ(t) := min(1, t), t ∈ R, we observe (by
the minimality of w)

K[w] ≤ K [Ψ(w)] . (2.7)

As mentioned before we have for all v ∈ BV(Ω)

K̃ [Ψ (v)] ≤ K̃[v] ,

∫
Ω−D

(Ψ(v)− f)2 dx ≤
∫
Ω−D

(v − f)2 dx , (2.8)

and if we apply (2.8) to v = w we get in combination with (2.7)

K̃ [Ψ(w)] = K̃[w] , (2.9)∫
Ω−D

(Ψ(w)− f)2 dx =

∫
Ω−D

(w − f)2 dx . (2.10)

The identity (2.9) may then be used as done in [BF3] starting with (26) from this paper
leading to the result that ∇ (Ψ(w)) = ∇w. From (2.10) we infer w = Ψ(w) a.e. on Ω−D,
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and by Proposition 3.2, p. 118, in [AFP] (recall (1.2)) we get that w = Ψ(w) a.e. on Ω,
hence w ≤ 1 a.e. on Ω, and in the same manner w ≥ 0. This proves the validity of (2.6)
for arbitrary K-minimizers, part i) of Theorem 1.2 is established.

For proving ii) we notice that
∫
Ω
F (∇aw) dx,

∫
Ω−D

(w − f)2 dx are the strictly convex

parts of the functional K, whereas
∫
Ω
F∞ (∇sw/ |∇sw|) d |∇sw| is just convex and takes

the value c |∇sw| (Ω) if F has the form (1.7), c denoting the number limt→∞
1
t
Φ(t).

In order to establish iii) we let

α := inf
BV(Ω)

K , β := inf
W 1

1 (Ω)
I

and observe that due to I = K on W 1
1 (Ω) we have α ≤ β.

If u from BV(Ω) is such that K[u] = α, then we choose un according to Lemma 2.1. Since
0 ≤ u ≤ 1 it is easy to check that during the construction of these functions the inequality
0 ≤ . . . ≤ 1 is preserved. By Lemma 2.2 we have K̃ [un] −→ K̃[u], and by dominated
convergence it holds ∫

Ω−D

(un − f)2 dx −→
∫
Ω−D

(u− f)2 dx ,

thus
β ≤ I [un] = K [un] −→ K[u] ,

so that β ≤ α.

Finally we establish iv). Let u ∈ M and consider a I-minimizing sequence un ∈ W 1
1 (Ω)

such that un → u in L1(Ω). Clearly u ∈ BV(Ω) and after passing to a subsequence we
may assume that un → u a.e. on Ω, thus∫

Ω−D

(u− f)2 dx ≤ lim inf
n→∞

∫
Ω−D

(un − f)2 dx

by Fatou’s lemma, whereas (2.2) gives

K̃[u] ≤ lim inf
n→∞

K̃ [un] .

This shows (using iii) in the last equality)

K[u] ≤ lim inf
n→∞

K [un] = lim
n→∞

I[un] = inf
W 1

1 (Ω)
I = inf

BV(Ω)
K ,

so that u is K-minimizing.

11



Let w ∈ BV(Ω) denote anyK-minimizer. By i) we know 0 ≤ w ≤ 1, and we apply Lemma
2.1 to find a sequence wm with (2.1) and w.l.o.g. 0 ≤ wm ≤ 1 (check the construction
carried out in the proof of Lemma 2.1 presented in [AG]). From Lemma 2.2 (+ dominated
convergence) it follows (again usin iii))

K [wm] → K [w] = inf
W 1

1 (Ω)
I ,

and since I [wm] = K [wm] we see that (wm) is a I-minimizing sequence such that
wm → w in L1(Ω), thus w ∈ M by definition of this set.

Altogether the proof of Theorem 1.2 is complete, since our final claim v) directly follows
from Theorem 1.1 in [AG]: in fact, if u ∈ M, then according to iv) the function u is

locally K̃ minimizing on the open set G and we can quote Theorem 1.1 of [AG] which is
applicable due to our assumption (1.4). �

3 The dual problem. Proof of Theorem 1.4

Let (1.2) - (1.6) hold throughout this section. We first wish to remark that part i)
of Theorem 1.4 can be deduced from [ET], we also refer to [FS], Theorem 1.2.1. We
here prefer to give a more direct proof based on a sequence of regularized problems for
the reason that this sequence might be of interest for numerical computations, since its
solutions are smooth with rather strong convergence properties. Moreover, we will exploit
this sequence in the next section.

Lemma 3.1. Let δ ∈ (0, 1] and consider the problem

Iδ[u] :=

∫
Ω

Fδ(∇u) dx+
λ

2

∫
Ω−D

(u− f)2 dx → min in W 1
2 (Ω) , (3.1)

where Fδ(p) :=
δ
2
|p|2 + F (p).

Then there exists a unique solution uδ of (3.1) and uδ satisfies

i) 0 ≤ uδ ≤ 1 on Ω,

ii) uδ ∈ W 2
2,loc(Ω) ∩ C1,α(Ω), 0 < α < 1.

Proof of Lemma 3.1. For δ ∈ (0, 1] being fixed we consider an Iδ-minimizing sequence
wn. As shown in Section 2 we can assume w.l.o.g. that 0 ≤ wn ≤ 1.

Since clearly supn

∫
Ω
|∇wn|2 dx ≤ c(δ) < ∞, we have compactness in W 1

2 (Ω), thus
wn ⇁: u in W 1

2 (Ω) for a subsequence.

12



At the same time we can also arrange wn → u a.e. (for a further subsequence), thus
0 ≤ u ≤ 1 and u solves (3.1) by lower semicontinuity of Iδ w.r.t. weak convergence in
W 1

2 (Ω).

Suppose that û ∈ W 1
2 (Ω) is another solution of (3.1). By strict convexity it follows

∇u = ∇û a.e. on Ω and u = û a.e. on Ω−D, thus u = û by (1.2).

For ii) we use the technique of difference quotients to get ∇uδ ∈ W 1
2,loc(Ω,R2), the second

statement follows from elliptic regularity theory. �

From the definition of the sequence uδ and the properties of F we immediately deduce

δ

∫
Ω

|∇uδ|2 dx ≤ c < ∞ ,

∫
Ω

|∇uδ| dx ≤ c < ∞ . (3.2)

Let
τδ := DF (∇uδ) , σδ := DFδ (∇uδ) = δ∇uδ + τδ . (3.3)

From (3.2) it follows
δ∇uδ → 0 in L2(Ω,R2) as δ → 0 , (3.4)

moreover we have
sup
δ

∥τδ∥L∞(Ω) < ∞ . (3.5)

From (3.3) - (3.5) we get (after passing to a suitable sequence δ → 0)

σδ ⇁: σ in L2(Ω,R2) , τδ
∗
⇁: τ in L∞(Ω,R2) , (3.6)

and (3.6) in combination with (3.4) yields σ = τ .

Recalling Lemma 3.1 i) and using (3.2) we may also assume

uδ →: u in L1(Ω) and a.e. (3.7)

for a function u ∈ BV(Ω) such that u(x) ∈ [0, 1]. We emphasize that (3.6) and (3.7) hold
for a particular sequence δ → 0.

Now we show that σ is a solution of the dual problem. From (3.1) it follows∫
Ω

τδ · ∇φ dx+ δ

∫
Ω

∇uδ · ∇φ dx+ λ

∫
Ω−D

(uδ − f)φ dx = 0 , φ ∈ W 1
2 (Ω) , (3.8)

and the identity F (∇uδ) = τδ · ∇uδ − F ∗ (τδ) yields

Iδ[uδ] =
δ

2

∫
Ω

|∇uδ|2 dx+

∫
Ω

[τδ · ∇uδ − F ∗ (τδ)] dx+
λ

2

∫
Ω−D

(uδ − f)2 dx .

13



We apply (3.8) with the choice φ = uδ and obtain

Iδ[uδ] = −δ

2

∫
Ω

|∇uδ|2 dx+

∫
Ω

(−F ∗ (τδ)) dx

+
λ

2

∫
Ω−D

(uδ − f)2 dx− λ

∫
Ω−D

(uδ − f)uδ dx

= −δ

2

∫
Ω

|∇uδ|2 dx+

∫
Ω

(−F ∗ (τδ)) dx

−λ

2

∫
Ω−D

u2
δ dx+

λ

2

∫
Ω−D

f 2 dx . (3.9)

Let v ∈ W 1
1 (Ω). Then (recall (1.12) and the definition of R)

I[v] = sup
κ∈L∞(Ω,R2)

l(v, κ) ≥ l(v, ρ) ≥ inf
w∈W 1

1 (Ω)
l(w, ρ) = R[ρ]

for any ρ ∈ L∞(Ω,R2) and in conclusion

sup
ρ∈L∞(Ω,R2)

R[ρ] ≤ inf
v∈W 1

1 (Ω)
I[v] .

Obviously infv∈W 1
1 (Ω) I[v] ≤ I[uδ] ≤ Iδ[uδ] and with (3.9) we have shown

sup
κ∈L∞(Ω,R2)

R[κ] ≤ inf
v∈W 1

1 (Ω)
I[v]

≤ −δ

2

∫
Ω

|∇uδ|2 dx+
λ

2

∫
Ω−D

f 2 dx− λ

2

∫
Ω−D

u2
δ dx

+

∫
Ω

(−F ∗(τδ)) dx . (3.10)

The a.e. convergence uδ → u (compare (3.7)) together with uδ(x) ∈ [0, 1] yields∫
Ω−D

u2
δ dx →

∫
Ω−D

u2 dx, and (3.6) combined with the convexity of F ∗ shows

lim sup
δ→0

∫
Ω

(−F ∗ (τδ)) dx ≤
∫
Ω

(−F ∗ (τ)) dx .

Neglecting the term − δ
2

∫
Ω
|∇uδ|2 dx for the moment we get from (3.10)

sup
L∞(Ω,R2)

R ≤ inf
W 1

1 (Ω)
I ≤

∫
Ω

(−F ∗ (τ)) dx− λ

2

∫
Ω−D

u2 dx+
λ

2

∫
Ω−D

f 2 dx . (3.11)

Passing to the limit δ → 0 in (3.8) we deduce (recall (3.4), (3.6) and (3.7))∫
Ω

τ · ∇φ dx+ λ

∫
Ω−D

(u− f)φ dx = 0 (3.12)
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for any φ ∈ W 1
2 (Ω). At the same time it holds

R[τ ] := inf
v∈W 1

1 (Ω)
l(v, τ)

=

∫
Ω

(−F ∗(τ)) dx+ inf
v∈W 1

1 (Ω)

[∫
Ω

τ · ∇v dx+
λ

2

∫
Ω−D

(v − f)2 dx

]
. (3.13)

Due to the boundedness of τ , u and f equation (3.12) extends to φ ∈ W 1
1 (Ω) (note:

∥φ− φm∥W 1
1 (Ω) → 0 for a suitable sequence φm ∈ W 1

2 (Ω)), thus we may write

inf
v∈W 1

1 (Ω)

[∫
Ω

τ · ∇v dx+
λ

2

∫
Ω−D

(v − f)2 dx

]
= inf

v∈W 1
1 (Ω)

[
−λ

∫
Ω−D

(u− f) v dx+
λ

2

∫
Ω−D

(v − f)2 dx

]
= inf

v∈W 1
1 (Ω)

{
λ

2

∫
Ω−D

(u− v)2 dx+
λ

2

∫
Ω−D

f 2 dx− λ

2

∫
Ω−D

u2 dx

}
.

Finally we remark the validity of infv∈W 1
1 (Ω){. . .} = infv∈L2(Ω){. . .}, which follows from

∥v − vm∥L2(Ω) → 0 for v ∈ L2(Ω) by choosing an appropriate sequence vm ∈ W 1
2 (Ω). But

obviously {. . .} becomes minimal for the choice v = u and (3.13) turns into

R[τ ] =

∫
Ω

(−F ∗ (τ)) dx+
λ

2

∫
Ω−D

f 2 dx− λ

2

∫
Ω−D

u2 dx . (3.14)

With (3.14) we infer from (3.11)

sup
L∞(Ω,R2)

R ≤ inf
W 1

1 (Ω)
I ≤ R[τ ] ,

thus τ is R-maximizing and the inf-sup relation holds which proves part i) of Theorem 1.4.

Moreover we have shown (compare (3.10) and the inequality stated before (3.10)):

δ

∫
Ω

|∇uδ|2 dx → 0 , (3.15)

(uδ) is an I-minimizing sequence (3.16)

at least for a suitable sequence δm → 0. From part iv) of Theorem 1.2 and (3.16) we
further deduce (see (3.7))

u is K-minimizing in BV(Ω) . (3.17)

Let us now discuss the uniqueness problem: let Hv : L
∞(Ω,R2) → R,

Hv[κ] :=

∫
Ω

[
κ · ∇v +

λ

2
1Ω−D (v − f)2

]
dx
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for functions v ∈ W 1
1 (Ω). This gives the representation

R[κ] =

∫
Ω

(−F ∗ (κ)) dx+ inf
v∈W 1

1 (Ω)
Hv[κ]

and κ 7→ infv∈W 1
1 (Ω) Hv[κ] is easily seen to be concave.

Suppose that F ∗ is strictly convex and assume that τ1, τ2 are R-maximizing but τ1 ̸= τ2
on a set S ⊂ Ω with L2(S) > 0. Except of a set of points with zero measure we must have

F ∗ (τi(x)) < ∞ , i = 1, 2 ,

since otherwise R[τi] = −∞.

Let κ := 1
2
(τ1 + τ2). Then on the set S it holds F ∗(κ) < 1

2
F ∗(τ1) +

1
2
F ∗(τ2) and “≤” on

Ω− S, hence ∫
Ω

(−F ∗(κ)) dx >
1

2

∫
Ω

(−F ∗ (τ1)) dx+
1

2

∫
Ω

(−F ∗ (τ2)) dx

and in conclusion

R[κ] >
1

2
R[τ1] +

1

2
R[τ2] = sup

L∞(Ω,R2)

R

which is a contradiction. Thus strict convexity of F ∗ yields uniqueness and the conver-
gences (3.6) and (3.15) hold for any sequence δ → 0.

Let us now look at the case F (p) = Φ (|p|) with Φ satisfying (1.3∗), (1.4∗) and (1.6∗).
We want to prove the strict convexity of F ∗ in this particular case. To this purpose we
first observe that F ∗(p) = Φ∗ (|p|) holds with Φ∗(t) := sups≥0 [st− Φ(s)]. From (1.4∗) we
deduce Φ′′(t) > 0 for all t ≥ 0, thus Φ′ strictly increases and the second inequality in
(1.4∗) shows the boundedness of Φ′. More precisely, there is a number R > 0 such that

Φ′(t) → R as t → ∞

and
Φ′ ([0,∞)) = [0, R) .

Let Ψ := (Φ′)−1 : [0, R) → [0,∞). Consider points t ∈ [0, R). Then it holds

Φ∗(t) = Ψ(t)t− Φ (Ψ(t))

and from this formula we deduce by elementary calculations

d2Φ∗

dt2
(t) =

1

Φ′′ (Ψ(t))
> 0 .

This implies strict convexity of Φ∗ on [0, R) and thereby on [0, R] ⊃ domΦ∗ with value
Φ∗(R) in [0,+∞]. But then F ∗ is strictly convex on the closed disk BR(0) ⊃ domF ∗.
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Here dom g denotes the set of all points for which the function g takes finite values.

Now we prove part iii) of Theorem 1.4: the weak differentiability of σ, i.e. our claim
σ ∈ W 1

2,loc (Int(D)), follows along the lines of [Bi], proof of Theorem 2.10, since equation
(10) on p. 19 of this reference with Ω being replaced by Int(D) is a consequence of (3.8)
if we consider test functions φ supported in Int(D).

Next we define u according to (3.7) and recall (3.17). From Theorem 1.2 it follows that
u is of class C1,α on an open subset O of Int(D) with full measure. Exactly as in [Bi],
proof of Theorem 2.24, we deduce from u ∈ C1,α(O) that ∇uδ → ∇u a.e. on O (see [Bi],
(28) on p. 30) as δ → 0 (for a suitable subsequence).

But then DF (∇uδ) → DF (∇u) a.e. on the set O, and since τδ := DF (∇uδ) ⇁ σ in
L2(Ω,R2) (recall (3.6)), we find σ = DF (∇u) a.e. on O, which shows (Hölder-)continuity
of σ on the set O. From our calculations it clearly follows that

σ = DF (∇au) a.e. on Int(D) ,

and by Theorem 1.2 ii) we have established the desired duality relation.

Finally we pass to the proof of Theorem 1.4 iv): according to Theorem 1.3 i), whose
proof will be given in Section 4, we find a K-minimizer being of class C1,α (Int(D)),
provided µ < 3. But then our claim follows from the stress-strain relation stated in iii)
of Theorem 1.4. �

4 Proof of Theorem 1.3

Let the inpainting region D satisfy (1.2) and consider a density F with (1.3), (1.4µ) and
(1.5). We recall Lemma 3.1, define u according to (3.7), where in (3.7) a suitable sequence
δ → 0 has to be considered. We know (compare (3.15))

δ

∫
Ω

|∇uδ|2 dx → 0 , δ → 0 ,

moreover, by (3.17) u is K-minimizing, hence (see Theorem 1.2 iv)) an element of the set
M. From (3.1) we obtain letting G := Int(D)∫

G

DFδ (∇uδ) · ∇φ dx = 0 for all φ ∈
◦
W

1
2(G) . (4.1)

If µ is equal to 3 we may copy Lemma 4.33 and Theorem 4.36 from [Bi] which means
that we insert exactly the same test-functions into (4.1) choosing disks now compactly
contained in G. This yields for such disks Br(x0)∫

Br(x0)

|∇uδ| ln
(
1 + |∇uδ|2

)
dx ≤ c (Br(x0)) < ∞ (4.2)
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with a local constant c (Br(x0)) independent of δ. From (4.2) we get the weak com-
pactness of the sequence (∇uδ) in L1

loc (G,R2), and from uδ → u in L1(Ω) we find
∇u ∈ L1

loc (G,R2) together with ∇uδ ⇁ ∇u in L1
loc (G,R2).

By lower semicontinuity we see that (4.2) extends to ∇u, thus the minimizer u has the
integrability properties stated in ii) of Theorem 1.3.

If µ ∈ (1, 3) we like to show that u ∈ C1,α(G) for any 0 < α < 1. But this can be done
exactly as in Section 4.3.2 of [Bi] replacing u∗ and Ω in this reference through u and G.
We leave the details to the reader. �

5 Proof of Theorem 1.5

We work with our regularizing sequence (uδ) from Lemma 3.1 and observe that (3.8)
implies (i = 1, 2)

0 =

∫
Ω−D

D2Fδ (∇uδ) (∂i∇uδ,∇φ) dx− λ

∫
Ω−D

(uδ − f) ∂iφ dx (5.1)

for φ ∈
◦
W 1

2

(
Ω−D

)
. With η ∈ C1

0 (B2r(x0)), 0 ≤ η ≤ 1, η = 1 on Br(x0), |∇η| ≤ c/r,

for a disk B2r(x0) b Ω−D we let φ := η2∂iuδ in (5.1) and obtain (from now summation
w.r.t. i = 1, 2) ∫

Ω−D

D2Fδ (∇uδ) (∂i∇uδ, ∂i∇uδ) η
2 dx

= −2

∫
Ω−D

D2Fδ (∇uδ) (∂i∇uδη,∇η∂iuδ) dx

−λ

∫
Ω−D

∂i (uδ − f) η2∂iuδ dx =: −T1 − T2 . (5.2)

Using the Cauchy-Schwarz inequality for the bilinear form D2Fδ(∇uδ) and then applying
Young’s inequality we find

|T1| ≤ 1

2

∫
Ω−D

D2Fδ (∇uδ) (∂i∇uδ, ∂i∇uδ) η
2 dx

+c

∫
Ω−D

D2Fδ (∇uδ) (∇η,∇η) |∇uδ|2 dx ,

whereas

−T2 = −λ

∫
Ω−D

η2 |∇uδ|2 dx− λ

∫
Ω−D

η2∂iuδ∂if dx ,
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and from (5.2) it follows:

1

2

∫
Ω−D

D2Fδ (∇uδ) (∂i∇uδ, ∂i∇uδ) η
2 dx+ λ

∫
Ω−D

η2 |∇uδ|2 dx

≤ c

[∫
Ω−D

D2Fδ (∇uδ) (∇η,∇η) |∇uδ|2 dx+

∫
Ω−D

η2 |∇uδ| |∇f | dx
]
. (5.3)

The second integral on the r.h.s. of (5.3) is handled with Young’s inequality, for the
discussion of the first one we use the second inequality in (1.4) as well as the bound (3.2).
This gives∫

Br(x0)

D2Fδ (∇uδ) (∂i∇uδ, ∂i∇uδ) dx+

∫
Br(x0)

|∇uδ|2 dx ≤ c (Br(x0)) < ∞ (5.4)

for a local constant independent of δ. Clearly, (5.4) implies part i) of Theorem 1.5
by recalling the convergence (3.7) (for a suitable sequence δm) of uδ to a generalized
minimizer u and the statement of Theorem 1.2 ii).

Now assume that we are in the situation of Theorem 1.4 ii). It holds (compare (3.3))

∂iσδ · ∂iσδ = D2Fδ (∇uδ) (∂i∇uδ, ∂iσδ)

≤
(
D2Fδ (∇uδ) (∂i∇uδ, ∂i∇uδ)

) 1
2
(
D2Fδ (∇uδ) (∂iσδ, ∂iσδ)

) 1
2

≤ c
(
D2Fδ (∇uδ) (∂i∇uδ, ∂i∇uδ)

) 1
2 |∇σδ| ,

where we used (1.4) in the last inequality. Hence

|∇σδ|2 ≤ c D2Fδ (∇uδ) (∂i∇uδ, ∂i∇uδ) ,

so that σδ ∈ W 1
2,loc(Ω − D,R2) uniformly w.r.t. δ. From (3.6) we then deduce

σ ∈ W 1
2,loc(Ω−D,R2).

The second statement of Theorem 1.5 ii) follows from (3.8) choosing φ ∈
◦
W1

2(Ω−D) and
by passing to the limit using (3.6) as well as (3.7).

Finally, we wish to show the validity of σ = DF (∇v) a.e. on Ω − D. By (3.17) u is
K-minimizing, hence v is locally minimizing the functional∫

Ω−D

F (∇w) dx+
λ

2

∫
Ω−D

(w − f)2 dx

among functions e.g. from W 1
1,loc(Ω−D) which follows from Theorem 1.5 i). We therefore

have ∫
Ω−D

DF (∇v) · ∇φ dx+ λ

∫
Ω−D

(v − f)φ dx = 0

19



for φ ∈ C1
0(Ω−D), and in combination with (3.8) we get∫

Ω−D

(DFδ (∇uδ)−DF (∇v)) · ∇φ dx+ λ

∫
Ω−D

(uδ − v)φ dx = 0 . (5.5)

Again by part i), φ := η2 (uδ − v) is admissible, where η is as above. Recalling (3.7) and
the inequalities 0 ≤ uδ, v ≤ 1 a.e. as well as (1.5), we deduce from (5.5) with Lebesgue’s
theorem on dominated convergence

lim
δ→0

∫
Ω−D

η2 (DF (∇uδ)−DF (∇v)) · (∇uδ −∇v) dx = 0 ,

thus for a suitable sequence

(DF (∇uδ)−DF (∇v)) · (∇uδ −∇v) → 0

a.e. on Ω−D. As it is outlined in [Bi], p. 31, 32, this implies

DF (∇uδ) → DF (∇v) a.e. on Ω−D . (5.6)

At the same time (see (3.5) and (3.6))

τδ := DF (∇uδ) ⇁ σ in L2(Ω,R2) , (5.7)

and by combining (5.6) with (5.7) we deduce σ = DF (∇v) a.e. on Ω−D. �
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