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d-COMPLETE SEQUENCES OF INTEGERS

P. ERDŐS AND MORDECHAI LEWIN

Abstract. An infinite sequence a1 < a2 < · · · is d-complete if every suf-
ficiently large integer is the sum of ai such that no one divides the other.
We investigate d-completeness of sets of the form {pαqβ} and {pαqβrγ} with
α, β, γ nonnegative.

1. Introduction

An infinite sequence of integers a1 < a2 < · · · is called complete if every suffi-
ciently large integer is the sum of distinct ai. If every sufficiently large integer is
the sum of ai such that no one divides the other, we shall say that the sequence is
d-complete.

In [1] Birch shows that the set {pαqβ} with p and q relatively prime and α and
β positive integers is complete. Cassels [2] considerably generalizes the result of
Birch.

In this paper we are concerned with d-completeness of sets of the form {pαqβ}
and {pαqβrγ} with α, β, γ nonnegative. This was motivated by a question asked
by Paul Erdős: “Is it true that every integer > 1 is the sum of distinct integers

of the form 2α3β (α and β nonnegative integers) where no summand divides the

other?” Overestimating the difficulty of the problem, he told it to Jansen and wrote
it to Lewin. Jansen almost immediately gave a simple proof by induction, which
was also found by Lewin and by several others to whom Erdős wrote or told the
problem. For the sake of completeness we shall reproduce the simple proof in the
current paper. See also [3].

2. The main results

Proposition 1 (Appeared also as a “Quickie” in [3]). The sequence {2α3β} is d-
complete.

Proof. Up to n = 3 the proposition clearly holds.
Now let all the integers up to n, 3p < n < 3p+1 of some p, be representable.

If n = 2m, then m is representable by assumption and so is n. We may therefore
assume n to be odd. But then n−3p = 2m, with m < 3p, and so m is representable
and 3p does not divide any summand representing m. Then n is representable.
This proves the proposition.
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The question whether for n large enough it can always be written in the form
n = a1 + a2 + · · · + ak where all the a’s are of the form 2α3β and all are in an
interval (x, 2x) yields a negative answer, since the number of integers of the form
2α3β in (x, 2x) is asymptotically logx/ log 3, so the number of subset sums is only
about xlog 2/ log 3, which is not enough to cover everything, even if each subset sum
is different.

However, the following question may be asked. Is there a positive number t, for
which the following holds: There exists a positive integer n0 such that whenever
n > n0, then n can be expressed in the form n = a1 + a2 + · · · + ak, where all the
a’s are of the form 2α3β and all are in an interval (x, tx)?

If the answer to this question is affirmative, then one can ask how small t may
be chosen.

We shall now show that Proposition 1 does not hold if we replace 3 (in Propo-
sition 1) by 5. In fact we shall prove more.

Theorem 1. Let p, q be coprime integers exceeding 1. If the positive integer s is

not representable as a sum of members of the set {pαqβ} with no summand dividing

another, then neither are ps and qs.

Proof. By symmetry it suffices to prove the theorem for ps. If ps is representable,
say ps =

∑
pαiqβi , then at most one of the terms can have αi = 0. Since p and

q are coprime, it follows that there cannot be exactly one term with αi = 0, for
the left-hand side would be ≡ 0 (mod p), whereas the right-hand side would be
qβi 6≡ 0 (mod p). Thus αi > 0 in each term. Then s =

∑
pαi−1qβi is representable,

a contradiction.

Corollary. For positive integers p and q, {pαqβ} is d-complete if and only if

{p, q} = {2, 3}.

We now consider sequences whose terms are based on three primes (or powers
of primes).

The main results

Let p be a prime greater than 5. We shall say that an integer n is p-representable
if n =

∑
2α5βpγ for some nonnegative integers α, β, γ with no summand dividing

another. We now have the following.

Proposition 2. Every integer greater than 34 is 11-representable.

Proof. Let n be the smallest integer exceeding 34 that is not 11-representable. We
check the proposition by inspection for numbers up to 193 and find it true. Thus
n > 193. If n = 2m is even, then m is 11-representable and hence so is n. Thus
we may assume n to be odd. We have 193 = 53 + 68 and for α ≥ 3 we have
5α + 68 < 5α−1 × 11+ 68 < 3× 5α < 5α+1 + 68 < 3× 5α−1 × 11. It follows that for
α ≥ 3, every n > 193 belongs to at least one of the two intervals (5α + 68, 3 × 5α)
and (5α−1 × 11 + 68, 3× 5α−1 × 11). We thus have

Case 1. 5α + 68 < n < 3× 5α. Then n = 5α + 2m with 34 < m < 5α, and so m
is 11-representable and hence so is n.

Case 2. 5α−1 × 11 + 68 < n < 3 × 5α−1 × 11. Then n = 5α−1 × 11 + 2m with
34 < m < 5α−1 × 11, and so m is 11-representable and hence so is n. This proves
the proposition.
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We can show that for all primes p between 6 and 20 any integer greater than 155
is p-representable. Let f(p) denote the largest integer which is not p-representable.
Then f(7) = 31, f(11) = 34, f(13) = 24, f(17) = 115 and f(19) = 155.

We shall supply a proof for p = 19.

Proposition 3. Every integer greater than 155 is 19-representable.

Proof. Assume that n > 155 and that every integer between 155 and n is repre-
sentable. Let α be a positive integer and consider the following strict inequality:

5α+3 + 310 < 5α × 192 + 310 < 5α+4 + 310.

We check all the integers up to 935 by inspection, so that n > 935. As in the
previous example, we may assume n odd. First assume that n > 2115. We now
have

Case 1. 5α+3 + 310 < n ≤ 5α × 192 + 310. Put n = 5α+3 + 2m. Then
310 < 2m ≤ 236 × 5α + 310, and so 155 < m ≤ 118 × 5α + 155. But since
n > 2115 = 5 × 192 + 310, it follows that α ≤ 2. Thus 118 × 5α + 155 < 5α+3, so
that not only is m representable, but all of the summands used to represent m are
less than 5α+3. Hence n is representable.

Case 2. 192 × 5α + 310 < n ≤ 5α+4 + 310. Put n = 192 × 5α + 2m, so that
155 < m ≤ 132×5α+155. Note that for any α ≥ 0 we have 132×5α+155 < 192×5α,
so that not only is m representable, but all of the summands used to represent m
are less than 192 × 5α. Hence n is representable.

It remains to consider numbers n in the interval (935, 2115). First suppose
935 < n < 1875. Write n = 54 + 2m, so that 155 < m < 54. Thus not only is
m representable, but all of the summands used to represent m are less than 54.
Hence n is representable. Finally, suppose n is in the interval (1875, 2115). Then
n = 54 + 19 × 52 + 192 + 2m, where 207 ≤ m ≤ 327. Once again, not only is m
representable, but all of the summands used to represent m are less than 192 × 2.
Thus n is representable. This concludes the proof of Proposition 3.

The cases p = 7, 13 and 17 are treated likewise.
We may sum up by stating

Theorem 2. The sequence {2α5βpγ} is d-complete for every prime p, 6 < p < 20.

As for primes greater than 20, it seems that our method does not always work
satisfactorily. Already for p = 23 there seems to arise a difficulty stemming from
the very small distance of the numbers 23 and 25. In any case we have not gone
beyond 20.

Proposition 4. The sequence {3α, 5β, 7γ} is d-complete.

Proof. We shall show that every integer exceeding 185 is representable.
We check all integers up to 2500. Let N > 2500 and let the theorem hold for

all integers n, 185 < n < N . Considering the fact that both 72/25 and 252/73 are
numbers between one and two, we may choose for N an integer N ′ = 25α × 7β,
where α, β are nonnegative integers such that N/4 < N ′ < N/2. We may also
choose an integer N ′′ = 5 × 25γ × 7δ in the same interval. We now have

Case 1. N ≡ 0 (mod 3). Then N/3 > 185 and hence is representable by
assumption. Then N is representable.

Case 2. N ≡ 1 (mod 3). Choose N ′ as described above. Then N1 = N −N ′ ≡
0 (mod 3), with N/2 < N1 < (3/4)N , and so N = N ′ + 3 × (N1/3), where
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N1/3 > N/6 > 185, so that N1/3 is representable. But N ′ ≡ 1 (mod 3); the
summands of N1 being all divisible by 3, we get a representation of N without the
summands dividing each other.

Case 3. N ≡ 2 (mod 3). In this case we work with N ′′ and proceed as in Case 2.
This proves the proposition.

The following conjecture is perhaps true: Let a, b, c be three integers which are

pairwise relatively prime. Then every sufficiently large integer is d-representable by

numbers of the form aαbβcγ .
More generally, perhaps every sufficiently large n can be represented in the form

a1 + a2 + · · · + ak, where ak ≤ 2a1 and the a’s are all of the form aαbβcγ .
Additional questions might be: If p and q are coprime and not 2 and 3, so that

{pα, qβ} is not d-complete, what can be said about the density of the nonrepre-
sentable numbers? Are there infinitely many coprime nonrepresentables?

Perhaps the simplest conjecture with which we have difficulties states as follows:

Conjecture. For every t, there is an n0(t), such that every n > n0(t) can be
represented as a sum of integers of the form 2α3β, all of which are greater than t
and none of which divides the other.

We can settle the conjecture, if we can prove that for every t there is an n, such
that every integer between 3n−1 and 3n can be represented as a sum of integers of
the form 2α3β, all of which are greater than t and none of which divides the other.

We are confident that for every fixed t we can find such an n by means of lengthy
computations, but we do not see how to give a general proof.
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