
On Some Problems of Elementary and Combinatorial Geometry (*). 

PAUL E~DSS (Budapest, Hungary) 

S u m m a r y .  - The author discusses various solved and unsolved geometrical problems all o] which 
are o] a combinatoria~ nature. Some ave o] metrical character and some are more number 
theoretic. 

Elementary geometry has been studied for thousands of years. Igevertheless, 
I hope to show in this article that  the subject is full of easily stated but difficult, 
unsolved problems. Most of the questions which I discuss will be of a combinatorial 
nature. I certainly do not claim completeness but will mostly only discuss problems 
on which I worked myself, and will t ry  to indicate the literature of related problems. 
To save space I usually do not give proofs. 

1. - Let there be given n distinct points xl ,  . . . , x ,  in k-dimensional Euclidean 
space. Denote by d(x~, xj) the distance from x~ to xj. Denote by D~(xl, ..., x~) the 
number of distinct distances amongst xl ,  ..., x~ and put 

]~(n) = min D~(x~, .. . ,  x~) . 

Trivially ]~(n)----n--1,  but in the plane the situation becomes already very dif- 
ficult. I proved 

(1) (n - -  1)½- 1 < ]~(n) < e ln / ( log n) ½ 

and L. MosPa~ improved the lower bound to n~/29 ½ --1.  I t  seems certain that  
]~(n) > n 1-* for every e > 0 if n > no(e) and in fact probably ]~(n) > c2n/( logn)  ½. 

The upper bound in (1) is given by the lattice points in the plane. 
Denote by d~(x~) the number of distinct distances from x~. Moser in fact proved 

nt 
max d~(x~) > ~ - -  1 .  

One is tempted to conjecture 

d~(x,) > e3n~/(log n) ½ 
~=1 

(*) Entrata in Redazione il 15 giugno 1973. 
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which would be a considerable strengthening of (1). I only showed 

• d2(zi ) ~ 1 gn . 

Assume now tha t  the  points x~, ..., x~ are the vertices of ~ convex polygon. I made 
three  conjectures.  ]~Iy first conjecture w~s tha t  in this case ]~(n)= [n/2], equality,  
say, for the  regular  polygon. This conjecture was proved by  ALTMAN. Next  I con- 

jec tured 

N 
As far  as I know this is not  ye t  settled. Final ly  I conjectured tha t  every  convex 
polygon always has a ver tex  which does not  have three vertices equidistant  f rom it. 
])AbTZER to my  great surprise disproved this conjecture. In  fact  be showed tha t  to 
every  k there  is a convex polygon of nk vertices so tha t  every  ver tex  has k other 
vertices equidistant  f rom it. Danzer 's  example is not  ye t  published. I t  would be of 
interest  to determine or es t imate  the  smallest possible value of n~. 

The lat t ice points (u, v), l < u ,  v < n  ½ show tha t  one can give n points x~, ..., x~ 
in the  plane so tha t  to every  x, there  are n cJl°gl°z" others which are equidistan t f rom it. 
I t  is not  impossible tha t  this bound is essentially best possible; in other words, 
if x~, ..., x~ are any  points in the plane then  for a t  least one x~ there are fewer than  
n cJ~°g~°g~ points xj equidistant  f rom it. I can only prove this with 2n ½, and would 
like to see this bound improved to o(n ½) and beyond.  

I t  seemed likely to me tha t  if D~(x~, ..., x,) is small, then  m a n y  of the  x, must  
lie on a line. More precisely: I f  no k of the  x~ are on a line, then D~(x~, ..., x , )  > skn.  

Szw~En~m recent ly  gave a surprisingly simple proof of this conjecture. In  fact  
he shows tha t  if no k of the x~'s are on a line then  

(2) ma x  d2(x~) > s~n . 
l < i < n  

/~(0 the dist inct  values of the numbers  d(x~, xj),  To prove (2), denote by  fi~0 ..., ,-s, 
(o values of j for which l < j < n ,  ] ~ i and assume tha t  there  are ~ 

Thus for every  i 
8t 

(3) 1 .  

Now if (2) would be false, then  s~<skn  for every  i. 
inequal i ty  we obtain f rom (3) 

Thus b y  an e lementary  
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is a m i n i m u m  if the  - (~) % are as near ly  equal  as possible . F r o m  (4) we have  
\u=l  
for sufficiently small ~k 

i = l  u = l  

The left  side of (5) has the  following geometr ic  in te rpre ta t ion .  Take  all possible 
pairs  (x , ,  x~) which axe equidis tant  f rom one of the  x~'s. I n  view of (5) a t  least  one 

pa i r  (x~ x~) is equidis tant  f rom k x~'s. Thus the  perpendicular  bisector of (x,, x~) 
goes th rough  at  least  k x~'s. This contradic t ion proves  our assertion. 

SZE~Em~DI now conjectures t h e  following general izat ion of A l tman ' s  resul t .  Le t  
x~, ..., x ,  be  n points  no three  of t h e m  on a line. Then D~(x~, ... ,  x~)>[n /2]  and in 

fac t  

(6) m a x  d2(x~) > [2]  " 1<,<, 

Szemer6di 's  proof if carried out a l i t t le  more  carefully gives m a x  d~(x~)> [n/3]. 
l < i < n  

These problems can be of course extended to k-dimensional  space. The la t t ice  

points  in k-dimensional  space immedia te ly  give 

(7) ]k{n) < % n 2tk 

and perhaps  (7) is best  possible. An easy induct ion process gives ]k(n) > n ~ for some 

s~>O.  
For  k = 3 Al tman  p roved  tha t  if x~, ..., x~ are the  vert ices of a convex polyhedron,  

then  D3(xl,  .. . ,  x , ) >  on. I f  no three  of the  points  are on a line, perhaps  the  same 

holds, bu t  Szemer6di~s proof only gives D3(xl,  .. .x,J > cn ~ which m a y  hold for every  

set of points  in E3. Szeme%di~s idea easily gives D3(x~, ..., x ~ ) >  cn if we assume 

t h a t  no four points  are on a plane. 
Before ending this chapter  I would like to s ta te  a few more questions on 

D2(x~, ... ,  x~). Assume t h a t  no three  x~ are on a line and  no four on a circle. W h a t  

can be said abou t  D2(x~, . . . ,  x.). I s  i t  t rue  t h a t  

(9) lira D~(xl, .. . ,  x~,J/n = ~ ? 
~ c o  

Assume nex t  t h a t  no three  x 's  de termine  an isosceles t r iangle (i.e. assume tha t  
for every  1 < i <  j < l D2(x~, xj, x~) = 3). W h a t  can be said abou t  rain D2(xl,  .. . ,  x~). 

This quest ion seems to  be  non  t r iv ia l  even  for small  values of n e.g. n = 6. H ~ [ -  

~VRGE~ and I~LTZSA showed t h a t  in this  case D2(xl,  ..., xs) > 6. Similarly we can assume 
D~(x~, x~, x~, x~)>4 or > 5  and  ask  abou t  minD2(xl ,  ..., x=). I did not  inves t igate  

any  of these questions carefully and  some of t h e m  m a y  be tr ivial .  Clearly m a n y  
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fur ther  related questions can be asked bu t  I leave this to the  reader.  By  the way  
if we assume Ds(x~, x~, x~, x~) : 6 (for every  1 < i  ~ ~ ~ k ~ l<~n) t hen  clearly 

P. EIcD0s, On sets o] distances o] n points, imer .  Math. Mon~hly, 53 (1946), pp. 248-250. 
L. ]~Ios]~, On the diMerent distances determined by n points, Amer. l~[ath. I~onthly, 59 (1952), 

pp. 85-91. 
E. AL~Hi~, On a problem o/ P. l~rdSs, imer .  Math. Monthly, 70 (1963), pp. 148-157; 

see also Some theorems on convex polygons, Canad. Math. Bull., 15 (1972), pp. 329-340. 

2 .  - Let  there  be given n dist inct  points in k-dimensional space whose diameter  
is I (i.e. m~x  d(x~, xj) = :1). Denote  by  M~(n) the  max imum number  of pairs satisfy- 

ing d(x~, xj)----- 1 (the max imum is t aken  over all sets x~, ..., x~ of diameter  1). Tri- 
vially M~(n)----1 and E ~ i  PA~W~TZ proved M s ( n ) :  n. Thi r ty  five years ago 
V~zso~¥~ conjectured M~(2n)- - - -2n-  2. This conjecture was proved independent ly  
by  G~ii~BAu~, ~tEPPES and ST~ASZ~EWCZ in 1956. LEI~Z made the surprising obser- 
vat ion t ha t  M~(n)> [n"/4] and I proved 

1 1 
(i) l im M ~ ( n ) / n : =  

Here I ment ion the following classical conjecture of Borsuk:  let sk be a set in 
k-dimensional space of d iameter  1. Is it  t rue  tha t  s~ can be decomposed into k + 1 
sets of diameter  less than  1. This is t r ivial  for k----1 and easy for k - - 2 .  For  

k = 3 it was proved by  E~LESTO~ and later  a simpler proof was found b y  G~iiN- 
BAV~ and HEPPES. For  k ~ 3 the conjecture is still undecided. 

Assume now tha t  rain d(x~, x~) ---- 1. Denote  by  ink(n) the maximum number  of 
l ~ i < J ~ n  

pairs satisfying d(x~, x~.)-~ 1. I t  is easy to see tha t  m ~ ( n ) =  n - - 1  and  m s ( n ) <  3n. 

The later  inequal i ty  follows f rom the fact  t ha t  there  can be at  most  six points a t  
distance 1 f rom x~ (otherwise 1 would clearly not  be the min imum distance), m3(n) < 

< 6n since there are at  most  ]2 points on the  unit  sphere so tha t  the distance between 
any  two of them is 1. m~(n) < r~(n) is easy to see, bu t  the best value of r~ is not  known 
for k > 3 .  

I t  is easy to improve ms(n) ~ 3n. We obtain with very  lit t le t rouble tha t  

3n -- ct n I/s ~ ms(n) ~ 3n  --  cs n t/3 ; 6n --  e3 n ~/~ ~ m~(n) ~ 6n -- c~ n s/~ . 

Perhaps 

(2) m~(3nS~ - 3 n - ~  1) ~ 9n2-~ 6 n .  

I f  t rue  (2) is best possible; m2(3n~-~ 3 n - ~  1)~>9n2~ 3n follows if we consider the  
points of a t r iangular  lat t ice inside and on a regular hexagon of sidelength n. 
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V. REUTttER, Recently conjectured m~(n):  3n--(12n--3)½, Elemente der Math., 27 (1972), 
p. 19, this conjecture was proved by H~RBOT~. 

Denote  by  P~(n) the  max imum number  of pairs (x~, x~) for which d(x~, x~) assumes 
the same value (i.e. P~(n) is the  max imum number  of pairs (x~, x~) with say say 

d(xt, xj) = r. 
Trivial ly P l ( n ) =  n -  1. For  k =-2 and k = 3 it  is surprisingly difficult to  give 

a good est imatibn for Pk(n). I showed 

(3) n l +e'll°gl°g~ ~ P~(n)  <~ 2n 8t2. 

I expect  tha t  in (3) the lower bound gives the  right order of magni tude for P~(n), 
bu t  I was not  even able to show P2(n)= o(n~l~). SZE~ER~])I and Jbzsx  just  proved 
this, bu t  their  ingenious proof is complicated and  will appear  in the  proceedings of 
the  Kesz the ly  meet ing  held in 1973. 

:For k = 3~ I showed 

e~ n 4i~ loglog n < P~(n) < e3 n 5s3 • 

I t  is curious tha t  for k>~4 PTo(n) is easier to handle. I proved tha t  if k = 2t, 
n ~ 0  (mod2k),  n > n o ( k  ) then  

n2(l ~ 1) 
P~(n) = ~ + n .  

For  odd k the  results are slightly less precise. 
Le t  x~, ..., $~ be n points in the plane, d~, ..., d~ the distinct distances determined 

b y t h e  points. Wha t  are the possiblevalues of I. Clearlyf~(n)<l<I21(1k(n) is defined 

in 1), bu t  it is not  clear what  are the  possible values of I. I can show tha t  there  is a c 

(n)  (I th ink  this result  fails for ~nSl~ so tha t  I can take  every  value between en ~l~ and 2 

instead of cn~t~). Denote by  u~ the number  of pairs s~tisfying d(x~, x~)=  d~, u~> 

is possible e.g. n odd and the  x~ form a regular polygon, here of course u~ . . . . .  
= u ~  = n. How many  dist inct  values can the  u's take.  At most n -- 1, bu t  I do 
not  th ink  n --  1 can be a t ta ined  for n > 4. Also what  in the  largest possible t ,  for 

g k 

which ~ u~>½ 2 
u~<tn \ /  

but  it is quite possible tha t  for a certain 

5, u,= o(n~) 
u~ > n(log n) 

i.e. there  are re la t ively few distances which occur more often th~n n(log n) r times. 
P ~ ] ) Y  and I considered the  following questions. Le t  there  be given n points 

x~, ..., x ,  in k-dimensional space. Denote  b y  g(~)(n) the max imum number  of r-dime- 
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sional simplices whose vertices are chosen amongst  the x~'s and which all have  the  
same non zero r-dimen~sional volume.  We p roved  

(5) c4n ~ loglog n < g(~)(n) < 4n 5m . 

P robab l y  the  lower bound in (5) is not  ve ry  far  f rom the t ru th .  
I n  oar  paper  we s ta te  a few problems which as far  as I know are still unsolved. 

Let  x~, ..., x.~ be n dist inct  points in the  plane how m a n y  quadruplets  can one fo rm 
so t h a t  not  all the  six distances should be different. Le t  us call such quadruplets  

degenerate.  We can show t h a t  one c~n give n points  wi th  csn ~ log n degenerate  

quadruplets ,  also t h a t  the num ber  of degenerate  quadruple ts  is a lways less t h a n  c6 n 7/2. 

We conjectured t ha t  i t  is less t h a n  n ~+~. 
Le t  there  be  g iven n points  in the  plane. H o w  ma~ly tr iangles can one have  which 

have  the  m a x i m a l  (or minimal)  non zero area. We only have  t r iv ia l  results:  The 

m a x i m u m  are can occur a t  mos t  c7 n 2 t imes and  it can occur c8 n times. 
Le t  there  be given n points  in k-dimensional  space. W h a t  is the  largest  set of 

pairwise congruent  (similar) tr iangles? W h a t  is the  largest  set of equilateral  or (iso- 
sceles) tr iangles? One specific question: B y  the  me thod  of Lenz one can give 3n 

points in 6-dimensional space the  vert ices of which determine n ~ equilateral  tr iangles 
of size 1. One would suspect  t h a t  we can not  have  n 3 ~ 1 such Vriangles. 

P. ]~ICDOS, On sets o] distances o] n points, Amer. Math. Monthly, 53 (1946), pp. 248-250. 
P. E~DCs, On some applications o] graph theory to geometry, Canad. J. Math., 19 (1967), 

pp. 968-971 ; see also On sets o] distances o] n points in Euclidean space, Publ. Math., Inst. 
Hungar. Acad. Sci., 5 (1960), pp. 165-169. 

P. ERDSS - G. PU~DY, Some extremal problems i~ geometry, J. Combinatorial Theory, 10 
(series A) (197t), pp. 246-252, see also a forthcomingpaper of Purdyin DisereteMa, thematics. 
For further literature on results quoted in this chapter see Proc. Symp. in Pure Math., 

Vol. VII, Convexity, Amer. Math. Soc., (1963), in particular the paper of L. DAnzig, B. Ggt~N- 
BAU~ and V. KLan, Helly's theorem and its relatives, pp. 101-180 and B. GR$~BXUM, Borsuk's 
problem and related questions, pp. 271-284. 

3. - Denote  b y  }(n; k) the  smallest  integer  so t ha t  any  set of }(n; k) points in 

k-dimensional space contains a subset  of n points  any  two distances of which are 

distinct.  I t  is not  hard  to see t h a t  ](n; k) < n c. but  I do not  know the best  exponent  ok. 
I conjectured 

/(~; 1) = (1 + o(]))n' .  

T U R ~  and I p roved  ](n; 1 ) >  (1 q-o(1))n  2 and recent ly  Ko~LCs, SULYOK and SZE~E- 

~£DZ proved  b y  a ve ry  ingenious and general number  theoret ic  a rgument  t ha t  J(n; 1) < 
< cn ~, thei r  proof  is not  ye t  published and  will appea r  in Ac ta  ){ath.  Sci. Hungar .  

I p r o v e d  J(3, 2 ) - -  7 and Croft p roved  ](3, 3) = 9 (i.e. 9 points  in Eucl idean 
3-space always contain three  points which do not  fo rm an isosceles triangle). STRAVS 
and I p roved  ](n; k) < c~, our proof is not  ye t  published. P robab ly  li_mm J(n; k)l/k-~ 1~ 
but  we have  not  been able to p rove  this even for n = 3, 
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L. IV[. KELLY raised the  following question.  Let  g(n; k) be the  largest  integer  so 
t ha t  there  are g(n; k) points  in k-dimensionM space which de termine  a t  mos t  n dist inct  

distances.  STRAUS and I p roved  g(n; k ) <  &~-z% our proof is not  ye t  published. 
g(n; k) > ek ~ is easy and  perhaps  If=rag(n; k)/k ~ exists, g(2; t )  ~ 3 is triviM, 

g(2; 2 ) ~  5 is easy  and  Cg0~T p roved  g ( 2 ; 3 ) =  6. The 2 k vert ices of the  k-dimen- 

sionM cube de te rmine  k dis t inct  distances, thus  g ( k +  1; k ) > 2  k. I t  would be  in- 
te res t ing  to  get  a good uppe r  bound for g ( k +  1, k). 

I p roved  t h a t  if s is a set of power  m in k-dimensionM space then  s has a subset  s~ 
of power m so t h a t  any  two distnces of s~ are distinct.  This comple te ly  fails in Hi lbe r t  

space. KAK~:TA~qI and I const ructed in Hi lber t  space a set of power c so t h a t  all the  
distances are rat ional .  Also one can construct  in Hi lber t  space a set of power  e all 
t r iangles of which are isosceles and acute  angled. PesA disproving a conjecture of mine 

const ructed in Hi lber t  space a set s of power c so t h a t  all subsets s~ c S of power c 
have  an  infinite subset  s 2 any  two points  of which are equidistant .  PesA uses 2 m = N~. 

H. T. C~or~, 9 point and 7 point eon/igurations in 3.space, ]?roe. London l~[ath. Sot., 12 
(1962), pp. 400-424. 

P. ERDOS - P. TuI~X~, On the problem o] Sidon in additive number theory and on some related 
problems, Journal London Math. Soc., 16 (1941), pp. 212-215. 

P. E~DOs, Some remarks on set theory, I I ,  Proc. Amer. Math. Sot., 1 (1950), pp. 127-141. 
L. M. K]~LLY - E. A. NO~DHAVS, Distance sets in metric spaces, Trans. Amer. l~Iath. Soc., 

71 {1951), pp. 440-456, see p. 451. 

4. - Le t  there  be given n points  in the  plane not  all on a line. Is  i t  t rue  t h a t  
there  a lways is a line which goes th rough  precisely two of the  points ? Such a line is 

called an ordinary  line. This beaut i ful  question was posed in 1893 b y  SYLVESTE~ and  

nobody solved it  a t  t h a t  t ime.  I rediscovered the  question in 1933 and communi-  
cated i t  to T. GALLAI who soon found a simple proof. Other  proofs were found la ter  

the  simplest  in m y  opinion is due to L. M. KELLY. This question and its generaliza- 

t ions have  a large l i tera ture  a small  pa r t  of which I t r y  to give a t  the  end of this 
paragTaph. 

DE BRUIJN and I conjectured t ha t  if ](n) is the m i n i m u m  number  of ord inary  li- 

nes de te rmined  b y  n points  then  ](n) tends to infinity. This conjecture was p roved  
b y  MOTZ~I~ and later  L. ~ .  KELLY and W. MOSER proved  ](n) > [3n/7], equal i ty  for 

n ~  7. MOTZKIN conjectured t h a t  for n > no ](n)>n/2 and observed t h a t  for  even 
~ there  is equal i ty .  

Le t  there  be g iven n points  in the  p lane  no n --  k are on a line. I conjectured t h a t  

these points  t hen  de te rmine  a t  least  ekn lines (where c is an  absolute cons tant  inde- 
penden t  of k and  n). Some ve ry  precise results in this direction were obta ined b y  

KELLY and MOSER. 
GRAHAM conjectured t ha t  if there are given any  n points in the  plane not  all on 

a line. Then the lines de te rmined  b y  the  points  never  have  p rope r ty  B (i.e. every  
subset  of the  n points  which meets  all the  lines contains all the  points  on at  least  one 
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of the lines). This conjecture was recently proved by  M. O. RA:BZ:N: and independently 

by  Mo~z~z~. 

I then asked the following questions. Does there exist for every k a set of points 

in the plane so tha t  if one colors the points by  two colors in an arbi t rary  way~ there 

always should be at least one line which contains at  least k points and all whose points 

have the same color. GI~AHA~ and SELFI~IDGE gave an affirmative answer for k = 3, 

bu t  the cases k ~ 3 seem to be open. 

Tm MOTZKIN, The lines and planes connecting the points o/a ]inite set, Trans. Amer, Math. 
See., 70 (1951), pp. 451-464. For further literature see e.g.B. GRi~NBA~, Convexpolytopes, 
p. 404, Pure and Applied Math., Vol. XVI, Interseionce John Wiley and sons and Hadwiger 
Debrunner and Ktee, CombinatoriM geometry in th~ plane, Holt, Rinehart ~nd Winston. 

See also B. G n i ~ v ~ s ,  Arrangements and spreads, Amer. Math. See. Providence, 1972, 
and a ~ortheoming paper of S. B v ~ ,  B. G ~ v ~  and N. J. A. S~o~-~. These papers contain 
many very interesting unsolved problems and very extensive references. In fact the shortness 
of this chapter is due to the fact that I can refer to these beautiful papers. 

5. - I n  1931 Miss E. KLEI~ asked the following question: Is  it t rue tha t  for every k 

there is an nk so tha t  if there are given n points in the plane no three on a line one 

can always find k of them which determine the vertices of a convex k-gon ~. She 

proved n~ = 5, MAKAI ~nd TU~[~ showed n~ = 9. SZEKEt~ES conjectured n~ = 2 ~-~ + 1, 

this is open for k > 6 .  

SZEKERES a~(:]_ I proved 

(t)  / 2  k - -  4 \  
2k-2 + a < n ~ < t  k _ 2  ) • 

The proof of the lower bound contains some minor inaccuracies, which were all cor- 

rected by KAL~FI~EISCH. 

SZEKERES and I proved tha t  if there are given 2 ~ points in the plane then there 

are always three of them which determine an angle > ~ ( 1 -  :l/n). A previous result of 

SZEKERES shows tha t  this result is best possible since to every s ~ 0 he constructs 2 ~ 

points so tha t  all the angles are less than  u(1 -- ]In) Jr e. For m points 2 ~ ~ m 

2 ~+~ we do not have such sharp results~ also there are few precise results in higher 

dimensions. I eonjectwred tha t  2"-~ 1 points in n-dimensional space always deter- 

mines an angle greater t han  ~/2. This conjecture was proved by  DA~ZE~ and G ~ -  

BAWd. C~oP~ proved that  6 points in 3-space always determine an angle >~ ~/2. I t  

is easy to see tha t  this result is best possible. 

L. DANZ~R - B. GlCONBAUM, ~ber zwei Probteme bez()glich konvexen KSrper yon P. ErdSs and 
V. L. Klee, ~[ath. Zeitschrift, _9 (1962), pp. 90-99. P. E~Dtis - G. Sz]~K]~S, On some 
extrem~m problems in elementary geometry, Ammales L~niv. Sci. Budapest, 3-4 (1960-61), 
pp. 53-62. 
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6 .  - Before  ending this p a p e r  I would like to s t a te  a few miscellaneous problems 
and conjectures,  ttEIL~3RO~ posed more  t h a n  20 years  ago the  following problem.  

Le t  t he re  be  g iven  n points  in the  un i t  square.  P u t  

A~(n) = m a x  m i n  A(x~ , xi~) 

where  A(xl, ..., x~) is the  a rea  of the  convex hull of x~, ...~ x~: I t  is easy to see t h a t  

A3(n )>  el/n~'A3(n)< e2[n is obvious. The f irst  non- t r iv ia l  resul t  was due to K.  F. 

~OT~ who p roved  

Ca 

As(n) < n(log logn) ½ • 

l~ecently ~V. SCH~IIDT p roved  (Journal London Math. See., 1972) t h a t  A3(n )<  

< e d n ( l o g n )  ½ and  v e r y  recen t ly  t ro th  p roved  Aa(n)<cs/n~+% 
I t  would be v e r y  in te res t ing  to  decide whe ther  A3(n) < cT/n ~ is t rue .  I n  his p a p e r  

W. SCE~IDT cons t ruc t s  n points  in the  un i t  square  so t h a t  

Pe rhaps  for every  k 

A , ( n )  > c , /n  ~ . 

A~(n) > e~/n ~+~/(k-~) . 

SCE~IIDT points  out  t h a t  the  proof  of A4(n)= o(1/n) presents  difficulties. I t  seems 

of course t h a t  A~(n)= o(1/n) for every  k. 
A ~ I ~ G  and I p roved  the  following theorem.  Le t  there  be given an infinite set 

of points  in the  plane.  Assume t h a t  the  d is tance  be tween  every  two of t h e m  is in- 
t e g r a l  Then the  points  are on a line. ULA~ asked the following quest ion:  I s  the re  

an infinite set in the  p lane  which is everywhere  dense so t h a t  the  d is tance  between 
every  two of its points  is ra t ional?  The answer is p robab ly  no b u t  the  proof  seems 

to be nowhere  in shight. I t  is known if one can find 6 points  in the p lane  no three  
on a l ine no four  on a circle so t h a t  all the  dis tances are integral ,  t~ecently HAR~3OTH 
found such a set  of five points.  L e t  G be  a denumerab le  g raph  wi th  the  ver t ices  

xl ,  x~, . . . .  W h a t  is the  necessary  and  sufficient condit ion on G t h a t  the re  should exis t  

a set  of points  xl,  x~, ... in the  p lane  no th ree  on a line so t h a t  the  d is tance  be tween  x~ 

and xj is an  in teger  if and  only if x~ and  x~ are joined in G b y  an edge. I p r o v e d  t h a t  

if G contains  a K(3 ;  No) (i.e. a complete  b i p a r t i t e  g raph  wi th  3 whi te  and No b lack  

vert ices)  then  this is impossible.  I t  is possible (but  I doub t  it) t h a t  if G does no t  
con ta in  a K(3 ;  No) t h e n  such a set  xl,  . . . ,  exists,  t f  we fu r t he r  assume t h a t  the  

set  xl~ ... ,  in the  p lane  does not  conta in  four  points  on a circle we m a y  get  a com- 

p le te ly  new s i tuat ion.  
Deno te  b y  E(n)  the  smal les t  in teger  for  which one can color the  points  of n-dimen-  

sional space b y  E(n)  colors so t h a t  two points  of the  same  color never  have  d is tance  1. 
~T]~LSO~ conjec tured  / v ( 2 ) =  4. W. and  L. Mos:Ett p roved  F ( 2 ) > 4  and it  is known 

t h a t / 7 ( 2 ) < 6 .  I n  this  connect ion L. ~ o s E ~  asked the  following quest ion:  let  s be 
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measurab le  set  s i tua ted  in a circle of radius r (r large) and  no two points  of r are a t  
dis tance 1. Is  i t  t rue  t h a t  the  measure  of s is less t h a n  sr/4. Equa l i t y  for r ~ 1. 

For  large n, F(n)  and re la ted problems are studied in a recent  paper  of LAR)~A~ and 
I~0GERS, F(n)  > en 2 is the  best  lower bound known. ~(n)  > (1 q- e) ~ would follow 

fro the  following combinator ia l  conjecture:  Let IS]=n A s c S ,  l < i < k .  Assu- 
m e t h a t A , ( ~  A¢ never  has size [n/4]. Then k < (2 - -  e~) ~. More general ly I conjec- 
ture  t h a t  for every  ~ 1 > 0  there  is an  s > 0  so t h a t  if ISl-~n, AscS ,  l < i < k ,  k >  
> (2 - -  e) ~ then  for every  r, ~n< r <  n(½-- ~7) there  are two integers 1 < i  < j</~ 

so that IA, n A~] = r. 
V. T. S6s and I p roved  tha t  if there are n q - 1  triples in a set S of n ele- 

ments ,  t hen  there  are always two of t h e m  whose intersect ion is a singleton, for 

n ~ 0 (rood 4) this is bes t  possible. The simple proof  can be left  to the  reader.  We  

conjectured t h a t  if l > 3 ,  A~cS,  l < i < k ,  IA~I= l, n > n o ( l ) ,  k >  l -  t hen  for 

some l < i < j < k ,  [Ag(~ A j I ~ - 1 .  This conjecture if t rue  is cer ta in ly  best  possible. 

po rved  onr conjecture for l = 4 the  tmpubl ished proof  is not  ve ry  simple. The 

eases l > 4 are open. 
The following problem is due to ~'EJES-T6TI-I: I Jet there  be given n points x~, ... ,x,~ 

in the plane.  Assume their  m i n i m u m  distance is 1. Minimize 

a(x,, x~) 

FEJES-TOTtt conjectures t h a t  the  m i n i m u m  is assumed if the  x~'s are the  vert ices 

of a t r iangular  latt ice.  
I n  a recent  paper  several  collaborators and  I studied the  following problem:  A 

finite set S in n-dimensional  space is called t~amsey if for every  k there is a finite set S 

in m-dimensional  space m := too(S, n, k) so t h a t  if we color the  points  of S '  b y  k 

colors, there  always is a monochromat ic  set congruent  to  S. We prove  in our first 
paper  t h a t  if S is a rec tangular  paral le lepiped then  it  is I~A~ISE¥. On the  other hand  

not  every  set is RA~SEY; we show tha t  a RA~SEY set is spherical  (i.e. lies on a sphere). 

The simplest  unsolved p rob lem is whether  every  non-degenerate  t r iangle is RA~SEY. 
Another  p rob lem is the following: Color the points  of the  p lane  b y  two colors. Is  
i t  t rue  t h a t  all tr iangles can be monochromat ica l ly  imbedded with the  possible excep- 

t ion of a t  mos t  one equi lateral  tr iangle.  Many  fur ther  problems will be  s ta ted  in 

our papers  on this  subject .  
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