

By

Yong Moi Lee

Using a linearized theory of thermaiay and zi.ccinanicully interacting mixture of linear elastic solic and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one injtialmoundary. value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem sorresponeing to a different initial and boundary data for a given interacting mixture. From this general integral relation we derive reciprocity relations for a heat-conducting linear elastic solid, and for a hear-conducting viscous fluid.

In this theory of interacting continua we pose and solve an initial-boundary value problem for the mixture of linear siastic solid and viscous fluid. we consider the -injury to occupy a half-space and its motion to bu tee stricted to one space dimension. We prescribe a step function temperature on the face of tick half-space kinase tie Etce is constrained rigidly against motion. With the

(NASA-CR-138496) ON SOME PROBLEMS IN A
aid of the Laplace transform and the contour integration, a roal integral reprosentation for tho displacemont of the solid constituent is obtained as one of the principal results of this analysis. In addition, carly time sexies expansions of the other fiold variables are given.

ON SOME PROBLEMS IN A THEORY OE THERMALLY AND MECHANICALLY INTERACTING CONTINUOUS MEDIA

BY

Yong mok Lee

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1971
i(a)

ACKNOWLEDGMENTS

I am deeply indebted to Professor C.J. Martin for suggesting this investigation and for his guidance during the preparation of the thesis. I would like to express my deep gratitude for his extreme patience and helpful advice during the preparation of the final draft.
Portions of this theis were obtained in the course of an investigation conducted under the N.A.S.A. research grant NGR 23-004-041.

TABLE OF CONTENTS

Rage
ENTRODUCTION 1 1
CHAPNER I. HISGONY 3
1.1. Darcys Law 3
1.2. 3iot's Work 8
CHAPNE: II. THEORY OF INTZRACTING CONMINUA 20
2.1. Noniinuex Thoory 20
2.2. Linourizec Theory 25
2.3. Sunmary of the Equations and Other Formuiations 40
A. Fuily Cuplec Mixture Theory 40
3. Tia Mixture Theory of Green and Steel 42
c. Uncouplea Theory 42
2.i. Singie Constituent Theories 43
A. Linear Thermoelasticity 43
3. Lineaz Viscous fluid 45
CHAPRER III. RECIPROCITY THEOREMS
3.1. Introduction 46
3.2. Reciprocal Relations for Mechanicaily and Zhornally Interacting Mixtuze $5:$
3.3. Special Cases 65
A. Reciprocity Relation for Heat Conducting Mixture of Linear Eastic Solid and Non- Newtonian Viscous Fluid 65
B. Reciprocity Relation for Mixture of Linear Elastic Solid and Newtonian Viscous Fiuid in Isothermal process 66
C. Rociprocity Rolation for Heat Concuiveing Nixturc of Linear Elastic Solid and Newtonian Viscous Fiuid occupyins Infinite Region 68
table of contents (cont.)Page
D. Reciprocity Rolation for Hoat conducting Elastic Solid 69
E. An Application of Reciprocity Relation in Misture Theory 72
CIARTER IV. A FUNDNUENTAL ONE-DIMENSIONAL INITIAL- BOUNDARY VALUE PROBLEM 75
4.1. Introduction 75
4.2. Formuiation of the problen 76
is.3. Solution by Integral Transforms 83
4.4. Inversion $\varepsilon 7$
A. Location of zeros of $g_{1}^{2}(p) g_{2}^{2}(p)$ 87
3. Determination of Branches for $G_{1}(p)$ anc $\sigma_{2}(\mathrm{p})$ $\varepsilon \%$
C. Formulation of $\bar{w}(\zeta, p)$ in convolution for: 91
D. Inversion of $\bar{w}(2)(\zeta, p)$ by contour Integra=ic: 94
SU:...ny AND CON iSIONS 120
REi ERENCDE 122
AP ©NDIX 123

LIST OF EIGURES

Figuro Pa;o

1. p-plane 92
2. p-piane 102
3. u-planc 102

INTRODUCTION

Using a linearized theory of thermally and mechanically interacting mixture of.lincar elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation rslates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solufion of a second initial-boundary value problem corresponding so a diffnrent initial and boundary data for a given interictirg mixture. From this general integral relation, we derive reciprocity relations for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid.

In this theory of interacting continua we pose and solve an initial-boundary value problem for the mixture of linear elastic solid and viscous fluid. We consider the mixture to occupy a half-space and its motion to be restricted to one space dimension. We prescribe a step function temperature on the face of the half-space where the face is constrained rigidly against motion. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of this analysis. In addition, early time series expansions of the other field variables are given.

Chapter I includes a historical survey of early works and the various descriptions on mixture theory.

Chapter II presents modern mixture theories based on mathematically sound concepts of continuum mechanics. In Chapter III we derive the general integral reciprocity relation for a linearized version of an interacting mixture and in Chapter IV we pose and solve a basic one-dimersional problem using the linearized theory.

CHAPTER I. HISTORY
1.1. Daxcy's Law

The theoretical description of the dynamics of situatlons i: which one substance interpenetrates another has bepa n matter of interoet to mathematicians, physicista and e:口incers for many years. The case in which a fluid permazes a solid is appropriate to a wide range of problems surh as soil mechanics, petroleum engineering, water purification, industrial filtration, ceramic engineering, diffum sion problems, absorption of oils by plastics and the reantry ablation process for spacecraft. A survey of earlier works on this subject up to 1959 is given by Scheidegger [2]*. An adrly work on this subject was the study of fluid flow through a porous solid with the assumption that the solid is . unieformable. Intuitively, "pores" are void spaces which must be distributed more or less frequently through the solid if the latter is to be called "porous." Extreme small voids in a s)lid"are called "molecular interstices," very large ones are clled "caverns." "Pores" are void spaces intermediate beween caverns and molecular interstices; the limitation of Their size is therefore intuitive and rather indefinite.

Darcy [2] performed an experiment concerning the flow through a homogeneous porous solia.** A homogeneous filter bed of heigit h is bounded by horizontal plane areas of

[^0]equal size A. Theco areas are congruent so that corresponding points could be connected by vertical straight lines. The filter bed is percolated by an incompressible liquid. If open manometer tubes are attached at the upper and lower houndaries of the filter bed, the liquid rises to the heights h_{2} and h_{1} respectively above an arbitrary datum level. By varying the various quantities involved, one can deduce the following relationship:
\[

$$
\begin{equation*}
Q=\frac{-K A\left(h_{2}-h_{1}\right)}{h} \tag{1.1}
\end{equation*}
$$

\]

Here, Q is the total volume of fluid percolating in unit time, and k is a constant depending on the properties of the fluid and of the porous solid. The relationship (1.1) j.s known as Darcy's Law. Darcy's law can be restated in terms of the pressure p and the density r of the liguid. At the upper boundary of the bed, whose height is denoted by z_{2}, the pressure is $p_{2}=r g\left(h_{2}-z_{2}\right)$, and at the lower boundary, whose height is denoted by z_{1}, the pressure is $P_{1}=r g\left(h_{1}-z_{1}\right)$. Hexe g is che gravitational constant. Inserting this statement into (1.1), one obtains

$$
g=-\operatorname{KA}\left(\left(p_{2}-p_{1}\right) /(r g h)+1\right)
$$

ox, upon introduction of a new constant K^{\prime}.

$$
\begin{equation*}
Q=-K^{\prime} A\left(p_{2}-p_{1}+r g h\right) / h \tag{1.2}
\end{equation*}
$$

A constant of the type K^{\prime}. however, is not very satisfactory because one would like to separate the influence of
the porous solid from that of tho liquid. By 1933. the empirical relationship

$$
\begin{equation*}
K^{\prime}=k / \mu \tag{1.3}
\end{equation*}
$$

was generally accepted where μ is tine viscosity of the iluid and k the "permeability" of, the porous solid. Thysically, permeability measuxements are very simple. The ixperiments are performed whereby in a certain system a pressure drop and a Elow rate are measured. The solution sf Darcy's law corresponding to the geometry of the system and to the Eluid employed is calculated, and a comparison hotween the calculated and the experimentally found results inmediately yields the only unknown quantity k. Darcy's Law (1.2), when accounting for the separation of the general constant into "permeability" and "viscosity," is expressible as follows:

$$
\begin{equation*}
q \equiv Q / A=-(k / \mu)\left(p_{2}-p_{1}+r g h\right) / h \tag{1.4}
\end{equation*}
$$

If the solid is isotropic and if we consider h as an infinitesimal, then the expression (1.4) naturaliy extends to a vector form of Darcy's law:

$$
\begin{equation*}
c=-(k / \mu)(\operatorname{grad} p-r g) \tag{1.5}
\end{equation*}
$$

where g is a vector in the direction of gravity. Engineering uses of Darcy's law are limited to flows cinibiting small pressure differentials and to constant viscosities and permeabilities. However, for'liquids at high
velocities or Eor geses, relation (1.1) is no longer valia. Further if k and μ are variable then this law mugt be modified.

The validity of Darcy's law has been tested on many occasions, and has been shown that it is valid for a wid, domain of flows. Fot liquids, it is valid for arbitrary small pressure differentials. It has also been used to measure flow rates by determining the pressure drop aoress a fixed porous solid. For liquids at high velocities and for gases at very low and at very high velocities, Daroy s law becemes invalid.

For given boundary conditions Darcy's law (1.5) is by itself not sufficient to determine the flow pattern in a porous solid because it contains three unknowns (q, p, w). wo further equations are therefore required for the comr lete :necification of a problem. One is the connection betwe. \therefore and p of the Eluid:

$$
\begin{equation*}
a \quad r=r(p) \tag{1.0}
\end{equation*}
$$

and the other a continuity equation, viz.:

$$
\begin{equation*}
-p \frac{\partial r}{\partial t}=\operatorname{div}(r q) \tag{1.7}
\end{equation*}
$$

where t is the time and p is the porosity defined by the . fraction of void to the cotal volume of the porous solid. A great variety of methods for the measurement of the porosity are described by Scheidegger[1]. The physical conditions of flow for which solutions might be sought are (i) steady state flow, (ii) gravity flow with a free surface, and (i:)
unsteady stato Elow. Of these, steady state flow solutions for incompressible fluids are most easily obtained: they are simply represented by solutions of Laplace's equation. Except for a few other special cases, Darcy's Law leads to nonlinear differential equations.

As an application of Darcy's law we will consider the steady state flow of an incompressible fluid. With the help of the equations (1.5) and (1.7), one may obtain

$$
\begin{equation*}
p \frac{\partial r}{\partial t}=\operatorname{div}((r k / \mu)(g r a d p-r g)) \tag{1.8}
\end{equation*}
$$

Due to the steady state condition, incompressibility and the porous solid being homogeneous, one has:

$$
\begin{equation*}
\nabla^{2} p=0 \tag{2.9}
\end{equation*}
$$

As an example of a steady state solution we give the solution for two-dimensional radial flow of an incompressible fluid into a well which is completely penetrating the fluid. bearing medium. Assuming that the well is a cylinder of radius B_{0}. with pressure p_{0}, and that the pressure at distance R_{1} from the well is p_{1}, the required solution follows easily by considering equations (1.5) and (1.9) as

$$
Q=\frac{2 \pi k}{\mu \log \cdot\left(R_{1} / R_{0}\right)}\left(p_{1}-p_{0}\right)
$$

'where Q is the total discharge per unit time.
A major limitation in this theory is due to the assumption that the solid is rigid. In most applications
this is simply not true. To incorporate the effects that a deformable solid imposes upon the flow, it is necessary to develop some comnection beiween the stresses and the correspending straine or both the fluid and the solid. We will consider the case of soil consolidation.
1.2. Biot's Work

A soil under load does not assume an instantaneous deflection under that load, but bettles gradually at a variable rate according to the load variation as in clays and sands saturated with water. A simple mechanism to explain this phenomenon was pxoposed by Terzaghi [3] by aseuming that the grains constituting the soil are bound together by molecular forces and constitute a porous material with alastic properties while the voids of the elastic skeleton axn Eliled with water. A load applied to this system will prafuce a gradual settlement, depending on the rate at whioh tho water is loeing squeezed out of the voids. Terzaghi poptied Shese concepts to the analysis of the settlement of a colu in of soil under a constant load and prevented from lato al expansion. The remarkable success of this theory in pred: ating the settlement for many types of soils has led to the fiension to the three-dimensional case and the establish-ment \rightarrow ecuuations valid for an arbitrary load variable with time. Pro vill reviev extensive worli done by Maurice A. Biot in thin sield.

Biot [4] assumed the following basic properties of the soil: (1) isotropy of the material. (2) reversibility of stress-strain relations under final equilibrium conditions, (3) linearity of stress-strain relations, (4) small strains, (5) the water contained in the pores is incompressible, the water may contain air bubbles. (7) the water flowe through the porous skeleton according to Darcy's law. We refer the points in this continuous medium to a rectangulas cartesian system, x_{i} : $i=1,2,3$. Consider a small cubic element of the consolidating soil, its sides being paxallel wi'h the coordinate axes. This element is taken to be large ar rugh compared to the size of the pores so that it may be treated as homogeneous, and at the same time small enough mpared to the scale of the macroscopic phenomena in which we are interested, so that it may be considered as infinitesimal in the mathematical treatment. physically the stresses of the soil are composed of two parts; one which is caused by the hydrostatic pressure of the water filling the pores, "the other caused by the average stress in the skeleton. They must satisfy the well-known equilibrium conditions of a stress field. Let $\sigma_{i j}$ denote the stress components and let x_{i}. denote axes of the cartesian system.

By $\sigma_{i j}$ we shall mean the j th stress component of the skeleton acting on the face x_{i} constant. Then according to the equilibrium for the infinitesimal element of volume we have

$$
\begin{equation*}
\sigma_{i j, j}=0^{*} \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{i j}=\sigma_{j i}{ }^{*} \tag{2.12}
\end{equation*}
$$

Denoting by u_{i} the component of the displacement in the x_{i} direction, and assuming the strain to be small, the values of the strain components are

$$
\begin{equation*}
e_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right) \tag{1.22}
\end{equation*}
$$

In order to describe completely the macroscopic condition of the soil, an additional variable giving the amount of water in the pores is considered. The increment of water volume per unit volume of soil is called the variation in water "content and is denoted by θ, and the incremont of water pressure is denoted by σ. Let us consider a cubic ciement of soil. The water pressure in the pores may be considered as uniform throughout, provided either the rize of the element is small enough or, if this is not the case, mrovided the changes occur at sufficiently slow rate to rennsx the pressure differences negligible. since it is as sumon that tie changes in the soil occur by reversible processes, the macroscopic condition of the soil must be a definite function of the stresses and the water pressure, $\cdots \cdots$ i.e.; the seven variables $e_{i j}$. θ must be definite funow tions of the variables $\sigma_{i j}$ and σ. Furthermore if the

strains and the variacions in water content are assumed to Le small guantities, the relation between two sets of variables may be taken as linear. Consider the case whera $\sigma=0$. Tho $\mathrm{o}^{2} \mathrm{H}$ components of. strain are then functions ondy of the aix stress components $J_{i j}$. Assuming the soil to havo inotropic proportios. thebe rolations reduce to the 'H2l Ynorn empressions of Hookes' law for an isotropic alastic Wody in the cheory of elasticicy

$$
\begin{equation*}
\varepsilon_{i j}=\frac{1}{2 i}\left(\sigma_{i j}-\frac{v}{(2+v)} \sigma_{\ell \ell} \delta_{i j}\right)^{* *} \tag{1.13}
\end{equation*}
$$

There the constants G, V may be interpreted, respectively, as the shear modulus and Poisnon's ratio for the solid skeleton.

The effect of the water pressure σ is now introduced. By reason of the assumed isotropy of the soil, this effect is limited to a dependenco upon the three strain components $e_{12} \cdot e_{2 i} \cdot \theta_{33}$ and such dependence is uniform in each direction. Hence teking into account the influence of σ, the relations (i.33) become

$$
\begin{equation*}
e_{i j}=\frac{1}{2 G}\left(\sigma_{i j}-\frac{\nu}{(1+\nu)} \sigma_{k k} \delta_{i j}\right)+\frac{\sigma}{3 H} \delta_{i j} \tag{1}
\end{equation*}
$$

where E is an additional physical constant which plays the rolo of a bulk modulus. These relations express the six stri in - components of the soil as a Eunction of the stresses in the soil and the pressure of the water in the pores. if $i=j$ and O is ifj.

So dexive the dependence of the increment of water content θ on these same variables Biot considers the Toneral selation
$\theta=a_{1} \sigma_{13}+a_{2} \sigma_{22}+a_{3} \sigma_{33}+a_{4} \sigma_{12}+a_{5} \sigma_{23}+a_{6} \sigma_{13}+a_{7} \sigma_{1}$ and arguea that because of the isotropy of the material a :hange in sign of $\sigma_{12}, \sigma_{23}, \sigma_{13}$ cannot affect the water content. Therefore $a_{4}=a_{5}=a_{6}=0$ and the effect of Êle shear stress components on θ vanishes. Furthermore, $\therefore 1$ three directions x_{1}, x_{2}, x_{3} must have equivalent properties so that $a_{1}=a_{2}=a_{3}$. Relation (2.15) may be Written in the form

$$
\begin{equation*}
\theta=\frac{1}{3 H_{1}} \sigma_{A K}+\frac{\sigma}{R} \tag{1.16}
\end{equation*}
$$

where H_{1} are R are two new physical constants.
To this point in the derivation Biot has used assumptions (1). (3), (4). Ge now uses (2) to show that the five constants can be reduced to four. This assumption, i.e.. the existence of a potential energy, means that the work Fone to bring the soil from the initial state to its final 3tate of strain and water content is independent of the way by which the final state is reached and is a definite Aunction of $e_{i j}$, and θ only. me potential energy of the. -ail ner unit volume is

$$
\begin{equation*}
u=\frac{1}{2}\left(\sigma_{i, j} e_{i j}+\sigma \theta\right) \tag{1.17}
\end{equation*}
$$

As a result of some olementary manipulations, Biot shows that $H=H_{1}$, and we may write the equation (1.16) as

$$
\begin{equation*}
\theta=\frac{3}{3 H} \sigma_{K k}+\frac{\sigma}{R} \tag{1.18}
\end{equation*}
$$

Relations (1.14) and (1.28) are the fundamental relations describing completely in first approximation the properties of the soil, for strain and water content, under equilibrium conditions. They contain four diatinct physical constante $\mathbb{G}, \mathrm{V}, \mathrm{H}$ and R . Solving equation (1.14) with respect to the stresses, then substituting into the equilibrium conditions (1.10), one obtains

$$
\begin{equation*}
G \nabla^{2} u_{i}+\frac{G}{1-2 v} \frac{\partial e}{\partial x_{i}}-a \frac{\partial \sigma}{\partial x_{i}}=0 \tag{1.19}
\end{equation*}
$$

With

$$
\begin{equation*}
\alpha=\frac{2(1+v)}{3(1-2 v)} \frac{G}{H} \tag{1.20}
\end{equation*}
$$

There are three equations with four unknown u_{i}. σ. In order to have a complete system, one more equation is needed. This equation is derived from Darcy's law governing the flow of water in a porous medium. An elementary cube of soil in considered and the volume of water flowing per second per unit area through the face of the cube perpendicular to the x_{i}-axis is denoted by v_{i}. According to Darcy'e law these three components of the rate of flow are related to the water pressure by the relations

$$
\begin{equation*}
v_{i}=-\frac{k}{\mu} \frac{\partial \sigma}{\partial x_{i}} \tag{1.21}
\end{equation*}
$$

whero tion shysical constant it is the coosficient of permeasility of the soid, and 4 is the viacosity of the vator. Shjec the water is aasumed to be inconrcessible, one obtaina

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=x=\frac{\partial v_{i}}{\partial x_{i}} . \tag{1.20}
\end{equation*}
$$

Tren ecuations (1.17), (1.20) and (1.21) one obtains that

$$
\begin{equation*}
\frac{k}{u} \nabla^{2} \sigma=a \frac{\partial e}{\partial t}+\frac{\lambda}{\theta} \frac{\partial \sigma}{\partial t} \tag{1.23}
\end{equation*}
$$

where

$$
\frac{2}{\theta}=\frac{1}{R}-\frac{\alpha}{B}
$$

The four differential equations (1..18) and (1.22) are the basic equations satisfied by the four unknown u_{i}, σ.

In a paper by Biot and Willis [5], methods of measurement for the four distinct physical constants G, V, H and 3 are describec and the physical intexpretation of the constants in vaxious alterrate forms is also discussed.

In a later work by Biot [6] the stress-strain relations wich are valid for che case of an elastic porcus medium with nonuniform forosity, i.e.e for which the porosity varies rem point to point are derived and these relations lead to the si" equations for the gix components of the unknown disolece-.. mine vector Eieles a sor solid component, is for Exuid of moment, The stress-strain relations are

$$
\begin{equation*}
\sigma_{i j}=2 \eta c_{i j}+\sigma_{i j}(\lambda e-a m j) \tag{1,2,a}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{p}_{\mathbf{f}}=-\alpha \mathrm{Me}+\mathrm{M}_{\boldsymbol{g}} \tag{2.24}
\end{equation*}
$$

where the coefficients M, λ, η, ξ and P_{f} of equations (1.24a) and (1.24b) are equivalent to the constants 0 . $2 G V /(1-V), G, \theta$ and σ of the equations of (2.19) and (1,23). The six equations for the six components of the unknown vecter fields u and f are

$$
\begin{align*}
& 2 \frac{\partial}{\partial x_{j}}\left(\eta e_{i j}\right)+\frac{\partial}{\partial x_{i}}(\lambda e-\alpha M \xi)=0 \\
& \because \frac{\partial f}{\partial t}=(k / \mu) \operatorname{grad}(\alpha M e-M S)=0
\end{align*}
$$

We will consider a uniferm porosity case, i.e., let us conm sider a particular case where the coefficients η, λ, a. m and k / μ are constants. In this case equations (2.25) becone

$$
\begin{align*}
& \eta \nabla^{2} n+(\eta+\lambda) \text { grad } e-\alpha M \text { grad } \xi=0 \tag{1.26a}\\
& \frac{\partial f}{\partial t}=(k / \mu) M a \text { grad } e-(\mathrm{kM} / \mu) \text { grad } \xi . \tag{1.296}
\end{align*}
$$

These equations can be written in the form of equations (2.19) and (1.23) by the application of the divergence operatar to the equation (1.26b). With the aid of the general PapkovithBoussinesq solution for Lame's equations of the theory of elastiaity, the general soiutions for the equations (1.26) are *. obtained as

$$
\begin{align*}
& \left.i=\operatorname{grad}\left(t_{0}+x \cdot t_{1}\right)-2 \frac{2 \eta+\lambda}{\eta+\lambda}\right\rangle_{1}-\frac{\alpha N}{2 \eta+\lambda} \operatorname{grad}(1.27 \mathrm{~A}) \\
& \Leftrightarrow=\operatorname{srad}+\frac{2 k a m n}{\mu(\eta+\lambda)} \int^{t} \text { grad div } t_{1} d t \tag{1.27b}
\end{align*}
$$

whers ψ_{1} and t_{1} are solutions of Laplace's equation, x is the $p \lim ^{2}$ ion vector and satisfies tho difetion equation

$$
\frac{\partial t}{\partial t}=(k / \mu) M v^{2}
$$

Utilizing equations (1.24a) and (1.24b), and cons dezing the dynamical case, Biot [7] established equatione for acoustic propagation in the elastic isotropic porous pida containing a viscous fluid by adding suitable inertia tafme in the previous theory, and discussed the propagation 0 ? three kinds of body waves. For simplicity of notation vis. will use a new set of coefficients which are related with the coefficients of equations. (1.24):

$$
\begin{equation*}
N=\eta, A=\lambda+M(\alpha-p)^{2}, B=P(\alpha-P) M, C=P^{2} M \tag{4,28}
\end{equation*}
$$

where p denotes porosity. With the vector notation

$$
\begin{gather*}
u=\left(u_{x}, u_{y} \cdot u_{z}\right) \\
v=\left(U_{x}, U_{y} \cdot U_{z}\right) \\
N \nabla^{2} u+\operatorname{grad}((A+N) e+B \epsilon)=\frac{\partial^{2}}{\partial t^{2}}\left(\rho_{12} u+\rho_{12}{ }^{0}\right) \tag{1.29a}\\
\operatorname{grad}(B e+C c)=\frac{\partial^{2}}{\partial t^{2}}\left(\rho_{12^{u}}+\rho_{22^{0}}{ }^{u}\right) \tag{2,29~b}
\end{gather*}
$$

where div $u=0$, div $v=c$ and $P_{11} \cdot P_{12} P_{22}$ are the masa coefficients which account for the fact that the relative fluid flow through the pores is not uniform. Applying the divergence operation to eqwations (1.29), one obtains

$$
\begin{align*}
& \nabla^{2}((A+2 N) \theta+B \varepsilon)=\frac{\partial^{2}}{\partial t^{2}}\left(\rho_{12} e+\rho_{12} \epsilon\right) \tag{1.30a}\\
& \nabla^{2}(B e+C \varepsilon)=\frac{\partial^{2}}{\partial t^{2}}\left(\rho_{12} e+\rho_{22} \epsilon\right) \tag{2.30b}
\end{align*}
$$

These two equations govern the propagation of dilatational waves which involve coupled motion in the fluid and the solid. Similarly, applying the curl operation to equations (1.24) one obtains

$$
\begin{align*}
& \frac{\partial^{2}}{\partial t^{2}}\left(\rho_{11} \omega+\rho_{12} \Omega\right)=N \nabla \omega \tag{1.31a}\\
& \frac{\partial^{2}}{\partial t^{2}}\left(\rho_{12^{(\omega)}}+\rho_{22} \Omega\right)=0 \tag{1.31b}
\end{align*}
$$

where

$$
\text { curi } u=w, \operatorname{curl} 0=\Omega \text {. }
$$

These equations govern the propagation of pure rotational waves. But there is only one type of rotational wave because equations (2.31) reduce to

$$
\begin{align*}
N V^{2} w & =\rho_{11}\left(1-\frac{\rho_{12}^{2}}{\rho_{12} \rho_{22}} \frac{\partial^{2} w}{\partial t^{2}}\right. \tag{1.32a}\\
\Omega & =-\frac{\rho_{12} w}{\rho_{22} w} \tag{1.32b}
\end{align*}
$$

An additional result found in [7] is that there is possibly … a wave such that no relative motion occurs between the fluid and solid when a certain relation is satisfied between the elastic and dymamic constante.

- Another type of mixture theory was considered by Truesdell and Toupin [8], In this theory the concept of superimposed continua is introduceč; i.e.. it is assumed that the neishborhood of each point of a material is occupied by all members of the mixture. We define the density of che mixture to be the eum of the individual denaities of each constituent. The velocity of the mixture is defined by tho reguirement that the mass slow of the mixture is the sum of the individual mass klows. Then the position of each particle of the misture is derined by an integration of the velncity of the mixture; but auch particlen, in general, bear no simple relation to the particles of the constituents. The main results of the work of Trueadell and Toupin are the Eollowing.
(a) The mass of the nisture satiscies an equacion of centizuity is che mass apply of the nisture is zero. This equation of concinuity is precisely that found for orcinary continuum mechanics.
(b) Let the total streas of the mixture be cefined as the sum of partial stresses plus the stresses arising from diffusion. Then a necessary and sufficient condition that Gauchy's ficet law holds for the mixture is that momentum supplied by uainaenced inertial forces of the several con'stitunnts phus momencum supplied through the creation of constifuont diffusing massea shail add up to zero.
(c) We dosinc tho internal energy ca the misture is the oum of the internal onergiea of the conotituento pluo tho kinetic
energies of diffusion. This definition leads to the fact that the energy supplied by an excess internal energy rate, plus tho energy supplied by the work of the excess inertial forces against diffusion, plus the energy due to mass supply, yust add up to zero for the mixture.

Truesdeld and Toupin's work on the mixture theory was incomplete in spite of the above results. However, their work inspired a number of researchers who have since made these theories more complete. For example, Adkins [9]. [10]. [21], Green and Adkins [12] among others have given discussions concerning nonlinear constitutive equations. Keliy [13] has extended this work to include electromagnetic effects while others have accounted for chemically reacting mixtures.

Recently, conceptually more simplified theories have been developed. The basic equations of mass and momentum balance in these theories are equivalent to those proposed by Truesdell and roupin. These theories have led to the formulation of linearized equations governing thermomechanical disturbances. Since the present work is within the framework of these theories, these theories will be reviewed.

CHAPMER SL. SHBORY OE ENTERACTING CONTINUA

2.I. Won?inner theowy

For simplicity, atsention is confined to two constituent continua in the theory [14]. I?3 consider a mixture of two continue s_{1} and s_{2} which are in relative motion to each other. We will agree to call s_{1}. a solic and \mathbf{s}_{2} a fluid. We assume that each point within the mixture is occupied simultaneously by s_{1} and s_{2}, and refar the motion of the continua to a fixed system of rectangulaz caxtesian axes. The position of a typical particle of \mathbf{s}_{1} at time τ is cenoted by $x_{i}(\tau)$, where

$$
\begin{equation*}
x_{i}(T)=x_{i}\left(x_{1}, x_{2}, x_{3}, T\right) \quad(-\infty<\tau \leq t) \tag{2.1}
\end{equation*}
$$

X_{A} is a reference position of the particle, and lower and upper case Latin indices take the values 1,2,3. We use the notation

$$
\begin{equation*}
x_{i}=x_{i}(t) \tag{2.2}
\end{equation*}
$$

and can express (2.1) in the alternative form

$$
\begin{equation*}
x_{i}(r)=x_{i}\left(x_{1}, x_{2}, x_{3}, t ; \tau\right) \tag{2,3}
\end{equation*}
$$

where $\left|\frac{\partial x_{i}(\tau)}{\partial x_{A}}\right|>0, \quad\left|\frac{\partial x_{i}(\tau)}{\partial x_{j}}\right|>0$.
similarly, for a typical particle of s_{2}, we have

$$
\begin{equation*}
y_{1}(c)-Y_{3}\left(z_{2} \operatorname{rin}_{2} X_{3}, T\right), \forall_{i}(t)=y_{4} \quad(\cos <r \leq t) \tag{2.5}
\end{equation*}
$$

or

$$
\begin{equation*}
z_{i}(f)=y_{i}\left(y_{2} \cdot U_{2}, y_{3}, t, r\right) \tag{2.6}
\end{equation*}
$$

together with

$$
\begin{equation*}
\left|\frac{\partial y_{i}(\tau)}{\partial Y_{A}}\right|>0 \quad\left|\frac{\partial y_{i}(r)}{\partial y_{j}}\right|>0 \tag{2.7}
\end{equation*}
$$

We assume that the particles under consideration occupy the same position at time t so that

$$
\begin{equation*}
y_{i}=x_{i} \tag{2.8}
\end{equation*}
$$

velocity vectors at the point $x_{i}=y_{i}$ in s_{1} and s_{2} at time t ease

$$
u_{i}=\frac{D^{(1)} x_{i}}{D t}, \quad v_{i}=\frac{D(2)}{D t}
$$

where $a^{(1)} / D t$ denotes differention with respect to t holding x_{j} fixed in continuum s_{1} and $D^{(2)} / \mathrm{Dt}$ denotes a similar operator for s_{2}, holding Y_{j} fixed. These operators may also be written as

1

$$
\begin{equation*}
\frac{D^{(1)}}{D t}=\frac{\partial}{\partial t}+u_{m} \frac{\partial}{\partial x_{m}} \cdot \frac{D^{(2)}}{D t}=\frac{\partial}{\partial t}+v_{m} \frac{\partial}{\partial y_{m}} \tag{2.10}
\end{equation*}
$$

Acceleration vectors at time t are denoted by $\hat{\mathbf{t}}_{i}$ and $\hat{\boldsymbol{~}}$ \hat{g}_{i}, where

$$
\begin{equation*}
\hat{\hat{E}_{i}}=\frac{D^{(1)} u_{i}}{D t} \quad \hat{g}_{i}=\frac{D^{(2)} v_{i}}{D t} \tag{2,21}
\end{equation*}
$$

The densities of s_{1} and s_{2} at time t are, respectively, ρ_{1} and ρ_{2}, and the rate of deformation tensors at time t are defined to be

$$
\begin{equation*}
2 d_{i j}=u_{i, j}+u_{j, i}+2 f_{i j}=v_{i, j}+v_{j, i} \tag{2,12}
\end{equation*}
$$

where a comm denotes partial differentiation with respect to x_{k} or Y_{k}. We also define a mean velocity w_{i} be the equation

$$
\begin{equation*}
w_{i}=\rho_{1} u_{i}+\rho_{2} v_{i}, \rho=\rho_{1}+\rho_{2} \tag{2.13}
\end{equation*}
$$

and put

$$
\begin{equation*}
\frac{D}{D t}=\frac{\partial}{\partial t}+w_{m} \frac{\partial}{\partial x_{m}} . \tag{2,14}
\end{equation*}
$$

It then follows that

$$
\begin{equation*}
\rho_{2} \frac{D^{(2)}}{D t}+\rho_{2} \frac{D^{(2)}}{D t}=\rho \frac{D}{D t} . \tag{2.25}
\end{equation*}
$$

Let ∂B be an arbitrary fixed closed surface enclosing a volume B and let n_{k} be the outward unit normal to ab........
Let U be the internal energy per unit mass of the mixtare. The externally applied body forces per unit masses of s_{1} and g_{2} are denoted, respectively, by the vectors F_{i} and G_{i}. And these vectors are defined through their
rate of work contributions $\boldsymbol{F}_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}$ and $G_{i}{ }^{v}{ }_{i}$ sor arbitrary velocity fields u_{i} and v_{i}. The surfaco force vector t_{i} per unit area of ∂B is such that the scalar $t_{i} u_{i}$. for arbitrary u_{i}, is a rate of work per unit area of ∂B. And a similar definition can be made for tire vector \mathcal{P}_{1} associated with the velocity vector v_{i}. The scalar r is the heat supply function per unit mass of the two continua due to radiation from the external world and heat sources. The flux of heat across ∂B is denoted by a scalar h per unit area and unit time.

lheorem (Green and Nachdi)

Let us postulate an energy baiance at time t in the form
$\frac{\partial}{\partial t} \int_{V}\left[\left(\rho_{2}+\rho_{2}\right) U+\frac{1}{2} \rho_{2} u_{i} u_{i}+\frac{1}{2} \rho_{2} v_{i} v_{i}\right] d v$
$+\int_{A}\left[n_{k}\left(\rho_{1} u_{k}+\rho_{2} v_{k}\right) U+\frac{1}{2} \rho_{1} n_{k} u_{k} u_{i} u_{i}+\frac{1}{2} \rho_{2} n_{k} v_{k} v_{i} v_{i}\right] d A$
$=\int_{V}\left(p r+\varphi_{i} F_{i} u_{i}+\rho_{2} G_{i} v_{i}\right) d V$
$+\int_{A}\left(t_{i} u_{i}+p_{i} v_{i}\right) d A-\int_{A} h d A$

Then it follows that

$$
\begin{equation*}
\frac{D \rho}{D t}+p w_{k, k}=0 \tag{2.17}
\end{equation*}
$$

which states that mase elements of the mixtures aro conserved. The vectors t_{i}, p_{i} are defined with referenco to an arbicracy surfaco s. When the surface at a point x_{i} is perpendicular to the x_{1}-axis, wo denote the corresponding valnon by $\sigma_{k i}, \pi_{k i}$ and refer to these as stresses. Then it also follows $\mathrm{xxm}(2.16)$ that

$$
\begin{align*}
& \left(\sigma_{k i}+\pi_{k i}\right)_{k k}+\rho_{2} F_{i}+\rho_{2} G_{i}= \\
& \frac{\partial}{\partial t}\left(\rho_{1} u_{i}\right)+\frac{\partial}{\partial t}\left(\rho_{2} v_{i}\right)+\frac{\partial}{\partial j_{k k}}\left(\rho_{1} u_{i} u_{j k}+\rho_{2} v_{i} v_{k}\right) \tag{2.18}
\end{align*}
$$

Which is the equation of motion.
Now let the misture be composed of an elastic solid and a non-Newtoniän viscous fluid. The kinematic quantities entering into the theory fox the solid are the velocity n, a strain tensor e, a rate of deformation tensor d and a vorticity tensor r; and, for the fluid, the velocity v. a rate of deformation tensor a and a vorticity tensor A. In addition to the body forces previously defined we have for the solid constituent the following mechanical quantities: a partiad stress tensor 0 for the solid and a similar tensoz π for the fluid. Due to the inter"action of the two constituents, the theory gives rise to a diffusive resistance vector 0. The thermodynamic quantities, referring to the mixture as a whole, are the temperature T, the specific entropy S, the specific

Holmholtz free onergy A, the heat flux voctor g and the heat supply function x. For such a mixture the constitutive equations zo given [15] in caronical form as

$$
\begin{align*}
& A=\tilde{A}\left(0, \rho_{2}, T\right) \tag{2.19a}\\
& \mathrm{S}=\tilde{\mathrm{S}}\left(\theta_{0} \rho_{2^{\prime}} \mathrm{S}\right) \tag{2.19b}\\
& g=\tilde{g}\left(\theta, u-\xi, g: a d \pi, \rho_{2}, 2\right) \tag{2.19c}\\
& \omega=\tilde{\omega}^{*}\left(\operatorname{grad} \because, \operatorname{grad} \rho_{2}, \quad \circ, \rho_{2}, T\right)
\end{align*}
$$

$$
\begin{align*}
& \sigma=\tilde{\sigma}\left(0, \cdots, \mathbb{I}-\Lambda, u-v, \rho_{2}, T\right) \tag{2.19d}\\
& \pi=\tilde{\pi}\left(0, u, \varepsilon, \tilde{S}-\Lambda, u-v, \rho_{2}, S\right) \tag{2.19e}
\end{align*}
$$

Further restrictions upon equations (2.19) arise from a general principle of invariance under superposed rigid body motions and a material invariance associated with the assumed isotropy of the solid constituent [16,17]. It has been shown chat in order to axrive at a determinate linearized theory it is sufficient to adjoin to the linearized forms of the field equations (2.18) a system of linearized forms of the constitutive equations (2.19). We now examin the linearized theory mose closely.
2.2. Linearized Theory

Assume that the mirture undergoes a disturbance in which: (a) the material poincs of the solid constituent are displaced by only small anounts from their positions in an equilibrium state of the mizture in which the densities of the solid and fluid constituents and the temperature have the uniform values $\bar{\rho}_{1}, \bar{\rho}_{2}$, and \bar{T}, respectivel
and (b) the speed of the fluid constituent is amall. We refer tho goinss with respect to a Eixed system of rectangular cartesian cordinates.

We considor a thernodymante proceos in which the motions of the solid and Elusid conntitunnts of the mixture and the tompozature ficia 2 oach admit power series representations in town of a positive real number ϵ. We choose z to be a measure of the extent to which the mixtroe rearts from some reference state. As our reference confianation te take the equilibriun state of the mixture in witch

$$
\begin{equation*}
X=\mathbb{S}=\mathbb{X}_{0} T=T \tag{2.20}
\end{equation*}
$$

nd

$$
\begin{equation*}
E=G=0, r=0 \tag{2.21}
\end{equation*}
$$

If e(x,t) is a Eield quantity, we denote its Eexpansion by $a_{(x, t)}(t h a s$

$$
\begin{equation*}
a_{\varepsilon}(x, t)=\sum_{n=1}^{\infty} \varepsilon^{n} a_{\varepsilon}^{(n)}(2 \pi, t) \tag{2.22}
\end{equation*}
$$

We assume the rollowing e-expansions

$$
\begin{equation*}
x=x+x_{\varepsilon}(x, t), y=T+x_{\varepsilon}(x, t), T=\bar{T}+\theta_{\varepsilon}(x, t) . \tag{2.23}
\end{equation*}
$$

From equetions (2.91 emexpansions for the velocity vectors u are

$$
\begin{equation*}
\theta=v_{\epsilon}(x, t), \nabla=\epsilon^{(t, t)} . \tag{2.24}
\end{equation*}
$$

We suppose that each of the expansions (2.23) and (2.24) is absolutely convergent with an interval of convergence $0 \leq \epsilon<\epsilon_{0}$. The inearization of equations $\{2.9$ to (2.15) is obtained by replacing each of the variables by the e-expansions given in (2.22) to (2.24). Without further details it follows that the linearized dioplacementstrain relations for the solid are

$$
\begin{equation*}
u_{i}=\frac{\partial w_{i}}{\partial t}, \quad e_{i j}=w_{(i, j)} \tag{2.25}
\end{equation*}
$$

From (2.17) the individual continuity equations become

$$
\begin{equation*}
\rho_{1}=\bar{\rho}_{1}^{\prime}\left(1-e_{p p}\right), \quad \frac{\partial \rho_{2}}{\partial t}+\bar{\rho}_{2} f_{p p}=0 . \tag{2,26}
\end{equation*}
$$

The vorticity components of the two constituents are given in terms of the velocity components by

$$
\begin{equation*}
\Sigma_{i j}=u_{[i, j]} \quad \Lambda_{i j}=v_{[i, j]} \tag{2.27}
\end{equation*}
$$

The application of the principle of invariance under superposed rigid body motions of the mixture to equation (2.18) leads to the following equations of motion:

$$
\begin{equation*}
\sigma_{p i, p}-\omega_{i}+\rho_{2} F_{i}=\rho_{1} \hat{\hat{E}}_{i}, \pi{ }_{p i, p}+\omega_{i}+\rho_{2} G_{i}=\rho_{2} \hat{\hat{g}}_{i} \tag{2.28}
\end{equation*}
$$

On entering the fexpansians for the various field

We use the notation $A_{(i, j)}=\frac{1}{3}\left(A_{i, j}+A_{j, i}\right) \cdot A_{[i, j]}=$ $\frac{1}{2}\left(A_{i, j}-A_{j, i}\right)$.
quantities into equatione (2.26). (2.27), (2.26) and
(2.23) and equating the coefsicients of G, we obtain the linearized field equations for the mixture as follows,

Equations of motion:

$$
\begin{align*}
& \sigma_{p i, p}-\omega_{i}+\bar{\rho}_{2} E_{i}=\bar{\rho}_{1} \frac{\partial u_{i}}{\partial t} \text { in } B^{0^{*}}=\geq 0 \tag{2.29}\\
& \pi_{p i, p}+\omega_{i} * \bar{\rho}_{2} G_{i}=\bar{\rho}_{2} \frac{\partial v_{i}}{\partial t} \text { in } B^{0}, t \geq 0 \tag{2,30}
\end{align*}
$$

Energy equation:

$$
\begin{gather*}
-\bar{\rho}\left(\bar{T} \frac{\partial S}{\partial t}+\bar{S} \frac{\partial T}{\partial t}+\frac{\partial A}{i t}\right)+\bar{w}_{p}\left(u_{p}-v_{p}\right)+\bar{\sigma}(p q) d_{p q} \\
+\bar{\pi}(p q) \varepsilon_{p q}+\bar{\sigma}_{[p q]}\left(\Gamma_{q p}-\Lambda_{q p}\right)-q_{p, p}+\bar{\rho} r=0 \\
\text { in } B, t \geq 0 . \tag{2.31}
\end{gather*}
$$

In (2.31), $\bar{\rho}=\bar{\rho}_{2}+\bar{\rho}_{2}$ is the cotal initial density of the mixture and $\bar{w}_{i}, \bar{\sigma}_{i j} \bar{\pi}_{i j}$ are the diffusive resistance and the pactial stress tensors in the equilibrium state. The linearized constitutive equations obtained from (2.19) are

$$
\begin{align*}
& \overline{\rho A}=\bar{\rho} \bar{A}+\alpha_{1} e_{B P}+\alpha_{2}\left(\rho_{2}-\bar{\rho}_{2}\right)+\alpha_{3}(T-\bar{T}) \tag{2.32}\\
& \bar{\rho} S=-\left(c_{3}+\alpha_{9} e_{p p}+a_{10}\left(\rho_{2}-\bar{\rho}_{2}\right)+\alpha_{7}(T-\bar{T})\right) \tag{2.33}\\
& q_{i}=-k T_{i}-K^{\prime}\left(u_{i}-v_{i}\right) \tag{2.34}
\end{align*}
$$

$$
\begin{align*}
& w_{i}=-\frac{\bar{p}_{2}}{\bar{\rho}} c_{2} \rho_{\rho p_{0}}+\frac{\bar{\rho}_{1}}{\bar{p}} n_{\rho} \rho_{2,4}+\sigma(u_{4} \text { o } \overbrace{4}) \\
& +a^{n} \cdot \epsilon_{i p q}\left(a_{p q}-A_{p r g}\right) \tag{2.35}
\end{align*}
$$

$$
\begin{align*}
& \left.+\lambda_{2} d_{p p}+\lambda_{2} \varepsilon_{p p}\right) \theta_{j, j}+2\left(c_{1}+\alpha_{5}\right) \theta_{i j} \\
& +2 \mu_{2} \mathrm{a}_{i j}+2 \mu_{3} f_{i j} \tag{2.36}\\
& \pi(\alpha, j)=\left(-\bar{\rho}_{2} \alpha_{2}+\bar{\rho}_{2}\left(\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2}-\alpha_{8}\right) e_{p p}-\left(\frac{\bar{\rho}+\bar{\rho}_{2}}{\bar{\rho}} \alpha_{2}+\bar{\rho}_{2} \alpha_{6}\right)\left(\rho_{2}-\bar{\rho}_{2}\right)\right. \\
& \left.-\bar{\rho}_{2} \alpha_{10}(T-\overline{2})+\lambda_{4} d_{p p}+\lambda f_{p p}\right) \delta_{i j}+2 \mu_{4} d_{i j}+2 \mu f_{i j} \tag{2.37}\\
& \sigma_{[i j]}=-\pi_{[i j]}=D \epsilon_{i j p}\left(u_{p}-v_{p}\right)-D^{\prime \prime}\left(\Gamma_{i j}-\Lambda_{i j}\right) \tag{2.38}
\end{align*}
$$

We note that there are total of 24 constants $\alpha_{1} \ldots \alpha_{10^{\prime}}$ $\lambda_{1} \cdot \lambda_{i} \lambda_{3}, \lambda_{4}, \mu_{1}, \mu_{,} \mu_{3} \cdot \mu_{4} ; \alpha, a^{\prime} \cdot, D_{1} D^{\prime \prime}, k, K^{\prime \prime}$ which have to be determined by an experiment for the mixture. The entropyproduction inequality [14] imposes restrictions upon the constitutive equations which, in the linearized theory, require the material constancs to atiafy the following inequalities:
*We use the notation $A_{(i j)}=Z_{i j}\left(A_{i j}+A_{j i}\right) \cdot A_{[i j]}$

$$
\frac{f}{6}\left(A_{i j}-A_{j i}\right)
$$

$$
\begin{aligned}
& 3 \lambda_{1}+2 \mu_{1} \geq 0, \mu_{1} \geq 0,3 \lambda \div 2 \eta \geq 0, \mu \geq 0,\left(\mu_{3}+\mu_{4}\right)^{2} \leq 4 \mu_{1} \mu_{0} \\
& \left(3 \lambda_{3}+2 \mu_{3}+3 \lambda_{4}+2 \mu_{4}\right)^{2} \leq \Delta\left(3 \lambda_{1}+2 \mu_{1}\right)(3 \lambda+2 \mu) \\
& \alpha \geq 0, D^{\prime \prime} \geq 0,\left(a^{\prime \prime}-D\right)^{2} \leq 4 \alpha D^{\prime \prime}, k \geq 0, k^{\prime 2} \leq 4 \bar{T} \alpha k
\end{aligned}
$$

This Xinearised theory is well posed in the sense that the number of the field and constitutive equations equals the number of field quantities to be determined. We would expect that the boundary conditions for the initial-boundaxy value problems for the mixture axe similar to the classical boundary conditions for the elasticity problem in which the stresses, strain, and displacements are sought. We Y recall that the classical boundary conditions axe: (a) the forces may be given on the surface of the body, (b) the displacements may be given on the surface of the body, (c) the forces may be given on some portions of the body surface, while the displacements are given on the other portions. Indeed, the proper form of the initial and boundary conditions winch should be adjoined to the field and constitutive equations of the linearized theory of interacting continua so that the sufficiently smooth solutions of the field and constitutive equations are determined uniquely are quite similar to the classical boundary conditions of the elasticity except that we have the temperature terms and we have to specify the boundary conditions to each component of the mixture. These conditions
are specified in the following theorem.
Theorem (Atkin, Chadwick, Steel) [18]
Let B be a bounded regular region of three-dimensional Euclidean space occupied by a mixture of an elastic solid and a viscous fluid undergoing a disturbance of small amplitude during the time interval $t \geq 0$. We denote by ∂B the boundary and by B^{0} the interior of B. We use notation $\partial B_{1}, \partial B_{2}$ and $\partial \bar{B}_{1}, \partial \bar{B}_{2}$ for arbitrary subsets of ∂B and their complements with respect to ∂B and n refers to the unit outward normal vector field on ∂B. Suppose that the constants $\lambda_{1}, \mu_{2}, \lambda_{,} \lambda_{3}, \mu_{3}, \lambda_{4}, \mu_{4}, \alpha, \mu_{,} a^{\prime \prime}, D, D^{\prime \prime}$. K and K^{\prime} satisfy the conditions (2.39) and that $\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}$ and α_{8} satisfy the inequalities $\alpha_{1}+\alpha_{5} \geq 0, \frac{2}{\rho} \alpha_{2}+\alpha_{6} \geq 0, a_{7} \leq 0 . \alpha_{1}\left(\frac{2 \bar{\rho}_{2}}{\bar{\rho}}-\frac{1}{3}\right)+\alpha_{4}+\frac{2}{3} \alpha_{5} \geq 0$.

$$
\begin{equation*}
\left(\frac{1}{\rho} \alpha_{1}-\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2}+\alpha_{9}\right)^{2} \leq\left(\alpha_{1}\left(\frac{2 \bar{\rho}_{2}}{\bar{\rho}}-\frac{1}{3}\right)+\alpha_{4}+\frac{2}{3} \alpha_{5}\right)\left(\frac{2}{\rho} \alpha_{6}+\alpha_{6}\right) \tag{2,40}
\end{equation*}
$$

Then there exists at most one set of functions $v_{i} \cdot \rho_{2}$ of class c^{λ} and w_{i}. r^{2} of class c^{2} which satisfy equations $(2.25),(2.26),(2.27),(2.29),(2.30),(2.31),(2.34)$ to (2.38) and the subsidiary conditions

$$
\begin{equation*}
w_{i}=\hat{w}_{i}, u_{i}=\hat{u}_{i}, v_{i}=\hat{v}_{i}, \rho_{2}=\bar{\rho}_{2}+\hat{\rho}_{2}, T=\bar{T}+\hat{T} \tag{2.41}
\end{equation*}
$$

$$
\begin{align*}
& u_{i}-v_{i}=\mathbb{R}_{i} \cdot\left(c_{p i}+\pi_{p i}\right) n_{p}=\sum_{i} \text { on } \partial B_{2}, \tag{2.42}\\
& u_{i}=v_{i} \cdot v_{i}=v_{i} \text { on } \partial \bar{B}_{1} \text { for } t \geq 0, \\
& T=\bar{T}+\theta \text { on } \partial B_{2} g_{p} n_{p}=E \text { on } \partial \bar{B}_{2} \text { for } t \geq 0, \tag{2.43}
\end{align*}
$$

where $\hat{w}_{i}, \hat{u}_{i}, \hat{v}_{i}, \hat{\rho}_{2}, \hat{T}, \mathbf{R}_{i}, \Sigma_{i}, U_{i}, \hat{v}_{i}, \theta, F$ and F_{i} 。 G_{i}. r are prescribed Eunctions on the appropriate domains and $\bar{\rho}_{1}, \bar{\rho}_{2}, \bar{T}$ ace given .strictly positive, constants.

It is well known that for the dynamical motions of linear isotropic elastic solid, the displacement vector \mathbf{w} may be represented as a sum of two components representing motions of dilatational and rotational types, i.e.,

$$
w=\operatorname{grad} \varphi+\text { curl 曹. }
$$

where φ and ψ satisfy the wave equations in which appear the speeds of propagation of dilatational and rotatonal body waves respectively. This representation is known to be complete in the sense that every sufficiently smooth solution y of the equation of motion of linear isotropic elastic solid is expressible in the stated form Where the scalar and vector functions ${ }^{*}$ satisfy the above mentioned wave equations and in addition, div $=0$.

For the motions of the intezacting continua of an elastic solid and a viscous Eluid, Ackin [18] has estabm lished a cecomposition of its motions into components representing motions of dilational and rotational types. Each part of the decomposition is somewhat simplet in form than the original system of the differential equations (2.26). (2.29) to (2.31) and (2.35) to (2.38), but considerably more complicated than the wave equation. The main merit of this new formulation for the motions of the interacting continua is that it allows the investigation of the propagation of small amplicude plane waves in a non-heat conducting mimture of an isotropic solid and an inviscid fluid. we dexine new material constants by the following comiginations of the material constants.

$$
\begin{align*}
& K_{1}=\alpha_{4}+\frac{2}{3} \alpha_{5}+\alpha_{1}\left(2 \frac{\bar{\rho}_{2}}{\bar{\rho}}-\frac{\eta}{3}\right) \cdot K_{2}=\bar{\rho}_{2}^{2}\left(\alpha_{6}+\frac{2}{\rho} \alpha_{2}\right) \\
& K_{3}=-\bar{\rho}_{2}\left(\alpha_{S}+\frac{\lambda}{\bar{\rho}} \alpha_{1}-\frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{2}\right), \quad G_{1}=\alpha_{1}+\alpha_{5} \tag{2,44}\\
& B_{1}=-\bar{T} \alpha_{9} \cdot B_{2}=\bar{\rho}_{2} \bar{A} \alpha_{10}, \beta=D-a^{\prime \prime}, c_{d}=-\frac{\bar{T} \alpha_{7}}{\bar{\rho}}
\end{align*}
$$

Introducing the vector diffexprosial operator

$$
\begin{equation*}
x_{[}[\xi, \eta]=\xi \text { grad div }-\eta \text { cur } 1^{2} \tag{2.45}
\end{equation*}
$$

and suprosing that body forces and heat sources are absent, the governing equations take the form

$$
\begin{align*}
& \dot{\rho}_{2}+\bar{\rho}_{2} \text { div } v=0^{*} \tag{2.46a}
\end{align*}
$$

$$
\begin{align*}
& -(\alpha \dot{+}+\beta \operatorname{cur} 1)(\dot{m}-v)+\varepsilon\left[K_{1}+\frac{4}{3} G_{1}, G_{1}\right] v \\
& -\operatorname{grad}\left(K_{3} \rho_{2} / \bar{\rho}_{2}+D_{1} \theta / \bar{T}\right)=\bar{\rho}_{1} \ddot{\forall} \tag{2.46b}
\end{align*}
$$

$$
\begin{align*}
& +(\alpha+\beta \text { curl })(\dot{w}-\nabla)+x_{[}\left[K_{3}, 0\right] w \\
& -\operatorname{grad}\left(K_{2} \rho_{2} / \bar{\rho}_{2}+B_{2} \theta / \bar{T}\right)=\bar{\rho}_{2} \dot{v} \tag{2.46c}\\
& \bar{\rho} c_{d} \theta+\operatorname{div}\left(B_{2} \dot{w}^{\prime \prime}+B_{2} v-K^{\prime}(\dot{w}-v)\right)=k v^{2} \theta \tag{2.46a}
\end{align*}
$$

Equations (2.46) contain twenty material constants of which nine, the $\lambda^{\prime} s, \mu^{\prime} s$ and $D^{\prime \prime}$ 。 may be regarded as viscosity coefficients, the three K 's as bulk moduli, G_{j} as a shear modulus, B_{1} and B_{2} as products of bulk moduli. Of the remaining five constants, K ' is associated with the transfer of heat in the mixture due to the relative motion of its constituents, x is the thermal conductivity, c_{d} is the specific heat at constant deformation, α, β , arise from the interaction of the two constituents through the diffusive resistance and antisymmetric parts of the partial stress tensors.

[^1]Suppose now that these are scalar functions $\varphi_{2}(x, t)$ and $\varphi_{2}(x, t)$ which satisfy the equations

$$
\begin{align*}
& \left(\lambda_{1}+2 \mu_{1}\right) \nabla^{2} \dot{\varphi}_{1}+\left(K_{1}+\frac{4}{3} G_{1}\right) \nabla^{2} \varphi_{1}+\left(\lambda_{3}+2 \mu_{3}\right) \nabla^{2} \varphi_{2}-\alpha\left(\dot{\varphi}_{2}-\varphi_{2}\right) \\
& -K_{3}\left(\rho_{2} / \bar{\rho}_{2}-2\right)-B_{2} \theta / T-\bar{\rho}_{2} \ddot{\varphi}_{2}=0 \tag{2.47a}\\
& \left(\lambda_{4}+2 \mu_{4}\right) \nabla^{2} \dot{\varphi}_{2}+K_{3} \nabla^{2} \varphi_{1}+\left(\lambda_{2}+2 \mu_{2}\right) \nabla^{2} \varphi_{2}+\alpha\left(\dot{\varphi}_{1}-\varphi_{2}\right) \\
& -K_{2}\left(\rho_{2} / \bar{\rho}_{2}-1\right)-B_{2} \theta / \bar{T}-\bar{\rho}_{2} \dot{\varphi}_{2}=0 \tag{2.47b}\\
& k \nabla^{2} \theta-\left(B_{1}-K^{\prime}\right) \nabla^{2} \dot{\varphi}_{1}-\left(B_{2}+K^{\prime}\right) \nabla^{2} \varphi_{2}-\bar{\rho} c_{d} \dot{\theta}=0 \tag{2.47c}
\end{align*}
$$

and

$$
\begin{equation*}
\dot{\rho}_{2}+\bar{\rho}_{2} \nabla^{2} \varphi_{2}=0 \tag{2.48}
\end{equation*}
$$

and vector functions $\|_{1}(x, t)$ and $\|_{2}(x, t)$ satisfying the equations

$$
\begin{align*}
& \left(\mu_{1}+\frac{1}{\phi} D^{\prime \prime}\right) \nabla^{2} \dot{\phi}_{1}+G_{1} \nabla^{2} \dot{1}_{1}+\left(\mu_{3}-\frac{i}{8} D^{\prime \prime}\right) \nabla^{2} \nabla_{2} \\
& -(\alpha+\beta \operatorname{cus} 1)\left(\dot{\phi}_{1}-\dot{H}_{2}\right)-\bar{\rho}_{1} \dot{\eta}_{1}=0 \tag{2.49a}\\
& \left(\mu_{4}-\frac{2}{3} D^{\prime \prime}\right) \nabla^{2} \dot{H}_{1}+\left(\mu_{2}+\frac{1}{2} D^{\prime \prime}\right) \nabla^{2} \dot{H}_{2} \\
& +(\alpha+\beta \text { curl })\left(\dot{\phi}_{1}-\dot{D}_{2}\right)-\bar{\rho}_{2} \dot{i}_{2}=0 \tag{2.49b}
\end{align*}
$$

If the functions $\varphi_{i}(x, t),{ }_{i}(x, t)$ are sufficiently
differentiable, then $w(x, t), w(x, t)$, given by

$$
\begin{equation*}
\forall=\operatorname{grad} \varphi_{1}+\operatorname{curl} \phi_{1} \quad v=\operatorname{grad} \varphi_{2}+\operatorname{curl} \phi_{2} \tag{2.50}
\end{equation*}
$$

$\rho_{2}(x, t)$, and $\theta(x, t)$ constitute a solution of (2.46). Now the converse question: $I f$ the functions $\rho_{2}(x, t), \forall(x, t), v(x, t), \theta(x, t)$ satisfy equations (2.46). are there scalar and vector functions $\varphi_{i}(x, t)$ satisfying equations $(2.47,2.48,2.49)$ such that (2.50) hold? The answer is given affirmatively, and the representation (2.50) is complete. These results are given in the following theorem:

Theorem (Atkins)
Let $\rho_{2}(x, t)$ and $\sigma(x, t)$ be scalar functions which are twice continuously differentiable on B and let $w(x, t)$ and $V(x, t)$ be vector functions whose fourth and third partial derivatives respectively are Hölder continuous on B, the four functions together satisfying equations (2.46) in B. Then there exist scalar and vector functions $\varphi_{i}(x, t)$. $\psi_{i}(x, t)$ which satisfy equations (2.47), (2,48). (2.49) such that $\forall(x, t)$ and $v(x, t)$ admit the represencations (2.50) in B, Moreover, it is possible to choose the vector functions $\phi_{i}(x, t)$ so that the dilatational conditions

$$
\operatorname{div} \|_{1}=0
$$

are atiscied in B.
with the aid of this cheorem, the propagacion of small ampisicude wavos in a non-heat-conducting mixture of an isotropic elaetic solid and an inviscid fluid was studied by Ackin [19]. Eyuating to mero the viscosity coefficients $\lambda_{j}, \mu_{j}(y=2,3,4)$, $D^{\prime \prime}$ and the thermal conductivity k, then differentiating each term of equations (2.47a) and (2.47b) with respect to t and eliminating P_{2} and 0 means of (2.476) and (2.48), one obtains

$$
\begin{align*}
& c_{1}^{2} \nabla^{2} \dot{\varphi}_{1}+c_{3}^{2} \nabla^{2} \varphi_{2}-a(1-\varepsilon)\left(\dot{\varphi}_{1}-\dot{\varphi}_{2}\right)=\ddot{\varphi}_{1} \tag{2.51a}\\
& c_{Q_{2}}^{2} \nabla^{2} \dot{\varphi}_{2}+c_{2}^{2} \nabla^{2} \varphi_{2}+a f\left(\dot{\varphi}_{1}-\dot{\varphi}_{2}\right)=\ddot{\varphi}_{2} . \tag{2.51b}
\end{align*}
$$

By the same process from equacions (2.49a) and (2.49b), one obtains

$$
\begin{align*}
& v^{2} v^{2} v_{2}-a(l-f)\left(\dot{b}_{2}-\phi_{2}\right)=\dot{\theta}_{2} \tag{2.51c}\\
& a f\left(\dot{b}_{2}-\dot{b}_{2}\right)=\dot{b}_{2} \tag{2.51d}
\end{align*}
$$

where $\mathrm{F}=\bar{\rho}_{3} / \bar{\rho}_{2}$ is the fractional contribution of the solid constituent to the mass of the mixture and

$$
\begin{align*}
& c_{2}^{2}=\left(K_{1}+\Delta G_{2} / 3+\bar{Z}_{1}^{2} / \bar{\rho} \bar{T} c_{d}\right) / \bar{\rho}_{2} \\
& c_{2}^{2}=\left(K_{2}+B_{2}^{2} / \bar{\rho} \bar{T} c_{d}\right) / \bar{\rho}_{2} \tag{2.51e}\\
& c_{3}^{2}=\left(K_{3}+B_{2} B_{2} / \bar{\rho} \bar{T} c_{d}\right) / \bar{\rho}_{3} \cdot c_{4}^{2}=\left(K_{3}+B_{1} B_{2} / \bar{\rho} \bar{T} c_{d}\right) / \overline{\rho_{2}} \\
& i^{2}=G_{2} / \bar{\rho}_{2}
\end{align*}
$$

Equations (2.51a) and (2.51b) govern the propagation of small amplitude waves of dilatational type, that is. motions of the mixture in which the vectoss wid and v are irrotational, and equations (2.51c) and (2.51d) describe motions of rotational type in which these vectors are solenoidal. Thus by the theorem (Atkin) all sufficiently regular notions of the mixture can be decomposed into dilatational and rotational components. From equations (2.51a) and (2.51b) one may obtain

$$
\begin{align*}
& \left\{\left(v_{P 2}^{2} \nabla^{2}-\frac{\partial^{2}}{\partial t^{2}}\right)\left(v_{D 2}^{2} \nabla^{2}-\frac{\partial^{2}}{\partial t^{2}}\right)\right. \\
& \left.=a \frac{\partial}{\partial t}\left(v_{P 3}^{2} \nabla^{2}=\frac{\partial^{2}}{\partial t^{2}}\right)\right\rangle\left(\varphi_{3} \cdot \varphi_{2}\right)=0 \tag{2.52}
\end{align*}
$$

where

$$
\begin{aligned}
& v_{P 2}=\frac{1}{\sqrt{2}}\left(c_{1}^{2}+c_{2}^{2}+\left(\left(c_{1}^{2}-c_{2}^{2}\right)^{2}+4 c_{3}^{2} c_{4}^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} \\
& v_{R 2}=\frac{1}{\sqrt{2}}\left(c_{1}^{2}+c_{2}^{2}-\left(\left(c_{1}^{2}-c_{2}^{2}\right)^{2}+4 c_{3}^{2} c_{4}^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} \\
& v_{P 3}=\left(f\left(c_{1}^{2}+c_{3}^{2}\right)+(1-f)\left(c_{2}^{2}+c_{2}^{4}\right)\right)^{\frac{1}{2}}
\end{aligned}
$$

It has been shown that if \mathbf{v}_{pI} and $\mathbf{v}_{\mathrm{P} 2}$ axe real, \mathbf{v}_{p} is also real and the chree dilatational wave speeds satisfy the inequalicies

$$
\begin{equation*}
v_{p 2} \leq v_{p 3} \leq v_{p_{1}} \tag{2.53}
\end{equation*}
$$

The form of equation (2.52) suggestg that at high frequencies there aro two moces of dilatational wave propagation
 quencios. there is only ono riode of wave propagation, associated with the spoce $v_{p z}$. the cecond mode being a diffused cisturbance.

From cquations (2.51c) and (2.51d) one may obtain

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}\left(v^{2} \nabla^{2}-\frac{\partial^{2}}{\partial t^{2}}\right)+a\left(\Gamma v^{2} v^{2}-\frac{\partial^{2}}{\partial t^{2}}\right)\right) \psi_{t}=0 \tag{2.54}
\end{equation*}
$$

The form of equation (2.54) suggests that rotational disturbances of the mixture comprise a bingle mode which has a wave-lise chaxacter at all Erequencies, the speed of propagation being of foy in the limit when frequencies approach to sero and v in the Iimit when Erequenciea approach to insisicy.

So fax we have reviewed the recent developments of the interacting continua of an isotropic elastic solid and a viscous Eluid. Due to the complication 0 : the system, comparatively little progress has so lar been made concerning the application of the linearized theory to particulay physical aituations, or the properetes and understandings of the charmecer of the syatem of the partial differential equations.
2.3. Summary of the Equations and Other Eormulation: A. Fuily Goupler Mixturo Theory

At this roint we summarize the pertinent equations Fhich govers tire motion of a thexmally and mechanically inte acting continuous mixture according to the theory expoutced by atkin, chadwlek and steal [18]. we call this proishom by the name "fully coupled mixture theory."
strain-displacement equations

$$
\begin{equation*}
e_{i j}=w_{(i, j)} \tag{2.25}
\end{equation*}
$$

rate of deformation-velocity equations

$$
\begin{equation*}
a_{i, j} m u(i, j) \cdot \varepsilon_{i, j}=v_{(i, j)} \tag{2.12}
\end{equation*}
$$

vortigity-velocity equations

$$
\begin{equation*}
x_{i j}=u_{[i, j]} \cdot A_{i j}=v_{[i, j]} \tag{2.27}
\end{equation*}
$$

equations of motion

$$
\begin{align*}
& \sigma_{i j, i}-\omega_{j}+\bar{\rho}_{1} E_{j}=\bar{\rho}_{1} \frac{\partial u_{i}}{\partial t} \tag{2.29}\\
& \pi_{i j, i}+\omega_{j}+\bar{\rho}_{2} G_{j}=\bar{\rho}_{2} \frac{\partial v_{j}}{\partial t} \tag{2.30}
\end{align*}
$$

continuity equations

$$
\begin{equation*}
\rho_{1}=\bar{\rho}_{1}\left(1-e_{k k}\right), \frac{\partial \rho_{2}}{\partial t}+\bar{\rho}_{2} f_{k k}=0 \tag{2,26}
\end{equation*}
$$

energy equations

$$
\begin{align*}
& \alpha_{7} \frac{\partial x}{\partial t}+\alpha_{9} \alpha_{\operatorname{mm}}-\bar{\rho}_{2} \alpha_{10} f_{m m}+\frac{\bar{p}}{T} \\
& +\frac{k}{T} T_{1} m+\frac{K}{T}\left(u_{m, m}-v_{m, m}\right)=0 \tag{2.31}
\end{align*}
$$

constitutive equations

$$
\begin{align*}
& \sigma_{(i j)}=\left[\alpha_{1}-\left(\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{1}-\alpha_{4}\right) e_{k k}+\left(\frac{\alpha_{1}}{\bar{\rho}}+\alpha_{8}\right)\left(p_{2}-\bar{p}_{2}\right)\right. \\
& \left.+\alpha_{9}(T-\vec{T})+\lambda_{1} d_{k k}+\lambda_{3} f_{k k}\right] d_{i j} \\
& +2\left(\alpha_{1}+\alpha_{5}\right) e_{i j}+2 \mu_{1} e_{i j}+2 \mu_{3} f_{i j} . \tag{2.35}\\
& \pi_{(i j)}=\left[-\bar{\rho}_{2} \alpha_{2}+\bar{\rho}_{2}\left(\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2}-\alpha_{8}\right) e_{k k}-\bar{\rho}_{2} \alpha_{10}(T-\bar{T})\right. \\
& \left.\left.-\frac{\bar{p}+\bar{\rho}}{\bar{\rho}} \alpha_{2}+\bar{\rho}_{2} \alpha_{6}\right)\left(\rho_{2}-\bar{\rho}_{2}\right)+A_{4} a_{k k}+\lambda f_{k k}\right] b_{i j} \\
& +2 \mu_{4}{ }_{i j j}+2 \mu F_{i j} \text {. } \tag{2.36}\\
& \omega_{i}=-\frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{1} e_{k k, i}+\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2} \rho_{2, i}+\alpha\left(u_{i}-v_{i}\right) \tag{2.37}\\
& +a^{\prime \prime} \epsilon_{i p q}\left(r_{p q}-A_{p q}\right) \\
& \sigma_{[i j]}=-\pi_{[i j]}=D \epsilon_{i j p}\left(u_{p}-v_{p}\right)-D^{n}\left(\Gamma_{i j}-A_{i j}\right) \tag{2.38}
\end{align*}
$$

The complete initial-boundary value problem is speciefled by the above equations and: the initial conditions Usually the form so obtained is called heat equation.
(2.41), the boundary conditions (2.42). (2.45), and the material inequalities (2.39), (2.40). The problem is solved if one can obtain at each place x_{i} and $t>0$ the functions $w_{i}, v_{i}, P_{1}, P_{2}$ and T.
B. The Misture Theory of Green and Steel.

In a series of papers by Green and Steel [20], Green and Naghdi [14], steel [21], a more tractable initialboundary value problem than the fully coupled mixture theory of section 2.3 A has been presented. The major difference between the linearized version of the theory presented in [15] and that of A lies in the constitutive relations. Green and steel's relations follow from A if one sets equal to zero

$$
\begin{gathered}
\lambda_{2} \lambda_{3} \cdot \lambda_{A^{\prime}} \mu_{1} \cdot \mu_{3} \cdot H_{4^{\prime}} \\
\text { a", } D_{0} D^{\prime \prime} .
\end{gathered}
$$

C. Uncoupled Theory.

By the term uncoupled theory we shall mean the initial-boundary value problem as specified in section 2.3A using the constitutive equations of Green and Steel presented in section $2.3 B$ and in addition, neglecting the time rate of change of the dilatational effects of the solid and fluid components in the energy equation. If this is done, then the heat equation is uncoupled from the equations of motion and the temperature may be treated
as a known cunceion of space and timo.
2.4. Single Constituent 'Meories.

So that we cen make a comparison of the mixture theories presented in the previous sections with the clasm sical theories of elasticity and viscous fluids we record here the changes that must be effected. Our purpose is two fold: it allows us to draw upon the vast literature available in the classical theories of single constituent continuous media and it allows us to give meaningful intrepretation to the mechanical and thermal material properties used in the mixture theory of subsections 2.3.
A. Lineax Thermoelasticity

If the fluid component is not present then the body may be interpreted as a linear elastic solid undergoing thermal deformation in which the variation in temperature is small [22],[25],[24]. One seelss to obtain the components of displacement v_{i} and the temperature T which satisfy equations (2.25), (2.26). (2.29), in the absence of the fluid component and, with certain modifications of the heat and constitutive equations, satisfy (2.31) and (2.35). These modifications are formally equivalent to employing (2.55) and setting

$$
\begin{equation*}
\alpha, \alpha_{2}, \alpha_{2}, \alpha_{6}, \alpha_{B^{\prime}} \alpha_{30^{\prime}} \lambda_{0} \sin ^{\prime} K^{\prime} \tag{2.56}
\end{equation*}
$$

equal to zero.

Equation (2.36) is then interpreted as the classical linear elascic stress-strain law if we identify

$$
\begin{equation*}
\alpha_{5}=\mu_{E}, \alpha_{4}=\lambda_{E}, \alpha_{9}=-\gamma K_{E} \tag{2.57}
\end{equation*}
$$

where $\mu_{E} \lambda_{E}$ are the Liame eiastic constants, γ is the coefficient of linear thermal expansion and K_{E} is the isothermal bulk modulus, $K_{E}=\frac{1}{3}\left(2 \mu_{E}+3 \lambda_{E}\right)$. From (2.31) the modified heat equacion becomes

$$
\begin{equation*}
k T_{\theta_{m m}}-\bar{\rho} c_{e} \frac{\partial T}{\partial t}-\dot{\gamma} \bar{T} K_{8} \frac{\partial}{\partial t} e_{m m}+\bar{\rho} x=0 \tag{2.58}
\end{equation*}
$$

where $\bar{\rho}$ is the total density of the body, c_{e} the specific heat ;at constant strain. These cosfficients are related to a_{7} by

$$
\begin{equation*}
\alpha_{7}=-\frac{\bar{\rho} c_{e}}{\bar{T}} \tag{2.59}
\end{equation*}
$$

The material inequalities (2.39) and (2.40) simplify to

$$
\begin{equation*}
k \geq 0, \mu_{E} \geq 0, c_{e} \geq 0,2 \mu_{E}+3 \lambda_{E}=3{K_{E}}_{E} \geq 0 . \tag{2.60}
\end{equation*}
$$

A properly posed initial-boundary value problem of elasticity consists of finding w_{i} and T of class c^{2} which satisfy the modified equations and the following initial and boundary data:

$$
\begin{align*}
& w_{i}=\hat{w}_{i} \cdot u_{i}=\hat{u}_{i}, T=T+\frac{\hat{S}}{} \text { on } B \text { at trio, } \\
& \sigma_{i j} n_{j}=\sum_{i} \text { on } \partial B_{1}, \\
& w_{i}=w_{i} \text { on } \partial \bar{B}_{1}, \text { for } t \geq 0, \tag{2.61}\\
& T=\bar{T}+\theta \text { on } \partial B_{2} \\
& q_{k} n_{k}=F \text { on } \partial \bar{B}_{2}, \text { fox } t \geq 0
\end{align*}
$$

, where $\hat{w}_{i}, \hat{u}_{i}, \hat{1}, \Sigma_{i}, W_{i}, \Theta, F$, and F_{i} are prescribed functions on the appropriate domains.

We close this subsection with the remark that if the term

$$
\begin{equation*}
-v \bar{s} r_{E} \frac{\partial}{\partial t} \Theta_{n m} \tag{2.62}
\end{equation*}
$$

is ignored in (2.58), then the resulting thermoplastic theory is known as the classical uncoupled thermoelastic theory. [22]. [23]

B. Linear viscous Fluid

If the solid component is not present then the body may be interpreted as a fluid undergoing thermal deformstiôns in which the variation in temperature is small. One seeks to obtain the components of velocity v_{i} and the temperature T which satisfy equations (2.12), (2.27). (2.30). (2.26), in the absence of the solid component, and with certain modifications of the heat and constitutive
equations (2.31), (2.36). These modifications are formally equivalent to employing (2.55) and setting

$$
\begin{equation*}
\alpha, \alpha_{2} \cdot \alpha_{4}, \alpha_{5}, \alpha_{8}, \alpha_{9} \tag{2.63}
\end{equation*}
$$

eçual to zero.
Equation (2.37) is then concerned with the unsteady linearized compressible flow about a state of rest of a heat-conducting viscoug Eluid, if we identify入. $\left.\mu \bar{\rho} \alpha_{2} \cdot \bar{\rho}^{2} \frac{\left(\frac{2}{\rho}\right.}{\rho} \alpha_{2}+\alpha_{6}\right) \cdot \bar{\rho} \alpha_{10}$ of which λ and u are the coefficients of viscosity of the fluid, $\bar{\rho} a_{2}$ is the pressure of the fluid in the rest state, $\bar{\rho}^{2}\left(\frac{2}{\rho} a_{2}+a_{6}\right)$ is the isothermai bulk modulus and $\bar{\rho} a_{10}$ is the productiof the volums coefficient of thermal expansion and the isothermal bulk modulus.

From (2.31) the modified heat equation becomes

$$
\begin{equation*}
\bar{\rho} c_{v} \frac{\partial T}{\partial t}+\gamma k_{T} \bar{T} f_{p p}+k T f_{p p}+\bar{\rho} x=0 \tag{2.64}
\end{equation*}
$$

where C_{v} is the specific heat at constant volume, γ is the volume coefficient of thermal expansion, K_{T} is the isothermal bulk modulus, and k is the thermal conductivity. The coefficient o_{y} is related $\omega \alpha_{7}$ by

$$
\begin{equation*}
c_{v}=-\frac{\overline{2}}{\bar{\rho}} a_{7} \tag{2.65}
\end{equation*}
$$

The matexial inequalities (2.39) and (2.40) simplify to
$3 \lambda+2 \mu \geq 0, \mu \geq 0, k \geq 0, \frac{2}{\rho} a_{2}+a_{6} \geq 0, a_{7} \leq 0$ $K_{T} \geq 0$ and $c_{v} \geq 0$.

- A properly posed initialmboundary value problem is then to find v_{f}, ρ of class c^{1} and T of chase c^{2} which mentisAy the modified equations and the following initial and boundary data:

$$
\begin{align*}
& v_{i}=\hat{v}_{i}, \rho=\bar{\rho}+\hat{p}_{,} T=\bar{T}+\hat{T} \text { on } B \text { at } t=0 \\
& \pi_{p i} n_{p}=\tau_{i} \text { on } \partial B_{1}, \\
& v_{i}=v_{i} \text { on } \partial \bar{B}_{1}, \text { for } t \geq 0 \tag{2.66}\\
& T{ }_{m} \bar{T}+\theta^{\prime} \text { on } \partial B_{2}, \\
& q_{k} n_{k}=F \text { on } \partial \bar{B}_{2}, \text { for } t \geq 0
\end{align*}
$$

where $\hat{v}_{i}, \hat{\rho}, \pi_{i}, V_{i}, \theta_{1} F G_{i}$ and. r are prescribed functions on the appropriate domains.
3.1. Introduction

Prior to considering the reciprocity relation in the mixture theory, we will rewiow the vell known reciprocity theorem of elasticity.

Suppose that an ellastic body is subjected to two systems of body and surface forces. The work that would be done by the first system's body and surface forces in acting through the displacements due to the second system's forces is equal to the work that would be done by the second system's body and surface forces in acting through the displacements due to the first system of forces. Mathematically this is incorporated in the Betti-Rayleigh re'ciprocal theorem.

Theorem (Betti-Rayleigh) [25]
Consider two equilibrium states of an elastic body: one with displacements u_{i} due to the body forces F_{i} and surface forces T_{i}, and the otiner with displacements u_{i}^{\prime} due to body forces F_{i}^{\prime} and surface forces T_{i}^{\prime}. Then it follows that

$$
\int_{\partial B} T_{i} u_{i}^{\prime} d s+\int_{B} F_{i} u_{i}^{\prime} d v=\int_{\partial B} T_{i}^{\prime} u_{i} d s+\int_{B} F_{i}^{\prime} u_{i} d v .
$$

A generalization of the reciprocity relation to dynamic problems is given as follows.

Theorem (Fung) [26]
Consider two problems where the applied body force and the surface tractions and displacements are specified
differently. Let the variables involved in these two problems be distinguished by superscripts in parentheses such that the body force is $x_{i}^{(j)}\left(x_{k} ; t\right)$. the specified surface traction is $f_{i}^{(j)}\left(x_{k} ; t\right)$ on ∂B_{1}, and the specsfied displacement is $g_{i}^{(j)}\left(x_{k} ; t\right)$ on $\partial \bar{B}_{i}$ where $f=1,2$. Assuming that the action starts at $t>0$ in each case, we have

$$
\begin{aligned}
& \int_{B} \int_{0}^{t} x_{i}^{(1)}(x, t-y) u_{i}^{(2)}(x, y) d y d v \\
+ & \int_{\partial B_{1}} \int_{0}^{t} f_{i}^{(1)}(x, t-y) u_{i}^{(2)}(x, y) d y d s \\
+ & \int_{\partial \bar{B}} \int_{0}^{t} \sigma_{i j}^{(1)}(x, t-y) g_{i}^{(2)}(x, y) n_{j} d y d s \\
= & \int_{B} \int_{0}^{t} x_{i}^{(2)}(x, t-y) u_{i}^{(1)}(x, y) d y d v \\
+ & \int_{\partial B_{1}} \int_{0}^{t} f_{i}^{(2)}(x, t-y) u_{i}^{(1)}(x, y) d y d s \\
+ & \int_{\partial \vec{B}} \int_{0}^{t} \sigma_{i j}^{(2)}(x, t-y) g_{i}^{(1)}(x, y) n_{j} d y d s
\end{aligned}
$$

As an illustration of this theorem consider the following problems. By problem 1 let us mean the displacement and stress field in an infinite region that results due to the body force system

$$
x_{i}^{(1)}=F_{i}^{(1)} \delta\left(p_{1}\right) \delta(t)
$$

where p_{i} is a fixed point in the medium and $F_{i}^{(1)}$ refers to a force magnitude. For problem 2 let us find the displacement and stress field in the infinite region due to the traveling impulsive force system

$$
x_{i}^{(2)}=F_{i}^{(2)} \&\left(t-\frac{x_{1}}{U}\right) \quad \theta\left(x_{2}\right) \delta\left(x_{3}\right)
$$

Then substituting into the reciprocal theorem and using the properties of the Dirac delta function we find that

$$
\begin{align*}
& F_{i}^{(1)} u_{i}^{(2)}\left(p_{1}, t\right) \tag{3.1}\\
& =F_{i}^{(2)} \iiint \delta\left(x_{2}\right) \delta\left(x_{3}\right) d x_{1} d x_{2} d x_{3} \int_{0}^{t} \delta\left(y-\frac{x_{1}}{\tau}\right) u_{i}^{(1)}\left(x_{1}, x_{2}, x_{3}, t-y\right) d y \\
& =F_{i}^{(2)} \int_{-\infty}^{x_{1} / v} u_{i}^{(1)}\left(2 x_{1}, 0,0, t-\frac{x_{1}}{U}\right) d x_{1} .
\end{align*}
$$

From this relation $u_{i}^{(2)}\left(p_{1}, t\right)$ can be found when $u_{i}^{(1)}\left(x_{1}, 0,0, t-\frac{x_{1}}{U}\right)$ is known. When $E_{1}^{(1)}=1$ and $F_{2}^{(1)}=F_{3}^{(1)}=0$, Dayton [27] has determined $u_{i}^{(1)}$ by applying the Laplace and Hanker transforms to the elastic equations of motion. The solution is

$$
\begin{align*}
& u_{1}^{(1)}(x, t)=\frac{t}{4 \pi R^{2}} G\left(x_{1}, R, t\right), u_{2}^{(1)}(x, t)=\frac{x_{1} x_{2} t}{4 \pi R^{4}} F(R, t) \\
& u_{3}^{(1)}(x, t)=\frac{x_{3} x_{1} t}{4 \pi R^{4}} F(R, t) \tag{3.2}
\end{align*}
$$

where
$F(R, t)=\frac{3}{R} H\left(t-R / c_{1}\right)+\frac{1}{C_{1}} \delta\left(t-R / c_{1}\right)-\frac{3}{R} H\left(t-R / c_{2}\right)-\frac{1}{c_{2}} \delta\left(t-R / c_{2}\right)$.
$G\left(x_{1}, R, t\right)=\left(\frac{3 x^{2}}{R^{2}}-1\right) \frac{1}{R} H\left(t-R / c_{1}\right)+\frac{x^{2}}{c_{1} R^{2}} \delta\left(t-R / c_{1}\right)$
$-\left(\frac{3 x^{2}}{R^{2}}-1\right) \frac{1}{R} H\left(t-R / c_{2}\right)=\left(\frac{x^{2}}{R^{2}}-1\right) \frac{1}{c_{2}} \delta\left(t-R / c_{2}\right)$
$R=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{\frac{1}{2}} ; c_{j}$. and c_{2} are the speeds of the propagation of dilatational and equivoluminal waves.

Payton used the equations (3.1) and (3.2) to compute the $u_{i}^{(2)}$.
3.2. Reciprocal Relations for Mechanically and Thermally Interacting Mixture

We will investigate a reciorocity relation for the interacting confinua of an elastic solid and linear viscous fluid using the theory derived in section 2 .

We put

$$
\begin{equation*}
x_{i}=x_{i}+w_{i}, \rho_{2}=\bar{\rho}_{2}+\eta, T=\bar{T}+\theta \tag{3,3}
\end{equation*}
$$

where x_{i} is a reference position at time $t=0, x_{i}$ is a position at time t, ρ_{2} is the density of the fluid component at $\left(x_{i}, t\right), T$ is the temperature at $\left(x_{i}, t\right), \bar{T}$ is the initial temperature; then from (2.26)

$$
\begin{equation*}
\frac{\partial \eta}{\partial t} \div \bar{\rho}_{2} \frac{\partial v_{i}}{\partial x_{i}}=0 \tag{3.4}
\end{equation*}
$$

all quantities now teing regarded as functions of x_{i} and t. since initially. the medium is in equilibrium
under zero total applied force it follows that

$$
\begin{equation*}
\alpha_{1}=\bar{\rho}_{2} \alpha_{2} \tag{3.5}
\end{equation*}
$$

Let us consider the problems in which the body forces $F_{i}\left(X_{i}, t\right), G_{i}\left(X_{i}, t\right)$, the specified surface fractions f_{i}, g_{i}, and the specified velocities u_{i}, v_{i} are given functions of time and space, respectively, for solid and fluid which starts its action at $t>0$. with the initial conditions

$$
\begin{equation*}
w_{i}=\frac{\partial w_{i}}{\partial t}=0, v_{i}=0, \eta=0, \theta=0 \text { for } t \leq 0, \tag{3.6}
\end{equation*}
$$

Let the Laplace transform of a function $u\left(x_{k}, t\right)$ be written as $\tilde{u}\left(x_{f}, p\right)$ where

$$
\tilde{u}\left(x_{k}, P\right)=\int_{0}^{\infty} e^{-P t} u\left(x_{k}, t\right) d t .
$$

We apply the Laplace transform with respect to the time t to every dependent variable. From (2.29), (2.30), (2.35), (2.36), (2.37), (2.55), (3.4) and (3.6) wo obtain

$$
\begin{equation*}
\tilde{\sigma}_{p i, p}-\tilde{w}_{i}+\bar{\rho}_{1} \tilde{F}_{i}=\bar{\rho}_{1} p \tilde{u}_{i} \tag{3.7a}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\pi}_{p i, p}+\tilde{\omega}_{i}+\bar{\rho}_{2} \tilde{G}_{i}=\bar{\rho}_{2} p \tilde{v}_{i} \tag{3.7b}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{w}_{i}=\frac{\bar{\rho}_{1} \alpha_{2}}{\bar{\rho}} \tilde{n}_{1} i-\frac{\bar{\rho}_{2} \alpha_{1}}{\bar{\rho}} \tilde{e}_{m m_{0} i}+\alpha\left(\tilde{w}_{i}-\tilde{v}_{i}\right) \tag{3.7c}
\end{equation*}
$$

$$
\tilde{\sigma}_{i k} \approx \frac{\alpha_{1}}{p} \delta_{i k}+\left(\alpha_{4}-\frac{\bar{\rho}_{2} \alpha_{1}}{\bar{\rho}}\right) \tilde{e}_{m m}{ }_{i k k}+2\left(\alpha_{1}+\alpha_{5}\right) \tilde{\theta}_{i k}+\left(\alpha_{8}+\frac{\alpha_{1}}{\bar{\rho}}\right) \tilde{\eta}_{6}
$$

$$
\begin{equation*}
+\alpha_{9} \frac{\dot{\theta}}{\theta} \delta_{i k} \tag{3.7d}
\end{equation*}
$$

To complete the problem let us consider the boundary ∂B as the sum of the disjoint sets ∂B_{1} and $\partial \vec{B}_{1}$ or as the sum of the sets (disjoint) ∂B_{2} and $\partial \vec{B}_{2}$. We specify sort $t \geq 0$.

$$
\begin{array}{r}
u_{i}-v_{i}=R_{i} \quad \text { on } \partial B_{1} \\
\left(\sigma_{i j}+\pi_{i j}\right) n_{i}=\Sigma_{i} \text { on } \partial B_{1} \\
u_{i}=U_{i} \cdot v_{i}=v_{i} \text { on } \partial \bar{B}_{1} \\
T=\bar{T}+\theta \text { on } \partial B_{2} \\
q_{p} n_{p}=F \quad \text { on } \partial \bar{B}_{2} \tag{3.8e}
\end{array}
$$

To aid in the computations we introduce the following combinations of material constants:

$$
\begin{align*}
& \beta_{2}=\alpha_{4}-\frac{\bar{\rho}_{1} \alpha_{1}}{\bar{\rho}}, \beta_{1}=\alpha_{8}+\frac{\alpha_{1}}{\rho} \tag{3.9a}\\
& \beta_{3}=\alpha_{1}+\alpha_{5}, \gamma_{1}=\bar{\rho}_{2} \alpha_{6}+\frac{\bar{\rho}_{2}+\bar{\rho}}{\bar{\rho}} \alpha_{2}, \tag{3.9b}\\
& \gamma_{2}=\bar{\rho}_{2}\left(-\alpha_{8}+\frac{\bar{\rho}_{1} \alpha_{2}}{\bar{\rho}}\right) \tag{3.9c}
\end{align*}
$$

Now consider two problems specified by equations (2.26). (2.29). (2.30), (2.31), (2.35), (2.36), (2.37), (3.6) and (3.8). We identify one problem by a superscript one on all field variables and a second problem by a superscript two on all field variables. For example $u_{i}^{(1)}, v_{i}^{(1)}, \theta^{(1)}$ will satisfy (3.6), (3.7) and (3.8) for $R_{i}^{(1)}, \Sigma_{i}^{(1)}, U_{i}^{(1)}, v_{i}^{(1)}$, $\theta^{(1)}, F^{(1)}$, while $u_{i}^{(2)}, v_{i}^{(2)}, \theta^{(2)}$ are solutions of (3.6)., (3.7), (3.8) Zoan different $R_{i}^{(2)}, \Sigma_{i}^{(2)}, U_{i}^{(2)}, V_{i}^{(2)}, \theta^{(2)}, F^{(2)}$.

- To derive the reciprocal theorem we begin with the equations of motion end the constitutive equations to which we have applied the Laplace transform and used the initial conditions as specified in equation (3.6). For the sake of convenience these are

$$
\begin{align*}
& \tilde{\sigma}_{p i, p}^{(j)}-\tilde{w}_{i}^{(j)}+\bar{\rho}_{1} \tilde{F}_{i}^{(j)}=\bar{\rho}_{1} E \tilde{u}_{1}^{(j)} \tag{3.10a}\\
& \tilde{\pi}_{p i, p}^{(j)}+\tilde{w}_{i}^{(j)}+\bar{\rho}_{2} G_{i}^{(j)}=\bar{\rho}_{2} \tilde{v}_{i}^{(j)} \tag{3.20b}\\
& \tilde{w}_{i}^{(j)}=\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2} \tilde{\eta}_{i j}^{(j)}-\frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{1}{\tilde{\Theta_{m m, i}}}_{(j)}^{(j)} \alpha\left(p \tilde{w}_{i}^{(j)}-\tilde{v}_{i}^{(j)}\right) \tag{3.10c}
\end{align*}
$$

$$
\tilde{\sigma}_{i k}^{(j)}=\frac{\alpha_{1}}{p} \delta_{i k}+\beta_{2} \tilde{\sigma}_{\operatorname{mn}}^{(j)} \delta_{i k}+2 \beta_{3} \tilde{\Theta}_{i k}^{(j)}+\beta_{1} \tilde{\eta}^{(j)} \delta_{i k}+\alpha_{9} \tilde{j}^{(j)} \delta_{i k}
$$

$$
\tilde{\pi}_{i k}^{(j)}=\left[-\frac{\bar{\rho}_{2}}{R} \alpha_{2}-\gamma_{j} \tilde{\eta}(j)+\gamma_{2} \tilde{\mathrm{e}}_{\operatorname{men}}^{(j)}-\bar{\rho}_{2} \alpha_{10} \tilde{\theta}^{(j)}\right] \delta_{i k}+\lambda \widetilde{f}_{r x}^{(j)} \delta_{i k}
$$

$$
\begin{equation*}
+2 \mu \widetilde{\S}_{i k}^{(j)} \tag{3.10e}
\end{equation*}
$$

for $j=1,2$.
Min? +implying equation (3.10a) tor $j=1$ by $\tilde{u}_{i}^{(2)}$ and again for $j=2$ by $\tilde{u}_{i}^{(1)}$, subtracting these two results and then integrating over the region B, we obtain,

$$
\begin{align*}
& \int_{B} \tilde{u}_{i}^{(2)} \tilde{\sigma}_{p i_{, p}}^{(1)} d v * \int_{B} \tilde{u}_{i}^{(2)} \bar{\rho}_{1} \tilde{F}_{i}^{(1)} d v \\
- & \int_{B} \tilde{u}_{i .}^{(2)} \tilde{u}_{i}^{(1)} d v \tag{3.12}\\
= & \int_{n} \tilde{u}_{i}^{(1)} \tilde{\sigma}_{p i, p}^{(2)} d v+\int_{B} \tilde{u}_{i}^{(1)} \bar{\rho}_{1} \widetilde{F}_{i}^{(2)} d v \\
- & \int_{n} u_{i}^{(n)} \tilde{\sim}_{i}^{(2)} d v
\end{align*}
$$

where dy is the element of volume of B.
Consider the first integral on the left and let us apply the divergence theorem to it. In this way we obtain
$\int_{B} \tilde{u}_{i}^{(2)} \tilde{\sigma}_{p i, p}^{(1)} d v=\iint_{\partial E} \tilde{u}_{i}^{(2)} \tilde{\sigma}_{p i}^{(1)} n_{p} d s \int_{B} \tilde{u}_{i, p}^{(2)} \tilde{\sigma}_{p i}^{(1)} d v$
where dos is the element of surface area of ∂B. We note that the first integral on the ri t of (3.11) can be manipm ulated in the same way and the res it is the same as (3.12) with the superscripts interchanged.

Consider now the third integral on the left. From the constitutive equation (3.100) we may write

$$
\begin{align*}
& \int_{B} \tilde{u}_{i}^{(2)} \tilde{\omega}_{i}^{(1)} d v^{\prime}=\int_{B} p w_{i}^{(2)} \alpha\left(p \tilde{w}_{i}^{(1)}-\tilde{v}_{i}^{(1)}\right) d v \\
+ & \int_{\partial B} P \tilde{W}^{(2)}\left[-\frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{1} \tilde{e}_{\operatorname{man}}^{(1)}+\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2} \tilde{n}^{(1)}\right] n_{i} d s \\
- & \int_{B} P \tilde{w}_{i, i}^{(2)}\left[-\frac{\bar{\rho}_{2}}{\bar{\rho}} a_{1} \tilde{\varepsilon}_{m m}^{(1)}+\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2} \tilde{n}^{(1)}\right] d v \tag{3.13}
\end{align*}
$$

A similar result is obtained after the superscripts are exchanged. Using the constitutive equation (3.10d), we have for the second integral on theright of equation (3.22)

$$
\begin{align*}
\int_{B} \tilde{u}_{i, p}^{(2)} \tilde{c}_{p i}^{(1)} d v & =\int_{B} p \tilde{w}_{i, p}^{(2)} \tilde{\sigma}_{p i}^{(1)} d v \tag{3.14}\\
& =\int_{B} \operatorname{Pe}_{i p}^{(2)} \tilde{\sigma}_{p i}^{(1)} d v \\
& =\int P \tilde{e}_{i p}^{(2)}\left[\beta_{2} \tilde{S}_{n m}^{(1)} \dot{v}_{p i}+2 \beta_{3} \tilde{e}_{p i}^{(1)}\right] d v \\
& +\iint_{p} \tilde{e}_{i p}^{(2)}\left[\frac{\alpha_{1}}{p} \delta_{p i}+\beta_{1} \tilde{\eta}^{(1)} \delta_{p i}+\alpha_{9} \tilde{\theta}^{(1)} \delta_{p i}\right] d v
\end{align*}
$$

A similar result is obtained for the middle integral on the right of equation (3.22) after the superscripts are interchanged. When the equations (3.12), (3.13), (3.14) along with the equations after the superscripts are interchanged are substituted into equation (3.11), we have

$$
\begin{aligned}
& \int_{B} \tilde{u}_{i}^{(2)} \bar{\rho}_{1} \tilde{F}_{i}^{(1)} d v+\int_{\partial B} \tilde{\mu}_{i}^{(2)} \tilde{\sigma}_{p i}^{(1)} n_{p} d s+\int_{B} P \alpha \tilde{w}_{i}^{(2)} \tilde{v}_{i}^{(1)} d v \quad \text { (3.25) } \\
& -\int_{\partial B} p w_{i}^{(2)}\left[-\frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{1} \tilde{e}_{\operatorname{mm}}^{(1)}+\frac{\bar{\rho}_{1}}{\bar{\rho}} a_{2} \tilde{\eta}^{(1)}\right] n_{i} d \theta+\int_{B} P \tilde{e}_{\operatorname{ma}}^{(2)} \frac{\bar{\rho}_{1}}{\bar{\rho}_{2}} \tilde{\eta}^{(2)} d v \\
& -\int_{B} p_{\varepsilon_{i p}}^{(2)}\left[\frac{\alpha_{1}}{\mathrm{P}} \delta_{p i}+\beta_{1} \tilde{\eta}^{(2)} \delta_{p i}+\alpha_{g} \tilde{\theta}^{(2)} \delta_{p i}\right] d v \\
& =\int_{B} \tilde{u}_{i}^{(1)} \bar{\rho}_{i} \tilde{F}_{i}^{(2)} d v+\int_{\partial B} \tilde{u}_{i}^{(1)} \tilde{\sigma}_{p i}^{(2)} r_{n} d s+\int_{B} p \alpha \tilde{w}_{i}^{(1)} \tilde{v}_{i}^{(2)} d v \\
& -\int_{\partial B} P \tilde{W}_{j}^{(1)}\left[-\frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{i} \tilde{E}_{\operatorname{man}}^{(2)}+\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2} \tilde{\eta}^{(2)}\right] n_{i} d s+\int_{B} P \tilde{e}_{\operatorname{man}}^{(1)} \frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2} \tilde{\eta}^{(2)} d v \\
& -\int_{B} p \tilde{e}_{i p}^{(1)}\left[\frac{\alpha_{1}}{p} \delta_{p i}+\beta_{1} \tilde{\eta}^{(2)} \delta_{p i}+\alpha_{9} \tilde{\theta}^{(2)} \delta_{p i}\right] d v
\end{aligned}
$$

By the same process used to derive (3.15) from (3.10a), we find that from (3.10b)

$$
\begin{aligned}
& \int_{B} \tilde{v}_{i}^{(2)} \bar{\rho}_{2} \tilde{G}_{i}^{(2)} d v+\int_{\partial B} \tilde{v}_{i}^{(2)} \tilde{\pi}_{p i}^{(1)} n_{p} d s+\int_{B} p Q \tilde{v}_{i}^{(2)} \tilde{w}_{i}^{(1)} d v \\
& +\int_{\partial B} \tilde{v}_{i}^{(2)}\left[-\frac{\bar{\rho}_{2}}{\bar{\rho}} a_{1} \tilde{e}_{\operatorname{man}}^{(1)}+\overline{\bar{T}}_{1} \alpha_{2} \tilde{\eta}^{(1)}\right] n_{i} d s+\int_{D} \tilde{v}_{i, i}^{(2)} \frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{1} \tilde{e}_{\operatorname{mm}}^{(1)} d v \\
& -\int_{B} \tilde{v}_{i, p}^{(2)}\left[\left(-\bar{\rho}_{2} \alpha_{2}+\gamma_{2} \tilde{e}_{m i l}^{(l)}-\bar{\rho}_{2} \alpha_{10} \tilde{\theta}^{(1)}\right) \delta_{p i}\right] d v \\
& =\int_{B} \tilde{v}_{i}^{(1)} \bar{\rho}_{2} \tilde{G}_{i}^{(2)} d v+\int_{B} \tilde{v}_{i}^{(1)} \tilde{\pi}_{p i}^{(2)} n_{p} d s+\int_{B} p a \tilde{v}_{i}^{(1)} \tilde{w}_{i}^{(2)} d v
\end{aligned}
$$

$$
\begin{align*}
& +\int_{\partial B} \tilde{v}_{i}^{(1)}\left[-\frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{2} \tilde{\mathrm{a}}_{\mathrm{mm}}^{(2)}+\frac{\bar{\rho}_{1}}{\bar{\rho}} a_{2} \tilde{\eta}^{(2)}\right] n_{i} a s+\int_{B} \tilde{v}_{i, i}^{(1)} \frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{1} \tilde{e}_{\operatorname{mm}}^{(2)} d v \\
& -\int_{B} \tilde{v}_{i, p}^{(1)}\left[-\frac{\bar{\rho}_{2}}{\bar{p}} a_{2}+\gamma_{2} \tilde{e}_{m m}^{(2)}-\bar{\rho}_{2} \alpha_{10} \tilde{\theta}^{(2)} s_{p i}\right] d v . \tag{3.16}
\end{align*}
$$

Before we add (3.15) and (3.16), we notice that the following volume integrals

$$
\begin{aligned}
& \int_{B} \tilde{v}_{i, i}^{(2)} \frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{1} \tilde{e}_{m m}^{(1)} d v+\int_{B} p \tilde{\eta}^{(1)} \frac{\bar{\rho}_{1} \alpha_{2}}{\bar{\rho}} \tilde{e}_{\mathrm{r} 2 \mathrm{~m}}^{(2)} d v \\
& -\int_{B} \tilde{v}_{i, p}^{(2)}\left(-\frac{\tilde{\rho}_{2}}{p} \alpha_{2}+\gamma_{2} \tilde{e}_{\operatorname{mm}}^{(1)}-\tilde{\rho}_{2} \alpha_{10} \tilde{\theta}^{(1)}\right) \delta_{p i} d v \\
& -\int_{B} p \tilde{e}_{i p}^{(2)}\left[\frac{\alpha_{1}}{p} \delta_{p i}+\beta_{1} \tilde{\eta}^{(1)} \delta_{p i}+\alpha_{G} \tilde{\theta}^{(1)} \delta_{p i}\right] d v
\end{aligned}
$$

..lay be recast by, using (3.7) and (3.9) as

$$
\begin{align*}
& \int_{B} p \tilde{\eta}^{(2)}\left[\left(-\alpha_{8}+\frac{\bar{\rho}_{1} \alpha_{2}}{\bar{\rho}}-\frac{\alpha_{1}}{\bar{\rho}}\right) \tilde{e}_{m a}^{(1)}-\frac{\alpha_{2}}{p}-\alpha_{10} \tilde{\theta}^{(1)}\right] d v . \tag{3.17}\\
+ & \int_{B} p \tilde{e}_{m m}^{(2)}\left[\left(-\alpha_{8}+\frac{\bar{\rho}_{1} \alpha_{2}}{\bar{\rho}}-\frac{\alpha_{1}}{\rho}\right) \tilde{\eta}^{(1)}-\frac{\alpha_{1}}{\bar{p}}-\alpha_{9} \tilde{\theta}^{(1)}\right] d v .
\end{align*}
$$

With the aid of (3.17) the sum of (3.15) and (2.16) can be written as

$$
\begin{aligned}
& \int_{B} \tilde{v}_{i}^{(2)} \bar{\rho}_{2} \tilde{G}_{i}^{(1)} d v+\int_{B} \tilde{u}_{i}^{(2)} \bar{\rho}_{1} \tilde{F}_{i}^{(1)} d v+\int_{\partial B} \tilde{v}_{i}^{(2)} \tilde{\pi}_{p i}^{(1)} n_{p} d s+\int_{\partial B} \tilde{u}_{i}^{(2)} \tilde{\rho}_{p i}^{(1)} n_{p} d s \\
+ & \int_{\partial B}\left(\tilde{v}_{i}^{(2)}-P \widetilde{w}_{i}^{(2)}\right)\left(-\frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{1} \tilde{e}_{m m}^{(1)}+\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2} \tilde{\eta}^{(1)}\right) n_{i} d s \\
+ & \int_{\partial B}\left(\frac{\bar{\rho}_{2} \alpha_{2}}{p} \tilde{v}_{m}^{(2)}-\alpha_{1} \tilde{w}_{m}^{(2)} m_{m} d s+\int_{B} \tilde{\theta}^{(1)} \bar{\rho}_{2} \alpha_{10} \tilde{f}_{r r}^{(2)}-\alpha_{9} p \tilde{e}_{m m}^{(2)}\right) d v
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{B} \tilde{v}_{i}^{(1)} \bar{\rho}_{2} \tilde{G}_{i}^{(2)} d v+\int_{B} \tilde{u}_{i}^{(1)} \bar{\rho}_{i} \tilde{F}_{i}^{(2)} d v+\int_{\partial B} \tilde{v}_{i}^{(1)} \tilde{\pi}_{p i}^{(2)} n_{p} d \dot{s} \\
& +\int_{\partial B} \tilde{u}_{i}^{(1)}{\tilde{\sigma_{p i}}}_{p i}^{(2)} n_{p} d s \\
& \left.+\int_{\partial B} \tilde{v}_{i}^{(1)}-p \tilde{w}_{i}^{(1)}\right)\left(-\frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{1} \tilde{e}_{m m}^{(2)}+\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2} \tilde{\eta}^{(2)}\right) n_{i} d s \\
& +\int_{\partial B}\left(\frac{\bar{\rho}_{2} \alpha_{2}}{q} \tilde{v}_{m}^{(1)}-\alpha_{1} \tilde{w}_{m}^{(1)}\right) n_{m} d s+\int_{B} \tilde{\theta}^{(2)}\left(\bar{\rho}_{2} \alpha_{10} \tilde{F}_{r x}^{(1)}-\alpha_{9} \tilde{\varepsilon}_{m m}^{(1)}\right) d v .
\end{aligned}
$$

Let the flux of heat and heat supply function be incorporated into (3.18). The energy equation (2.31) reduces to

$$
\begin{equation*}
\alpha_{7} \frac{\partial \theta}{\partial t}+\alpha_{9} d_{p p}-\bar{\rho}_{2} \alpha_{10} f_{p p}-\frac{1}{T} q_{p, p}+\frac{\bar{p}}{T} r=0 . \tag{3.19}
\end{equation*}
$$

Application of, Laplace transform to (3.19) leads to

$$
\begin{equation*}
p \alpha_{9} \tilde{\theta}+p \alpha_{9} \tilde{e}_{m m}-\bar{\rho}_{2} \alpha_{10} \tilde{E}_{p p}-\frac{1}{\bar{T}} \tilde{q}_{p, p}+\frac{\overline{\mathrm{g}}}{\mathrm{~T}} r=0 \tag{3.20}
\end{equation*}
$$

Consider the last integral on the left in (3.18). Using (3.20) it becomes

$$
\int_{B} \tilde{\theta}^{(1)}\left(P \alpha_{7} \tilde{\theta}^{(2)}-\frac{1}{\bar{T}} \tilde{q}_{p, p}^{(2)}+\frac{\bar{p}}{T} \tilde{r}^{(2)}\right) c v
$$

and if we now apply the divergence theorem to the $\tilde{q}_{p, p}^{(2)} \tilde{\theta}^{(1)}$ term we may write (using (2.34) and (2.39))

$$
\begin{align*}
& \int_{B} p \alpha_{7} \tilde{\theta}^{(1)} \tilde{\theta}^{(2)} d v+\frac{\bar{p}}{\bar{T}} \int_{B} \tilde{\theta}^{(1)} \tilde{r}^{(2)} d v-\frac{1}{T} \int_{\partial B} \tilde{\theta}^{(1)} \tilde{q}_{p}^{(2)} h_{p} d s \\
- & \frac{k}{T} \int_{B} \tilde{\sigma}^{(1)} \tilde{\theta}_{p}^{(2)} d v-\frac{K^{\prime}}{\bar{T}} \int_{B} \tilde{\theta}_{p}^{(1)}\left(\tilde{u}_{p}^{(2)}-\tilde{v}_{p}^{(2)}\right) d v . \tag{3.21}
\end{align*}
$$

We. note that a similar expression can be obtained for the last integral of (3.18) by interchanging indices.

Substituting (3.21) into (3.18) and employing the transformed boundary conditions (3.8) leads to the general reciprocal theorem in the Laplace transformed state. Before giving this expression we introduce one additional condition. We set

$$
\begin{equation*}
\dot{\Sigma}_{i}^{(j)}=\dot{E}_{i}^{(j)}+\dot{g}_{i}^{(j)} \tag{3.22a}
\end{equation*}
$$

and require

$$
\begin{align*}
& \sigma_{p i} n_{p}=f_{i}^{(j)} \tag{3.220}\\
& \tilde{r}_{p_{i}} n_{p}=g_{i}^{(j)} \tag{3.220}
\end{align*}
$$

on the boundary, $\mathrm{\partial B}_{1}$. This introduction somewhat simplifies the notation but it muse be recognized that only the total stress vector Σ_{i} is specified on ${ }^{\partial B_{1}}$.

Thus, by (3.8), (3.28), (3.21) and (3.22) we have

$$
\begin{aligned}
& \int_{B} \tilde{v}_{i}^{(2)} \bar{\rho}_{2} \tilde{G}_{i}^{(1)} d v+\int_{B} \tilde{u}_{i}^{(2)} \bar{\rho}_{i} \tilde{F}_{i}^{(1)} d v+\int_{\partial z_{i}} \tilde{v}_{i}^{(2)} \tilde{g}_{i}^{(1)} d s+\int_{\partial B_{i}} \tilde{u}_{i}^{(2)} \tilde{E}_{i}^{(1)} d s \\
& +\int_{\partial B_{1}} \tilde{v}_{i}^{(2)} \tilde{\pi}_{p i}^{(1)} n_{p} d s+\int_{\partial B_{i}}{\tilde{u_{i}}}_{i}^{(2)} \tilde{\sigma}_{p i}^{(1)} n_{p} d s
\end{aligned}
$$

$$
+\int_{\partial B_{1}}\left(-\tilde{R}_{i}^{(2)}\right)\left[-\frac{\bar{\rho}_{2}}{\bar{\rho}} \alpha_{2}\left(\frac{\bar{\rho}_{2}}{p}-\tilde{\rho}_{1}^{(1)}\right) / \bar{\rho}_{i}+\bar{\rho}_{1} \alpha_{2}\left(\tilde{\rho}_{2}^{(1)}-\frac{\bar{\rho}_{2}}{p}\right) / \rho\right] n_{i} d s
$$

$$
+\int_{\partial B_{1}}\left(\tilde{v}_{i}^{(2)}-R \tilde{w}_{i}^{(2)}\right)\left[-\frac{\bar{p}_{2}}{\bar{\rho}} \alpha_{1}\left(\frac{\bar{\rho}_{1}}{p}-\tilde{\rho}_{1}^{(1)}\right) / \rho_{1}+\bar{\rho}_{1} \alpha_{2}\left(\tilde{p}_{2}^{(1)}-\frac{\bar{\rho}_{2}}{p}\right) / \bar{\rho}\right] n_{i} d s
$$

$$
\begin{align*}
& 60 \\
& +\int_{\partial B_{2}}\left(\frac{\bar{\rho}_{2} \alpha_{2}}{p}\right)\left(-\tilde{R}_{m}^{(2)}\right) n_{m} d_{s}+\int_{\partial B_{2}}\left(\frac{\bar{\rho}_{2} \alpha_{2}}{p} \tilde{v}_{m}^{(2)}-\alpha_{1} \tilde{W}_{m}^{(2)} n_{m} d s\right. \\
& +\frac{\bar{\rho}}{T} \int_{B} \tilde{\theta}^{(1)} \tilde{\boldsymbol{r}}^{(2)} d v-\frac{1}{T} \int_{\partial B_{2}} \tilde{\theta}^{(1)} \tilde{q}_{q}^{(2)} n_{p} d s-\frac{1}{T} \int_{\partial \bar{B}_{2}} \tilde{\theta}^{(2)} \tilde{F}^{(2)} d s \\
& -\frac{K}{T} \int_{B} \tilde{\theta}_{p}^{(1)}\left(\tilde{u}_{p}^{(2)}-\tilde{v}_{p}^{(2)} d v\right. \\
& =\int_{B} \tilde{v}_{i}^{(1)} \bar{\rho}_{2} \tilde{G}_{i}^{(2)} d v+\int_{B} \tilde{u}_{i}^{(1)} \bar{\rho}_{1} \tilde{\underline{F}}_{i}^{(2)} d v+\int_{\partial B_{1}} \tilde{v}_{i}^{(1)} \tilde{\mathbf{g}}_{i}^{(2)} d s+\int_{\partial B_{1}} \tilde{u}_{i}^{(1)} \tilde{f}_{i}^{(2)} d s \\
& +\int_{\partial \bar{B}_{1}} \tilde{v}_{i}^{(1)} \tilde{\pi}_{p i}^{(2)} n_{p} d s+\int_{\partial \bar{B}_{1}} u_{i}^{(1)} \tilde{q}_{p i}^{(2)} n_{p} d s \\
& +\int_{\partial B_{1}}\left(-\tilde{R}_{i}^{(1)}\right)\left[-\frac{\bar{\rho}_{2}}{; \bar{p}} \alpha_{1}\left(\frac{\bar{\rho}_{1}}{p}-\tilde{\rho}_{1}^{(2)}\right) / \bar{\rho}_{1}+\bar{\rho}_{1} \alpha_{2}\left(\tilde{\rho}_{2}^{(2)}-\frac{\bar{\rho}_{2}}{p}\right) / \bar{\rho}\right] n_{i} d s \\
& \mathrm{\partial B}_{1} \\
& +\int_{\partial \bar{B}_{1}}\left(\tilde{\mathrm{~V}}_{i}^{(1)}-\tilde{p W}_{i}^{(1)}\right)\left[-\frac{\bar{\rho}_{2}}{\bar{\rho}} a_{1}\left(\frac{\bar{\rho}_{1}}{\mathrm{p}}-\tilde{\rho}_{1}^{(2)}\right) / \bar{\rho}_{1}+\bar{\rho}_{1} \alpha_{2}\left(\tilde{\rho}_{2}^{(2)}-\frac{\bar{\rho}_{2}}{\mathrm{p}}\right) / \bar{\rho}\right] n_{i} d s \\
& +\int_{\partial B_{1}}\left(\frac{\bar{\rho}_{2} \alpha_{2}}{p}\right)\left(-\tilde{R}_{m}^{(1)}\right) n_{m} d s+\int_{\partial B_{2}}\left(\frac{\bar{p}_{2} \alpha_{2}}{p} \tilde{v}_{m}^{(1)}-\alpha_{2} \tilde{W}_{m}^{(1)}\right) n_{m} d s \\
& +\frac{\rho}{T} \int_{B} \tilde{\theta}^{(2)} \tilde{r}^{(1)} d v-\frac{1}{T} \int_{\partial B_{2}} \tilde{\theta}^{(2)} \tilde{G}_{p}^{(1)} n_{p} d s-\frac{1}{T} \int_{\partial B_{2}} \tilde{\theta}^{(2)} \tilde{F}^{(1)} d s \\
& \nabla \frac{K^{\prime}}{T} \int_{B} \tilde{\theta}_{p}^{(2)}\left(\tilde{u}_{p}^{(1)}-\tilde{v}_{p}^{(1)}\right) d v \tag{3.23}
\end{align*}
$$

- Since the inverse transform of the product of two functions is the convolution of the inverses, we obtain:

Theorem (Reciprocity Relation for Heat Conducting mixture)

Let B be a bounded regular region of three-dimensional Euclidean space occupied by a mixture of elastic solid and a Newtonian viscous fluid undergoing a disturbance of small amplitude during the time interval $t \geqslant 0$. We denote by ∂B the boundary and by B^{0} the interior of B and introduce regions B, θ° of spacetime defined by

$$
\theta=\{(p, t): p \in B, t \geq 0\}, B^{\circ}=\left\{(p, t): p \in B^{0}, t \geq 0\right\}
$$

We use notation $\partial \mathrm{B}_{1}, \partial \dot{B}_{2}$ and $\partial \overline{\mathrm{B}}_{1}$, $\overline{\mathrm{B}}_{2}$ for arbitrary subsets of ∂B and their complements with respect to ∂B and n refers to the unit outward normal vector field on $\partial \overline{\mathrm{B}}$. Suppose that tho constants λ, μ, a, k and K ' satisfy $3 \lambda+2 \mu \geq 0, \mu \geq 0, a \geq 0, k \geq 0, k^{2} \leq 4 \bar{T} \alpha K, \quad$ and that $\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}$ and α_{3} satisfy the inequalities $\alpha_{1}+a_{5} \geq 0, \frac{2}{\vec{\rho}} a_{2}+\alpha_{6} \geq 0, \alpha_{7} \leq 0, \alpha_{1}\left(\frac{2 \bar{p}_{2}}{\bar{\rho}}-\frac{1}{3}\right)+\alpha_{4}$ $+\frac{2}{3} \alpha_{5} \geq 0 .\left(\frac{\lambda}{\rho} \alpha_{1}-\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2}+\alpha_{0}\right)^{2} \leq\left(\alpha_{1}\left(\frac{2 \hat{\rho}_{2}}{\bar{\rho}}-\frac{1}{3}\right)+\alpha_{4}+\frac{2}{3} \alpha_{5}\right)$ $\left(\frac{2}{\rho} a_{2}+\alpha_{6}\right)$.

Jet the mixture of elastic solid and viscous fluid be subjectAd to two systems which are distinguished by superscripts in parentheses. Let ara exmaiacas $v_{i}^{(j)}, \rho_{2}^{(j)}, u_{i}^{(j)}$ of class C^{1} and ${ }^{(j)}$ of class c^{2} on B which satisfy equations (2.26). (2.29), (2.30). (2.31) on B°, equations (2.25), (2.27) and (2.34) to (2.38) on B and the subsidiary conditions
$w_{i}=0, u_{i}=0, v_{i}=0, \eta=0, \theta=0$ on B at $t=0$,
$u_{i}^{(j)}-v_{i}^{(j)}=R_{i}^{(j)} \cdot \sigma_{p i}^{(j)} n_{p}=f_{i}^{(j)} \cdot \pi_{p i}^{(j)} n_{p}=g_{i}^{(j)}$,
$\sigma_{p i}^{(j)} n_{p}+\pi_{p i}^{(j)} n_{p}=\Sigma_{i}^{(j)^{*}}$ on ∂B_{1} for $t \geq 0$
$u_{i}=v_{i}^{(j)}, v_{i}=v_{i}^{(j)}$ on $\partial \bar{B}_{i}$ for $t \geq 0$,
$T^{(j)}=\bar{T}+\theta^{(j)}$ on ${\partial B_{2}}, q_{p}^{(j)} n_{p}=F^{(j)}$ on $\partial \bar{B}_{2}$ for $t \geq 0$. where $R_{i}^{(j)}, f_{i}^{(j)}, g_{i}^{(j)}, U_{i}^{(j)}, v_{i}^{(j)}, \theta^{(j)}, F^{(j)}, F_{i}^{(j)}, G_{i}^{(j)}$ and $r^{(j)}$
are prescribed functions on the appropriate domains and $\bar{P}_{1}, \bar{P}_{2}, \bar{T}$ are given, positive, constants. Then the work that would be done by the first system in acting through the velocities of the second system and the work that would be done by the second system in acting through the velocities of the first system satisfy
$\bar{\rho}_{2} \int_{B} \int_{0}^{t} v_{i}^{(2)}(x, t-y) G_{i}^{(1)}(x, y) d y d v+\bar{p}_{i} \int_{B} \int_{0}^{t} u_{i}^{(2)}(x, t-y) F_{i}^{(1)}(x, y) d y d v$
$+\int_{\partial B_{i}} \int_{C}^{t} v_{i}^{(2)}(x, t-y) g_{i}^{(1)}(x, y) d y d s+\int_{\partial B_{i}} \int_{0}^{t} u_{i}^{(2)}(x, t-y) f_{i}^{(1)}(x, y) d y d s$
$+\int_{\Delta B_{1}} \int_{0}^{t} v_{i}^{(2)}(x, t-y) \pi_{p i}^{(1)}(x, y) n_{p} d y d s+\int_{\partial B_{i}} \int_{0}^{t} 0_{i}^{(2)}(x, t-y) \sigma_{p i}^{(1)}(x, y) n_{p} d y d s$
$-\int_{i 3_{1}} \int_{0}^{t} R_{i}^{(2)}(x, t-y)\left[\frac{-\bar{p}_{2}}{\bar{p}_{2} \bar{p}_{1}} a_{1}\left(\bar{\rho}_{1}-p_{2}^{(1)}(x, y)\right)\right.$
$\left.+\frac{\bar{\rho}_{1} \alpha_{2}}{\bar{\rho}}\left(\rho_{2}^{(1)}(x, y)-\bar{\rho}_{2}\right)\right] n_{i} d y d s+$
'Attention is called to the fact that only Σ_{i} is known on ∂_{b} and hence only the sum $f_{i}+g_{i}$ is given.

$$
\begin{aligned}
& +\int_{i B_{1}}^{j} j_{0}^{+}\left(V_{i}^{(2)}(x, t-y)-U_{i}^{(2)}(x, t-y)\right)\left[-\frac{\rho_{2}}{\bar{\rho}_{2} \bar{\rho}_{1}} \alpha_{1}\left(\bar{\rho}_{1}-\rho_{i}^{(1)}(x, y)\right)\right. \\
& \left.+\frac{\bar{\rho}_{1} \alpha_{2}}{\bar{\rho}}\left(\rho_{2}^{(\lambda)}(x, \cdots)-\bar{\rho}_{2}\right)\right] n_{i} d y d a \quad . \\
& -\iint_{\partial B_{2}}^{t} \bar{p}_{2} \alpha_{2} R_{m}^{(2)}(x, t-y) n_{m} d y d s+\int_{z_{-}}^{0} \int_{0}^{t}\left[\bar{p}_{2} \alpha_{2} v_{m}^{(2)}(x, t-y)\right. \\
& \left.-a_{1} W_{m}^{(2)}(x, t-y)\right] n_{m} d y d s \\
& +\frac{\bar{\rho}}{\bar{T}} \int_{B} \int_{0}^{t} x^{(2)}(x, t-y) \theta^{(2)}(x, y) d y d v \\
& -\frac{1}{\bar{T}} \int_{\mathrm{S}_{2}} \int_{0}^{t}\left[q_{p}^{(2)}(x, t-y) \theta^{(1)}(x, y)\right] n_{p} d y d s \\
& -\frac{1}{T} \int_{\partial B_{2}} \int_{0}^{t} F^{(2)}(x, t-y) \theta^{(1)}(x, y) d y d s-\frac{K^{\prime}}{T} \int_{B} \int_{0}^{t}\left[u_{p}^{(2)}(x, t-y)\right. \\
& \left.-v_{p}^{(2)}(x, t-y)\right] 0_{r}^{(1)}\left(x, y^{\prime} d y d y\right. \\
& =\bar{\rho}_{2} \iint_{B} \int_{0}^{t} v_{i}^{(1)}(x, t-y) c_{i}^{(2)}(x, y) d y d v \\
& +\bar{\rho}_{1} \int_{i} \int_{0}^{t} u_{i}^{(1)}(x, t-y) F_{i}^{(2)}(x, y) d y d v \\
& +\int_{\partial B_{1}} \int_{0}^{t} v_{i}^{(1)}(x, t-y) g_{i}^{(2)}(x, y) d y d s \\
& +\int_{\partial B_{i}} \int_{0}^{t} u_{i}^{(2)}(x, t-y) f_{i}^{(2)}(x, y) d y d s
\end{aligned}
$$

$$
\begin{align*}
& +\int_{\partial B_{i}} \int_{0}^{t} y_{i}^{(1)}(x, t-y) \pi_{p i}^{(2)}(x, y) n_{p} d y d s \\
& +\int_{\partial \bar{B}_{1}} \int_{0}^{t} v_{i}^{(1)}(x, t-y) \sigma_{p i}^{(2 y}(x, y) n_{p} d y d s \\
& -\int_{\partial_{2}} \int_{0}^{t} R_{i}^{(1)}\left(x, t-y\left[-\frac{\bar{\rho}_{2}}{\bar{\rho}_{1} \bar{\rho}} \alpha_{1}\left(\bar{\rho}_{1}-\rho_{1}^{(2)}(x, y)\right)\right.\right. \\
& \left.+\overline{\bar{p}} a_{2}\left[\rho_{2}^{(2)}(x, y)-\bar{\rho}\right)\right] n_{i} d y d s \\
& +\int_{\partial \bar{B}_{1}} \int_{0}^{t}\left\{(v _ { i } ^ { (1) } (x , t - y) - U _ { i } ^ { (1) } (x , t - y) \} \left[-\frac{\bar{\rho}_{2}}{\bar{\rho}_{1} \bar{\rho}^{\prime}} \alpha_{1}\left[\bar{\rho}_{1}-\rho_{1}^{(2)}(x, y)\right\}\right.\right. \\
& \left.+\frac{\rho_{1}}{\bar{\rho}_{2}} \alpha_{2}\left[\rho_{2}^{(2)}(x, y)-\bar{\rho}_{2}\right\}\right] n_{i} d y d s \\
& -\int_{i B_{2}} \int_{0}^{t} \vec{\rho}_{2} a_{2} R_{m}^{(1)}(x, t-Y) n_{m} d y d \varepsilon \\
& +\int_{\partial \bar{B}_{2}} \int_{0}^{t}\left[\bar{\rho}_{2} \alpha_{2} v_{m}^{(1)}(x, t-y)-\alpha_{1} w_{m}^{(1)}(x, t-y)\right] n_{m} d y d s \\
& +\frac{\overline{2}}{T} \int_{B} \int_{0}^{t} x^{(1)}(x, t-y) \theta^{(2)}(x, y) d y d v \\
& -\frac{1}{T} \cdot \int_{\partial B_{2}} \int_{0}^{t} q_{p}^{(1)}(x, t-y) \theta^{(2)}(x, y) n_{p} d y d s \\
& -\frac{1}{\bar{T}} \int_{\partial \bar{B}_{2}} \int_{0}^{t} F^{(1)}(x, t-y) \theta^{(2)}(x, y) d y d s-\frac{K^{\prime}}{T} \int_{B} \int_{0}^{t}\left(u_{p}^{(1)}(x, t-y)\right. \\
& \left.-v_{p}^{(1)}(x, t-y)\right){ }_{p}^{(2)}(x, y) d y d v \tag{3.24}
\end{align*}
$$

3.3. Special Cases -
A. Reciprocity Relation for Heat Conducting Mixture

of Linear Elastic Solid and Non-Newtonian Viscous Fluid

Let g ba bounded reguiar rogion of three-dimenaional
Euciddean space occupied by a mixture of elastic solid and a non-Newtontan viscous fluid undergoing a disturbance of smald amplitude during the time interval $t \geq 0$. When the viscoup fluid is non-Nevtonian, the restriction (2.55) does not hold in general. Let the mixture of elastic solid and non-Newtonian viscous. fluid be subjected to two systems which are distinguished by superscripts in parentheses, where each of these systems has same initial and boundary conditions stated in the previous theorem. Then the reciprocity relation is again an integral reiation obtained by adaing the following equality to (3.24).

$$
-a^{\prime \prime} \int_{B} \int_{0}^{t} u_{i}^{(2)}(x, t-y) \epsilon_{i p q}\left(f_{p q}^{(1)}(x, y)-\Lambda_{p q}^{(1)}(x, y)\right) d y d v
$$

$$
-2 \int_{B} \int_{0}^{t} d_{i p}^{(2)}(x, t-y)\left(\lambda_{3} f_{p p}^{(1)}(x, y) \delta_{p i}+2 \mu_{3} f_{p i}^{(1)}(x, y)\right) d y d v
$$

$$
+a^{\prime \prime} \int_{B} \int_{0}^{\varepsilon} v_{i}^{(2)}(x, t-y) \epsilon_{i p q}\left(\Gamma_{p q}^{(1)}(x, y)-f_{p q}^{(1)}(x, y)\right) d y d v
$$

$$
\begin{aligned}
& -\int_{B} \int_{0}^{t} v_{i, p}^{(2)}(x, t-y)\left(\lambda_{4} a_{p p}^{(1)}(x, y) \delta_{p i}+2 \mu_{4} a_{p i}^{(1)}(x, y)\right) d y d v \\
& \left.=-a^{n} \int_{B} \int_{0}^{t} u_{i}^{(2)}(x, t-y) \epsilon_{i p q} \sum_{p q}^{(2)}(x, y)-\Lambda_{p q}^{(2)}(x, y)\right) d y d v
\end{aligned}
$$

$$
\begin{align*}
& -2 \int_{B} \int_{0}^{t} a_{i p}^{(1)}(x, t-y)\left(\lambda_{3} f_{p p}^{(2)}(x, y) \delta_{p i}+2 \mu_{3} f_{p i}^{(2)}(x, y)\right) d y d v \\
& +a^{0} \int_{B} \int_{0}^{t} v_{i}^{(1)}(x, t-y) \epsilon_{i p q}\left(\Gamma^{(2)}(x, y)-A_{p q}^{(2)}(x, y)\right) d y d v \\
& -\int_{B} \int_{0}^{t} v_{i, p}^{(1)}(x, t-y)\left(\lambda_{4} d_{p p}^{(2)}(x, y) \delta_{p i}+2 \mu_{4} a_{p i}^{(2)}(x, y)\right) d y d v \tag{3,25}
\end{align*}
$$

B. Reciprocity Relation for Mixture of Linear Elastic Solid and Newtonian Viscous Fluid in Isothermal Process

Let B be a bounded regular region of three-dimensional Euclidean space occupied by a non-heat conducting mixture of elastic solid and a Newtonian viscous fluid undergoing a disturbance of small amplitude during the time interval $t \geq 0$. Let the mixture be subjected to two systems which are distinguished by superscripts in parentheses, and let the process be isothermal. Moreover, except the temperature terms, we let each of these systems have same initial and boundary conditions stated in the previous theorem. Then the reciprocity relation is given as following:

$$
\bar{\rho}_{2} \int_{B} \int_{0}^{t} v_{i}^{(2)}(x, t-y) G_{i}^{(1)}(x, y) d y d v
$$

$$
+\bar{\rho}_{1} \int_{B} \int_{0}^{t} u_{i}(2)(x, t-y) F_{i}^{(1)}(x, y) d y d v
$$

$$
+\int_{\partial B_{1}} \int_{0}^{t} v_{i}^{(2)}(x, t-y) g_{i}^{(1)}(x, y) d y d s
$$

$+\int_{\partial B_{1}} \int_{0}^{t} u_{i}^{(2)}(x, t-y) f_{i}^{(1)}(x, y) d y d s+$

$$
\begin{aligned}
& +\int_{\partial B_{1}} \int_{0}^{t} v_{i}^{(2)}(x, t-y) \pi_{p i}^{(1)}(x, y) n_{p} d y d s \\
& +\int_{\partial B_{i}} \int_{0}^{t} y_{i}^{(2)}(x, t-y){\underset{p}{p i}}_{(1)}(x, y) n_{p} d y d \varepsilon \\
& -\int_{\lambda \beta_{1}} \int_{0}^{t} n_{i}^{(, \dot{\alpha})}(x, t-y)\left[\frac{-\bar{\rho}_{2}}{\bar{\rho}_{1}} \alpha_{1}\left(\bar{\rho}_{1}-p_{1}^{(1)}(x, y)\right)\right. \\
& \left.+\frac{\bar{j}_{2} \bar{\alpha}_{2}}{\bar{\rho}}\left(\rho_{2}^{(1)}(x, y)-\bar{\rho}_{2}\right)\right] n_{i} d y d s \\
& +\int_{\partial \bar{a}_{1}} \int_{0}^{t}\left(v_{i}^{(2)}(x, t-y)-v_{i}^{(2)}(x, t-y)\right)\left[-\frac{\bar{\rho}_{2}}{\bar{\rho}_{1} \bar{p}_{1}} a_{1} \bar{\rho}_{1}-p_{1}^{(1)}(x, y)\right. \\
& \left.+\frac{\bar{\rho}_{1} \alpha_{2}}{\bar{\rho}}\left(\rho_{2}^{(1)}(\dot{x}, y)-\bar{\rho}_{2}\right)\right] n_{i} d y d s \\
& -\int_{\partial_{1}} \int_{0}^{t} \bar{p}_{2} \alpha_{2} R_{m}^{(2)}(x, t-y) n_{m} d y d s+\int_{\partial \bar{B}_{1}} \int_{0}^{t}\left(\bar{\rho}_{2} \alpha_{2} v_{m}^{(2)}(x, t-y)\right. \\
& \left.-\alpha_{1} W_{m}^{(2)}(x, t-y)\right) n_{m} d y d s \\
& =\tilde{\rho}_{2} \int_{B} \int_{0}^{t} v_{i}^{(1)}(x, t-y) G_{i}^{(2)}(x, y) d y d v \\
& +\bar{\rho}_{1} \int_{B} V_{0}^{t} u_{i}^{(1)}(x, t-y) F_{i}^{(2)}(x, y) d y d v \\
& +\int_{\partial B_{1}} \int_{0}^{t} v_{i}^{(1)}(x, t-y) g_{i}^{(2)}(x, y) d y d s+\int_{\partial B_{1}} \int_{0}^{t} u_{i}^{(1)}(x, t-y) f_{i}^{(2)}(x, y) d y d s \\
& +\int_{\partial B_{1}}^{1} \int_{0}^{t} v_{i}^{(1)}(x, t-y) \pi_{p i}^{(2)}(x, y) n_{p} d y d s \\
& +\int_{\partial s_{1}} \int_{0}^{t} U_{i}^{(1)}(x, t-y) \sigma_{p i}^{(2)}(x, y) n_{p} d y d s
\end{aligned}
$$

$$
\begin{align*}
& -\int_{i B_{1}} \int_{0}^{t} R_{1}^{(1)}(x, t-y)\left[-\frac{\bar{\rho}_{2}}{\bar{\rho}_{1} \bar{\rho}_{1}} \alpha_{1}\left(\bar{\rho}_{1}-p_{2}^{(2)}(x, y)\right)\right. \\
& \left.+\because \because_{p} a_{2}\left(\rho_{2}^{(2)}(x, y)-\bar{\rho}_{2}\right)\right] n_{i} d y d s \\
& +\int_{\partial \bar{B}_{2}} \int_{0}^{t}\left(v_{i}^{(1)}(x, t-y)-v_{i}^{(1)}(x, t-y)\right)\left[-\frac{\bar{p}_{2}}{\bar{p}_{1} \bar{p}_{1}} \alpha_{1}\left(\bar{p}_{2}-p_{1}^{(2)}(x, y)\right\}\right. \\
& \left.+\frac{\bar{\rho}_{1}}{\stackrel{\rightharpoonup}{p}} a_{2}\left\{\rho_{2}^{(2)}(x, y)-\bar{\rho}_{2}\right)\right] n_{1} d y d s \\
& -\int_{\partial B_{1}} \int_{0}^{t} \bar{\rho}_{2} \alpha_{2} B_{m}^{(1)}(x, t-y) n_{m} d y d s+\int_{\partial B_{1}} \int_{0}^{t}\left[\bar{\rho}_{2} \alpha_{2} \cdot v_{m}^{(1)}(x, t-y)\right. \\
& \left.-\alpha_{1} W_{m}^{(1)}(x, t-y)\right] n_{m} d y d s \tag{3.26}
\end{align*}
$$

C. Reciprocity Relation for Heat Conducting Mixture of Linear Elastic Solid and Newtonian Viscous Fluid Occupying Infinite Region

Let three-dimensional Euclidean space be occupied by a mixture of elastic solid and a Newtonian viscous fluid undergoing a disturbance of small amplitude during the time interval $t 20$. Since there is no boundary in this infinite region case, tegularity conditions will be considered in the place of boundary conditions. Let the mixture be subjected to two systems which are distinguished by superscripts in parentheses, where each of these systems has same initial conditions stated in the previous theorem and satisfies the following regularity conditions:
$\sigma_{i j}^{(i)}, \pi_{i j}^{(i)}, \bar{w}^{(i)}, \bar{y}^{(i)}, \theta^{(i)} \Rightarrow 0$ as $|\bar{x}| \leftrightarrow \infty$ for i i, 2. Then tho reciprocity theorem (3.24) seduces to s $\hat{P}_{2} \int_{B} \int_{0}^{i} v_{i}^{(2)}(x, t-y) G_{i}^{(\lambda)}(x, y) d y d v$
$+\stackrel{m}{2}_{2} \int_{B} \int_{0}^{t} u_{i}^{(2)}(x, t-y) E_{i}^{(2)}(x, y) d y d v$
$+\frac{\bar{\rho}}{\bar{T}} \int_{B} \int_{0}^{t} x^{(2)}(x, t-y) \theta^{(1)}(x, y) d y d v-\frac{x^{\prime}}{T} \cdot \int_{B}^{p_{0}^{t}} \int_{p}^{(2)}(x, t-y)$
$\left.-v_{p}^{(2)}(x, t-y)\right] \int_{0}^{(1)}(x, y) d y d v$
$=\bar{\rho}_{2} \int_{B} \int_{0}^{t} v_{i}^{(1)}(x, t-y) G_{i}^{(2)}(x, y) d y d v$
$+\bar{\rho}_{1} \int_{B} \int_{0}^{t} u_{i}^{(1)^{t}}(x, t-y) z_{i}^{(2)}(x, y) d y d v$
$+\frac{\bar{\rho}}{T} \int_{B} \int_{0}^{t} r^{(2)}(x, t-y) \theta^{(2)}(x, y) d y d v-\frac{K^{\prime}}{T} \int_{B} \int_{0}^{t}\left[u_{p}^{(2)}(x, t-y)\right.$
$\left.-v_{p}^{(1)}(x, y-y)\right] \theta_{p}^{(2)}(x, y) d y d v$
where the integration on B is over the entire three dimensional space, $\quad|x|<\infty,|y|<\infty,|z|<\infty$.

D. Reciprocity Relation for Heat Conducting Elastic

Solid
Let the elastic solid be subjected to two systems which are distinguished by superscripts in parentheses. Let the functions $w_{i}^{(j)}$ and $T^{(j)}$ be os class's c^{2} on B and the

Eubsiosazy conditions $2 x \cos$
$w_{i}=0,0=0$ on g^{0} at $t=0$
$\sigma_{P_{i} n_{1}}=s_{i}^{(j)}$ on $B_{3}, u_{i}=w_{i}^{(j)}$ on a_{1} for $t 20$,
 where $F_{i}^{(j)}, x^{(j)}, E_{i}^{(j)}, W_{i}^{(j)}, O^{(j)}$ and $E^{(j)}$ are. prescribed functions on the appropriate domains, and $\bar{\rho}, \vec{z}$ ara given positive constants. Then by the result of Section 2.4 Part A, $i t$ follows that the work that would be doze by che first system in acting through the displacement of the second system and the work that would De cone by the second system in acting through the displacement of tia asst nysten satisfy the following renation.

$$
\vec{\rho} \int_{D} \int_{0}^{t} j_{i}^{(2)}(x, t o y) F_{i}^{(1)}(x, y) d y d y
$$

$$
+\int_{\partial B_{3}} \int_{0}^{t} \omega_{2}^{(\partial)}(x, y, t y) f_{i}^{(\lambda)}(x, y) d y d s
$$

$$
+\int_{\partial B_{1}} \int_{0}^{t} w_{i}^{(2)}(x s, t-y) \sigma_{p i}^{(1)}(x, y) s_{p} d y d s
$$

$$
+\frac{\bar{\rho}}{\bar{x}} \int_{B} \int_{0}^{(\hat{j}}:^{(2)}(x, t-y) \theta^{(1)}(x, y) d y d v
$$

$$
-\frac{\lambda}{=} \int_{i=2}^{\int_{0}^{i}} \int_{0}^{(x)}(x, t-y) \theta^{(1)}(x, y) n_{p} d y d s
$$

$$
-\frac{2}{3} \int_{3,2} \int_{0}^{2} z^{(2)}\left(2 s_{0}, x-y\right) \theta^{(1)}(x, y) d y d s
$$

$$
\begin{align*}
& =\bar{p}_{B} \int_{0}^{t} w_{i}^{(1)}(x, t-y) F_{i}^{(2)}(x, y) d y d v \\
& +\int_{\partial B_{2}} \int_{0}^{t} w_{i}^{(2)}(x, t-y) \sum_{i}^{(2)}(x, y) d y d s \\
& +\int_{\partial B_{2}} \int_{0}^{t} f_{i}^{(1)}(x, t-y) o_{p i}^{(2)}(x, y) n_{p} d y d s \\
& +\frac{\bar{p}}{T} \int_{B} \int_{0}^{t} r^{(1)}(x, t-y) \theta^{(2)}(x, y) d y d v \\
& -\frac{1}{T} \int_{\partial B_{2}} \int_{0}^{t} g_{p}^{(1)}(x, t-y) \theta^{(2)}(x, y) n_{p} d y d s \\
& -\frac{1}{T} \int_{\partial B_{2}} \int_{0}^{t} F^{(1)}(x, t-y) \theta^{(2)}(x, y) d y d s \tag{3.28}
\end{align*}
$$

We remark that this result agrees with the well known reciprocity relation for elastic solid in isothermal case, E. Reciprocity Relation for Heat Conducting Viscous Lula

Let the viscous fluid be subjected to two systems which we distinguished by superscripts in parentheses. Let the functions $v_{i}^{(j)}$ be of class c^{1} and $T^{(j)}$ be of class c^{2} on 3 and the subsidiary conditions are
$r_{i}=$ a, $\eta=0, \theta=0$ on B° at $t=0$.
${ }^{p} p_{i} n_{p}=g_{i}^{(j)}$ on ∂s_{i}. $v_{i}=v_{i}^{(j)}$ on ∂S_{1} for $t \geqslant 0$.
${ }^{2}(j)=\bar{T}+Q^{(j)}$ on $\partial B_{2}, g_{p}^{(j)} n_{p}=F^{(j)}$ on $\partial \bar{B}_{2}$ for $t 20$. where $g_{i}^{(j)}, V_{i}^{(j)}, \theta^{(j)}, F^{(j)}, G_{i}^{(j)}$ and $r^{(j)}$
are prescribed functions on the appropriate domains and $\overline{\mathrm{p}}, \overline{\mathrm{T}}$
are given, positive, constants. Then by the result of Section 2.4 part B, it follows that the work that would Be done by the first system in acting through the velocities of the second system and the work that would be dene by the second system in acting through the velocesties of the first system satisfy the following relations

$$
y \int_{B} \int_{0}^{t} v_{i}^{(2)}(x, t-y) G_{i}^{(1)}(x, y) d y d v
$$

$$
+\int_{\partial B_{1}} \int_{0}^{t} v_{i}^{(2)}(x, t-y)\left(g_{i}^{(1)}(\alpha, y)+\bar{\rho} \alpha_{2} n_{i}\right) d y d s
$$

$$
+\int_{\partial \bar{B}_{1}} \int_{0} v_{i}^{(2)}(x, t-y)\left(\pi_{p i}^{(1)}(x, y) n_{p}+\bar{p} \alpha_{2} n_{i}\right) d y d s
$$

$$
+\frac{\bar{P}}{\bar{T}} \int_{B} \int_{a}^{t} r^{(2)}(x, t-y) \theta^{(1)}(x, y) d y d v
$$

$$
-\frac{1}{\bar{T}} \int_{\partial B_{2}} \int_{0} q_{p}^{(2)}(x, t-y) \theta^{(1)}(x, y) n_{p} d y d s
$$

$$
-\frac{1}{T} \int_{\partial B_{2}} \int_{0}^{t} F^{(2)}(x, t-y) \theta^{(1)}(x, y) d y d s
$$

$$
=\bar{\rho} \iint_{0}^{t} v_{i}^{(1)}(x, t-y) G_{i}^{(2)}(x, y) d y d v
$$

$$
+\int_{\partial B_{i}} \int_{0}^{t} v_{i}^{(1)}(x, t-y)\left(g_{i}^{(2)}(x, y)+\bar{\rho} \alpha_{2} n_{i}\right) d y d s
$$

$$
\begin{align*}
& +\int_{\partial \bar{B}_{1}} \int_{0}^{t} v_{i}^{(1)}(x, t-y)\left(\pi_{p i}^{(2)}(x, y) n_{p}+\vec{\rho} a_{2} n_{i}\right) d y d e \\
& +\frac{\bar{p}}{T} \int_{B} \int_{0}^{t} x^{(1)}(x, t-y) \theta^{(2)}(x, y) d y d v \\
& -\frac{1}{T} \int_{\partial B_{2}} \int_{0}^{t} g_{p}^{(1)}(x, t-y) \theta^{(2)}(x, y) n_{p} d y d s \\
& -\frac{1}{T} \int_{\partial \bar{B}_{2}} \int_{0}^{t} F^{(1)}(x, t-y) \theta^{(2)}(x, y) d y d \theta \tag{3.29}
\end{align*}
$$

F. An Application of Reciprocity Relation in Mixture

Theory
Suppose that infinite three-dimensional Euclidean space is occupied by mixture of elastic solid and Newtonian viscous fluid undergoing an isothermal disturbance of small amplitude during the time interval t 20 . Let the mixture be subjected to two systems which are distinguished by superscxipts in parentheses with the following specified body force systems:

$$
\begin{aligned}
& F_{i}^{(1)}=a_{i}^{(1)} \delta\left(p_{1}\right) \theta(t) \\
& G_{i}^{(1)}=0
\end{aligned}
$$

where P_{1} is a fixed point in the region and $a_{i}^{(1)}$ refers to a force magnitude,

$$
\begin{aligned}
& E_{i}^{(2)}=0 \\
& G_{i}^{(2)}=a_{i}^{(2)} g\left(p_{1}\right) \delta(t)
\end{aligned}
$$

where p_{1} is the same Gixed point in the region and $a_{i}{ }^{(2)}$
refers to a force magnitude. Let us assume that the veloceity fields of these preliminary problems are known, that is, $u_{i}^{(2)}, v_{i}^{(1)}, u_{i}^{(2)}$ and $v_{i}^{(2)}$ are known. suppose that tho mixture is subjected to an arbitrary body force system $E_{i}^{(3)}$ and $G_{i}^{(3)}$.

Then the velocity fields $u_{i}{ }^{(3)}$. and $v_{i}^{(3)}$ at the point p_{1} at time t are given by the following integrals an result of (3.28):
$\bar{\rho}_{1} a_{i}^{(1)} u_{i}^{(3)}\left(p_{1}, t\right)=\bar{\rho}_{2} \int_{B} \int_{0}^{t} v_{i}^{(1)}(x, t-y) G_{i}^{(3)}(x, y) d y d v$
$+\vec{\rho}_{2} \int_{B} \int_{0}^{t} u_{i}^{(1)}(x, t-y) F_{i}^{(3)}(x, y) d y d v$,
$\bar{p}_{i}^{(2)} v_{i}^{(3)}\left(p_{i}, t\right)=\bar{p}_{2} \int_{B} \int_{0}^{t} v_{i}^{(2)}(x, t-y) G_{i}^{(3)}(x, y) d y d v$
$+\bar{p}_{1} \int_{y} \int_{0}^{t} u_{i}^{(2)}(x, t-y) F_{i}^{(3)}(x, y) d y d v$.

- A. FUNDAMENTAL ONE-DIMENSIONAI

INITIAL-BOUNDARY VALUE PROBLEM
4.1. Introduction

In linear thermoelasticity, for one dimensional model, a series of papers by Danilovskaya [28], Sternberg and Chakravorty [29], and Muki and Breuer [30] have answered some of the basic questions concerning the effects of the inertia terms in the elastic equations of motion and the effect of the mechanical coupling term in the Fourier heat conduction equation.

Recently, Martin [31] studied the initial-boundary value problem corresponding to Danilovskaya's in the framework of the linearized interacting mixture theory. In [31], [32] a mixture of linear elastic solid and viscous fluid occupying a half-space undergoing deformation due to a transient temperature on the boundary was considered. Method of the solution was that a parameter occuring in the diffusive resistance vector was used as the basis for a perturbation procedure in the equations of motion.

Here, we consider the same problem but use a different method of solution. Let the mixture occupy a half-space and let its motion be restricted to one space dimension. We -prescribe a step function temperature on the face of the half-spaco whore the faco is constrained rigidiy against motion.
4.2. Formulation of the problem

Departing from the indicial notation, we describe the cartesian coordinates as (x, y, z) and consider the mixture of an elastic solid and a viscous fluid as occupying the region $x \geq 0$ [31]. We assume that the mixture is subjected to a time-dependent temperature field of the form

$$
\begin{equation*}
T=T(x, t) \tag{4,1}
\end{equation*}
$$

and is restricted to uniaxial motion so that the displacement vector of the elastic solid has components

$$
\begin{equation*}
w_{i}=(w(x, t), 0,0) \tag{4.2}
\end{equation*}
$$

and the fluid yelocity vector is

$$
\begin{equation*}
v_{i}=(v(x, t), 0,0) \tag{4.3}
\end{equation*}
$$

It is convenient to define a nondimensional temperature field in place of T in (4.1) by

$$
\begin{equation*}
\theta(x, t)=\frac{T(x, t)-\bar{T}}{\bar{T}} \tag{4.4}
\end{equation*}
$$

where $\overline{\mathbf{T}}$ denotes the temperature of the equilibrium state. Substitution of (4.2) and (4.3) into equations (2.12). $(2.25)^{3}$ and (2.26) shows that we may write

$$
\begin{gather*}
e_{x}=\frac{\partial w}{\partial x}, f_{x}=\frac{\partial v}{\partial x}, d_{x}=\frac{\partial e_{x}}{\partial t}=\frac{\partial^{2} w}{\partial t \partial x} \tag{4.5}\\
\rho_{1}(x, t)=\bar{\rho}_{1}\left(1-\frac{\partial w}{\partial x}\right)^{\prime} \tag{4.6}
\end{gather*}
$$

$$
\begin{equation*}
\frac{\partial \rho_{2}}{\partial t}(x, t)+\bar{\rho}_{2} \frac{\partial v}{\partial x}=0 \tag{4.7}
\end{equation*}
$$

as the only nonmanishing kinematic relations, and we note that all other strain, rate of deformatior and vorticity components are identically equal to zero. The constitutive equations (2.35) to (2.37) under the restriction (2.55) become

$$
\begin{align*}
& w_{x}=\frac{\bar{\rho}_{2} \alpha_{1}}{\bar{\rho}} \frac{\partial^{2} w}{\partial x^{2}}+\frac{\bar{\rho}_{1} \alpha_{2}}{\bar{\rho}} \frac{\partial \rho_{2}}{\partial x}+\alpha\left(\frac{\partial w}{\partial t}-v\right), w_{y}=w_{z}=0 \tag{4,8}\\
& \sigma_{x}(x, t)=\left(2\left(\alpha_{1}+\alpha_{5}\right)-\left(\frac{\bar{\rho}_{1} \alpha_{1}}{\bar{\rho}}-\alpha_{4}\right)\right) \frac{\partial w}{\partial x} \\
& +\alpha_{9} \bar{T} \theta+\left(\frac{\alpha_{1}}{\bar{p}}+\alpha_{8}\right) \eta+\alpha_{1} . \tag{4,9}\\
& \sigma_{y}(x, t)=\sigma_{z}(x, t)= \\
& -\left(\frac{\bar{\rho}_{1} \alpha_{1}}{\bar{\rho}}-\alpha_{4}\right) \frac{\partial w}{\partial x}+\alpha_{9} \bar{T} \theta+\left(\frac{\alpha_{1}}{\bar{\rho}}+\alpha_{8}\right) \eta+\alpha_{1} . \tag{4.10}\\
& \sigma_{x y}=\sigma_{x z}=\sigma_{y z}=0, \tag{4.11}\\
& \pi_{x}(x, t)=(2 \mu+\lambda) \frac{\partial v}{\partial x}+\bar{\rho}_{2}\left(\frac{\bar{\rho}_{1} \alpha_{2}}{\bar{\rho}}-\alpha_{8}\right) \frac{\partial w}{\partial x}-\bar{\rho}_{2} \alpha_{10} \bar{T} \theta \\
& -\left(\frac{\bar{\rho}+\bar{\rho}_{2}}{\bar{\rho}} a_{2}+\bar{\rho}_{2} a_{6}\right) \eta-\bar{\rho}_{2} \alpha_{2} \text {, } \tag{4.12}\\
& \pi_{y}(x, t)=\pi_{z}(x, t)=\lambda \frac{\partial v}{\partial x}+\bar{\rho}_{2}\left(\frac{\bar{\rho}_{1}}{\bar{\rho}} \alpha_{2}-\alpha_{8}\right) \frac{\partial w}{\partial x}-\bar{\rho}_{2} \alpha_{10} \bar{T} \theta \\
& -\left(\frac{\bar{\rho}+\bar{\rho}_{2}}{\bar{\rho}} \alpha_{2}+\bar{\rho}_{2} \alpha_{6}\right) \eta-\bar{\rho}_{2} \alpha_{2} \text {. } \tag{4.13}
\end{align*}
$$

$$
\begin{equation*}
\pi_{x y}=\pi_{x z}=\pi_{y z}=0 \tag{4.14}
\end{equation*}
$$

The equations of motion (2.29). (2.30) and the energy equation (2.31), under the constraints (4.2) to (4.4), become

$$
\begin{gather*}
\frac{\partial \sigma_{x}}{\partial x}-w_{x}=\bar{\rho}_{1} \frac{\partial^{2} w}{\partial t^{2}} \tag{4,15a}\\
\vdots \tag{4.15b}\\
\frac{\partial \pi x}{\partial x}+w_{x}=\bar{\rho}_{2} \frac{\partial v}{\partial t} \\
\alpha_{7} \bar{T} \frac{\partial \theta}{\partial t}+k \frac{\partial^{2} \theta}{\partial x^{2}}+\left(\frac{\alpha_{9} \bar{T}+K^{\prime}}{\bar{T}}\right) \frac{\partial^{2} w}{\partial x \partial t}-\left(\frac{\bar{\rho}_{2} \alpha_{10} \bar{T}^{\prime}+K^{\prime}}{\bar{T}}\right) \frac{\partial v}{\partial x}=0
\end{gather*}
$$

To complete oux formulation of the initial-boundary value problem we prescribe that for $t \leq 0$

$$
\begin{align*}
& w(x, t)=\frac{\partial w}{\partial t}(x, t)=v(x, t)=0 \\
& \rho_{2}=\vec{\rho}_{2}, \theta(x, t)=0 \tag{4.17}
\end{align*}
$$

In addition, we require that on the boundary $x=0$,

$$
\begin{equation*}
\theta(0, t)=n(t)^{*}, \frac{\partial w}{\partial t}(0, t)=0, v(0, t)=0 . \tag{4.18}
\end{equation*}
$$

while as $x \rightarrow \infty$, we stipulate that $\theta(x, t), w(x, t), \rho_{2}(x, t), v(x, t), \sigma_{x}(x, t), \pi_{x}(x, t), \sigma_{y}(x, t)$ and ${ }^{\pi} y(x, t)$ approach to zero. (4.19)
At this point, we introduce dimensionless variables. For - this purpose we use the notation introduced in (3.9)

[^2]wherein the relation (3.5) is used. A direct substitution of (3.9) into (3.9) yields
\[

$$
\begin{equation*}
\sigma_{x}(x, t)=\left(\beta_{2}+2 \beta_{3}\right) \frac{\partial w}{\partial x}+\alpha_{9} \bar{T} \theta+\beta_{1} \eta+\alpha_{1} \tag{4.20}
\end{equation*}
$$

\]

which. if the material were elastic, would lead us to expect $\beta_{2}+2 \beta_{3}$ to play the role of the Lame constants $\left(\lambda_{E}+2 \mu_{E}\right)$ while $\alpha_{g^{T}}$ would play the role of $\left(2 \mu_{E}+3 \lambda_{E}\right) \alpha_{E}$ where α_{E} is the coefficient of linear thermal expansion of an elastic material. With this in mind we choose a velocity c_{1}.

$$
\begin{equation*}
c_{1}^{2}=\frac{\beta_{2}+2 \beta_{3}}{\bar{\rho}_{1}} \tag{4.21}
\end{equation*}
$$

which would be the irrotational velocity of sound if the material were elastic. Since $\alpha_{7} \leq 0$ by (2.40), we define

$$
\begin{equation*}
w^{2}=\frac{-k}{\alpha_{7} \bar{T}} \tag{4.22}
\end{equation*}
$$

By a dimensional analysis we nave that c_{1} is a velocity while (4.22) hás dimensions of length squared per unit time. Thus, if we take

$$
\begin{equation*}
a=\frac{\mu^{2}}{c_{1}}, t_{0}=\frac{\omega^{2}}{c_{1}^{2}} \tag{4.23}
\end{equation*}
$$

then a dimensionless x-coordinate and time are given by

$$
\begin{equation*}
\zeta=\frac{x}{a}=\frac{c_{1} x}{\omega^{2}}, \tau=\frac{t^{t}}{t_{0}}=\frac{c_{1}^{2} t}{\omega^{2}} \tag{4.24}
\end{equation*}
$$

proceeding further, we introduce non-dimensional partial stresses, solid displacement, fluid velocity, densities and diffusive force by
$\hat{\sigma}_{x}=\frac{\hat{\sigma}_{x}}{\beta_{2}+2 \beta_{3}}, \hat{w}=\frac{w}{a}, \hat{\sigma}_{0}=\frac{\alpha_{1}}{\beta_{2}+2 \beta_{3}}, \quad \hat{\sigma}_{y}=\frac{\sigma_{y}}{\beta_{2}+2 \beta_{3}}$,
$\hat{\pi}_{x}=\frac{\pi_{x}}{\beta_{2}+2 \beta_{3}}, \hat{v}=\frac{v t_{0}}{a}, \hat{\pi}_{y}=\frac{\pi y}{\beta_{2}+2 \beta_{3}}$.
$\eta_{2}=\frac{\rho_{2}-\bar{\rho}_{2}}{\bar{\rho}_{2}}, \quad \eta_{1}=\frac{\rho_{1}-\bar{\rho}_{1}}{\bar{\rho}_{1}}, \hat{\omega}=\frac{a \omega_{x}}{\beta_{2}+2 \beta_{3}}$.
In addition, the following quantities are conveniently grouped:

$$
\begin{array}{r}
s^{2}=\frac{2 \mu+\lambda}{t_{0}\left(\beta_{2}+2 \beta_{3}\right)}, d_{1}=\frac{\alpha_{9} \bar{T}}{\hat{\beta}_{2}+2 \beta_{3}}, d_{2}=\frac{\bar{\rho}_{2} \alpha_{10} \bar{T}}{\rho_{2}+2 \rho_{3}} \\
£=\frac{\bar{\rho}_{2}}{\bar{\rho}}, \delta_{1}=\frac{\gamma_{2}}{\beta_{2}+2 \beta_{3}}-£ \hat{\sigma}_{0}=\frac{-\bar{\rho}_{2}}{\beta_{2}+2 \beta_{3}}\left(\beta_{1}-\frac{\bar{\rho}_{1} \alpha_{2}}{\bar{\rho}}\right) \\
\delta_{2}=\frac{f \alpha_{2}}{c_{1}^{2}}-\frac{\bar{\rho}_{2} \gamma_{1}}{\bar{\rho}_{1} c_{1}^{2}}, \tilde{\epsilon}_{1}=\frac{\alpha_{9} \bar{T}+K^{\prime}}{\alpha_{7} \bar{T}^{2}}, \tilde{\epsilon}_{2}=\frac{\bar{\rho}_{2} \alpha_{10^{T}}^{\bar{T}}+K^{\prime}}{\alpha_{7}^{\bar{T}^{2}}} \tag{4.26}
\end{array}
$$

Incorporating all of these changes leads us the following summary:

Constitutive equations
$\hat{\sigma}_{x}(\zeta, T)=\hat{\sigma}_{0}+\frac{\partial \hat{w}\left(\zeta_{2} T\right)}{\partial \zeta}+\alpha_{1} \theta(\zeta, T)+\left[(1-F) \hat{\sigma}_{0}-\delta_{1}\right] T_{2}(\zeta, T)$

$$
\begin{align*}
& \hat{\pi}_{x}(\zeta, \tau)=-\hat{\sigma}_{0}+s^{2} \frac{\partial \hat{v}(\zeta, \tau)}{\partial \zeta}+\left(\delta_{2}+f \hat{\sigma}_{0}\right) \frac{\partial \hat{w}(\zeta, \tau)}{\partial \zeta}-a_{2} \theta(\zeta, \tau) \\
& +\left(\delta_{2}-(1-f) \hat{\sigma}_{0}\right) n_{2}(\zeta, \tau) . \tag{4.27b}\\
& \hat{w}(\zeta, \tau)=-f \hat{\sigma}_{0} \frac{\partial^{2} w}{\partial \zeta^{2}}(\zeta, \tau)+(1-f) \hat{\sigma}_{0} \frac{\partial r_{2}}{\partial \zeta}(\zeta, \tau) \\
& +\frac{\alpha t_{O}}{\bar{\rho}_{1}}\left[\frac{\partial \hat{\psi}}{\partial T}(\zeta, T)-v(\zeta, T)\right] . \tag{4.27c}\\
& \hat{\sigma}_{y}(\zeta, \tau)=\frac{\beta_{2}}{\beta_{2}+2 \beta_{3}} \frac{\partial \hat{w}}{\partial \zeta}(\zeta, T)+\alpha_{1} \partial(\zeta, T) \\
& +\left[(1-f) \hat{\sigma}_{0}-\delta_{1}\right] \eta_{2}(\zeta, \tau)+\hat{\sigma}_{0} . \tag{4.27d}\\
& \hat{\sigma}_{z}(\zeta, \tau)=\hat{\sigma}_{y}(\zeta, \tau) . \tag{4.27e}\\
& \hat{\pi}_{y}(\zeta, \tau)=\frac{\lambda}{t_{0}\left(\beta_{2}+2 \beta_{3}\right)} \frac{\partial \hat{v}}{\partial \zeta}+\left(f \hat{\sigma}_{0}+\sigma_{1}\right) \frac{\partial w}{\partial \zeta}(\zeta, \tau)-d_{2} \theta(\zeta, T) \\
& +\left[\delta_{2}-(1-f) \hat{\sigma}_{0}\right] \eta_{2}(\zeta, \tau)-\dot{\sigma}_{0} . \tag{4.27f}\\
& \hat{\pi}_{z}(\zeta, T)=\hat{\pi}_{y}(\zeta, T) . \tag{4.27~g}
\end{align*}
$$

Equations of motion

$$
\begin{align*}
& \left(1+f \hat{\sigma}_{0}\right) \frac{\partial^{2 \hat{w}}}{\partial \zeta^{2}}-\frac{\alpha t_{0}}{\bar{\rho}_{1}}\left(\frac{\partial \hat{w}}{\partial T}-\hat{v}\right)+\alpha_{1} \frac{\partial \theta}{\partial \zeta}-\delta_{1} \frac{\partial \eta_{2}}{\partial \zeta}=\frac{\partial^{2} \hat{w}}{\partial \tau^{2}} \tag{4.28}\\
& \delta_{1} \frac{\partial^{2} \hat{w}}{\partial \zeta^{2}}+s^{2} \frac{\partial^{2} \hat{v}}{\partial \zeta^{2}}+\frac{\alpha t_{0}}{\bar{\rho}_{1}}\left(\frac{\partial \hat{w}}{\partial T}-\hat{v}\right)-d_{2} \frac{\partial \theta^{\prime}}{\partial \zeta}+\delta_{2} \frac{\partial \eta_{2}}{\partial \zeta}=\frac{\bar{\rho}_{2}}{\bar{\rho}_{1}} \frac{\partial \hat{\sigma}}{\partial \tau} \tag{4.29}\\
& \frac{\partial^{2} \hat{G}}{\partial \zeta^{2}}-\frac{\partial \theta}{\partial \tau}-\tilde{\epsilon}_{1}-\frac{\partial \hat{w}}{\partial \zeta \tau T}+\tilde{\epsilon}_{2} \frac{\partial \hat{v}}{\partial \zeta}=0, \tag{4.30}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial \pi_{2}}{\partial \tau}+\frac{\partial \hat{v}}{\partial \zeta}=0 \tag{1,31}
\end{equation*}
$$

- Initial conditions

For $\quad \leq 0$, we take

$$
\hat{w}(\zeta, T)=\frac{\partial \hat{j}}{\partial \tau}(\zeta, T)=\hat{v}(\zeta, T)=\eta_{2}(\zeta, T)=\theta(\zeta, T)=0 . \quad(4,3 \beta)
$$

Boundary conditions
At $\zeta=0$, we take

$$
\theta(0, T)=h(T) \cdot \frac{\partial \hat{w}}{\partial T}(0, T)=0, \hat{v}(0, T)=0 .
$$

(4.33)

As $\zeta \rightarrow \infty$, we take

$$
\begin{gather*}
\theta(\zeta, \tau), \hat{w}(\zeta, \tau): \hat{v}(\zeta, \tau), \eta_{2}(\zeta, \tau), \hat{\sigma}_{x}(\zeta, \tau), \\
\text { and } \hat{\pi}_{x}(\zeta, \tau) \rightarrow 0 . \tag{4.34}
\end{gather*}
$$

For this initial -boundary value problem specified my ecuaLions (4.27) to (4.34), we assume that the initial stere of the solid constituent is zero, ie..

$$
\begin{equation*}
\hat{\sigma}_{0}=0 \tag{4.35}
\end{equation*}
$$

that the machanieal coupling terms in the heat conduction equation (4.30) can be neglected

$$
\begin{equation*}
\tilde{\epsilon}_{1}=0, \dot{\epsilon}_{2}=0 \tag{4.36}
\end{equation*}
$$

and that the constants of the mixture satisfy

$$
\equiv \ggg-\delta_{2}>\delta_{1}^{2} \gg t>0,-\delta_{2}-\delta_{1}^{2} \gg t>0.1 \gg-\delta_{2}, \quad(4.37)
$$

where $t=\frac{\alpha t_{0}}{\bar{\rho}_{1}}$ and $x=\frac{\bar{\rho}_{2}}{\bar{\rho}_{1}}$.

The assumption of (4.36) is analogous to neglecting the effect of the mechanical coupling term in the fourier heat conduction equation in linear thermoelasticity theory [22]. [23] and is justified by the conditions (a) and (b) of Section 2.2.

Various material constants which appear in (4.37) have to be determined experimentally for the mixture. The rew strictions on the material constants, (4, 37), are the results of (2.39). (2.40), and their interpretations in Section 2.4, Single Constituent Theory. For additional references consult [33] to [36].

With the aid of (4.35) to (4.38), the equations (4.28) to (4.31) are written

$$
\begin{gather*}
\frac{\partial^{2} \hat{w}}{\partial \zeta^{2}}-t \frac{\partial \hat{w}}{\partial \tau}+t \hat{v}+\alpha_{1} \frac{\partial \theta}{\partial \zeta}-\delta_{1} \frac{\partial \eta_{2}}{\partial \zeta}=\frac{\partial^{2} \hat{w}}{\partial \tau^{2}}, \tag{4.39}\\
\delta_{1} \frac{\partial^{2} \hat{w}}{\partial \zeta^{2}}+t \frac{\partial \hat{w}}{\partial \tau}+s^{2} \frac{\partial^{2} \hat{v}}{\partial \zeta^{2}}-t \hat{v}-d_{2} \frac{\partial \theta}{\partial \zeta}+\delta_{2} \frac{\partial \hat{\eta}_{2}}{\partial \zeta}=r \frac{\partial \hat{v}}{\partial \tau}, \\
 \tag{4.41}\\
\frac{\partial^{2} \theta}{\partial \zeta^{2}}-\frac{\partial \theta}{\partial \tau}=0 . \tag{4.42}\\
\\
\frac{\partial \hat{\Lambda}_{2}}{2 T}+\frac{\partial \hat{v}}{\partial \zeta}=0 .
\end{gather*}
$$

4.3. Solution by Integral Transforms

We denote the Laplace transform of a function $F(G, T)$ with respect to r by $\bar{F}(\zeta, p)$, where

$$
\begin{gather*}
\bar{F}(\zeta, p)=\int_{0}^{\infty} F(\zeta, i) e^{-p r} d T \tag{4.43}\\
2 \pi i F(\zeta, T)=\int_{c-i \infty}^{c+i \infty} \bar{F}(\zeta, p) e^{p T} d p . \tag{4.44}
\end{gather*}
$$

In (4.44) c is a positive real number such that the path of integration is any vertical line to the right of all singularities of $\bar{F}(\zeta, p)$ in poplane.

The solution to the thermal problem, equations (4.41), (4.32) to (4.34), in the ($5, \mathrm{p})$ plane i.s

$$
\begin{equation*}
\vec{\theta}(\zeta, p)=\frac{1}{p} \exp \left(-p^{\frac{1}{2}} \zeta\right) \tag{4.45}
\end{equation*}
$$

Now transforming the equations of motion (4.39). (4.40) and the equation of continuity (4,42), then combining these equations with the solution to the thermal problem (4.45) gives

$$
\begin{gather*}
\left(D^{2}-p t-p^{2}\right) \bar{w}+\left(\frac{\delta_{1}}{p} n^{2}+t\right) \bar{v}=\frac{d_{1}}{p} \exp \left(-p^{\frac{1}{2}} \zeta\right) \tag{4.46}\\
\left(\delta_{1} D^{2}+p t\right) \bar{w}+\left[\left(s^{2}-\frac{\delta_{2}}{p}\right) p^{2}-t-p r\right] \bar{v}=-\frac{d_{2}}{\rho} \exp \left(-p^{\frac{1}{2}} \varphi\right. \tag{4,47}
\end{gather*}
$$

where the difserential operator is defined by

$$
D=\frac{d}{d \xi}
$$

Due to equations (4.32) to (4.34), the transformed boundary conditions and the regularity conditions are

$$
\begin{equation*}
\bar{v}(0, p)=0, \bar{v}(0, p)=0 \tag{4.48}
\end{equation*}
$$

and as $\zeta \rightarrow \infty$

$$
\begin{equation*}
\bar{w}(\zeta, p), \vec{v}(\xi, p) \nsim 0 . \tag{4,49}
\end{equation*}
$$

Solving for the displacement of the solid constituent and the velocity of the Eluic constituent from equations (4.46) and (4.47) for the homogeneous solutions only which conform with (4.49), we have

$$
\begin{align*}
& \bar{w}_{n}(\zeta, p)=B(p) \exp \left(-\frac{p^{\frac{1}{2}}}{2 f_{1}}\left(g_{1}+g_{2}\right) \zeta\right) \\
& +D(p) \exp \left(-\frac{p^{\frac{1}{2}}}{2 f_{1}}\left(g_{1}-g_{2}\right) \zeta\right) \tag{4.50}\\
& \bar{v}_{h}=\left[p\left\{(t+p)\left(p s^{2}-\delta_{2}\right)+t \delta_{1}\right\}-\frac{1}{4} p\left(g_{1}+g_{2}\right)^{2}\right] B(p) \exp \left(-\frac{p^{\frac{1}{6}}}{2 f_{1}}\left(g_{1}+g_{2}\right) \zeta\right) \\
& +\left[p\left((t+p)\left(p s^{2}-\delta_{2}\right)+t \delta_{1}\right)-\frac{1}{4} p\left(g_{1}-g_{2}\right)^{2}\right] D(p) \\
& \quad \exp \left(-\frac{p^{\frac{1}{2}}}{2 f_{1}}\left(g_{1}-g_{2}\right) \zeta\right) \tag{4.51}
\end{align*}
$$

where $B(p)$ and $D(p)$ are integration constants, and

$$
\begin{align*}
g_{1}^{2}(p) & =\left(p s^{2}-\delta_{2}\right)(p+t)+(p r+t)+2 t \delta_{1} \\
& +2 p^{\frac{1}{2}}\left(p s^{2}-\delta_{1}^{2}-\delta_{2}\right)^{\frac{1}{2}}(p r+t+t r)^{\frac{1}{2}} \tag{4.52}\\
g_{2}^{2}(p) & =\left(p s^{2}-\delta_{2}\right)(p+t)+(p r+t)+2 t \delta_{1} \\
& -2 p^{\frac{1}{2}}\left(p s^{2}-\delta_{1}^{2}-\delta_{2}\right)^{\frac{1}{2}}(p r+t+t r)^{\frac{1}{2}} \tag{4,53}\\
f_{1}^{2}(p) & =p s^{2}-\delta_{1}^{2}-\delta_{2} \tag{4.54}
\end{align*}
$$

Here we hava assumed that

$$
\operatorname{Re}\left(\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}+g_{2}\right) \zeta\right)>0 . \text { and } \operatorname{Re}\left(\tilde{f}_{1 / 3}^{E_{1}}\left(g_{1}-g_{2}\right) \zeta\right) \geq 0(4.55)
$$

for p such that: $\operatorname{Re}(p)>1>0$, and we will show this to be so later. Let us indicate particular solutions to the equations (4.46) and (4.47) by a subscript "p". Then we have

$$
\begin{align*}
& \bar{w}_{p}(\zeta, p) \frac{A_{1}}{A_{2}} \exp \left(-p^{2 / 2} \zeta\right) \tag{4.56}\\
& \bar{v}_{p}(\zeta, p)= \\
& \frac{p\left(\delta_{1}^{2}+\delta_{2}-p s^{2}+t \delta_{1}+\left(p s^{2}-\delta_{2}\right)(p+t) \frac{A}{A}_{A_{2}}^{A_{1}}\right.}{p\left(t s^{2}+r \delta_{1}\right)+t\left(\delta_{1}-\delta_{2}\right)}+ \\
& \frac{p s^{2} d_{1}-s_{2} d_{1}+\delta_{1} d_{2}}{p\left(t s^{2}+r \delta_{1}\right)+t\left(\delta_{1}-\delta_{2}\right)} \tag{4.57}
\end{align*}
$$

where

$$
\begin{align*}
& A_{1}=d_{1}\left(p\left(s^{2}-r\right)-\delta_{2}-t\right)+d_{2}\left(\delta_{1}+t\right) \tag{4.58}\\
& A_{2}=p p^{1 / 2}\left(p^{2}-\delta_{1}^{2}-\delta_{2}-t-p r-(t+p)\left(p s^{2}-\delta_{2}\right)-3 t \delta_{1}+p^{2} r+p t+p t r\right) \tag{4.59}
\end{align*}
$$

The entire solutions are

$$
\begin{align*}
& \bar{w}(\zeta, p)=\bar{w}_{h}(\zeta, p)+\bar{w}_{p}(\zeta, p) \tag{4.60}\\
& \bar{v}(\zeta, p)=\bar{v}_{h}(\zeta, p)+\bar{v}_{p}(\zeta, p) \tag{4.61}
\end{align*}
$$

To determine $B(p)$ and $D(p)$ wo substitute equations (4.60) and (4.61) into the boundary condicions (4.48). Then

$$
\begin{equation*}
B(p)+=(2)+\frac{A_{1}(p)}{A_{S}(p)}=0 \tag{4.62}
\end{equation*}
$$

$$
\begin{align*}
& B(p) p\left[(p+t)\left(p s^{2}-\delta_{2}\right)+t \delta_{1}-\frac{\left(g_{1}+g_{2}\right)^{2}}{4}\right]+ \\
& \quad D(p) p\left[(p+t)\left(p s^{2}-\delta_{2}\right)+t \delta_{2}-\frac{\left(g_{1}-g_{2}\right)^{2}}{4}\right] \\
& \quad+\left[p \left(\delta_{1}^{2}+\delta_{2}-p s^{2}+t \delta_{1}+\left(p s^{2}-\delta_{3}\right)(p+t) \frac{A_{1}}{A_{2}}\right.\right. \\
& \left.\quad+\frac{\left(p s^{2}-\delta_{2}\right) d_{1}}{p^{1 / 2}}+\frac{\delta_{1} d_{2}}{p^{1 / 2}}\right]=0 \tag{4.63}
\end{align*}
$$

Solving for the unknowns $B(p)$ and $D(p)$ from equations (4.62) and (4.63) simultaneousiy, we have

$$
\begin{align*}
B(p)= & \frac{A_{1}}{g_{1} g_{2} A_{2}}\left\{\delta_{1}^{2}+\delta_{2}-p s^{2}+\frac{1}{2}\left\{\left(p s^{2}-\delta_{2}\right)(p+t)+(p r+t)+2 t \delta_{1}\right\}\right\} \\
& +\frac{\left\{\left(p s^{2}-\delta_{2}\right) A_{1}+\delta_{1} d_{2}\right\}}{p p^{2} / 2 g_{1} g_{0}}-\frac{A_{2}}{2 A_{2}} \tag{4.64}
\end{align*}
$$

$D(p)=\frac{-A_{1}}{g_{1} g_{2} A_{2}}\left[\delta_{1}^{2}+\delta_{2}-p s^{2}+\frac{1}{2}\left\{\left(p s^{2}-\delta_{2}\right)(p+t)+(p r+t)+2 t \delta_{1}\right\}\right]$

$$
\begin{equation*}
-\frac{\left(\left(p s^{2}-\delta_{2}\right) d_{1}+\delta_{1} d_{2}\right\}}{p p^{2 / 2} g_{1} g_{2}}-\frac{A_{1}}{2 A_{2}} \tag{4.65}
\end{equation*}
$$

The Laplace transformed displacement of the solid constituent and velocity of the fluid constituent are now explicitly given by equations (4.50), (4.51). (4.56), (4.57). (4.60). (4.61), (4.64) and (4.65). These quantities constitute the complete solution, in the transform plane, to the initial....
. boundary value problem posed by equations (4.32) to (4.34). (4.39) to (4.42). Stresses of each constituent may be expressed immediately in terms of the transformed displacement of the solid constituent and velocity of the fluid
constituent by means of the constitutive equations (4.27a) to (4.27 g). Now that the Laplace transformed displacements of the solid constituent and velocities of the fluid constituent are in their simplest form we proceed to invert these expressions.

4.4. Inversion

A. Location of zeros of $g_{1}^{2}(p) g_{2}^{2}(p)$

As a first step toward the inversion of $\bar{w}(\zeta, p)$, we examine the multiple valued functions appearing in equations (4.52) and (4.53). set

$$
\begin{align*}
& \epsilon_{1}=\frac{-\delta_{1}^{2}-\delta_{2}}{s^{2}} \tag{4.66}\\
& \epsilon_{2}=\frac{t+t r}{r} . \tag{4.67}
\end{align*}
$$

Then equations (4.52) and (4.53) become

$$
\begin{equation*}
g_{1}(p)=\left(p s^{2} \alpha \varepsilon_{2}\right)(p+t)+(p r+t)+2 t \delta_{1}+2 r^{1 / 2} s p^{1 / 2}\left(p+\epsilon_{1}\right)^{1 / 2}\left(p+\epsilon_{2}\right)^{1 / 2} \tag{4.68}
\end{equation*}
$$

$g_{2}(p)=\left(p s^{2}-\delta_{2}\right)(p+t)+(p r+t)+2 t \delta_{1}-2 r^{1 / 2} s p^{1 / 2}\left(p+\epsilon_{1}\right)^{1 / 2}\left(p+\varepsilon_{2}\right)^{1 / 2}$.
We take the domain of definition of $\mathrm{p}^{1 / 2}$ as the entire ... p-plane cut along the negative rcal exis, and we choose a
"branch of $p^{1 / a}$ through the requirement that

$$
\begin{equation*}
\mathrm{p}^{1 / 2}=\sqrt{\ell} \text { for } \mathrm{p}=\ell>0 . \tag{4.70}
\end{equation*}
$$

$\sqrt{\ell}$ refers to the positive root for real positive ℓ.

Wo tako the domain of definition of $\left(p+\epsilon_{1}\right)^{1 / 2}$ as the entire p-plane cut from $-\epsilon_{1}$ to $-\infty$ along the negative real axis, and we choose a branch of $\left(p+\epsilon_{i}\right)^{1 / 2}$ through the requirement that

$$
\begin{equation*}
\left(p+c_{1}\right)^{2 / 2}=\sqrt{\ell+c_{1}} \quad \text { for. } p=\ell>-\epsilon_{1}^{* *} \tag{4.71}
\end{equation*}
$$

We take the domain of definition of $\left(p+\epsilon_{2}\right)^{1 / 2}$ as the ontire p-plane cut from $-\epsilon_{2}$ to $-\infty$ along the nogtive real axis, and we choose a branch of $\left(p+\varepsilon_{2}\right)^{1 / 2}$ through the requirement that

$$
\begin{equation*}
\left(p+\epsilon_{2}\right)^{1 / 2}=\sqrt{\ell+\epsilon_{2}} \text { for } p=\ell>-\epsilon_{2}^{* *} \tag{4.72}
\end{equation*}
$$

Now we will choose a domain in which $g_{1}(p)$ and $g_{2}(p)$ are single'valued. In view of (4.70), (4.71) and (4.72), we find that $g_{1}(p)$ does not have branch points but $g_{2}(p)$ does. To see this we note th\$t all possible branch points of $g_{1}(p)$ or $g_{2}(p)$ are the zeros of $g_{1}^{2}(p) g_{2}^{2}(p)$ which is a fourth degree polynomial,

$$
\begin{align*}
g_{1}^{2}(p) g_{2}^{2}(p)= & s^{4}\left[p^{4}+p^{3}\left(\frac{2\left(t s^{2}-r-\delta_{2}\right)}{s^{2}}\right)+p^{2}\left[\frac{2 t\left(-1+2 \delta_{1}-\delta_{2}-2 r\right)}{s^{2}}\right.\right. \\
& \left.+\frac{\left[\left(t s^{2}+r-\delta_{2}\right)^{2}+4 r\left(\delta_{1}^{2}+\delta_{2}\right)\right]}{s^{4}}\right] \\
& +p\left[\left(1+2 \delta_{1}-\delta_{2}\right)\left(t s^{2}+r-\delta_{2}\right)+(2+2 r)\left(\delta_{1}^{2}+\delta_{2}\right)\right] \frac{2 t}{s^{4}} \\
& \left.+\frac{t^{2}}{s^{4}}\left(1+2 \delta_{1}-\delta_{2}\right)^{2}\right] \tag{4.73}
\end{align*}
$$

We now use (4.37), ice. $0<t \ll 1$, and expand (4.73) to terms of order t. Then (4.73) may be written

$$
\begin{aligned}
& g_{i}^{2}(p) g_{a}^{2}(p)=g^{4}\left[p^{2}+\frac{2}{s^{2}}\left(-x-\delta_{3}+o(t)\right) p+\frac{4 x\left(\delta_{1}^{2}+\delta_{2}\right)+\left(x-\delta_{a}\right)^{2}}{s^{4}}\right] \\
& {\left[p^{2}+\frac{2 t\left[\left(1+2 \delta_{1}-\delta_{2}\right)\left(x-\delta_{2}\right)+(2+2 x)\left(\delta_{1}^{2}+\delta_{2}\right)+o(t)\right]}{4 x\left(\delta_{2}^{2}+\delta_{2}\right)+\left(x-\delta_{2}\right)^{2}} p\right.} \\
& +\frac{t^{2}\left(1+2 \delta_{1}-\delta_{2}\right)^{2}}{4 r\left(\delta_{1}^{2}+\delta_{2}\right)+\left(x-\delta_{2}\right)^{2}}
\end{aligned}
$$

and the zeros are easily found to $b \in P_{1}, P_{a}, P_{1}^{*}, P_{2}^{*}$ where

$$
\begin{aligned}
& p_{1}= \frac{r+\delta_{2}}{s^{2}}+0(t)+2 i\left[\frac{\sqrt{r \delta_{1}^{2}}}{s^{2}}+o(t)\right] \\
& p_{2}=\frac{-t\left[\left(1+2 \delta_{1}-\delta_{2}\right)\left(r-\delta_{2}\right)+(2+2 r)\left(\delta_{1}^{2}+\delta_{2}\right)+0(t)\right]}{4 r\left(\delta_{1}^{2}+\delta_{2}\right)+\left(r-\delta_{2}\right)^{2}} \quad(4.74) \\
&+2 t i \frac{\sqrt{\left(-\delta_{1}^{2}-\delta_{2}\right)\left(r^{2}-4 r \delta_{1}+2 r^{3} \delta_{1}-2 \delta_{1} \delta_{2}(1-r)+\delta_{1}^{2}+\delta_{2}^{2}+2 r \delta_{2}+r^{2} \delta_{1}^{2}+0(t)\right\}}}{4 r\left(\delta_{1}^{2}+\delta_{2}\right)+\left(r-\delta_{2}\right)^{2}}
\end{aligned}
$$

and p_{i}^{*} is the enjugate of p_{i}. ${ }^{+}$Here we note that the expressions under the square root signs are positive due to (4.37).
B. Determination of Branches for $g_{1}(p)$ and $g_{2}(p)$
ε
A11 the zeros of $g_{1}^{2}(p) g_{2}^{2}(p)$ are the zeros of $g_{2}(p)$ because. due to (4.63), (4.70) to (4.72), (4.74) and (4.75),
${ }^{+}$For computational purposes it is desirable to have p_{i}, p_{i}^{*} in a series expansion of t. See Appendix $1 ., \because$,
we find that

$$
\begin{align*}
& \operatorname{Re} g_{1}^{2}\left(p_{1}\right)=\frac{4 r}{32}\left(x+\delta_{2}-2 \delta_{1}^{2}\right)+o(t) \tag{4.76}\\
& \operatorname{Im} g_{1}^{2}\left(p_{2}\right)>\frac{1}{2} \operatorname{st} \sqrt{\epsilon_{1}}>0 . \tag{4.77}
\end{align*}
$$

Since $g_{1}(p)$ never vanishes on the entire p-plane with negative real-axis being deleted due to (4.70) to (4.72), $g_{1}(p)$ does not have branch points. Moreover, we find fram equations (4.73), (4.74) and (4.75)

$$
\begin{equation*}
g_{2}(p)=\frac{s^{2}}{g_{1}(p)}\left(p-p_{1}\right)^{1 / 2}\left(p-p_{1}^{*}\right)^{1 / 2}\left(p-p_{2}\right)^{1 / 2}\left(p-p_{2}^{*}\right)^{1 / 2} \tag{4.78}
\end{equation*}
$$

and this shows that $p_{1}, p_{1}^{*}, p_{2}, p_{2}^{*}$ are branch points of order pne for $\dot{g}_{2}^{\prime}(p)$. We define the domain of the $g_{1}(p)$ to be the entire p-plane with negative-real axis being deleted, and choose the branch $g_{1}(p)$ by the requirement that

$$
\begin{gather*}
g_{1}(p)=\sqrt{\left(\ell s^{2}-\delta_{2}\right)(\ell+t)+(\ell x+t)+2 t \delta_{1}+\sqrt{2 x} \sqrt{\ell \sqrt{\ell+\varepsilon_{2}} \sqrt{\ell+\varepsilon_{2}}}} \\
\text { for } p=\ell>0 \tag{4.79}
\end{gather*}
$$

We define a domain in which $g_{2}(p)$ is single palued suck that the domain is the entire p-plane cut along the following curves:
(a) the negative real axis
(b) the line joining p_{1} and p_{1}^{*}, that is, the locus of points p such that $\operatorname{Rc}(p)=\operatorname{Re}\left(p_{1}\right)$ and

$$
\operatorname{Im}\left(p_{2}^{*}\right) \leq \operatorname{Im}(p) \leq \operatorname{Im}\left(p_{1}\right)
$$

(c) the curve joining p_{2} and p_{2}^{*}, that is, the locus of points p along
(1) the line such that $\operatorname{Re}(p)=\operatorname{Re}\left(p_{2}\right)$ and $\operatorname{Im}\left(p_{2}\right) \leq \operatorname{Im}(p) \leq \operatorname{Re}\left(p_{2}\right)$.
(2) the portion of circular arc whose radius it equal to $-\sqrt{2} \operatorname{Re}\left(p_{2}\right)$ and whose argument Lies between $\frac{-3 \pi}{4}$ and $\frac{3 \pi}{4}$.
(3) the line such that $\operatorname{Re}(p)=\operatorname{Re}\left(p_{2}\right)$ and $\operatorname{Re}\left(p_{2}\right) \leq$ $\operatorname{Im}(p) \leq \operatorname{Im}\left(p_{2}^{*}\right)$.

We choose the single-valued branch of $g_{2}(p)$ by the requitement that
$g_{2}(p)=\sqrt{\left(\ell s^{2}-\delta_{2}\right)(\ell+t)+(\ell r+t)+2 t \delta_{1}-\sqrt{2 x} \sqrt{\ell} \sqrt{\ell+\epsilon_{1}} \sqrt{\ell+\epsilon_{2}}}$

$$
\begin{equation*}
\text { for } p=\ell>0 . \tag{4.80}
\end{equation*}
$$

Due ta (4.79) and (4.80), we find

$$
\begin{align*}
& g_{1}(p)=p s\left(1+\frac{p^{1 / 2}}{p^{1 / 2 s}}+o\left(\frac{1}{p}\right)\right) \text { as } p \rightarrow \infty \tag{4.81}\\
& g_{2}(p)=p s\left(1-\frac{p^{1 / 2}}{p^{1 / 2 s}}+O\left(\frac{1}{p}\right)\right) \text { as } p \rightarrow \infty \tag{4.82}
\end{align*}
$$

We find that $-\epsilon_{2} \leqslant \operatorname{Re}\left(p_{2}\right)<\operatorname{Im}\left(p_{2}^{*}\right)<0$ with the aid of (4.37), (4.38), (4.67) and (4.75) as in the figure 1.
ca Formulation of $\bar{w}(\zeta, p)$ in Convolution Form
It is expedient to define $\bar{w}^{(1)}(\zeta, p), \bar{w}^{(2)}(\zeta, p)$,
${ }^{-}{ }_{w}^{(1)}(\zeta, \tau)$ and $w^{(2)}(\zeta, \tau)$ such that

$$
\begin{equation*}
\bar{w}(\zeta, p)=\bar{w}^{(1)}(\zeta, p) \bar{w}^{(2)}(\zeta, p) . \tag{4.83}
\end{equation*}
$$

- 92

Figure 1. The p-plane.

$$
\begin{equation*}
w^{(i)}(\zeta, \tau)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{w^{(i)}}{(\zeta, p) \exp (p \tau) d p \text { with } i=1.2} \tag{4.84}
\end{equation*}
$$

so that by the convolution theorem

$$
\begin{equation*}
w(\zeta, \tau)=\int_{0}^{\tau} w^{(1)}(\zeta, u) w^{(2)}(\zeta, \tau-u) d u \tag{4.85}
\end{equation*}
$$

From $(4.50)_{0}(4.56),(4.60),(4.64)$ and (4.65) set

$$
\begin{align*}
& \bar{w}^{(1)}(\zeta, p)=\frac{1}{p^{3 / 2(p+b)}} \\
& \bar{w}^{(2)}(\zeta, p)=\left[\frac { A _ { 1 } } { (x - s ^ { 2 }) p (p - a) } \frac { 1 } { g _ { A } g _ { 2 } } \left(\delta \delta_{1}+\delta_{2}-p s^{2}+\frac{1}{2}\left(\left(p s^{2}-\delta_{2}\right)(p+t)\right.\right.\right. \\
& \left.\left.+\left(p r^{\prime}+t\right)+2 t \delta_{1}\right)\right)+\frac{(p+b)\left(\left(p s^{2}-\delta_{2}\right) d_{1}+\delta_{1} d_{2}\right\}}{p g_{1} g_{2}} \\
& -\frac{A_{1}}{2\left(r-s^{2}\right) p(p-a)} \exp \left(-\frac{p^{2 / 2}}{i I_{1}}\left(g_{s}+g_{2}\right) \zeta\right\} \\
& -\left(\frac { A _ { 1 } } { (r - s ^ { 2 }) p (p - a) } \frac { 1 } { \mathcal { G } _ { 1 } g _ { 2 } } \left(\delta_{1}^{2}+\delta_{2}-p s^{2}+\frac{\frac{7}{2}}{2}\left(\left(p s^{2}-\delta_{2}\right)(p+t)\right.\right.\right. \\
& \left.\left.+(p x+t)+2 t \delta_{1}\right)\right\}+\frac{(p+b)\left\{\left(p s^{3}-\delta_{2}\right) d_{1}+\delta_{1} a_{2}\right)}{p g_{1} g_{2}} \\
& \left.\frac{A_{1}}{2\left(x-s^{2}\right)_{p(p-a)}}\right) \exp \left(-\frac{p^{2 / 2}}{2 E_{1}}\left(g_{1}-g_{2}\right) \zeta\right) \\
& +\frac{A_{1}}{\left(r-s^{2}\right) p(p-a)} \exp \left(-p^{1 / 2} \zeta\right) \tag{4.87}
\end{align*}
$$

with a and b in (4.86) and (4.37) defined from (4.59) such that

$$
\begin{equation*}
A_{2}(p)=\left(x-s^{2}\right) p p^{1 / 2}(p-a)(p+b) \tag{4,88}
\end{equation*}
$$

Here a and $-b$ are zeros of

$$
\mathrm{ps} s^{2}-\delta_{1}^{2}-\delta_{2}-t-\mathrm{pr}-(\mathrm{p}+\mathrm{t})\left(\mathrm{p} s^{2}-\delta_{2}\right)-2 \mathrm{t} \delta_{\mathrm{L}}+\mathrm{pt}+\mathrm{ptr}=0
$$

and they are

$$
\begin{align*}
a= & \frac{1}{2\left(r-s^{2}\right)}\left(x+t s^{2}-s^{2}-\delta_{2}-t-t r-\left[\left(s^{2}-r-t s^{2}+\delta_{2}+t+t r\right)^{2}\right.\right. \\
& \left.\left.-4\left(r-s^{2}\right)\left(-\delta_{1}^{2}-\delta_{2}-t+t \delta_{2}-2 t \delta_{1}\right)\right]^{3 / 2}\right\} \tag{4.89}\\
b= & \frac{1}{2\left(r-s^{3}\right)}\left\{r+t s^{2}-s^{2}-\delta_{2}-t-t r+\left[\left(s^{2}-r-t s^{2}+\delta_{2}+t+t r\right)^{2}\right.\right. \\
& \left.\left.-4\left(r-s^{3}\right)\left(-\delta_{1}^{2}-\delta_{2}-t+t \delta_{2}-2 t \delta_{1}\right)\right]^{1 / 2}\right\} \tag{4.90}
\end{align*}
$$

and we find that $a>0, b>0$ by the relation (4.37). The inversion of $\bar{w}^{(2)}(\zeta, p)$ of (4.86) is found with the aid of the table [37\}

$$
\begin{equation*}
{ }_{w}^{(1)}(\zeta, \tau)=\frac{2}{\sqrt{\pi}} \int_{0}^{\sqrt{\tau}} \exp \left(-b\left(\tau-z^{2}\right)\right) d z \tag{4.91}
\end{equation*}
$$

To obtain a real integral representation of $w^{(2)}(\zeta, r)$ for $\tau>\zeta$, consider the integral

$$
\begin{equation*}
\frac{1}{2 \pi i} \int \bar{w}^{(2)}(\zeta, p) \exp (p \tau) d p \tag{4,92}
\end{equation*}
$$

evaluated along the closed contour shown in Figuze 1.
D. Inversion of $\vec{w}^{(2)}(\zeta, p)$ by contour Integration We express $\bar{w}^{(2)}(\zeta, p)$ in a simpler form from (4.87):

$$
\begin{align*}
\frac{-(2)}{w}(\zeta, p)= & \left.\frac{A_{3}(p)}{\left(x-s^{2}\right) p(p-a)} \frac{1}{g_{1} g_{2}}=\frac{A_{1}}{2\left(x-s^{2}\right) p(p-a)}\right) \exp \left(-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{2}+g_{2}\right) \zeta\right) \\
& -\left(\frac{A_{3}(p)}{\left(x-s^{2}\right) p(p-a)} \frac{1}{g_{1} g_{2}}+\frac{A_{1}}{2\left(x-s^{2}\right) p(p-a)}\right) \exp \left(-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}-g_{2}\right) \zeta\right) \\
& +\frac{A_{2}}{\left(x-s^{2}\right) p(p-a)} \exp \left(-p^{1 / 2} \zeta\right) \tag{4.93}
\end{align*}
$$

where

$$
\begin{align*}
& A_{3}(p)=\frac{1}{2} d_{1} s^{2}\left(x-s^{2}\right) p^{3}+\left(s^{2}\left(\frac{1}{2} r d_{1}+d_{1} \delta_{2}-\frac{1}{2} \delta_{1} d_{2}\right)\right. \\
& \left.+r\left(\delta_{1} d_{2}-\frac{1}{2} a_{2} \delta_{2}-\frac{1}{2} d_{1} r\right)+t s^{2}\left(-\frac{1}{2} \alpha_{1} s^{2}+\frac{1}{2} d_{1}+\frac{1}{2} d_{1} r+\frac{1}{2} a_{2}\right)\right) p^{2} \\
& +\left(x\left(-d_{1} \delta_{1}^{2}-\frac{1}{2} d_{1} \delta_{2}-\frac{1}{2} \alpha_{2} \delta_{1}\right)+\frac{1}{2} \mathrm{~d}_{2} \delta_{1} \delta_{2}-\frac{1}{2} \mathrm{~d}_{2} \delta_{2}^{2}+t\left(s ^ { 2 } \left(\frac{1}{2} d_{1}-d_{3}\right.\right.\right. \\
& \left.+d_{2} \delta_{2}-d_{2} \delta_{1}-\frac{1}{2} d_{2} \delta_{1}\right)-\frac{1}{2} d_{1} x \delta_{2}-d_{1} x-d_{1} r \delta_{3}+\delta_{1} a_{2}+r \delta_{2} a_{2}-a_{1} \delta_{2} \\
& \left.\left.\therefore \frac{1}{2} d_{2} \delta_{2}-\frac{1}{2} d_{2} \delta_{2}+\frac{1}{2} r d_{2}\right)+t^{2}\left(\frac{1}{2} d_{2} s^{2}-\frac{1}{2} d_{1} s^{2}\right)\right) p+\frac{1}{2} t\left(\left(\delta_{1} d_{2}\right.\right. \\
& \left.\left.-\alpha_{2} \delta_{2}\right)\left(\delta_{3}-1-2 \delta_{1}\right)+2\left(d_{2}-\alpha_{1}\right)\left(\delta_{3}^{2}+\delta_{2}\right)\right) \\
& +\frac{1}{2} t^{2}\left(\alpha_{2}-\alpha_{1}\right)\left(-\delta_{2}+1+2 \delta_{1}\right) . \tag{4.94}
\end{align*}
$$

With the aid of (4.81) and (4.82) we find that

$$
\begin{align*}
& \exp \left(-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}+g_{2}\right) \zeta+p \tau\right)=0(\exp (p(\tau-\zeta)) \text { as } p \rightarrow \infty \\
& \exp \left(-\frac{p^{2 / 2}}{2 f_{1}}\left(g_{1}-g_{2}\right) \zeta+p \tau\right)=0\left(\exp \left(p \tau-\frac{r^{1 / 2} p^{1 / 2}}{0}\right)\right) \tag{4.95}\\
& \text { as } p \rightarrow \infty . \tag{4.96}
\end{align*}
$$

and consequently as $p \rightarrow \infty$

$$
\begin{align*}
& \mathbb{w}^{(2)}(\zeta, p) \operatorname{eap}(p \tau)=O\left(\frac{1}{p} \exp (p(\tau-\zeta))+O\left(\frac{1}{p} \exp \left(p \tau-\frac{r^{1 / 2} \zeta p^{1 / 2}}{s}\right)\right)\right. \\
& +O\left(\frac{1}{p} \exp \left(p \tau-p^{1 / 2} \zeta\right)\right) . \tag{4.97}
\end{align*}
$$

From (4.97) we conclude that the contribution to the integral (4.92) from the large circulax portion of the contour goes.... to zero as the radius tends to infinity when $\tau>\zeta$. From (4.73) and (2.93) we see that the contributions from the small circles around the branch points of $g_{2}(p)$ go to zere as the radii tend to zero. Let us consider the contribution
to tha inte.jral from the small circle around the origin as the zaisus tend to zero. We may express $\bar{w}^{(2)}(\zeta, p)$ of (4.03) as

$$
\begin{align*}
\bar{w}^{(\rho)}(\zeta, p) & =\frac{A_{3}(p)}{\left(x-s^{2}\right) p(p-a)} \frac{1}{g_{1} g_{2}}\left\{\exp \left\{-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}+g_{2}\right) \zeta\right\}\right. \\
& \left.-\exp \left\{-\frac{p^{1 / 2}}{2 F_{1}}\left(g_{1}-g_{2}\right) \zeta\right\}\right] \\
& -\frac{A_{1}}{2\left(x-s^{2}\right) p(p-a)}\left[\exp \left(-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}+g_{2}\right) \zeta\right)\right. \\
& \left.+\exp \left[-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}-g_{2}\right) \zeta\right)-2 \exp \left(-p^{1 / 2} \zeta\right)\right] \tag{4.98}
\end{align*}
$$

We note that

$$
\begin{align*}
& \exp \left(-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}+g_{2}\right) \zeta\right)-\exp \left(-\frac{p^{1 / 2}}{2 F_{1}}\left(g_{1}-g_{2}\right) \zeta\right) \\
& =-\frac{p^{1 / 2}}{F_{1}} g_{2} \zeta+0(p) \text { as } p \rightarrow 0 \tag{4.99}\\
& \exp \left(-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}+g_{2}\right) \zeta\right)+\exp \left(-\frac{\dot{p}^{1 / 2}}{2{F_{1}}_{1}}\left(g_{1}-g_{2}\right) \zeta\right)-2 \exp \left(-p^{1 / 2} \zeta\right) \\
& =2 p^{1 Y_{2}} \zeta\left(1-\frac{g_{1}}{2 f_{1}}\right)+0(p) \text { as } p \rightarrow 0 \tag{4.100}
\end{align*}
$$

Combining (4.98), (4.99) and (4.100), the contribution to the integral (4.92) along the small circle around the origin goes to zero as the radius tends to zero. Also, from (4.93) we see that the contribution from the small circle around
$\because p=-\varepsilon_{2}$ goes to zero as the radius tends to zero because the integrand is bounded around $p=-\varepsilon_{2}$. These considerations, with the aid of (4.89). (4.93) and Cauchy's integral theorem, lead to

$$
\begin{align*}
& \lim \left(\frac{1}{2 \pi i} \int \bar{w}^{-(2)}(\zeta, p) \exp (p \tau) d p\right) \\
& \equiv W^{(2)}(\zeta, \tau)+\frac{1}{2 \pi i} \lim \left(\int_{O N}+\int_{N M}+\int_{M L}+\int_{K J}+\int_{H G_{1}}+\int_{G_{1} G_{2}}+\int_{F_{2} F_{1}}\right. \\
& +\int_{F_{I} E}+\int_{D C}+\int_{B A}+\int_{N^{\prime} O^{*}}+\int_{M^{\prime} N^{0}}+\int_{L^{\prime} M^{\prime}}+\int_{J^{\prime} K^{\prime}} \\
& \left.+\int_{G_{1}^{\prime} H^{0}}+\int_{G_{2}^{\prime} G_{1}^{\prime}}+\int_{F_{1}^{\prime} F_{2}^{\prime}}+\int_{E^{\prime} F_{1}^{\prime}}+\int_{C^{\prime} D^{\prime}}+\int_{A^{\prime} B^{\prime}}\right) \\
& =\left(\frac{A_{3}(a)}{\left(r-s^{2}\right) a g_{1}(a) g_{2}(a)}-\frac{A_{1}(a)}{2 a\left(r-s^{2}\right)}\right) \exp \left(-\frac{a^{1 / 2}}{2 f_{1}(a)}\left(g_{1}(a)+g_{2}(a)\right) \zeta+a r\right) \\
& -\left(\frac{A_{3}(a)}{\left(x-s^{2}\right) a g_{1}(a) g_{2}(a)}+\frac{A_{1}(a)}{2 a\left(r-s^{2}\right)}\right) \exp \left(-\frac{a^{1 / 2}}{2 f_{1}(a)}\left(g_{1}(a)-g_{2}(a)\right) \zeta+a \tau\right) \\
& +\frac{A_{1}(a)}{a\left(r-s^{2}\right)} \exp \left(-a^{1 / 2} \zeta+a \tau\right) \tag{4.101}
\end{align*}
$$

in which the integrand of the integrals in the brackets is $\bar{w}^{(2)}(\zeta, p) \exp (p \tau)$ and "lim" refer to the limit process such that the large radius tends to infinity and the small radii tend to zero. The values of $p^{1 / 2}, f_{1}(p), g_{1}(p), g_{2}(p)$. which are needed to evaluate the integrals in the parenthesis are to be determined consistently with the construction of the Riemann sheet described in (4.70), (4.71), (4.72), (4.79) and (4.80).

D-1. Evaluation $o f g_{i}(p)$ along the contour

For this purpose it is expedient to introduce new Iunctions

$$
z_{i}(p)=g_{i}^{2}(p) \quad i=1.2
$$

$$
\begin{equation*}
G\left(z_{i}\right)=z_{i}^{1 / 2} \quad i=1,2 \tag{4.103}
\end{equation*}
$$

where we define a cut for $G\left(z_{i}\right)$ to be the negative real axis on the z_{i}-plane such that

$$
\begin{equation*}
G(l)=\sqrt{l} \quad \text { for } \quad l>0 \tag{4.103a}
\end{equation*}
$$

and

$$
G(-l)=i \sqrt{l} \quad \text { for } \quad l=0 .
$$

Then we shall choose proper signs along the contour in Fig. 1 in the expression

$$
g_{i}(p)= \pm G\left(z_{i}\right)
$$

so that $g_{i}(p)$ for $i=1,2$ are consistent with the Riemann sheet described in (4.70) to (4.72), (4.79) and (4.80). Due to (1.79) and (4.80) we may utilize the Schwartz reflection principle, and in this case we have

$$
\begin{equation*}
g_{i}\left(p^{*}\right)=g_{i} *(p) \tag{4.104}
\end{equation*}
$$

and since the contour in Fig. I is symmetric with respect to the real line, we determine the value of $g_{i}(p)$ along the contour which lies in the upper half-plane only and utilize (4.104) for the lower half-plane. Considering the mapping of the contour in the half-plane of Fig. 1 into the $T_{i}-g l a n e$, and then into the G-plane under the restriction vf (4.37), we find that

$$
\begin{align*}
& g_{1}(p)=G\left(Z_{1}(p)\right) \text { along } H G_{1} G_{2}: F_{2} F_{1} E, D C, B A, J K, L M(4.105) \\
& g_{1}(p)=-G\left(Z_{1}(p)\right) \text { along } N O \tag{4.106}\\
& g_{2}(p)=G\left(Z_{2}(p)\right) \text { along } H G_{1} G_{2}, B A, J K, L M \tag{4.107}
\end{align*}
$$

We are now ready to evaluate the integrals in the parenthesis of (4.101).

D-2. Integration along $O N-N^{\prime} O^{\prime}$ fox $\tau \geq \zeta$ and $\tau<\zeta^{*}$ Along $O N, p=\cdots \ell$ with $\epsilon_{1}<\ell<\infty$, and by (4.106) we find that

$$
\begin{equation*}
g_{1}=-\sqrt{\frac{x+\sqrt{x^{2}+Y^{2}}}{2}}+i \sqrt{\frac{-x+\sqrt{x^{2}+Y^{2}}}{2}} \tag{4.109}
\end{equation*}
$$

where

$$
\begin{aligned}
& x=s^{2} \ell^{2}-\left(r+t s^{3}-\delta_{2}\right) \ell+t+2 t \delta_{1}-t \delta_{2} \\
& y=2 x^{1 / 2} s \ell^{1 / 2}\left(\ell-\epsilon_{2}\right)^{2 / 2}\left(\ell-\epsilon_{1}\right)^{1 / 2}
\end{aligned}
$$

The contribution to the integral of (4.92) along the contour $O N-N^{\prime} O^{\prime}$ is then

$$
\begin{aligned}
& \frac{1}{\pi} \int_{\epsilon_{1}}^{\infty}\left(\frac{-A_{1}(-\ell)}{\left(r-s^{2}\right) \ell(\ell+a)} \sin (\sqrt{\ell \zeta})+\left(\frac{A_{3}(-\ell)}{\left(x-s^{2}\right) \ell(\ell+a)\left|g_{1}\right|^{2}}\right.\right. \\
& \left.\left.-\frac{A_{1}(-\ell)}{2\left(x-s^{2}\right) \ell(\ell+a)}\right) \sin \left(\frac{\sqrt{\ell}}{s \sqrt{\ell-\epsilon_{1}}}\left(\operatorname{Im} g_{1}\right) \zeta\right)\right) \exp (-\ell \tau) d \ell \quad(4.110) \\
& \text { for } \tau \geq \zeta \text { and } r<\zeta
\end{aligned}
$$

D-3. Integration along the $A x C N M-M^{4} N^{\prime}$ for $\tau \geq \zeta$ and $\tau<\zeta^{*}$

We next consider the contribution to the integral of (4.92) along the arcs $N M-M^{\prime} N^{\prime}$. Near $p=-\epsilon_{1}$, we have that $p^{1 / 2}\left(g_{1}-g_{2}\right)$ and

[^3]$\frac{A_{3}(p)}{\left(x-s^{2}\right) p(p-a) g_{1} g_{2}}+\frac{A_{1}(p)}{2\left(x-s^{2}\right) p(p-a)}$ are analytic due to the
fact that along $M L, p=-\ell$ and
$g_{1}=i^{-s^{2} 2^{2}+\left(x+t s^{2}-\delta_{2}\right)} \mathrm{L}-\left(t+2 t \delta_{3}-t \delta_{2}\right)+2 \varepsilon \sqrt{x} \sqrt{2} \sqrt{2-\varepsilon_{2}} \sqrt{\epsilon_{2}-2}, \quad(4.111)$
$g_{2}=g_{1}^{*}$
and along ON,
$g_{2}=$ gíl$^{\text {i }}$ where g_{8} is given by (4.109).
Relations (4.52), (4.53) (4.54), (4.66) and (4.67) lead to
$$
g_{1}^{2}-g_{2}^{2}=4 r^{1 / 2} f_{1} p^{1 / 2}\left(p+\varepsilon_{2}\right)^{1 / 2}
$$
or
\[

$$
\begin{equation*}
\frac{g_{1}+g_{2}}{2 f_{1}}=\frac{2 r^{1 / 2} p^{1 / 2}\left(p+\epsilon_{2}\right)^{1 / 2}}{g_{2}-g_{2}} \tag{4.112}
\end{equation*}
$$

\]

and this last relation shows that the contribution to the integral (4.92) from the summand of the integrand, i.e..

$$
\begin{aligned}
& \left(\frac{A_{3}(p)}{\left(r-s^{2}\right) p(p-a) g_{1} g_{2}}-\frac{A_{1}(p)}{2\left(r-s^{2}\right) p(p-a)}\right) \exp \left(-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}+g_{2}\right) \zeta+p \tau\right) \\
& \quad+\frac{A_{1}(p)}{\left(r-s^{2}\right) p(p-a)} \exp \left(-p^{1 / 2} \zeta+p \tau\right)
\end{aligned}
$$

vanishes as the xadius of the arc $N M-M$ 'N' approaches to zero. But the contribution to the integral (4.92) from the summand of the integrand, i.e..

$$
\left\langle\frac{A_{3}(p)}{\left(r-s^{2}\right) p(p-a) g_{1} g_{2}} \cdots \frac{A_{1}(p)}{2\left(x-s^{2}\right) p(p-a)}\right) \exp \left(-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}-g_{2}\right) \zeta+p r\right)
$$

is not readily established because $f_{1}(p)$ has a branch point at $p=\operatorname{Hex}_{2}$. we considex the mapping:

$$
\begin{equation*}
u=\left(p+\epsilon_{1}\right)^{x / 2} \tag{4.113}
\end{equation*}
$$

which maps the contour in Fig. 2 onto the semi-circle $c^{\prime \prime}$ in rig. 3 with the direction clockwise in both cases. We define

$$
\begin{equation*}
I_{R}=\frac{1}{2 \pi i} \int_{c^{2}} I(u) \exp \left(-\frac{v(u)}{2 u}+\left(u^{2}-\epsilon_{1}\right) \tau\right) d u \tag{4.114}
\end{equation*}
$$

where

$$
\begin{align*}
I(u)= & \frac{2 u A_{3}\left(u^{2}-\epsilon_{1}\right)}{\left(x-s^{2}\right)\left(u^{2}-\epsilon_{1}\right)\left(u^{2}-\epsilon_{1}-a\right) g_{1}\left(u^{2}-\epsilon_{1}\right) g_{2}\left(u^{2}-\epsilon_{1}\right)} \\
& =\frac{u A_{1}\left(u^{2}-\epsilon_{1}\right)}{\left(x-s^{2}\right)\left(u^{2}-\epsilon_{1}\right)\left(u^{2}-\epsilon_{1}-a\right)} \tag{4.115}\\
v(u)= & \left(u^{2}-\epsilon_{1}\right)^{1 / 2}\left(g_{1}\left(u^{2}-\epsilon_{1}\right)-g_{2}\left(u^{2}-\epsilon_{1}\right)\right) \tag{4.116}
\end{align*}
$$

Now we consider the branch of $\left(p+\epsilon_{1}\right)^{1 / 2}$ such that

$$
\begin{equation*}
\left(p+\epsilon_{1}\right)^{1 / 2}=-\sqrt{\ell+\epsilon_{1}} \text { for } p=\ell>-\epsilon_{1} \text {, } \tag{4.117}
\end{equation*}
$$

with the cut from $-\epsilon_{1}$ to $-\infty$ along the negative real axis. We consider the mapping

$$
\begin{equation*}
u=\left(p+\varepsilon_{1}\right)^{1 / 2} \tag{4.118}
\end{equation*}
$$

If we were to go over the circular arc twice in Fig. 2 , then we see that the mapping (4.118) will map the circular ate into the semi-circle $C^{\prime \prime}$ shown in Fig. 3. As we did in (4.114). we define

$$
\begin{equation*}
I_{L}=\frac{1}{2 \pi^{i}} \int_{C^{n}} I(u) \exp \left(-\frac{v(u)}{2 u}+\left(u^{2}-\epsilon_{1}\right) \tau\right) d u \tag{4.119}
\end{equation*}
$$

If we add (4.114) and (4.119), then by the residue theorem

$$
\begin{equation*}
I_{R}+I_{L}=\operatorname{Residue}\left(I(u) \exp \left(-\frac{v(u)}{2 u}+\left(u^{2}-\epsilon_{I}\right) \tau\right)\right) \tag{4.120}
\end{equation*}
$$

where $u=0$ is the only singularity enclosed by the contours
$c^{\prime}-C^{\prime \prime}$. Consider Now I_{L} as given in (4.119) where the branch defined by (4.116) is used. Due to (4.118). (4.119), we see that the integration I_{L} of (4.119) vanishes as the radius of the arc $N M^{1} \mathrm{~N}^{1}$ approaches zero.
p-plane
u-plane

Fig. 2

Fig. 3

D-4. Integration along $K J \mathcal{T}^{\prime} K^{\prime}$ for $T \geq \zeta$
Along KJ. $p=-\ell$ with $0<\ell<\epsilon_{2}$, and by (4.105) we find that

$$
\begin{equation*}
g_{2}=\sqrt{\frac{x+\sqrt{x^{2}+Y^{2}}}{2}}+i \sqrt{\frac{-x+\sqrt{x^{2}+y^{2}}}{2}} \tag{4.121}
\end{equation*}
$$

where

$$
\begin{aligned}
& x=s^{2} \ell^{2}-\left(x+t B^{2}-\delta_{2}\right) \ell+t+2 t \delta_{1}-t \delta_{2} \\
& x=2 x^{2 / 2} s \ell^{1 / 2}\left(\epsilon_{2}-l\right)^{2 / 2}\left(\epsilon_{2}-\ell\right)^{x / 2} .
\end{aligned}
$$

For $r \geq \zeta$, the contribution to the integral of (4.92) along the contour $K J-J$ ' K ' is found to. be

$$
\begin{align*}
& \frac{1}{\nabla} \int_{0}^{\beta}\left(\sin \left(\frac{\sqrt{\ell}}{s \sqrt{\epsilon_{2}-\ell}}\left(\operatorname{Re} g_{1}\right) \zeta\right)\left(\frac{A_{1}(-\ell)}{2\left(x-s^{2}\right) \ell(\ell+a)}-\frac{A_{3}(-\ell)}{\left(x-s^{2}\right) \ell(\ell+a)\left|g_{2}\right|^{2}}\right)\right. \\
& \left.\quad-\sin (\sqrt{\ell} \zeta) \frac{A_{1}(-\ell)}{\left(x-s^{2}\right) \ell(\ell+a)}\right) \exp (-\ell 5) d \ell \tag{4.122}
\end{align*}
$$

where $A_{2}(p), A_{3}(p)$ and " a " are given by (4.58), (4.94) and (4.89) .

D-5. Integration along $M L-L^{\prime} M^{\prime}$ for $\tau \geq \zeta$ and $\tau \leqslant \zeta^{*}$

Along ML, $p=-\ell$ with $\epsilon_{2}<\ell<\epsilon_{1}$, and with the aid of (4.105) and (4.107) we find that the contribution to the integral of (4.92) along the countour ML-L'M' is

$$
\begin{equation*}
\frac{1}{\pi} \int_{\epsilon_{2}}^{\epsilon_{2}} \frac{A_{1}(-\ell)}{\left(s^{2}-r\right) \ell(\ell+a)} \sin (\sqrt{\ell} \zeta) d \ell \tag{4.123}
\end{equation*}
$$

for $\tau \geq \zeta$ and $\tau<\zeta$.

D-6. Integration along $D C-B A-A^{\prime} B^{\prime}-C^{\prime} D^{\prime}$ and $H G_{1}-G_{2} G_{2}-$ $F_{2} F_{1}-F_{1} E-E^{\prime} F_{1}-F_{1}^{\prime} F_{2}^{\prime}-G_{2}^{\prime} G_{i}^{\prime}-G_{2}^{\prime} H_{i}^{\prime}$ for $\tau \geq!$

For $\tau \geq$, the utilization of (4.104), (4.105) and (4.108) lead that the contribution to the integral (4.92). along the contour $D C-B A-A^{\prime} B^{\prime}-C^{\prime} D^{\prime}$ and $H G_{1}-G_{1} G_{2}-F_{2} F_{1}-F_{1} E-$ $E^{\prime} F_{i}^{\prime}-F_{1}^{1} F_{2}^{\prime}-G_{2}^{\prime} G_{i}^{\prime}-G_{2}^{\prime} H_{1}^{\prime}$ vanishes.

* For $\tau<\zeta$, see this section $D-7$.

D-7. Modifications on Integrations for $r<\zeta$

When x Ko the contribution to the integral of (4.92.) from the summand of the integrand,

$$
\left(\frac{A_{3}(p)}{\left(x-s^{2} g_{p}(p-a) g_{1} g_{2}\right.}-\frac{A_{1}(p)}{2\left(x-s^{2}\right) p(p-a)}\right) \exp \left(-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}+g_{2}\right) \zeta+p \tau\right)
$$

along the Bromwich contour vanishes because we let the contour for this summand be closed by the xight arc of the eixcle which is shown as a dotted curve in Fig. 1. Then the contribution from this circular arc to the integral of (4.125) approaches to zero as the radius gets large. Hence for $T<\zeta$, some modifications should be made on (4.122) and (4.124), but the results in (4.110). (4.120). (4.123) are not affected.

D-8. Integration along $D C-B A-A^{\prime} B^{\prime}-C^{\prime} D^{\circ}$ and $H G_{1}-G_{2} G_{2}-$ $F_{2} F_{1}-F_{2} E-E^{\prime} E_{1}^{i}-F_{1}^{\prime} F_{2}^{\prime}-G_{2}^{\prime} G_{i}^{\prime}-G_{1}^{i} H_{1}^{\prime}$ for $\tau \leqslant \zeta$

Along DC, $p=\operatorname{Re} p_{1}+i \ell$ with $0 \leq \& \leq \operatorname{Im} p_{1}$
and we let

$$
\begin{align*}
& p^{1 / 2}=a_{1}+i a_{2} \\
& \left(p+\epsilon_{2}\right)^{1 / 2}=b_{2}+i b_{2} \tag{4.126}\\
& \left(p+\epsilon_{1}\right)^{2 / 2}=c_{2}+i c_{2}
\end{align*}
$$

Nith the aid of (4.52), (4.53). (4.102) and (4.103), we have

$$
\begin{equation*}
z_{1}=X_{1}+i Y_{1} \tag{4.127}
\end{equation*}
$$

where

$$
\begin{aligned}
X_{1}= & \left.s^{2}\left(R^{2} p_{1}-l^{2}\right)+r+t s^{2}-\delta_{2}\right) R e p_{1}+t+2 t \delta_{1}-t \delta_{2} \\
& +2 r^{1 / 2} s\left(c_{1}\left(a_{1} b_{1}-a_{2} b_{2}\right)-c_{2}\left(a_{1} b_{2}+a_{2} b_{1}\right)\right) \\
Y_{1}= & 2 \ell s^{2} R e p_{1}+l\left(r+t s^{2}-\delta_{2}\right)+2 r^{1 / 2} s\left(c_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right. \\
& \left.+c_{2}\left(a_{1} b_{2}-a_{2} b_{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{equation*}
z_{2}=X_{2}+i Y_{2} \tag{4.128}
\end{equation*}
$$

where

$$
\begin{aligned}
X_{2}= & s^{2}\left(R e^{2} p_{1}-l^{2}\right)+\left(r+t s^{2}-\delta_{2}\right) R e p_{1}+t+2 t \delta_{1}-t \delta_{2} \\
& -2 r^{1 / 2} s\left(c_{1}\left(a_{1} b_{1}-a_{2} b_{2}\right)-c_{2}\left(a_{1} b_{2} a_{2} b_{1}\right)\right) \\
Y_{2}= & 2 \ell s^{2} R e p_{1}+\ell\left(r+t s^{2}-\delta_{2}\right)-2 x^{1 / 2} s\left(c_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right. \\
& \left.+c_{2}\left(a_{1} b_{1}-a_{2} b_{2}\right)\right) .
\end{aligned}
$$

From (4.105) and (4.108), we have that

$$
\begin{aligned}
& g_{1}=G\left(z_{1}\right) \\
& z_{z}-\left(z_{2}\right)
\end{aligned}
$$

and the contribution to the integral of (4.92) along DC-BA $-A \cdot B^{\prime}-C^{\prime} D^{\prime}$ when $\tau<\zeta$, is

$$
\begin{align*}
\frac{1}{\pi} \int_{0}^{\operatorname{Im}} p_{1} & \exp \left(-\frac{p^{1 / 2}}{2 f_{1}} g_{1} \zeta+p \tau\right) \\
\left(s^{2}-r\right) p(p-a) & \left(A_{1}(p) \sinh \left(\frac{p^{1 / 2}}{2 f_{1}} g_{2} \zeta\right)\right. \tag{4.129}\\
& \left.\left.-\frac{2 A_{3}(p)}{g_{1} g_{2}} \cosh \left(\frac{p^{1 / 2}}{2 f_{1}} g_{2} \zeta\right)\right]\right] d l .
\end{align*}
$$

Along $F_{2} F_{1}, p=\operatorname{Re} p_{2}+i \ell$ with Im $p_{2} \leq \ell \leq 2^{1 / 2} R e p_{2}$, and by (4.105) end (4.108)

$$
g_{1}=G\left(z_{1}\right)
$$

$$
g_{a}=-G\left(z_{2}\right)
$$

where z_{1}, z_{3} are given by (4.127) and 4.128), and the cone tribution to the integral of (4.92) along $G_{2} G_{2}-F_{2} F_{2}-F_{2}^{\prime} F_{2}^{\prime}-G_{2}^{\prime} G_{2}^{\prime}$ for $\tau<\zeta$ is

Along $G_{1} H, p=2^{1 / 2} Z_{\operatorname{Re}} p_{2} \exp (i \theta)$ with $0 \leq \theta \leq 3 \pi / 4$, and by (4.105) and (4.107)

$$
\begin{aligned}
& g_{1}-G\left(z_{1}\right) \\
& g_{2}=G\left(z_{2}\right)
\end{aligned}
$$

where Z_{1}, z_{3} are given by (4.127) and 4.128), and the contribution to the integral of (4.92) along $H_{1}-F_{1} E-E^{\prime} F_{i}$ -G it' for $t<\zeta$ is

$$
\frac{2^{1 / 2}\left(\operatorname{Re} p_{2}\right)}{\pi} \int_{3 \pi / 4}^{0}\left(\operatorname { s i n } \theta \left[\operatorname { I m } \left(\frac { \operatorname { e x p } (- \frac { p ^ { 1 / 2 } } { 2 f _ { 1 } } g _ { 1 } \zeta + p \tau) } { (r - s ^ { 2 }) p (p - a) } \left[-A_{1}(p) \sinh \left(\frac{p^{1 / 2}}{2 f_{1}} g_{2} \zeta\right)\right.\right.\right.\right.
$$

$$
\left.\left.-\frac{2 A_{3}(p)}{g_{1} g_{2}} \cosh \left(\frac{p^{1 / 2}}{2 F_{1}} g_{2} \zeta\right)\right]\right\} 1
$$

$$
+\cos \theta\left[\operatorname { R e } \left(\frac { \operatorname { e x p } (- \frac { p ^ { 1 / 2 } } { 2 E _ { 1 } } g _ { 1 } \zeta + p \tau) } { (x - s ^ { 2 }) p (p - a) } \left(A_{1}(p) \sinh \left\langle\frac{p^{1 / 2}}{2 f_{1}} g_{2} \zeta\right)\right.\right.\right.
$$

$$
\begin{equation*}
\left.\left.+\frac{2 A_{3}(p)}{g_{1} g_{2}} \cosh \left(\frac{p^{2 / 2}}{2 f_{1}} g_{2} \zeta\right)\right] 1\right) d \theta \tag{4.131}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1}{\pi} \int_{I m}^{\sqrt{2}} p_{2} p_{2} \operatorname{Re}\left[\frac { \operatorname { e x p } (- \frac { p ^ { 1 / 2 } } { 2 f _ { 1 } } g _ { 1 } \zeta + p _ { \tau }) } { (s ^ { 2 } - r) p (p - a) } \left(A_{1}(\dot{p}) \sinh \left(\frac{p^{1 / 2}}{2 E_{1}} g_{2} \zeta\right)\right.\right. \\
& \left.-\frac{2 A_{3}(p)}{g_{1} g_{2}} \cosh \left(\frac{p^{1 / 2}}{2 f_{1}} g_{2} \zeta\right) j\right\} d \ell . \tag{4.130}
\end{align*}
$$

D-9. Integration along $K J-J ' K '$ for $\tau<\zeta$

The contribution to the integral. of (4.92) along kJ. J'K' for $\tau \times \zeta$ is casily deduced from (4.122) as

$$
\begin{equation*}
\frac{1}{\pi} \int_{\epsilon_{3}}^{0} \exp (-\ell \tau) \sin (\sqrt{\ell} \zeta) \frac{A_{I}(-\ell)}{\left(x-s^{2}\right) \ell(\ell+a)} d \ell . \tag{4.132}
\end{equation*}
$$

D-10. $w^{(2)}(\zeta, \tau)$ Obtained by Inversion of $\bar{w}^{(2)}(\zeta, p)$
We consider two cases, i.e., $\tau \geq \zeta$ and $\tau<\zeta$. For $\tau \geq \zeta_{0}^{\circ}$ we have that from (4.101)

$$
\begin{gathered}
{ }_{w}^{(a)}(\zeta, \tau)=\frac{1}{a\left(x-s^{2}\right)}\left[(\frac { A _ { 3 } (a) } { g _ { 1 } (a) g _ { 2 } (a) } - \frac { A _ { 1 } (a) } { 2 }) \operatorname { e x p } \left(-\frac{a^{1 / 2}}{2 f_{1}(a)}\left(g_{1}(a)\right.\right.\right. \\
\left.\left.\quad+g_{2}(a)\right) \zeta+a \tau\right)-\left(\frac{A_{3}(a)}{g_{1}(a) g_{2}(a)}+\frac{A_{1}(a)}{2}\right) \exp \left(-\frac{a^{1 / 2}}{2 f_{1}(a)}\left(g_{1}(a)\right.\right. \\
\left.\left.\left.\quad-g_{2}(a)\right) \zeta+a \tau\right)+A_{1}(a) \exp \left(-a^{1 / 2} \zeta+a \tau\right)\right]-I_{1}(\zeta, \tau)(4,133) \\
\text { where } I_{1}(\zeta, \tau)=\frac{1}{2 \pi i} \lim \left(\int_{O N}+\int_{N M}+\int_{M L}+\int_{K J}\right. \\
\left.\quad+\int_{N^{\circ} O^{1}}+\int_{M^{\prime} N^{\prime}}+\int_{L^{\prime} M^{0}}+\int_{J^{0} K^{\prime}}\right)
\end{gathered}
$$

whose integrals are evaluated in (4.110). (4.120). (4.122) and (4.123). For $\tau<\zeta$, we have that from (4.101) and the vanishing of the integration of (4.125)

$$
\begin{align*}
& w^{(a)}(\zeta, \tau)=\frac{1}{a\left(r-s^{2}\right)}\left(A_{1}(a) \exp \left(-a^{1 / 2} \zeta+a \tau\right)-\left(\frac{A_{3}(a)}{g_{1}(a) g_{2}(a)}\right.\right. \\
& \left.\left.+\frac{A_{1}(a)}{2}\right) \exp \left(-\frac{a^{1 / 2}}{2 f_{1}(a)}\left(g_{1}(a)-g_{2}(a)\right) \zeta+a \tau\right)\right)-I_{2}(\zeta, \tau) \tag{4.134}
\end{align*}
$$

where

$$
\begin{aligned}
I_{2}(\zeta, \tau) & =\frac{1}{2 \pi i} \lim \left(\int_{O N}+\int_{N M}+\int_{M K}+\int_{K J}+\int_{H G_{1}}+\int_{G_{1} G_{2}}+f_{E_{2} F_{1}}\right. \\
& +\int_{F_{1} E^{\prime}}+\int_{D C}+\int_{B A}+\int_{N^{\prime} O^{\prime}}+\int_{M^{\prime} N^{\prime}}+\int_{L^{\prime} M^{\prime}}+\int_{J^{\prime} K^{\prime}}+f_{G_{1}^{\prime} Z^{\prime}} \\
& \left.+\int_{G_{2}^{\prime} G_{i}^{\prime}}+\int_{F_{1}^{\prime} F_{2}^{\prime}}+\int_{E^{\prime} E_{1}^{\prime}}+f_{C^{\prime} D^{\prime}}+\int_{A^{\prime} B^{\prime}}\right)
\end{aligned}
$$

hose integrals axe evaluated in (4.110), (4.120), (4.123), 4.129), (4.132), (4.130) and (4.132).
E. Inversion of $\bar{w}(\zeta, p)$ in Real Integral form

Combining (4.133), (4.134), (4.85) and (4.86) leads :O the complete description of the displacement field of the solid component $\hat{W}(\zeta, \tau)$

$$
\begin{equation*}
\hat{w}(\zeta, \tau)=\frac{2}{\sqrt{\pi}} \int_{0}^{\tau} \int_{0}^{i \cdot} \exp \left(-b\left(u-z^{2}\right)\right) d z{ }_{0}^{(2)}(\zeta, \tau-u) d u . \tag{4.135}
\end{equation*}
$$

From (4.133). (4.134) and (4.135) we see that $\hat{w}(\zeta, \tau)$ satisfies the boundary and regularity conditions specified by (4.33) and (4.34).

Since the material constants have to be determined by experiment for the mixture and such an experiment has not yet been devised, we shall not attempt any further investigation about the behavior of the displacement field of the solid component at this point, even though we have the exact solution given by (4.135) which may be evaluated numerically by computers.
4.5. Early Time Solutions

The numerical evaluation of (4.135) does not seem to be an easy task. One way to avoid this difficulty is to represent $\bar{W}(\zeta, p)$ in a power series with respect to $\frac{1}{\bar{p}}$ for sufficiently large p, and then invert the resulting expresssion term by term. This procedure leads to an early time solution for $\hat{w}(\zeta, \tau)$.
As $p \rightarrow \infty$, we have that

$$
\begin{align*}
& 2 r^{1 / 2} s_{p}{ }^{1 / 2}\left(p+\epsilon_{2}\right)^{1 / 2} \\
& =2 p p^{2} / a^{1 / 2}{ }^{1 / 3}\left[3+\frac{M_{1}}{p}+\frac{M_{2}}{p^{3}}+\frac{M_{3}}{p^{3}}+\frac{M_{4}}{p^{4}}+\frac{M_{5}}{p^{5}}+0\left(\frac{1}{p^{6}}\right)\right] \tag{4.136}
\end{align*}
$$

where

$$
\begin{aligned}
& M_{1}=\frac{s^{2}(t+t r)-r\left(\delta_{1}^{2}+\delta_{2}\right)}{2 r s^{2}} \\
& M_{2}=\frac{-\left(r^{2}\left(\delta_{1}^{2}+\delta_{2}\right)^{2}+2 r s^{2}(t+t r)\left(\delta_{1}^{2}+\delta_{2}\right)+s^{4}(t+t r)^{2}\right)}{8 r^{2} s^{4}} \\
& M_{3}=\frac{1}{16}\left(-\frac{\left(\delta_{1}^{2}+\delta_{2}\right)^{3}}{s^{6}}+\frac{\left(\delta_{1}^{2}+\delta_{3}\right)(t+t r)^{2}}{r^{2} s^{2}}\right. \\
& \left.=\frac{\left(\delta_{2}^{2}+\delta_{2}\right)^{2}(t+t r)}{r s^{3}}+\frac{(t+t r)^{3}}{z^{3}}\right) \\
& M_{4}=\frac{-1}{12 \delta}\left(\frac{5(t+t x)^{4}}{x^{4}}+\frac{20(t+t r)^{3}\left(\delta_{1}^{3}+\delta_{2}\right)}{x^{3} s^{2}}-\frac{2(t+t r)^{2}\left(\delta_{1}^{2}+\delta_{2}\right)^{2}}{r^{2} s^{4}}\right. \\
& \frac{\dot{5}(t+t r)\left(\delta_{1}^{2}+\delta_{2}\right)^{3}}{r s^{8}}+\frac{5\left(\delta_{1}^{2}+\delta_{2}\right)^{4}}{s^{8}}
\end{aligned}
$$

$$
\begin{aligned}
M_{5}= & \frac{1}{256}\left(\frac{7(t+t r)^{5}}{r^{5}}+\frac{5(t+t r)^{4}\left(\delta_{1}^{2}+\delta_{2}\right)}{r^{4} s^{2}}-\frac{2(t+t r)^{3}\left(\delta_{1}^{2}+\delta_{1}\right)^{2}}{r^{3} s^{4}}\right. \\
& \left.+\frac{2(t+t r)^{2}\left(\delta_{1}^{2}+\delta_{2}\right)^{3}}{r^{2} s^{6}}-\frac{5(t+t r)\left(\delta_{1}^{2}+\delta_{2}\right)^{4}}{r s^{8}}-\frac{7\left(\delta_{1}^{2}+\delta_{2}\right)^{5}}{s^{10}}\right)
\end{aligned}
$$

With the aid of (4.68). (4.69). (4.79). (4.80) and (4.136). we have that as $p \rightarrow \infty$

$$
\begin{aligned}
& g_{1}(p)=p s\left[1+\frac{N_{1}}{p^{2 / 2}}+\frac{N_{2}}{p}+\frac{N_{3}}{p p^{2 / 2}}+\frac{N_{4}}{p^{2}}+\frac{N_{5}}{p^{2} p^{1 / 2}}+\frac{N_{6}}{p^{4}}+\frac{N_{7}}{p^{4} p^{2 / 2}}\right. \\
& \left.+\frac{N_{8}}{p^{4}}+\frac{N_{9}}{p^{4} p^{1 / 2}}+\frac{N_{10}}{p^{5}}+\frac{N_{11}}{p^{6} p^{1 / 2}}+o\left(\frac{1}{p^{6}}\right)\right] \quad \text { (4.137a) } \\
& g_{3}(p)=p s i 1-\frac{N_{1}}{p^{1 / 2}}+\frac{N_{2}}{p}-\frac{N_{3}}{p p^{1 / 2}}+\frac{N_{4}}{p^{2}}-\frac{N_{5}}{p^{2} p^{1 / 2}}+\frac{N_{6}}{p^{3}}-\frac{N_{1}}{p^{3} p^{2 / 2}} \\
& +\frac{N_{8}}{p^{4}}-\frac{N_{9}}{p^{4} z^{1 / 2}}+\frac{N_{10}}{p^{3}}=\frac{N_{11}}{p^{5} p^{1 / 2}}+O\left(\frac{1}{p^{6}}\right) 1 \quad(4.137 b)
\end{aligned}
$$

where

$$
\begin{aligned}
& N_{1}=\frac{r^{1 / 2}}{s} \\
& N_{2}=\frac{\left(t s^{2}-\delta_{2}\right)}{2 s^{2}} \\
& N_{3}=\frac{M_{1} r\left(t s^{2}-\delta_{2}\right)}{2 s^{3}} \\
& N_{4}=\frac{t\left(1+2 \delta_{1}-\delta_{2}\right)}{2 s^{2}}-N_{1} N_{3}-\frac{N_{2}^{2}}{2} \\
& N_{3}=\frac{r^{1 / 2} M_{2}}{s}-N_{1} N_{4}-N_{2} N_{3}
\end{aligned}
$$

$$
\begin{aligned}
& N_{6}=-N_{1} N_{5}-N_{2} N_{4}-\frac{N_{3}^{2}}{2} \\
& N_{7}=\frac{r^{1 / 2} M_{3}}{s}-N_{1} N_{6}-N_{2} N_{5}-N_{3} N_{4} \\
& N_{8}=-N_{1} N_{7}-N_{2} N_{6}-N_{3} N_{5}-\frac{N_{4}^{2}}{2} \\
& N_{9}=\frac{r^{1 / 2} M_{4}}{s}-N_{1} N_{8}-N_{2} N_{7}-N_{3} N_{6}-N_{4} N_{5} \\
& N_{10}=-N_{1} N_{9}-N_{2} N_{8}-N_{3} N_{7}-N_{4} N_{6}-\frac{N_{5}^{2}}{2} \\
& N_{11}=\frac{r^{2 / 2} M_{5}}{s}-N_{1} N_{10}-N_{2} N_{9}-N_{3} N_{8}-N_{4} N_{7}-N_{6} N_{6}-
\end{aligned}
$$

As $p \rightarrow \infty$, we have that $\frac{1}{\mathcal{F}_{1}(p)}$ is, due to (4.54), (4.66).

$$
\frac{1}{f_{1}(p)}=\frac{1}{p^{1 / 2_{3}}}\left(1: \cdots \frac{1}{2} \frac{\epsilon_{1}}{p}+\frac{3}{8} \frac{\epsilon_{1}^{2}}{p^{2}}-\frac{3 \cdot 5}{3: 2^{3}} \frac{\epsilon_{1}^{3}}{p^{3}}\right.
$$

$$
\begin{equation*}
\left.+\frac{3 \cdot 5 \cdot 7}{4!2^{4}} \frac{\epsilon_{1}^{4}}{p^{4}}-\frac{3 \cdot 5 \cdot 7 \cdot 9}{5!2^{5}} \frac{\epsilon_{1}^{5}}{p^{5}}+o\left(\frac{1}{p^{6}}\right)\right) \tag{4.138}
\end{equation*}
$$

Equations (4.137) and (4.138) lead to, as $p \rightarrow \infty$.

$$
\begin{align*}
& \exp \left(-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}+g_{2}\right) \zeta\right)=\exp \left[-p \zeta-\left(N_{2}-\frac{\epsilon_{1}}{2}\right) \zeta\right]\left[1-\frac{\zeta}{p}\left(N_{4}-\frac{1}{2} \epsilon_{1} N_{2}+\frac{3}{8} \epsilon_{1}^{2}\right)\right. \\
& +\frac{\zeta}{p^{2}}\left[-N_{6}+\frac{N_{4} \epsilon_{1}}{2}-\frac{3 N_{2} \epsilon_{1}^{2}}{8}+\frac{3 \cdot 5}{3!2^{3}} \epsilon_{1}^{3}+\frac{1}{2}\left(N_{4}-\frac{\epsilon_{1} N_{2}}{2}+\frac{3}{8} \epsilon_{1}^{2}\right)^{2} \zeta\right] \\
& +\frac{\zeta}{p^{3}}\left[-N_{8}+\frac{N_{6} \epsilon_{1}}{2}-\frac{3 N_{4} \epsilon_{1}^{2}}{8}+\frac{3 \cdot 5}{3!2^{3}} N_{2} \epsilon_{1}^{3}-\frac{3 \cdot 5 \cdot 7}{4!2^{4}} \epsilon_{1}^{4}\right. \\
& +\left(N_{4}-\frac{c_{1} N_{2}}{2}+\frac{3}{5} \epsilon_{1}^{2}\right)\left(N_{6}-\frac{N_{4} \epsilon_{1}}{2}+\frac{3}{8} N_{2} \epsilon_{1}^{2}-\frac{3 \cdot 5}{3: 2^{3} \epsilon_{1}^{3}}\right) \zeta \\
& \left.\left.-\frac{\left(N_{4}-\epsilon_{1} N_{2}+\frac{3}{8} \epsilon_{1}^{2}\right)^{3}}{3!} \zeta^{2}\right]+O\left(\frac{1}{p^{4}}\right)\right] \tag{4.139}
\end{align*}
$$

$$
\begin{aligned}
& \exp \left(-\frac{p^{1 / 2}}{2 f_{1}}\left(g_{1}-g_{2}\right) \zeta\right)=\exp \left[-p^{1 / 2} N_{1} \zeta\right]\left[1-\frac{\left(N_{3}-\epsilon_{2} N_{1} / 2\right) \xi}{p^{1 / 2}}\right. \\
& +\frac{\left(N_{3}-\epsilon_{1} N_{1} / 2\right)^{2} \zeta^{2}}{2 P}-\frac{\left.\left(\frac{3}{3^{N}} N_{1} \epsilon_{1}^{2}-\frac{1}{2} N_{3} \epsilon_{1} N_{3}\right) \zeta+\left(N_{3}-\frac{1}{2} N_{1} \epsilon_{1}\right)^{3} \zeta^{3}\right]}{p p^{1 / 2}} \\
& \left.+\frac{\left(N_{3}-\frac{1}{2} N_{1} \varepsilon_{2}\right)\left(\frac{3}{8} N_{2} \varepsilon_{1}^{2}-\frac{1}{2} N_{3} \varepsilon_{2}+s_{B}\right) \zeta^{2}}{p^{2}}+o\left(\frac{1}{p^{2} p^{1 / 2}}\right)\right] \cdot(4.140)
\end{aligned}
$$

Let us consider $\frac{A_{1}(p)}{A_{2}(p)}$ given in (4.56), (4.57) and (4.58). As $p \rightarrow \infty$ we have

$$
\begin{align*}
& \frac{A_{1}(p)}{A_{2}(p)}=-\frac{d_{1}}{p^{2} p^{3} / 2}\left[1+\frac{1}{p}\left(R_{1}-R_{2}\right)+\frac{1}{p^{2}}\left(R_{2}^{2}-R_{3}-R_{1} R_{2}\right)\right. \\
& +\frac{1}{p^{3}}\left(2 R_{2} R_{3}-R_{2}^{3}+R_{1} R_{2}^{2}-R_{1} R_{3}\right)+\frac{1}{p^{4}}\left(R_{3}^{2}-3 R_{2}^{2} R_{3}+R_{2}^{4}+2 R_{1} R_{2} R_{3}-R_{2} R_{2}^{3}\right) \\
& \left.\quad+\frac{1}{p^{3}}\left(-3 R_{2} R_{3}^{2}+4 R_{2}^{3} R_{3}-R_{2}^{3}+R_{1} R_{3}^{2}-3 R_{2} R_{2}^{2} R_{3}+R_{2} R_{2}^{4}\right)+0\left(\frac{1}{p^{6}}\right)\right] \quad(4.14 \tag{4.141}
\end{align*}
$$

where

$$
\begin{aligned}
& R_{1}=\frac{\left(d_{2}\left(t+\delta_{1}\right) / d_{1}\right)-\delta_{2}-t}{s^{2}-r} \\
& R_{2}=s^{2}-r+\delta_{2}+t\left(1+r-s^{2}\right) \\
& R_{3}=-\delta_{1}^{2}-\delta_{2}-t\left(1-\delta_{2}+2 \delta_{1}\right) .
\end{aligned}
$$

From (4.73) we immediately have

$$
\begin{equation*}
g_{2}^{2}(p) g_{2}^{2}(p)=p^{4} s^{4}\left(1+\frac{c_{1}}{p}+\frac{c_{2}}{p^{2}}+\frac{c_{3}}{p^{3}}+\frac{c_{4}}{p^{4}}\right) \tag{4.142}
\end{equation*}
$$

where

$$
c_{1}=\frac{2\left(t s^{2}-r-\delta_{2}\right)}{s^{2}}
$$

$$
\begin{aligned}
& c_{2}=\frac{2 t\left(-1+2 \delta_{1}-\delta_{2}-2 r\right)}{s^{2}} \quad\left(t s^{3}+r-\delta_{2}\right)^{2}+4 r\left(\delta_{1}^{2}+\delta_{2}\right) \\
& c_{3}=\frac{2 t}{s^{4}}\left[\left(1+2 \delta_{1}-\delta_{2}\right)\left(t s^{2}+r-\delta_{2}\right)+(2+2 r)\left(\delta_{1}^{2}+\delta_{2}\right)\right] \\
& c_{4}=\frac{t^{2}}{s^{4}}\left(1+2 \delta_{1}-\delta_{2}\right)^{2}
\end{aligned}
$$

With the aid of (4.142), we find the asymptotic expansion of $\frac{1}{g_{i}(p) g_{2}(p)}$ as $p \rightarrow \infty$
$\frac{1}{g_{3}(p) g_{2}(p)}=\frac{1}{p^{2} s^{2}}\left(1-\frac{c_{1}}{2 p}+\frac{1}{p^{2}}\left(-\frac{c_{2}}{2}+\frac{3}{8^{2}} c_{1}^{2}\right)\right.$

$$
\begin{align*}
& +\frac{1}{p^{3}}\left(-\frac{c_{3}}{2}+\frac{3}{4} c_{1} c_{2}-\frac{5}{2^{4}} c_{1}^{3}\right)+\frac{1}{p^{4}}\left(-\frac{c_{4}}{2}+\frac{3}{8}\left(c_{2}^{2}+2 c_{1} c_{3}\right)\right. \\
& \left.\left.-\frac{15}{2^{4}} c_{1}^{2} c_{2}+\frac{3 \cdot 5 \cdot 7}{4: 2^{4}} c_{1}^{4}\right)+o\left(\frac{1}{p^{5}}\right)\right) \tag{4.143}
\end{align*}
$$

With the aid of (4.143), we find the asymptotic expansion of $B(p)$ and $D(p)$, given in equation (4.50). is

$$
\begin{equation*}
\mathrm{B}(\mathrm{p})=\frac{d_{1}}{\mathrm{p}^{2} \mathrm{p}^{1 / 2}}\left(1+\frac{S_{1}}{p}+\frac{S_{2}}{p^{2}}+\frac{S_{3}}{p^{3}}+o\left(\frac{1}{p^{4}}\right)\right) \tag{4.144}
\end{equation*}
$$

where

$$
\begin{aligned}
S_{1}= & \frac{\delta_{1} d_{2}-d_{1} \delta_{2}}{d_{1} s^{2}}-\frac{\left(t s^{2}+r-\delta_{2}-2 s^{2}\right)}{2 s^{2}}-\frac{C_{1}}{4} \\
S_{2}= & -\frac{C_{2}}{4}+\frac{3}{4^{2} C_{1}^{2}-\frac{C_{1}}{4}\left(\frac{2\left(\delta_{1} d_{2}-d_{2} \delta_{2}\right)}{d_{1} s^{2}}-R_{1}+R_{2}-\frac{\left(t s^{2}+r-\delta_{2}-2 s^{2}\right)}{s^{2}}\right.} \begin{aligned}
& -\frac{\left(t\left(1+2 \delta_{1}-\delta_{2}\right)+2\left(\delta_{1}^{2}+\delta_{2}\right)+\left(R_{1}-R_{2}\right)\left(t s^{2}+r-\delta_{2}-2 s^{2}\right)\right.}{2 s^{2}}
\end{aligned} .
\end{aligned}
$$

$$
\begin{align*}
& S_{3}=\frac{\left(-R_{1}+R_{2}\right)\left(t\left(1+2 \delta_{1}-\delta_{2}\right)+2\left(\delta_{1}^{2}+\delta_{2}\right)\right)}{2 s^{2}} \\
& +\frac{\left(R_{2}^{2}+R_{3}+R_{1} R_{2}\right)\left(t s^{2}-\delta_{2}+r-2 s^{2}\right)}{2 s^{2}}-\frac{C_{1}}{4}\left(-R_{2}^{2}+R_{3}+R_{2} R_{2}\right. \\
& \left.=\frac{\left(t\left(1+2 \delta_{1}-\delta_{2}\right)+2\left(\delta_{1}^{2}+\delta_{2}\right)\right)}{s^{2}}-\frac{\left(R_{1}-R_{2}\right)\left(t s^{2}-\delta_{2}+r-2 s^{2}\right)}{s^{2}}\right) \\
& +\left(\frac{-C_{2}}{4}+\frac{3}{4^{2}} C_{2}^{2}\right)\left(\frac{2\left(\delta_{1} d_{2}-d_{1} \delta_{2}\right)}{d_{1} s^{2}}-R_{1}+R_{2}-\frac{\left(t s^{2}+r-\delta_{2}-2 s^{2}\right)}{s^{2}}\right. \\
& +\left(-\frac{C_{3}}{4}+\frac{3}{8} C_{1} C_{2}-\frac{5}{\left.2^{5} C_{1}^{3}\right)}\right. \\
& D(p)=\frac{d_{2}}{2 p^{3} p^{3 / 2}\left(D_{0}+\frac{D_{1}}{p}+\frac{D_{2}}{p^{2}}+O\left(\frac{1}{p^{3}}\right)\right)} \tag{4.145}
\end{align*}
$$

where

$$
\begin{aligned}
& D_{0}=2 R_{1}-2 R_{2}-\frac{2\left(\delta_{1} d_{2}-d_{1} \delta_{2}\right)}{d_{1} s^{2}}+\frac{\left(t s^{2}+r-\delta_{2}-2 s^{2}\right)}{s^{2}}+\frac{C_{1}}{2} \\
& D_{1}=2 R_{2}^{2}-2 R_{3}-2 R_{1} R_{2}+\frac{C_{2}}{2}-\frac{3}{8} C_{1}^{2}+\frac{C_{1}}{2}\left(\frac{2\left(\delta_{1} d_{2}-d_{1} \delta_{2}\right)}{d_{1} s^{2}}-R_{1}+R_{2}\right. \\
& \left.-\frac{\left(t s^{2}+r-\delta_{2}-2 s^{2}\right)}{s^{2}}\right)+\frac{1}{s^{2}}\left(t\left(1+2 \delta_{1}-\delta_{2}\right)+2\left(\delta_{1}^{2}+\delta_{2}\right)\right. \\
& \left.+\left(R_{1}-R_{2}\right)\left(t s^{2}-\delta_{2}+r-2 s^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
D_{2} & =2\left(2 R_{2} R_{3}-R_{2}^{3}+R_{1} R_{2}^{2}-R_{1} R_{2}\right)+\left(R_{1}-R_{2}\right) \frac{\left(t\left(1+2 \delta_{1}-\delta_{2}\right)+2\left(\delta_{1}^{2}+\delta_{2}\right)\right)}{s^{2}} \\
& -\frac{\left(-s_{2}^{2}+R_{3}+r_{1} R_{2}\right)\left(t s^{2}+r-\delta_{2}-2 s^{2}\right)}{s^{2}}+\frac{C_{1}}{2}\left(-R_{2}^{2}+R_{3}+R_{1} R_{2}\right. \\
& -\frac{\left(t\left(1+2 \delta_{1}-\delta_{2}\right)+2\left(\delta_{1}^{2}+\delta_{2}\right)\right)}{s^{2}}-\frac{\left(R_{1}-R_{2}\right)\left(t s^{2}+r-\delta_{2}-2 s^{2}\right)}{s^{2}} \\
& =\left(\frac{3}{3} c_{1}^{2}-\frac{C_{2}}{2}\right)\left(\frac{2\left(\delta_{1} d_{2}-d_{1} \delta_{2}\right)}{a_{1} s^{2}}-R_{1}+R_{2}-\frac{\left(t s^{2}+r-\delta_{2}-2 s^{2}\right)}{s^{2}}\right. \\
& -\left(-\frac{C_{3}}{2}+\frac{3}{4} c_{1} C_{2}-\frac{5}{2^{4}} c_{1}^{3}\right) .
\end{aligned}
$$

Combining (4.50), (4.56), (4.60), (4.139), (4.140).
(4.141), (4.144) and (4.145) and inverting term by term, we have that for early time

$$
\begin{align*}
& \vec{w}(\zeta, \tau)=d_{2}\left(-4 \dot{\tau}^{\dot{3}}\right)^{3 / 2} i^{3} \operatorname{erfc} \frac{\zeta}{2 \sqrt{\tau}}+\left(R_{2}-R_{1}\right)(4 \tau)^{5 / 2} i^{5} \operatorname{erfc} \frac{r}{2 \sqrt{\tau}} \\
& +\left(R_{3}+R_{1} R_{2}-R_{2}^{2}\right)(\Lambda \tau)^{7 / 2} i^{7} \operatorname{erEc} \frac{\zeta}{2 \sqrt{\tau}}+ \\
& +\exp \left(\left(-N_{2}+\frac{\epsilon_{1}}{2}\right) \zeta\right) \mathrm{H}(\tau-\zeta)\left(\frac{(\tau-\Gamma)^{3 / 2}}{\Gamma(5 / 2)}+\frac{\left.(\tau-\zeta)^{5}\right)^{2}}{\Gamma(7 / 2)}\left(s_{1}\right.\right. \\
& \left.-\zeta\left(N_{4}-\frac{N_{2} \epsilon_{1}}{2}+\frac{3}{8} \epsilon_{1}^{2}\right)\right)+\frac{(\tau-\zeta)^{7 / 2}}{\Gamma(9 / 2)}\left(s_{2}-S_{1} \zeta\left(N_{4}-\frac{\epsilon_{1} N_{2}}{2} \quad \frac{3}{8} \epsilon_{1}^{2}\right)\right. \\
& +\zeta\left(-N_{6}+\frac{N_{4} \epsilon_{1}}{2}-\frac{3}{8} N_{2} \epsilon_{1}^{2}+\frac{5}{2^{4}} \epsilon_{1}^{3}+\frac{\left(N_{4}-\epsilon_{1} N_{2} / 2+\frac{3}{8} \epsilon_{1}^{2}\right)^{2}}{2} \zeta\right)+\cdots \\
& \frac{D_{0}}{2}(4 \tau)^{5 / 2} i^{5} \operatorname{erfc} \frac{N_{1} \zeta}{2 \sqrt{\tau}}+\frac{D_{0} \zeta}{2}\left(\frac{N_{1} \epsilon_{1}}{2}-N_{3}\right)(4 \tau)^{3} i^{6} \operatorname{erfc} \frac{N_{1} \zeta}{2 \sqrt{T}} \\
& \frac{\left(D_{1}+\frac{D_{0}}{2}\left(N_{3}-\frac{N_{1} \epsilon_{1}}{2}\right)^{2} \zeta^{2}\right)}{2}(4 \tau)^{7 / 2} i^{7} \operatorname{erfc} \frac{N_{1} \zeta}{2 \sqrt{\tau}}+\cdots \cdot \tag{4.246}
\end{align*}
$$

Here erfc (x) is the complimentary error function defined by

$$
\dot{\operatorname{erfc}}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp \left(-n^{2}\right) d m
$$

and the repeated integrals of the complementary error zunc* tien are defined by

$$
\begin{aligned}
& i^{0} \operatorname{erfc}(x)=\operatorname{erfc}(x) \\
& i^{n} \operatorname{erfc}(x)=\int_{x}^{\infty} i^{n-1} \operatorname{erfc}(t) d t, n=1,2, \cdots
\end{aligned}
$$

See [38] for example.
A similar procedure may be used to find an early time solution fer $v(\zeta, \tau)$. We begin by finding the asymptotic expansions of the factors in equations (4.51). (4.57) as $p \rightarrow \infty$. The following factor is written as a series expansion in terms of $\left(\frac{1}{p}\right)$

$$
\frac{\left.\left(p(t+p)\left(p s^{2}-\delta_{2}\right)+t \delta_{1}\right)-\frac{1}{4} p\left(g_{1}+g_{2}\right)^{2}\right)}{\left(p\left(t s^{2}+r \delta_{1}\right)+t\left(\delta_{1}-\delta_{2}\right)\right)}=K_{0}+\frac{K_{1}}{p}+\frac{K_{2}}{p^{2}}+o\left(\frac{1}{p^{3}}\right)(4.147)
$$

where
$K_{0}=\frac{t\left(\delta_{1}-\delta_{2}\right)-s^{2}\left(2 N_{4}+N_{2}^{2}\right)}{t s^{2}+r \delta_{1}}$
$K_{1}=\frac{-2 s^{2}\left(N_{6}+N_{2} N_{4}\right)}{t s^{2}+r \delta_{1}}-\frac{t\left(\delta_{1}-\delta_{2}\right)\left(t\left(\delta_{1}-\delta_{2}\right)-s^{2}\left(2 N_{4}+N_{2}^{2}\right)\right)}{\left(t s^{2}+r \delta_{1}\right)^{2}}$

$$
\begin{aligned}
K_{2}= & \frac{t^{2}\left(\delta_{1}-\delta_{2}\right)^{2}}{\left(t s^{2}+r \delta_{1}\right)^{2}}\left(t\left(\delta_{1}-\delta_{2}\right)-s^{2}\left(2 N_{4}+N_{2}^{2}\right)\right)+\frac{2 t s^{2}\left(\delta_{1}-\delta_{2}\right)}{\left(t s^{2}+r \delta_{1}\right)}\left(N_{6}+N_{2} N_{4}\right) \\
& -s^{2}\left(2 N_{8}+2 N_{2} N_{8}+N_{4}^{2}\right)
\end{aligned}
$$

The following factor is written as a series expansion in terms of ($\frac{1}{p}$)

$$
\frac{\left(p\left((t+p)\left(p s^{2}-\delta_{2}\right)+t \delta_{1}\right)-\frac{1}{4} p\left(g_{1}-g_{2}\right)^{2}\right)}{\left.\left(p t s^{2}+r \delta_{1}\right)+t\left(\delta_{1}-\delta_{2}\right)\right)}=L_{0} p^{2}+L_{1} p+L_{2}+o\left(\frac{1}{p}\right)
$$

(4.148)
where

$$
\begin{aligned}
& L_{0}=\frac{s^{2}}{t s^{2}+r \delta_{1}} \\
& L_{1}=\frac{t s^{2}-\delta_{2}-s^{2} N_{1}^{2}}{t s^{2}+r \delta_{1}}-\frac{t s^{2}\left(\delta_{1}-\delta_{2}\right)}{\left(t s^{2}+r \delta_{1}\right)^{2}} \\
& L_{2}=\frac{t^{2} s^{2}\left(\delta_{1}-\delta_{2}\right)^{2}}{\left(t s^{2}+r \delta_{1}\right)^{3}}-\frac{t\left(\delta_{1}-\delta_{2}\right)\left(t s^{2}-\delta_{2}-s^{2} N_{1}^{2}\right)}{\left(t s^{2}+x \delta_{1}\right)^{2}}+\frac{t\left(\delta_{1}-\delta_{2}\right)-2 s^{2} N_{1} N_{3}}{\left(t s^{2}+r \delta_{1}\right)} .
\end{aligned}
$$

The following factor is written as a series expansion in terms of $\left(\frac{1}{p}\right)$

$$
\begin{gathered}
\frac{p\left(\delta_{1}^{2}+\delta_{2}-p s^{2}+t \delta_{1}+\left(p s^{2}-\delta_{2}\right)(p+t)\right) \frac{A_{1}(p)}{A_{2}(p)}+\frac{\left(p s^{2}-\delta_{2} \cdot d_{1}\right.}{p^{1 / 2}}+\frac{\delta_{1} d_{2}}{p^{1 / 2}}}{p\left(t s^{2}+r \delta_{1}\right)+t\left(\delta_{1}-\delta_{2}\right)} \\
=\frac{-d_{1}}{p p^{1 / 2}\left(t s^{2}+r \delta_{1}\right)}\left(J_{0}+\frac{J_{1}}{p}+\frac{J_{2}}{p^{2}}+o\left(\frac{1}{p^{3}}\right)\right) \quad \text { (4.149) }
\end{gathered}
$$

mere

$$
\begin{aligned}
= & s^{2}\left(R_{1}-R_{2}\right)+t s^{2}-s^{2}-\frac{d_{2}}{d_{1}} \delta_{1} \\
= & \left.s^{2}\left(R_{2}^{2}-R_{3}-R_{1} R_{2}\right)+\left(R_{1}-R_{2}\right)+t s^{2}-\delta_{2}-s^{2}\right)+\left(\delta_{1}^{2}+\delta_{2}+t \delta_{1}-t \delta_{2}\right) \\
& -\left(s^{2}\left(R_{1}-R_{2}\right)+t s^{2}-s^{2}-\frac{d_{2}}{d_{1}} \delta_{1}\right) \frac{t\left(\delta_{1}-\delta_{2}\right)}{\left(t s^{2}+r \delta_{1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
J_{2}= & \frac{t^{2}\left(\delta_{1}-\delta_{2}\right)^{2}}{\left(t s^{2}+r \delta_{1}\right)^{2}}\left(s^{2}\left(R_{1}-R_{2}\right)+t s^{2}-s^{2}-\frac{d_{2}}{d_{1}} \delta_{1}\right) \\
& -\frac{t\left(\delta_{1}-\delta_{2}\right)}{\left(t s^{2}+r \delta_{1}\right)}\left(s^{2}\left(R_{2}^{2}-R_{g}-R_{1} R_{2}\right)+\left(R_{1}-R_{2}\right)\left(t s^{2}-\delta_{2}-s^{2}\right)\right. \\
& \left.+\left(\delta_{1}^{2}+\delta_{2}+t \delta_{1}-t \delta_{2}\right)\right)+s^{2}\left(2 R_{2} R_{3}-R_{2}^{3}+R_{1} R_{2}^{2}-R_{1} R_{3}\right) \\
& +\left(t s^{2}-\delta_{2}-s^{2}\right)\left(R_{2}^{2}-R_{3}-R_{1} R_{2}\right)+\left(R_{1}-R_{2}\right)\left(\delta_{1}^{2}+\delta_{2}+t\left(\delta_{1}-\delta_{2}\right)\right.
\end{aligned}
$$

With the aid of (4.51), (1.57), (4.61). (4.139), (4.140), (4.141). (4.145), (4.147), (4.148) and (4.149), and witt the elementary inversion process, we have that for early time

$$
\begin{align*}
& v(\zeta, \tau)=d_{1}\left(\frac{-J_{0}}{\left(t s^{2}+x \delta_{1}\right)}(\Delta \tau)^{1 / 2} \text { inerfc } \frac{\zeta}{2 \sqrt{\tau}}\right. \\
& -\frac{J_{1}}{\left(t s^{2}+x \delta_{1} j\right.}(4 \tau)^{3 / 2} i^{3} \operatorname{erfc} \frac{\varepsilon}{2 \sqrt{\tau}}-\frac{J_{2}}{\left(t s^{2}+x \delta_{1}\right)}(4 \tau)^{s / 2} i^{5} \operatorname{exfc} \frac{\zeta}{2 \sqrt{T}}+ \\
& +\exp \left\{\left(-N_{2}+\frac{1}{2} \epsilon_{1}\right) \zeta\right\} H(\tau-\zeta)\left[\frac{T_{0}(\tau-\zeta)^{3 / 2}}{\Gamma(5 / 2)}+\frac{T_{1}(\tau-\zeta)^{5 / 2}}{\Gamma(7 / 2)}\right. \\
& +\frac{T_{2}(\tau-\zeta)^{7 / 2}}{\Gamma(9 / 2)}+1+\frac{z_{0}}{2}(4 \tau)^{2 / 2} i^{2} \operatorname{erfc} \frac{N_{1} \zeta}{2 \sqrt{\tau}} \\
& \left.\frac{Z_{2}}{2}(\delta \tau)^{3 / n} i^{3} \operatorname{exfc} \frac{N_{1} \zeta}{2 \sqrt{\tau}}+\cdots\right], \tag{4.150}
\end{align*}
$$

where

$$
\begin{aligned}
& T_{0}=K_{0} \\
& T_{1}=K_{2}+K_{0}\left(S_{2}-\zeta\left(N_{4}-\frac{1}{2} \epsilon_{1} N_{2}+\frac{3}{8} \epsilon_{2}^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{2}=K_{2}+K_{1}\left(\left\{S_{1}-\zeta\left(N_{4}-\frac{1}{2} \epsilon_{1} N_{2}+\frac{3}{8} \epsilon_{2}^{2}\right)\right)\right]+K_{0}\left(S_{2}-S_{2} \zeta\left(N_{4}-\frac{1}{2^{\epsilon}} N_{2} N_{2}+\frac{3}{8}{ }^{\frac{2}{2}}\right)\right. \\
& +\left(-N_{6}+\frac{1}{2} N_{4} \epsilon_{2}-\frac{3}{8} N_{2} \epsilon_{i}^{2}\right)+\frac{5}{2} \varepsilon_{1}^{3}+\frac{\left(N_{4}-\frac{1}{2^{2}} N_{2} \epsilon_{1}+\frac{3}{8} \epsilon_{1}^{2}\right)^{2}}{2} \text { לI. } \\
& Z_{0}=D_{0} I_{0} \text {. } \\
& z_{1}=-\zeta D_{0} L_{0}\left(N_{3}-\frac{1}{2} \epsilon_{1} N_{1}\right) . \\
& z_{2}=L_{0}\left(D_{1}+\frac{1}{2} D_{0} \zeta^{2}\left(N_{3}-\frac{1}{2} N_{1} \epsilon_{1}\right)^{2}\right) \div D_{0} L_{1} .
\end{aligned}
$$

We note that these early time solutions of $\hat{w}(\zeta, \tau)$ and $\hat{\mathbf{v}}(\zeta, \tau)$ are in effect without any restrictions beyond the conditions of (2.40) and (2.41). And the early time solutions of all other field variables follow trivially from the equations (4.27). (4.146) and (4.150).

SUMMARY AND CONCLUSIONS

In this thesia, wo have reviowed the major contributions to the development of a theory of mechanically. and chermaliy interacting continuoua media. Beginning with the work of Darcy and Terraghi we have traced the work of biot, Truesdell and roupin and the recent work of Green, Naghdi. Steel. Atkins and Chadwick. As is usual, the theoretical develogment has preceded the number of applications and in this thesis we have athempted to utilize a linearized veraion of the mixture theory to derive results which are readily applicable to practical boundary value probleme. Our firgt result is in the form of an integral relam tion commonly known as a reciprocal theorem. It relates the solution of one problem to that of another problem each of which is due to different boundary and initial data. We have indicated how thia theorem reduces to a theorem applicable to a single constituent and we have shown ho: one might use such a theorem. Indeed, we intend to explore its uses in future research much along the lines vased in clasaical elasticity.

Our second majer reeuit cansisto of a aolution of a fundamental initial boundary value problem using the linearized mixture theory. It is the first actual boundary
value problem to be solved uaing a mixture theory. Due to its complexity the results are given in integral form only. Further devel jpment must await experimental evidence concerning the size of the material properties. Such experiments, incidentally, are a socond possible line of future research and it is our intention to attempt to devise simple analytical mocels which will lead to estimates of the material constants. We will be guided by those methods used in single constituant theories.

The integral representation of the solution of the boundary value problem given in Chapter 4 is exact to terms of order t^{2} but, due to the complexity of the intem grands in the integrals, not much can be inferred about the displacement field. For this reason we have given the starting solution, i, a., the eariy time approximation. This solution may prove more useful as far as actual computation is concerned.

REFERENCES

1. Scheidegger, A. E. The Physics of Flow Shrough Porous Media. New York: Macmillan Co., 1960.
2. Darcy, H. Les fontaines publigues de la ville de Dijon. Paris: Dalmont, 1856.
3. Termaghi, K. "Principles of Soil Mechanice ." Eng. News Record, a series of articles, 1925.
4. Biot, M.A. "General Theory of Three-dimensional concolidation," Journal of Applied Physics, Vil. 12, 1941. pp. 154-65.
5. Biot, M. A. and D. G. Willis. "The Elastic Coetzielents of the Theory of Consolidation," Journal of Applied Mechanics, December 1967, p. 594.
6. Biot, K. A. "Mechanics of Deformation and Acousthe propagation in Porous Media," Journal of Applied physics, vol. 33, 1962, pp. 1482-98.
7. Biot, M. A. "Theory of Propagation of Elastic Wavea in a fluid-saturated porous Solid," The Journal of the Acoustical Sociaty of Amexica, vol. 28. 1956.
8. Truesell, C. and R. Toupin. "The Classical Field Theories, " Handbuch der Physik, Vol. III/I, Berlins springer-Verlag.

9, Adkins $\underset{635}{(1963)}{ }^{\text {J. }}$: Phil. Trans. Roy. Soc., A 255, 607,

1. Adkins, J. E. Phil. Trans. Roy. Soc., A 256, 301 (1994j).
2. Adkins, J. E. Arch. Rat. Mech. Anal., 15, 222 (1964).
3. Green, A. E. and J. E. Adkins. Arch. Rat. Mech. Ana4.'

X3. Kelly, P. D. Int. J. Engng. Sci.. 2, 129 (1964).
14. Green, A. E. and P. M. Naghdi. "A Dynamical Theory of Interacting Continua," Int. J. Engng, Sci.. Vol. 3. pp. 231 -241 (1965).
15. Atkin, R. J. "Constitutive Theory for a Mixture of an Isotropic Elastic Solid and a Non-Newtonian Fluid." zaMp, Vol. 18, pp. 803-25 (2967).
16. Eringen; A.C. Mechanies of Continua. New York: Wiley, 1937, pp. 443-450.
17. Spencer, A. J. M. Isotropic Integrity Bases for Vectore and Second Order Tensors," Arch. Rat. Mech. Anal. : Part II, Vol. 18, pp. 51-82 (1965).
18. Atrin. R. J., P. Chadwick, and T. R. Steel. "Unique:hcorems for Linearized Theories of Interacting ." Mathematika, 14, pp. 27 m2 (1967).
19. Atkin, R. J. "Completeness Theorems for Linearized Theories of Interacting Continua," Quart. J. Mech. and Applied Mach., vol. 21, part z. pp. irI-93 (1968).
20. Green, A.E. and T.R. Steel. "Constitutive Equations for Interacting Continua," Int. J. Engng. Sci., Vol. 4. pp. 433-500 (1966).
21. Steel. T. R. "Applications of a Theory of Interacting Continua," quart. J. Mech. and Applied Math., Vol. 20. pp. 57-72 (1967).
22. Boley, B. and J. H. Weiner. Theory of Thermal Stresses. New York: Wiley, 1960.
23. Parkus, H. Thermoelasticity, Waltham, Mass.: Blaisdeil Publishing Company, 1968:

24 Love. A.E.H. A Treatise on the Mathematical Theory of Elasticity. New York: Dover, 1944.

29 Sokolnikoff, I.S. Mathematical Theory of Elastrefty. New York: McGraw-Hill Book Co., 1956.
21. Fung, Y. C. Foundations of Solid Mechanics, Englewood cliff: Prentice Hall Ce.
2. Payton, R. G: An Application of the Dynamic BettiRaylcigh Reciprocal Theorem to Moving-point Loade in Eiastic Media." guart. Appl. Math., Vol. 21. pp. 299-313 (1964).
28. Danilovekaya, V. I. "On a Dynamical problem in Thormoolastacity," Prak 1. N: Nokh. N 16.3. 3413 (1952).
20. Sternberg, E. and G. Chakravrty. "On Inertia Effects in a Transient Thermoclastic problem," rech. Report No. 2. Contract Nonr $532(25)$, Div. Appi. Math... Brown University, Kay 1958.
30. Nuisi. R. and S. Breucr. "Coupling Effects in a Transiont Thermoelastic problem," Ost. Ing. Arch., Vo1. 16. PD. 349-68 (1962).
31. Nartin, C.J. "Some one-dimencional problems in a Theory of Kechanicaily and Thermally Interacting Cortinuous Media," N.A.S.A. Report, Dept. of Math., M.S.U., N.A.S.A. Grant \#NGR 23-004-041. 1968.
32. Martin. C.J. "On a Point Joad Applied to a Mixture of Interacting Continuan, Dept. of Math., M.S.U., N.A.S.A. Grant \#NGR 23-004-041, 1969.
33. Truesdall, C. "The Mechanical Foundations of Elasticity and.Fluid Dynamics," J. Rat. Mech. Anal." Vol. 1. P. 113.
34. Licbermann, L. N. "The Second Viscosity of Ijquida," physics Review, vol. 75. pp. 1415-1422 (1952).
35. Condon and Odishaw. Kandbook of Physics, second Edition, New York: McGraw-ifill
36. Jaeger, J. C. Elasticity, Fracture anc Flow, with Enginearing and Geological Applications, 3rd ed.. London: Mothuen, 1965.
37. Staff of the Bateman Manuscript project, Tebies of Integral Transforms. Vol. 1, New York: McGrãw-ñill 3954.
38. Abramowitz, M, and I. A. Stegun, Ed., Handbook of Matheratical Functions, New York: Dovor, 100̄5.

APPENDIX

The location of the zeros of (4.73) may be given in a power series of t as follows,

$$
\begin{aligned}
p_{1} & =\frac{1}{2}\left(-\phi_{0}-t\left(\frac{1}{4} \phi_{0} E_{1}-1\right)-t^{2}\left(\frac{\Phi_{0}}{2}\right)\left(\frac{i_{1}^{2}}{8}-\frac{1}{2} E_{2}\right)+0\left(t^{3}\right)\right) \\
& +\frac{1}{2} \sqrt{4 \psi_{0}-\Phi_{0}^{2}+t \frac{\left(4 k_{1}+2 \psi_{0} B_{1}-\frac{1}{2} E_{1} \Phi_{0}^{2}-\Phi_{0} \phi_{1}\right)}{2 \sqrt{4 \psi_{0}-\Phi_{0}^{2}}}} \\
& +t^{2}\left(\frac{\left(4 k_{2} 2 \psi_{0} \psi_{2}-\left(\frac{1}{4} E_{1} \phi_{0}+\frac{1}{2} \varphi_{1}\right)^{2}-\Phi_{0}^{2}\left(\frac{1}{2} E_{2}-E_{1}^{2} / 8\right)\right)}{2 \sqrt{4 \psi_{0}-\Phi_{0}^{2}}}\right. \\
& \left.\left.+\frac{\left(4 k_{1}+2 \psi_{0} \psi_{1}-\cdot \frac{1}{2^{2}} \Phi_{1} \phi_{0}^{2}-\phi_{0} \phi_{1}\right)^{2}}{3\left(4 \psi_{0}-\Phi_{0}^{2}\right)^{3 / 2}}\right)+0\left(t^{3}\right)\right)
\end{aligned}
$$

$p_{2}=-\frac{1}{4} \phi_{0} t\left(\left(\frac{1}{2} E_{1}-\frac{2}{\varphi_{0}}\right)+\left(\frac{1}{2} E_{2}-E_{1}^{2} / 8\right) t+O\left(t^{2}\right)\right)$

$$
\begin{aligned}
& +\frac{i t}{2}\left(\sqrt{4\left(k_{2}-\frac{1}{2} \psi_{0} B_{2}\right)-\frac{1}{4} \phi_{0}\left(\frac{1}{2} E_{1}-\frac{2}{\varphi_{0}}\right)^{2}}\right. \\
& +\frac{4\left(k_{3}-\frac{1}{2} \psi_{0} B_{3}\right)-\frac{1}{4} \phi_{0}^{2}\left(\frac{1}{2} E_{1}-\frac{2}{\Phi_{0}}\right)\left(E_{2}-\frac{1}{4} E_{1}^{2}\right)}{\left.2 \sqrt{4\left(k_{2}-\frac{1}{2} \psi_{0} B_{2}\right)-\frac{1}{4} \phi_{0}\left(\frac{1}{2} E_{1}-\frac{2}{\Phi_{0}}\right)^{2}} t+o\left(t^{2}\right)\right)}
\end{aligned}
$$

and their conjugates p_{2}^{*} and p_{3}^{*}, where we used the following abbreviations

$$
\begin{aligned}
& s_{0}=-\frac{2\left(r+\delta_{2}\right)}{s^{2}} \\
& \psi_{0}=\frac{\left(r-\delta_{2}\right)^{2}+4 r\left(\delta_{1}^{2}+\delta_{2}\right)}{s^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{y}=\frac{2\left(-1+2 \delta_{1}-2 \delta_{2}-x\right)}{s^{2}} \\
& \psi_{2}=\frac{2}{s^{4}}\left(\left(1+2 \delta_{1}-\delta_{2}\right)\left(x-\delta_{2}\right)+(2+2 x)\left(\delta_{1}^{2}+\delta_{2}\right)\right) \\
& \psi_{3}=\frac{2}{s^{3}}\left(1+2 \delta_{1}-\delta_{3}\right) \\
& \psi_{4}=\frac{1}{s^{4}}\left(1+2 \delta_{1}-\delta_{2}\right)^{2} \\
& \mathrm{H}_{0}=-\%_{0} / 36 \\
& H_{1}=\phi_{0} \psi_{3} / 12-\psi_{0} \psi_{2} / 18 \\
& H_{2}=\left(\varphi_{0} \psi_{3}+2 \psi_{2}-4 \psi_{4}\right) / 12-\left(\psi_{4}^{2}+2 \psi_{0}\right) / 36 \\
& G_{0}=-\psi_{0}^{3} / 108 \\
& G_{1}=-\psi_{0}^{2} \psi_{1} / 36+\phi_{0} \psi_{0} \psi_{2} / 24 . \\
& G_{2}=-\left(\psi_{0}^{2}+\psi_{0} \psi_{1}^{2}\right) / 36+\left(\phi_{0} \psi_{1} \psi_{2}+\psi_{0}\left(\phi_{0} \psi_{2}+2 \psi_{2}-4 \psi_{4}\right)\right) / 24 \\
& +\left(4 \psi_{0} \psi_{3}-\phi_{0}^{2} \psi_{3}-\psi_{a}^{2}\right) / 8 \\
& \Sigma_{0}^{2}=\frac{\left(\left(x-\delta_{2}\right)^{2}+4 x\left(\delta_{1}^{2}+\delta_{2}\right)\right)^{3}}{3^{3} 2^{6} s^{8}}\left(\frac { 4 } { 3 ^ { 8 } } \left(\left(1+2 \delta_{1}-\delta_{2}\right)\left(x-\delta_{2}\right)\right.\right. \\
& \left.+(2+2 r)\left(\delta_{1}^{2}+\delta_{2}\right)\right)^{2}\left(\frac{12}{s^{4}}\left(r+\delta_{2}\right)^{2}-\frac{4}{s^{4}}\left(\left(r-\delta_{2}\right)^{2}+4 r\left(\delta_{1}^{2}+\delta_{2}\right)\right)\right. \\
& +\frac{64 r \delta_{1}^{2}}{s^{13}}\left(\left(r-\delta_{2}\right)^{2}+4 r\left(\delta_{1}+\delta_{2}\right)\right)\left(1+2 \delta_{1}-\delta_{2}\right)^{2} \\
& \Sigma_{1}=\frac{1}{2\left(-\Sigma_{0}\right)}\left(\frac{1}{2^{3} 3^{3}} \psi_{0}^{3}\left(2 \phi_{0} \psi_{4}-2{ }^{3} \psi_{1} \psi_{A}+\psi_{2} \psi_{3}\right)+\frac{1}{2^{5} 3^{3}} \psi_{0}^{2}\left(6 \phi_{0} \psi_{1} \psi_{4}\right.\right. \\
& \left.+6 \psi_{2} \psi_{3}^{2}-\phi_{0} \psi_{3} \psi_{3}-2 \phi_{0} \psi_{2}^{2}+2^{3} \phi_{0} \psi_{2} \psi_{4}\right)=\frac{\psi_{0}}{2^{6} 3^{3}}\left(3^{2} \phi_{0}^{2} \psi_{2} \psi_{4}+\varphi_{0}^{2} \psi_{2} \psi_{3}^{2}\right) \\
& \left.+\frac{1}{2^{3} 3^{3}}\left(-3^{2} \varphi_{0} \psi_{1} \psi_{2}^{3}+2 \varphi_{0}^{3} \psi_{2}^{3}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
k_{1}= & \frac{G_{1} \psi_{0}}{18 G_{0}}-\frac{6\left(H_{1}-H_{0} G_{1} /\left(3 G_{0}\right)\right)}{\psi_{0}}+\frac{\psi_{2}}{6} \\
k_{3}= & \frac{\psi_{0}}{6}\left(\frac{G_{2}}{3 G_{0}}-\frac{\left(G_{1}^{3}-\Sigma_{0}^{2}\right)}{9 G_{0}^{2}}-\frac{6}{\psi_{0}}\left(H_{2}-H_{1}\left(\frac{G_{1}}{3 G_{0}}\right)-H_{0}\left(\frac{G_{2}}{3 \sigma_{0}}-\right.\right.\right. \\
& \left.\left.-\frac{2\left(G_{1}-\Sigma_{0}^{2}\right)}{9 G_{0}^{2}}\right)\right)+\frac{\psi_{2}}{6} \\
E_{1}= & \frac{4}{\Phi_{0}^{2}}\left(\phi_{0}+2 k_{1}-\psi_{1}\right) \\
E_{2}= & \frac{4}{\phi_{0}^{2}}\left(1+2 k_{2}-1\right) \\
B_{1}= & \frac{2}{\Phi_{0}}+\frac{2 k_{1}}{\psi_{0}}-\frac{2 \psi_{2}}{\phi_{0} \psi_{0}}-\frac{1}{2} E_{1} \\
B_{2}= & \frac{2 k_{2}}{\psi_{0}}+\frac{4 k_{1}}{\phi_{0} \psi_{0}}-\frac{2 \psi_{0}}{\phi_{0} \psi_{0}}-\left(\frac{1}{2} E_{1}\left(\frac{2}{\Phi_{0}}+\frac{2 k_{1}}{\psi_{0}}-\frac{2 \psi_{2}}{\varphi_{0} \psi_{0}}-\frac{3}{4} E_{1}\right)+\frac{1}{2} E_{2}\right)
\end{aligned}
$$

[^0]: Fumber (s) after name(s) refer to the list of references to be found at the end of this paper.

    ```
    This experiment was originally performed by Darcy in 1856.
    ```

[^1]: A dot above a variable means partial derivative of the variable with respect to time.

[^2]: * $h(t)$ is the Heaviside unit step-function defined to be zero for $t<0$ and one for $t>0$.

[^3]: *FOR $\tau<\zeta$, see section D-7.

