ON SOME SINGULAR CONVOLUTION OPERATORS ${ }^{1}$

BY CHARLES FEFFERMAN ${ }^{2}$
Communicated by Joseph J. Kohn, February 14, 1969

In this note, we state some results on the boundedness of certain operators on $L^{p}\left(R^{n}\right)$. The operators which we study are too singular to be handled by the ordinary Calderón-Zygmund techniques of [1].

Our first theorem concerns a sublinear operator $g_{\lambda}{ }^{*}$ which arises in Littlewood-Paley theory. If f is a real-valued function on R^{n}, set $u(x, t)$ equal to the Poisson integral of f, defined on $R_{+}^{n+1}=R^{n} \times(0, \infty)$. Then for $\lambda>1$, the $g_{\lambda}{ }^{*}$-function on R^{n} is defined by the equation

$$
g_{\lambda}^{*}(f)(x)=\left(\int_{R+{ }^{n+1}}\left(\frac{t}{|x-y|+t}\right)^{n \lambda} t^{1-n}|\nabla u(y, t)|^{2} d y d t\right)^{1 / 2}
$$

(∇ denotes the gradient in R^{n+1}.)
It is known [4] that if $p>2 / \lambda$ then the operator $f \rightarrow g_{\lambda^{*}}{ }^{*}(f)$ is bounded on $L^{p}\left(R^{n}\right)$. On the other hand, if $p<2 / \lambda$ then there are L^{p} functions f such that $g_{\lambda}{ }^{*}(f)(x)=+\infty$ for every $x \in R^{n}$. The behavior of $g_{\lambda}{ }^{*}$ on L^{p} for $p=2 / \lambda$ is more subtle, and the methods of [1] and [4] are inadequate to deal with it.

Theorem 1. Let $1<p<2, p=2 / \lambda$. Then the operator $f \rightarrow g_{\lambda}^{*}(f)$ has weak-type (p, p), i.e.

$$
\operatorname{measure}\left(\left\{x \in R^{n} \mid g_{\lambda}^{*}(f)(x)>\alpha\right\}\right) \leqq\left(A / \alpha^{p}\right)\|f\|_{p}^{p}
$$

for any $\alpha>0$ and $f \in L^{p}\left(R^{n}\right)$, and the "constant" A is independent of f and α.

This result implies the positive theorem about $p>2 / \lambda$, for the case $p \leqq 2$, by the Marcinkiewicz interpolation theorem.

An argument almost identical to the proof of Theorem 1 gives information on fractional integration. In particular, suppose that $f \in L^{p}\left(R^{n}\right)$ and $0<\beta<1$. Stein [5] has shown that the fractional integral $F=I^{\beta}(f)$ satisfies the smoothness condition

[^0]$$
\mu_{\beta}(F)=\left(\int_{R^{n}} \frac{|F(x)-F(x-y)|^{2}}{|y|^{n+2 \beta}} d y\right)^{1 / 2} \in L^{p}\left(R^{n}\right),
$$
provided that $2 n /(n+2 \beta)<p$; and that conversely, any function $F \in L^{p}\left(R^{n}\right)$ for which $\mu_{\beta}(F)$ belongs to L^{p}, has a fractional derivative $I^{-\beta} F$ in L^{p}. This result follows from the study of $g_{\lambda}{ }^{*}$, since one can prove a pointwise inequality $\mu_{\beta}(f)(x) \leqq C_{\rho \lambda}^{*}(f)(x)$, for $n(\lambda-1)>2 \beta$, $0<\beta<1$.

Theorem 1^{\prime}. For $1<p<2,2 n /(n+2 \beta)=p$, and $0<\beta<1$, the operator $f \rightarrow \mu_{\beta}\left(I^{\beta} f\right)$ has weak-type (p, p).

Theorem 1^{\prime} is the best possible positive result for μ_{β}.
The above theorems exhibit various nonlinear operators which are bounded on some L^{p} spaces, but not on all. There are also some known examples of linear operators which are bounded only on some of the L^{p} spaces. For example, consider the operator

$$
T_{a \alpha}: f \rightarrow\left(\frac{\exp \left[i /|x|^{a}\right]}{|x|^{n+\alpha}}\right) * f
$$

defined for $f \in C_{0}^{\infty}\left(R^{n}\right)^{*}$. The convolution makes sense if we interpret $\exp \left[i /|x|^{a}\right] /|x|^{n+\alpha}$ as a temperate distribution on R^{n}. Fix an $a>0$ and an $\alpha>0$. For which p does $T_{a \alpha}$ extend to a bounded linear operator on $L^{p}\left(R^{n}\right)$? If α were negative, then $k=\exp \left[i /|x|^{a}\right] /|x|^{n+\alpha}$ would be locally L^{1}; so if we ignore difficulties at infinity (say by cutting off k outside of $|x|<1$), we find that $T_{a \alpha}$ is bounded on L^{p} for every $p(1 \leqq p \leqq+\infty)$, if $\alpha<0$. On the other hand, by computing the Fourier transform of $\exp \left[i /|x|^{a}\right] /|x|^{n+\alpha}$, we can deduce that $T_{a \alpha}$ is bounded on $L^{2}\left(R^{n}\right)$ exactly when $\alpha \leqq(n / 2) a$. (Since $T_{a \alpha}$ is defined only on $C_{0}^{\infty}\left(R^{n}\right)$, the statement " $T_{a \alpha}$ is bounded on $L^{p "}$ means that $T_{a \alpha}$ extends to a bounded operator on L^{p}, or equivalently, that the a priori inequality $\left\|T_{a \alpha} f\right\|_{p} \leqq A\|f\|_{p}$ holds, for $f \in C_{0}^{\infty}\left(R^{n}\right)$.)

Applying a strong form of the Riesz-Thorin convexity theorem, we can interpolate between the L^{1} inequality and the L^{2} inequality, to obtain the following theorem. Let $a, \alpha>0$, and let $\beta=(a+1)$ ($n a / 2-\alpha$) be positive. (The significance of β is that it turns out that

$$
\left|\left(\frac{\exp \left[i /|x|^{\alpha}\right]}{|x|^{\alpha}}\right)^{\wedge}(y)\right|=O\left(|y|^{-\beta}\right)
$$

as $|y| \rightarrow \infty$.) Then $T_{a \alpha}$ is bounded on $L^{p}\left(R^{n}\right)$ if

$$
\left|\frac{1}{2}-\frac{1}{p}\right|<\frac{\beta}{n}\left[\frac{n / 2+\alpha}{\beta+\alpha}\right] .
$$

Easy examples show that $T_{a \alpha}$ cannot even have weak-type (p, p) if

$$
\left|\frac{1}{2}-\frac{1}{p}\right|>\frac{\beta}{n}\left[\frac{n / 2+\alpha}{\beta+\alpha}\right] .
$$

The question has been raised, whether $T_{a \alpha}$ is bounded on $L^{p_{0}}\left(R^{n}\right)$ where

$$
\left|\frac{1}{2}-\frac{1}{p_{0}}\right|=\frac{\beta}{n}\left[\frac{n / 2+\alpha}{\beta+\alpha}\right] .
$$

But no a priori $L^{p_{0}}$ inequalities of any sort were known previously. We have proved the following partial result.

Theorem 2. Let α, a and p_{0} be as above, and let q_{0} be the exponent conjugate to p_{0}. Then $T_{a \alpha}$ extends to a bounded linear operator from $L^{p_{0}}\left(R^{n}\right)$ to the Lorentz space $L_{p_{0 q_{0}}}\left(R^{n}\right)$. (For an exposition of Lorentz spaces, see [3].)

Theorem 2 follows, using complex interpolation, from the two special cases $p=1$ and $p=2$. The case $p=2$ is immediate from the Plancherel theorem, and the case $p=1$ is just an example of the following generalization of the Calderon-Zygmund inequality.

Theorem 2^{\prime}. Let K be a temperate distribution on R^{n}, with compact support; and let $0<\theta<1$ be given. Suppose that K is a locally integrable function, away from zero, and that
(i) The temperate distribution \hat{K} is a function, and

$$
|\hat{K}(x)| \leqq A(1+|x|)^{-n \theta / 2} \text { for } x \in R^{n} .
$$

(ii) $\int_{|x|>2|y|^{1-\theta}}|K(x)-K(x-y)| d x \leqq A$ for all $y \in R(|y|<1)$.

Then the operator $f \rightarrow K * f$, defined for $f \in C_{0}^{\infty}\left(R^{n}\right)$ extends to an operator T of weak-type $(1,1)$.

Obviously, then, T is a bounded operator on $L^{p}\left(R^{n}\right)$, for $1<p$ $<+\infty$.

A concrete example of a K satisfying (i) and (ii) is the kernel $K(x)=\exp ^{[i /|x|]} / x$ for $x \in R^{1},|x|<1$, and $K(x)=0$ otherwise.

Theorem 2^{\prime} can be strengthened in various ways. First of all, under reasonable assumptions on K, we can prove a weak-type inequality for the "maximal operator"

UJuly

$$
M f(x) \equiv \sup _{\epsilon>0}\left|\int_{|y|<\epsilon} K(y) f(x-y) d y\right|
$$

Secondly, a proof almost identical to that of Theorem 2^{\prime} establishes a weak-type inequality for convolutions with kernels whose singularities lie at infinity, instead of at zero.

For a discussion of $T_{a \alpha}$ and similar operators, see Hirschmann [2] for the one-dimensional case, and Wainger [7] and Stein [6] for the n-dimensional case.

The operators we have discussed so far are only slightly more singular than the Calderón-Zygmund operators of [1], or operators which reduce to them by interpolation. We now discuss L^{p} inequalities for highly singular operators, for which the techniques of [1], [4], and [6] break down completely.

Let $T_{\alpha}: f \rightarrow f *\left(\sin |x| /|x|^{\alpha}\right)$, for $f \in C_{0}^{\infty}\left(R^{n}\right) . T_{\alpha}$ has an especially neat interpretation if $\alpha=(n+1) / 2$. In fact, the operator S, given by $(S f)^{\wedge}(x)=\chi(x) \cdot \hat{f}(x) \quad(\chi$ denotes the characteristic function of the unit ball in R^{n}), differs from $T_{(n+1) / 2}$ by an error term which is relatively small, so that, roughly speaking, S and $T_{(n+1) / 2}$ are the same.

It is easy to show that for $p \leqq 2 n /(n+1)$ or $p \geqq 2 n /(n-1)$, the operator S cannot be extended to a bounded operator on $L^{p}\left(R^{n}\right)$. The question of whether S (or $\left.T_{(n+1) / 2}\right)$ extends to a bounded operator on $L^{p}\left(R^{n}\right)$ for $2 n /(n+1)<p<2 n /(n-1)$, or for that matter, for any p other than 2 , is a well-known unsolved problem.

By interpolation between $p=2, \alpha=(n+1) / 2$, and $p=1, \alpha=n+\epsilon$, it is easy to prove that T_{α} is bounded on $L^{p}\left(R^{n}\right)$, for

$$
\left(\frac{1}{p}-\frac{1}{2}\right)\left(\frac{n-1}{2}\right)<\alpha-\frac{n+1}{2}, \quad 1<p<2, \frac{n+1}{2}<\alpha<n .
$$

See [6]. But we have every right to expect a far stronger inequality. For if we assume the conjecture that $T_{(n+1) / 2}$ is bounded on $L^{2 n /(n+1)+\epsilon}\left(R^{n}\right)$, then it follows (at least heuristically) by interpolation, that T_{α} is bounded on $L^{p}\left(R^{n}\right)$ for p in the larger range $n / \alpha<p<2$, $(n+1) / 2<\alpha<n$. This is the "right" range, since for $p \leqq n / \alpha$ it is easily seen that T_{α} does not extend to a bounded operator on $L^{p}\left(R^{n}\right)$.

Theorem 3. Let $n / \alpha<p<2$, and $p<4 n /(3 n+1)$. Then T_{α} extends to a bounded linear operator on $L^{p}\left(R^{n}\right)$.

References

[^1]2. I. I. Hirschmann, On multiplier transformations, Duke Math. J. 26 (1959), 221242.
3. R. Hunt, On $L(p, q)$ spaces, Ensiegnement Math. (2) 12 (1966), 249-276.
4. E. M. Stein, On some functions of Littlewood-Paley and Zygmund, Bull. Amer. Math. Soc. 67 (1961), 99-101.
5. , The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961), 102-104.
6. -_, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, Proc. Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1967, pp. 316-335.
7. S. Wainger, Special trigonometric series in k-dimensions, Mem. Amer. Math. Soc. No. 59, 1965.

Princeton University, Princeton, New Jersey 08540

[^0]: ${ }^{1}$ This work was supported by the National Science Foundation.
 ${ }^{2}$ I am deeply grateful to my adviser and teacher, E. M. Stein, for bringing these problems to my attention and for his many helpful suggestions and criticisms.

[^1]: 1. A. Benedek, A. P. Calderon and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365.
