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ON SOME PROPERTIES OF DEDDENS ALGEBRAS

M.T. KARAEV AND H.S. MUSTAFAYEV

ABSTRACT. Deddens algebras and Shulman subspaces are
introduced and their properties are studied. The descriptions
of Deddens algebras associated with nilpotent and idempotent
elements are given.

1. Introduction. Let H be a Hilbert space, B(H) be an algebra of
all bounded linear operators in H. In [1], Deddens determined for any
invertible operator A from B(H) the following algebra:

BA
def=

{
X ∈ B(H) : sup

n≥0

∥∥∥AnXA−n
∥∥∥ def= CX < +∞

}
.

It was proved in [1] that, for A ≥ 0, BA coincides with the nest algebra
generated by the nest {EA([0, λ]) : λ ≥ 0} (where EA is the spectral
measure of A) that gives a suitable characterization of nest algebras in
all respects. Recently Todorov [7] has extended this result to weakly
or strongly closed bimodules of a nest algebra. In [2] Deddens and
Wong have proved that if A = λI +N , where λ ∈ C \ {0} is a complex
number, and N is a nilpotent operator, then the algebra BA coincides
with the commutant {A}′ of A. In their proof of the last statement the
Hilbert property of the space H is essentially used.

The main aim of this paper is to show that the result of Deddens and
Wong is valid in any unital Banach algebra.

2. Deddens algebras. Let B be a Banach algebra with the unit e.
For any invertible element a ∈ B put

Ba
def=

{
x ∈ B : sup

n≥0
‖anxa−n‖ def= Cx < +∞

}
.

We call the algebra Ba the Deddens algebra.
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Our main result is the following.

Theorem 1. Let B be a Banach algebra with a unit e. If a = e+ b,
where b is a nilpotent element of the algebra B, then the Deddens algebra
Ba coincides with the commutant {a}′, i.e., Ba = {a}′.

Before passing to the proof of the theorem, we prove the following
general lemma.

Lemma 2. Let B, a, b be the same as in Theorem 1. Let an ∈ B,
n = 0, 1, 2, . . . , be such that

1) ‖an‖ = O(nα), n→ +∞, for some α, 0 ≤ α < 1;

2) for some c ∈ B

ana = aan−1 + c, n = 1, 2, . . . .

Then a0 = a1 = a2 = . . . .

Proof. It is sufficient to prove the lemma in the case c = 0. Indeed,
it follows from the equality

ana = aan−1 + c, n ≥ 1,

that

(1) dna = adn−1, n ≥ 1,

where dn
def= an − an−1. It is clear that ‖dn‖ = O(na) for n → +∞.

Assume that the lemma is valid for c = 0. Taking into account (1) and
applying our hypothesis to the sequence (dn), we obtain the equality

d0 = d1 = d2 = . . . ,

that is,
a1 − a0 = a2 − a1 = · · · = x.

Hence
an = a0 + nx, n ≥ 1,
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whence it follows from condition 1) that

‖x‖ ≤ ‖an − a0‖
n

−→ 0 for n→ +∞,

i.e., x = 0. Therefore, a0 = a1 = a2 = · · · .

So it is sufficient to prove the statement of the lemma for c = 0.

Let k ≥ 2 be the nilpotency degree of the element b ∈ B, that is,
bk = 0, but bk−1 �= 0. Then for any n ≥ k,

(e+ b)n = e+ α1b+ α2b
2 + · · · + αk−1b

k−1,

where αm
def= Cm

n =
n!

m!(n−m)!
, m = 1, 2, . . . , k − 1. The inverse

element of (e+ b)n has the form

(e+ b)−n = e+ β1b+ β2b
2 + · · · + βk−1b

k−1

for some numbers β1, β2, . . . , βk−1. Taking the equality

(e+ β1b+ · · · + βk−1b
k−1)(e+ α1b+ · · · + αk−1b

k−1) = e,

then removing the parentheses and identifying the coefficients, we
obtain the system that connects the numbers α1, . . . , αk−1 with the
numbers β1, . . . , βk−1:

(2)




β1 + α1 = 0
α1β1 + β2 + α2 = 0
α2β1 + α1β2 + β3 + α3 = 0
· · · · · · · · · · · · · · ·
αk−2β1 + αk−3β2 + · · · + βk−1 + αk−1 = 0.

From the equality
ana = aan−1

we have
an(e+ b)n = (e+ b)na0,

that is,
an = (e+ b)na0(e+ b)−n
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or

an = (e+ α1b+ · · · + αk−1b
k−1)a0(e+ β1b+ · · · + βk−1b

k−1),

for all n ≥ k. Hence we have

(3)

an − a0 = (β1a0b+ β2a0b
2 + · · · + βk−1a0b

k−1)
+ (α1ba0 + α1β1ba0b+ α1β2ba0b

2 + · · ·
+ α1βk−2ba0b

k−2 + α1βk−1ba0b
k−1)

+ (α2b
2a0 + α2β1b

2a0b+ α2β2b
2a0b+ · · ·

+ α2βk−1b
2a0b

k−1) + · · ·
+ (αk−2b

k−2a0 + αk−2β1b
k−2a0b

+ αk−2β2b
k−2a0b

2 + · · ·
+ αk−2βk−2b

k−2a0b
k−2 + αk−2βk−1b

k−2a0b
k−1)

+ (αk−1b
k−1a0 + αk−1β1b

k−1a0b

+ αk−1β2b
k−1a0b

2 + · · · + αk−1βk−2b
k−1a0b

k−2

+ αk−1βk−1b
k−1a0b

k−1).

Since

αm = αm(n) =
1
m!

[n(n− 1)(n− 2) · · · (n−m+ 1)]

= nϕ1(m) + n2ϕ2(m) + · · · + nmϕm(m)

(m = 1, 2, . . . , k − 1) where ϕi, i = 1, 2, . . . ,m, do not depend on n,
then as we see from system (2), βm is also calculated by the formula

βm = nψ1(m) + n2ψ2(m) + · · · + npψp(m),

where p ≤ k − 1, and coefficients ψi, i = 1, 2, . . . , p, do not depend on
n. Therefore, after some simple calculations we can write the equality
(3) as follows:

(4)
an − a0 = nf1(k, a0, b) + n2f2(k, a0, b) + · · ·

+ n2(k−1)f2(k−1)(k, a0, b)

where fj(k, a0, b) ∈ B, j = 1, 2, . . . , 2(k − 1), do not depend on n. For
convenience we determine

J2(k−1)
def= (an − a0) − n2(k−1)f2(k−1)(k, a0, b).
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We have from equality (4) by virtue of condition 1)

‖f2(k−1)(k, a0, b)‖ ≤ ‖an − a0‖
n2(k−1)

+
‖J2(k−1)‖
n2(k−1)

−→ 0

for n→ +∞. Hence we conclude that

f2(k−1)(k, a0, b) = 0.

The sequential repetition of this argument shows us that all summands
in equality (4) equal zero, and thus we obtain

an − a0 = 0

for any n ≥ k, that is, an = a0, n ≥ k. It remains to show that

ak−1 = ak−2 = · · · = a1 = a0.

Since

an = (e+ b)n−mam(e+ b)−(n−m), m = 1, 2 . . . , k − 1,

then, by using similar arguments, we see that

an − am = 0,

and so an = am for each n ≥ k and m, 1 ≤ m ≤ k − 1.

Thus
a0 = a1 = a2 = . . . .

The lemma is proved.

Now we prove the theorem.

Proof of Theorem 1. Let x ∈ Ba be any element. Put

cn
def= anxa−n, n ≥ 0.

Then
cna = anxa−na = a(an−1xa−(n−1)) = acn−1,
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that is,

(5) cna = acn−1, n ≥ 1.

Since x ∈ Ba, there exists a constant cx > 0 such that ‖cn‖ ≤ cx,
n ≥ 0. Taking into account these inequalities and equality (5), we
state by means of Lemma 2 that cn = cn−1, n ≥ 1, and in particular,
c1 = c0, and thus

axa−1 = x.

Hence, ax = xa, x ∈ {a}′. Consequently, Ba ⊂ {a}′. The inclusion
{a}′ ⊂ Ba is obvious, and therefore Ba = {a}′. The theorem is proved.

Let B be a Banach algebra with the idempotent p (i.e., p2 = p) and
with the unit e. We introduce the following notation

Sp
def= {x ∈ B : px(e− p) = 0}.

Our next theorem describes the Deddens algebra associated with the
idempotent.

Theorem 3. Let B be a Banach algebra with an idempotent p and
with the unit e. Then

Be+p = Sp.

Proof. Think of the algebra B as having a (2× 2)-matrix decomposi-
tion relative to the decomposition of the identity e = p+ (e− p); thus
elements of B have the form

(
b11 b12
b21 b22

)
. Relative to this decomposition,

p takes the form
(

1 0

0 0

)
, and e+ p =

(
2 0

0 1

)
. An easy calculation then

shows that (e + p)n
(

b11 b12
b21 b22

)
(e + p)−n is a bounded sequence if and

only if b12 = 0, which is equivalent to the desired result.

Corollary 4. Let a ∈ B be regular by a von Neumann element (that
is, there exists an element b ∈ B satisfying the condition a = aba). Let

Ba def= {x ∈ B : xa = ay for some y def= yx}.
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Then Ba is an algebra and Ba ⊂ Be+pa
, where pa

def= ab is an idem-
potent element of B.

Proof. It is clear that Ba is an algebra and pa is an idempotent. Now
we show that Ba ⊂ Be+pa

. We will let x ∈ B. Then it is clear from
the equality xa = ay that

bxa = bay.

We have
abxa = abay = ay = xa,

whence
(e− ab)xa = 0,

i.e.,
(e− ab)xab = 0;

consequently,
(e− pa)xpa = 0.

This equality means by virtue of Theorem 3 that x ∈ Spa
= Be+pa

.
The proof is completed.

In the remainder of this section we are concerned with Deddens
operator algebras.

For two arbitrarily chosen operators L,M ∈ B(H), we introduce for
consideration the following subspace of the algebra B(H):

U(L,M) def= {L}′ + {L}′M.

Such subspaces have been studied in detail by Shulman (see [5], [6])
for the integration operator V , (V f)(x) =

∫ x

0
f(t) dt and multiplication

operator T , (Tf)(x) = xf(x) in the space L2[0, 1] in relation with
nontransitivity of root algebras. We call the subspace U(L,M) the
Shulman subspace.

The relation between Deddens algebras and Shulman subspaces is
established in the next theorem. Below, the number λ ∈ C is assumed
to be such that Lλ

def= λI + L is an invertible operator.
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Theorem 5. Let the operators L,M ∈ B(H) satisfy the Kleinecke-
Shirokov condition, i.e., X def= [M,L] ∈ {L}′. Then the intersection
of Deddens algebra BλI+L and the weak closure of Shulman subspace
U(L,M) coincide with a commutant of the operator L, that is,

BλI+L ∩ U(L,M)
w

= {L}′.

Proof. Let A ∈ BLλ
∩ U(L,M)

w
be any operator. Then there exist

the sequences of operators Xn and Yn from {L}′ such that

lim
n→∞〈(Xn + YnM)x, y〉 = 〈Ax, y〉

for all x, y ∈ H. Then it is clear that

lim
n→∞〈(Xn + YnM)Lx, y〉 = 〈ALx, y〉

and
lim

n→∞〈L(Xn + YnM)x, y〉 = 〈LAx, y〉.
Since, by the condition of the theorem,

ML− LM = X ∈ {L}′,

it follows that

〈(AL− LA)x, y〉 = lim
n→∞〈YnXx, y〉

for all x, y ∈ H. Therefore

AL− LA ∈ {L}′Xw ⊂ {L}′,

or,

(6) AL− LA = Y,

where Y ∈ {L}′. Therefore,

ALλ − LλA = Y.
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Hence
A− LλAL

−1
λ = Y L−1

λ ,

that is,

(7) LλAL
−1
λ = A− Y L−1

λ .

By multiplying both sides of equality (7) from the left by Lλ, and from
the right by L−1

λ , and again considering (7), we get that

L2
λAL

−2
λ = LλAL

−1
λ − LλY L

−2
λ

= A− Y L−1
λ − Y L−1

λ = A− 2Y L−1
λ ,

or simply,
L2

λAL
−2
λ = A− 2Y L−1

λ .

Thus we prove by induction that

Ln
λAL

−n
λ = A− nY L−1

λ , n ≥ 0.

Since A ∈ BLλ
, we have

‖Y L−1‖ ≤ ‖A‖ + CA

n
−→ 0, n→ +∞,

i.e.,
Y L−1

λ = 0,

and therefore Y = 0. This means by virtue of (6) that A ∈ {L}′.
Consequently,

BLλ
∩ U(L,M)

w ⊂ {L}′.
The inverse inclusion is obvious and so

BLλ
∩ U(L,M)

w
= {L}′.

The theorem is proved.

Example. Let V be the Volterra integration operator f → ∫ x

0
f(t) dt

and T be the multiplication operator f → xf(x) in L2[0, 1]. It is easy
to verify that

TV − V T = V 2.
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Hence, the operators V and T satisfy the condition of Theorem 5 and
therefore

B1+V ∩ U(V, T )
w

= {V }′.
Before passing to the next result, we note the following:

The radical R of any complex normed algebra D with identity is
defined as

R(D) def= {x ∈ D : xy is quasinilpotent for all y ∈ D}.

For an invertible operator A, let

RA
def= {X ∈ B(H) : lim

k→∞
‖AkXA−k‖ = 0}.

It is known [1] that RA is a bilateral ideal in algebra BA contained in
the radical R(BA).

Proposition 6. Let L,M ∈ B(H), and let [M,L] ∈ {L}′. Then

RLλ
∩ U(L,M)

w
= {0}.

Proof. As we already proved in Theorem 5, for each A ∈ U(L,M)
w

,
there exists Y ∈ {L}′ such that

(8) AL− LA = Y.

Then for each n ≥ 0, we have

‖Y ‖ = ‖Ln
λY L

−n
λ ‖ = ‖Ln

λ(AL− LA)L−n
λ ‖

= ‖Ln
λALL

−n
λ − Ln

λLAL
−n
λ ‖

= ‖Ln
λAL

−n
λ L− LLn

λAL
−n
λ ‖ ≤ 2‖L‖‖Ln

λAL
−n
λ ‖.

Consequently,

(9) ‖Ln
λAL

−n
λ ‖ ≥ 1

2
‖Y ‖
‖L‖ ,
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n ≥ 0. The statement of the proposition directly follows from (9). The
proof is completed.

Corollary 7. Let ∆ = ∆V be the inner derivation X → [V,X] of
B(L2[0, 1]) and pn be the polynomial of the form pn(z) = (1 + z)n.
Then

inf
n≥0

‖pn(V )‖ ≥ π

4
‖∆V | ker ∆2

V ‖,

where V is the Volterra integration operator in L2[0, 1].

Proof. As Sarason [4] proved, {V }′ = alg (V ), the weak closed algebra
generated by the operators V and I. Therefore, it follows from the
results of Shulman (see [6, Theorem 1.1]) that

(10) ker ∆2
V = U(V, T )

w
,

where T is an operator of multiplication by independent variable in
L2[0, 1]. Now by setting in Proposition 6 L = V , M = T and taking
into account the equality ‖V ‖ = 2

π (see [3, Problem 188]), (8) and (10),
we get from (9) that for any A ∈ ker ∆2

V ,

π

4
‖AV − V A‖ ≤ ‖(I + V )nA(I + V )−n‖, n ≥ 0.

Hence, taking into account the known equality ‖(I + V )−1‖ = 1 (see
[3, Problem 190]), we have

π

4
‖AV − V A‖ ≤ ‖(I + V )n‖‖A‖,

that is,
π

4
‖∆V (A)‖ ≤ ‖(I + V )n‖‖A‖.

We have from this

inf
n≥0

‖pn(V )‖ ≥ π

4
‖∆V | ker ∆2

V ‖.

The proof is completed.
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