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On Some Theoretical and Practical Aspects
of Multigrid Methods

By R. A. Nicolaides*

Abstract.  A description and explanation of a simple multigrid algorithm for solving finite

element systems is given. Numerical results from an implementation are reported for a

number of elliptic equations, including cases with singular coefficients and indefinite

equations.   The method shows the high efficiency, essentially independent of the grid

spacing, predicted by the theory.

I.  Introduction.  The main purpose of this report is to provide some evidence of
the practical utility of multigrid methods.  These methods, due originally to Federenko
[11] have received development both for the finite difference case [5], [6], [7], [8],
[13] and the finite element case [16], [17].  It is with the finite element case that we
shall be concerned here.  The theoretical predictions of the work necessary to solve any
particular problem by multigrid methods are, in general, significant only in the order of
magnitude sense; that is, these predictions are of the form that a given accuracy may be
obtained in a number of operations proportional to N, the number of equations in a
certain linear system of algebraic equations.  The "constant of proportionality" is usual-
ly unknown although the factors determining it (coefficients of the partial differential
operator, approximation properties of finite element trial spaces, etc.) are known.
Nevertheless, it is plainly essential to determine the "constants" as far as possible, and
all the more so since the 0(7V) results alluded to above hold only for sufficiently
large N.

One way of finding these unknown quantities is by means of Fourier analysis.
This is done in [7].  The difficulties of this procedure are well known.  Another ap-
proach is simply to solve a representative class of problems on a computer and to ob-
serve the empirical behavior of the algorithms.  Naturally, this procedure is not exhaus-
tive.  In the case under discussion, however, it has some merit as we shall see later.

A secondary purpose is to offer some advice to potential users of multigrid meth-
ods.  With this in mind, the next section contains some practical explanations of how
the methods may be constructed and interpreted.  This may be helpful as the theoreti-
cal work [16], [17] is, of necessity in view of its generality, a little abstract.  The dis-
cussion is intentionally on a very simple level so that the main ideas are accessible.
The rest of the paper is taken up with a discussion of numerical results obtained from
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934 R. A. NICOLAIDES

a relatively simple multigrid code.  In Section 3 this code is outlined and in Sections
4 and 5 the results for some Poisson equations with various kinds of boundary data
are given.  Section 6 addresses the question of the utility of certain modifications to
the basic algorithm.   Sections 7 and 8 are concerned with equations with nonconstant
coefficients, including discontinuous and singular cases and Section 9 deals very briefly
with the indefinite case.  These latter problems, whose prototype is the reduced wave
equation, are not ordinarily solved iteratively.  The multigrid technique makes iterative
solution possible, however, and offers the usual storage economy associated with iter-
ative methods.

II.  Basic Algorithm.  In this section we discuss the essential ideas of the finite
element multigrid algorithm.  The term basic algorithm refers to a stationary linear
iterative method of the first degree which appears in some form in most multigrid
algorithms.  This algorithm may be conveniently explained in the context of a simple
model problem, namely

(2.1) min     Jn «;+«}-2 JoKr,
ue//¿(íí)

where 77¿(Í2) is the familiar Sobolev space of functions with one generalized derivative
and which vanish on the boundary of the bounded region Í2 lying in the plane.  The
reader interested in a rigorous general treatment of 2mth order boundary value prob-
lems is referred to [16].

We write (2.1) as

(2.2) min     a("> «) ~ 2("- /)•
uSH0(n)

and consider the finite element solution of (2.2).  Let us choose two finite element
trial spaces Sx and S2, with Sx containing A^ nodal parameters and S2 C Sx.  Sx is
the usual trial space where the solution to (2.2) is sought.  S2 is an auxiliary trial
space which will be required by the multigrid algorithm.  S2 is not arbitrary but is
constructed in a way best made clear by an example.  Thus, let Í2 be the square

u = {ix,y)\0<x<l,0<y<l}.

We subdivide £2 by repeated halvings by lines parallel to the x and v axes,  m such
halvings will divide Í2 into 2m x 2m = 22m smaller elements.  We shall take for Sx
the class of continuous functions which are bilinear in each element, and vanish on
9fi.  Then it is clear that Nx = (2m -I)2.  The second trial space 52 is naturally de-
fined in this context as analogous to Sx, but based on (m - 1) halvings of 0.  Thus,
Sx D S2 and if N2 denotes the number of nodal parameters of elements of S2, N2 ~
ViNx.  S2 is much smaller than Sx.

We shall adopt the following notational convention: trial functions contained in
Sx ox S2 will be written with an overbar. The corresponding vector of nodal values is
then indicated by removal of the overbar.  Thus, u is some trial function and u is the
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MULTIGRID METHODS 935

corresponding vector of nodal values.   Returning to (2.2), the usual procedure is to
substitute a general element u^ of 5, into the variational principle to get

(2-3) a(u^\u^)-2(u^\f)

and then to write the conditions for a stationary point

(2.4) A*1 >«<» >=/<'>,

where A^1^ is the system or stiffness matrix for Sv i/1* is an Nx -dimensional vector
of nodal parameters defining the numerical solution of (2.2) and /O is computed
from / and the trial functions 0,- G Sx, i = 1, 2, . . . , Nx, by the formula

(2-5) ffl)=Snf<t>j>     7 = 1.2_,7V,.

The basic algorithm is for the solution of the algebraic system (2.4).   Its fundamental
idea is to use S2 to construct another finite element solution to a system of the form
(2.4) by exactly the same method used to derive (2.3) and (2.4) from (2.2).  We can-
not do this to (2.3)—(2.4) as they stand.  Such an action would be tantamount simply
to solving (2.2) on S2 instead of on Sx. What we have to do is to modify (2.4) so
that looking for its solution in S2 is sensible.  The mechanism for doing this is
smoothing; in practice this is carried out by means of some relaxation.  A commonly
used technique is the Gauss-Seidel method.  This is discussed further below.  For the
present we shall simply explain what the effect of smoothing is on the system (2.4).

A function i/1' in Sx will be regarded as "smooth" if it may be sensibly repre-
sented as an element of S2.  All elements in Sx which are also in S2 axe, therefore,
smooth.  More generally, any element of Sx which does not have significant fluctua-
tions on a length scale of the order of twice the mesh length of the Sx grid may be
regarded as smooth.   Let i/1) be an approximation to t/1) of (2.4) such that the re-
sidual f(l ) - A^1 V1 ) = r is smooth.   Let e denote the error i/1 ^ - i/1 ) so that the
error and residual are related through the equation

(2.6) A(1)e = r.

Since ris smooth, so is e.  If we could solve (2.6) for e, the exact solution of (2.4)
would be at hand.  We cannot easily do this in general.  However, we have in the case
of (2.6) the vital additional information that ëis capable of being reasonably represent-
ed as an element of 52, a much smaller space than Sx.  Since (2.6) is the discrete fi-
nite element system for some functional of the form (2.1) with a certain free term r,
the natural suggestion is to form this functional

(2.7) a(e,l)-2(1,7)

and attempt to minimize it on S2, in the hope that the solution ë'2', a member of
S2, will be a close approximation to 1.  Denoting the system matrix on S2 by A(2),
the condition for a stationary point of (2.7) is that

(2.8) A-(2)e(2) = ,(2}j
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936 R. A. NICOLAIDES

where r^ is an ^-dimensional vector constructed from r in a way we shall consider
further below.

On the assumption that we are able to solve (2.8) without difficulty, we may
extend i<2) by the 'identity' mapping into Sx (since ?(2> G S2 C Sx) and denote it
by e^\    e*1) is then our approximation to e and i/1* + e*1* hopefully is near to
u*-1'.  This then is the essential idea behind the multigrid method:   prepare the given
problem in such a way that it can be represented and solved on a smaller subspace or,
equivalently, on a coarser grid.

We have still to consider three things: smoothing, the question of the construction
of the residual r^ of (2.8) and the question of how the subproblem (2.8) is to be
solved.  Consider first the question of smoothing.  We shall illustrate this briefly in
connection with the Gauss-Seidel method.  Applying this method to our system (2.4),
where we assume a double indexing system for the nodes (x,-, y A = (ih^\ /ft*1*),
ml> = (Nx + 1)_1 and a sweeping order left to right, bottom to top, it is not difficult to
verify that a given initial error e transforms into e' according to the rule

+ 8    />^+1 + e,+ i <1'~1 + e,+ ' •/ + £'+l 'i+1

What we should notice about this and similar formulas is that the new residual at a
point is a (positive) weighted average of its current neighboring values.  This important
property is at root a consequence of the fact that solution operators of elliptic prob-
lems are smoothing operators.  The operator on the right in (2.9) is in some sense a
local inverse to the elliptic operator —A which we are considering as our example.   The
property of being a smoothing operator simply means that small scale variations in the
operand are eliminated (smoothed) by the operator.  To help make this discussion
more concrete we may note that for our model problem, three sweeps of the Gauss-
Seidel method (2.9) applied to any initial function in Sx are sufficient to smooth it to
the point where it may be well represented by an element of S2.  It can be shown that
the amount of smoothing per sweep of (2.9) is independent of hS1"*—notice that (2.9)
itself is independent of A*1*.   Furthermore, these properties are still true generally
speaking, for positive definite 2mth order elliptic finite element systems [16].  This
property of the smoothing behavior being independent of the grid size is the key to
the remarkable convergence properties of the multigrid method.  We shall have more
to say about smoothing later.

Let us now turn to the question of the computation of the reduced residual,
r^ of (2.8), which is the right-hand side for the subproblem defined on S2.  This
computation is effected by means of a local averaging operation on the components of
r, the residual in (2.6).  The precise weights to be used in this averaging process depend
only on the class of piecewise polynomials used in constructing the spaces Sx and iS2.
For the model problem /2* is constructed in the following way:   let (x¡, yj) be a node
in the coarse (i.e., S2) grid.  Then the component r^is defined as
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MULTIGRID METHODS 937

(2.10) rU = rU + ^rl+i.J + rl-i,J + rl,J+i + ri,J-0

+ 1//4irI+ l,J+l  + rI+ 1,7-1 + rl-l ,J+ 1   + rI-l ,J-l )■

The weights in (2.10) add up to 4 because of the way finite element trial functions
are scaled.  The S2 system matrix is automatically scaled in a way which corresponds
with (2.10).  In this sense, the method is self scaling and there is no necessity (unlike
the finite difference case) for decisions by the user.

It is clear from (2.10) that r^ may be obtained from r by means of a matrix
multiplication

r(2) = E^r,

where E^ is an N2 x Nx matrix whose entries may be found from (2.10).  In the
case of more general trial functions this matrix may be easily found as the transpose
of the matrix which maps each vector i/2^ containing nodal values of an element
u^2' G S2 onto the vector u^1' containing nodal values of i/2) regarded as an element
of Sx [16].  We may observe that because of its definition the averaging operation is
nothing more than the dual of the interpolation operation from S2 into Sx.

Finally, we have to discuss the question of solving the reduced residual equa-
tion (2.8).  Before doing this, let us point out that the general ideas so far used have
a long history.  In fact, as we pointed out in [15] they actually go back to South-
well [19], who used the general term "block relaxation" to describe them.  Many
authors have contributed to this latter circle of ideas.  However, the work was always
thought of as being simply a device for accelerating a relatively slowly converging
iterative method.  In line with this idea the reduced equation (2.8) was always con-
structed to be of a very small size to facilitate its solution, either by a direct method
or by some other convenient technique.  Federenko's outstanding idea was to observe
that (2.8) is exactly another (elliptic) system of the type whose solution is being
sought in the first place, and hence that it can be solved by exactly the same method
used to derive it from the original problem.   That is to say, in our context we intro-
duce a third subspace S3 and reduce (2.8) to a solution on it.  The S3 problem will
have only about 1/16 as many unknowns as the original. The cost of making this
further reduction is only a few relaxation sweeps on the S2 grid.  If the S3 problem
is still too large for convenient solution it may be further reduced at essentially
negligible cost to a problem on an S4, now containing about 1/64 of the original
number of unknowns.  This reduction process may be carried on until a manageable
problem is obtained on some subspace S .  Following solution on the S   subspace,
the solution is interpolated onto S    x, the new solution on S    x (possibly) smoothed
to annihilate interpolation errors, then interpolated to S    2 and so on.  An aspect of
the entire algorithm of considerable theoretical and practical importance is that it
enables us to compute numerical solutions of elliptic equations with a given accuracy
in essentially the minimum possible number of arithmetical operations, in the order
of magnitude sense.  No less important is the fact that the basic ideas are relevant not
only to scalar elliptic equations, but also to systems of such equations and evolution

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



938 R. A. NICOLAIDES

equations.  These applications have not yet been fully exploited.  A large range of
additional possibilities, some of them of potentially very great value are suggested for
the finite difference case in [7].  There is no reason why these applications should be
limited to finite differences however, and hopefully these valuable ideas will be also
of service in the finite element setting.

As indicated in the introduction, we shall report below on some relatively simple
multigrid computations.  The computations are exclusively concerned with the basic
algorithm discussed above.   Regretfully, we shall not be able to consider in this report
the implementation of the more powerful multigrid techniques wherein the problem
to be solved is posed as that of finding an approximate solution of specified accuracy
to a given differential equation.  Rather, we limit the discussion to the problem of
solving preassigned systems of equations which approximate particular differential
equations.

III. Outline of Computations. The idea behind the computations carried out
was first of all to examine the practical convergence characteristics of the basic multi-
grid method, especially its stability with respect to changes in implementation strategy
and, secondly, to determine what variety of problems a moderately general program
could effectively solve before special smoothing and other techniques become neces-
sary.  For these purposes finite element multigrid codes were written for solving sec-
ond order equations of the form

(3-D ¿ (aix, y) g)  4- ± (*(x, y) |)  + c(x, y)u = f

in the rectangle £2 = {(x, y)\0 <x < xQ, 0 <y <^0} with various kinds of boundary
data specified.  The codes use either piecewise linear functions on triangular elements
or bilinear functions on rectangular elements.  In both cases the triangulations were
the simplest ones, namely for the bilinear case the region £2 was dissected into n2
identical rectangles and for the linear case, each rectangle was divided into two tri-
angles by a diagonal with positive slope.  No attempt was made to use any irregular
spacing of the dissecting horizontal and vertical lines, as the effect of this can, at least
for smoothly varying dissections, be simulated by variable coefficients a and b in the
equation (3.1).  The numerical integrations in the finite element codes were performed
using the four point Gauss rule, (exact for cubics) in the bilinear case and the mid-
points of the edges of the triangles as nodes in the linear case.

The calculations fall naturally into three groups.  The first group consists of a
fairly extensive number of tests on the Poisson equation, (3.1) with a = b — ■*■ 1,
c = 0. Here, in addition to Dirichlet data we have considered problems with normal
derivative data given on three sides of the rectangle; in addition we tested the effect
of modifying the residual reduction method in the hope of avoiding an apparently
expensive computation of a residual on the finest grid at each complete cycle of the
multigrid algorithm.  These calculations are reported in the next three sections.  The
second group of calculations, much fewer in number were designed to test what loss
of efficiency, if any, would be incurred when the coefficients a and b were
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MULTIGRID METHODS 939

well-behaved functions of x and y.  We shall present some sample results which show
that no essential loss occurs.  The third group consists of some examples of solution
of problems with some degree of singularity present in the coefficients.  Sometimes
this can cause serious trouble to a code without special relaxation methods incorpo-
rated but as we shall see this is by no means always the case.

Unless otherwise stated, each system of grids was generated by repeated dissec-
tion of the region, starting from the grid with one interior grid point. This latter
was taken to be the coarsest grid.  Such a choice generally avoids the need for a
special solution technique on the coarsest grid, although our codes do in fact have a
banded elimination solver.  This is frequently useful.   For example it can easily hap-
pen that the coarsest grid coefficient matrix, while positive definite and of very small
size is almost singular.  The relaxation method can converge too slowly to be feasible
in such cases.  Furthermore, as it turns out, some form of direct solution on the
coarsest grid is essential for solving indefinite problems, for example these with a = b
= 1 and c » 1.

The general structure of the codes follows that of the code in [7], except that
allowances are made for the fact that we have to deal with variable coefficients and
different interpolation and residual reduction techniques.  The total storage require-
ments are minimal.   For example, the bilinear code uses 11A' storage locations for
each grid where N' is the number of grid points on the grid in question.  9N' loca-
tions are for the coefficients; A' are for the solution on this grid, and N' are for the
right-hand side.  The total storage for all the grids is essentially 4/3 oN, where oN is
the storage for the finest grid which contains N grid points.  We allowed one vector
of length N for working space.  Thus the total storage requirements including coeffi-
cient storage are not larger than 16/V locations.

Another point is that a fixed smoothing strategy is used in our codes.  The
meaning of this is as follows:   on any grid except the coarsest and finest there are
two possible occasions on which one may want to carry out smoothing (i.e. relaxation)
operations.  These are (a) when we want to smooth prior to forming a smaller prob-
lem on a coarser grid; this we call fine to coarse smoothing, and (b) when we want
to smooth a solution which has been constructed by interpolating from a coarser
grid; this is coarse to fine smoothing.  Only one kind of smoothing algorithm is in
the codes, namely smoothing by successive point relaxation, including Gauss-Seidel as
the most important spacial case.   For this smoothing method, we shall call an ordered
pair of nonnegative integers (p, q) a smoothing strategy.  The first integer represents
the number of fine to coarse relaxation sweeps and the second the number of coarse
to fine sweeps.  The same pair is assigned to every grid.

In order to give a clear statement of the algorithm implemented let us introduce
the following notations:   the finest grid will be denoted by Gm and the successively
coarser grids by Gm_x, Gm_2, . . . ,GX.  Let Tk denote an operator which transfers
vectors from Gk onto G-, where if k < j the transfer operation is interpolation and
if k > j the operation is the reduction operation encountered several times previously.
Each cycle, or iteration of the algorithm has two parts, a forward (fine to coarse) part
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and a return (coarse to fine) part.  Denoting these two by (A) and (B), the algorithm
may be described thus:

(A) Do steps 1 and 2 fox j = m, m - I, ... ,2.
1. Relax on G- (p sweeps); let w^ and r^ denote the approximation and

residual obtained.
2. Transfer 7|_1r0) as data for Gj_x.
3. Solve the resulting Gx system for w^\

(B) Do steps 4 and 5 fox k = 1,2, . . . , m - I.
4. Formw(*+1> = h>(*+1> + 7£+1w(fc).

5. Relax on Gk+X (q sweeps) with w^k+l^ as initial approximation and
denote the result by w^k+1\

w*m) obtained by this process is the new approximation to the solution of the algebra-
ic system. In our codes, the starting approximations for all the intermediate relaxation
solutions are taken to be zero.

All the data reported below were obtained from a time-shared CDC 6400, using
an FTN FORTRAN compiler operated at the lowest level of optimization with single
precision arithmetic.  The timings were obtained by using the SECOND subroutine.

IV. Results for the Poisson Case I. The first topic for investigation is the question
of the behavior of the method as a function of the smoothing strategy. Tables 1 and 2
contain some information along these lines, respectively, for the cases of linear and bilin-
ear elements. Both of these tables are for a grid with 25 = 32 intervals of subdivision on
each side, so that there are 961 unknowns in each case.  The entries in the body of
the table are the number of work units expended in order to reduce the I2 norm of
the initial error by a factor 10_1.  A work unit here is defined as the time necessary
for a relaxation sweep on the finest grid.   This time was determined in all cases using
the relaxation routine in our code and averaging over a large number of runs.  Homo-
geneous data both for the right-hand side and the Dirichlet boundary condition was
used.  Except where stated the relaxation parameter w was taken as 1.0.  The tables
show the results for a random initial error vector each of whose components is a uni-
formly distributed random number in the interval [-1, 1 ].   Let us explain here a
characteristic difficulty of conducting these tests:   although it is true that the algorithm
is a linear stationary iterative method, as we shall see below it is not operated asymp-
totically.  That is, usually a problem is solved after only a small number (say 5 for
moderately sized problems) of iterations of the multigrid method.  This means that
the actual distribution of the initial error relative to the eigenvectors of the iteration
matrix can play a significant role in the cost of a computation.  It is, therefore, advis-
able to test the algorithm on a variety of initial approximations of differing characters.
However, even this cannot guarantee that the worst possible case has been tested.   On
the other hand it is not necessarily true that the worst case will always occur in a prac-
tical situation.  Although we shall not report extensively on the computations with ini-
tial errors other than the random one mentioned above, other initial errors have in fact
been tried.  We believe that our reported figures are a reliable indication of what can
be achieved in less academic situations.  The feature of nonasymptotic operation of the
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method requires us also to examine the variation in cost according to the number of
iterations carried out.  This is the reason for the three figures given for each (p, q)
strategy.  Reading left to right the costs are, respectively, for 1, 3, and 5 iterations of
the algorithm.

6.6 7.6
8.3

6.1 7.1
7.6

5.7 6.5
7.0

5.3 6.1
6.5

4.9 5.5
6.0

4.6 5.4
5.6

5.1 6.0
6.4

4.5 5.5
6.0

4.3 5.3
5.6

4.2 5.0
5.4

3.9 4.6
4.9

3.7 4.4
4.7

4.7 5.7
6.2

4.4 5.5
5.8

4.3 5.2
5.5

4.0 5.0
5.3

3.7 4.6
5.0

3.7 4.6
4.8

4.5 5.5
6.0

4.7 5.7
6.0

4.3 5.3
5.5

4.0 5.0
5.4

3.9 4.Í
5.2

4.0 4.9
5.2

4.6 5.9
6.3

4.6 5.7
6.1

4.5 5.5
6.0

4.3 5.4
5.7

4.3 5.1
5.5

4.0 4.9
5.2

LINEAR

ELEMENTS

32 x 32 GRID

UNIFORM

RANDOM

INITIAL ERROR

1   3
5

ITERATIONS
WORK UNITS BASED
ON 107 x  10"3
sec/SOR SWEEP

Table 1.  Strategies

5.2 5.3
5.5

5.0 5.1
5.3

4.4 4.6
4.7

4.3 4.4
4.5

3.6 3.4
4.2

3.6 3.7
3.9

4.0 4.0
3.9

3.7 3.7
3.6

3.6 3.5
3.5

3.3 3.4
3.3

3.1 3.1
3.1

3.0 3.0
3.2

3.9 4.4
4.4

3.5 4.0
4.0

3.5 4.0
4.0

3.4 3.7
3.7

3.0 3.6
3.5

3.1 3.4
3.4

3.7 4.2
4.2

3.9 4.2
4.1

3.7 4.0
4.0

3.4 3.8
3.9

4.0 3.7
3.7

3.3 3.7
3.6

3.9 4.4
4.4

4.0 4.4
4.4

3.9 4.3
4.3

3.8 4.2
5.6

3.6 4.0
4.0

3.5 4.0
4.0

BILINEAR

ELEMENTS
32 x 32 GRID

UNIFORM

RANDOM

INITIAL ERROR

1  3
5

ITERATIONS
WORK UNITS
BASED ON
135 x 10"3 sec
per SOR ITERATION

Table 2.  Strategies

The tables show in both cases a high degree of robustness in the algorithm, in-
dicating, respectively, costs ranging between say 4—8 work units and 3—5^ work
units per 10_1 reduction in the error (i.e., per digit) over the range of strategies (p, q),
0 < p, q < 5.  (We shall frequently approximate the tabulated figures in this way.  As
a justification we may note that the starting errors are "random" and not, strictly
speaking, reproducible and also that slight deviations in run times can occur on time-
shared computers.) The ranges are even smaller if the unreasonable strategies of the
form (p, q), q » p axe eliminated.  A clear feature in both cases is the increase in
cost with the number of iterations.  This phenomenon is commonly observed with
iterative methods and apparently the multigrid method-at least when operated in the
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stationary mode we are using here—suffers from this defect.  We have computed the
costs for larger numbers of iterations and found that the figures for 5 iterations whilst
not maximal are nevertheless essentially reliable.  In practice, 5 iterations would give
us several correct digits so that the question of doing large numbers of iterations is un-
likely to be of practical interest.

Another interesting point is that the best strategies in both cases are along the
bottom row of the tables, where q = 0.  This means that the greatest efficiency is
obtained when no smoothing is carried out following the transfers from coarse to fine
grids when the starting error is random.  However, it is essential that we point out that
other calculations we have carried out but not reported here have shown that when
the starting error is very smooth, for example a constant, the greatest efficiency is ob-
tained when «7 = 1.  However, the loss in using q = 0 in this case is minor and, in fact,
is comparable with the loss that is incurred if we use q = I in the case of the random
starting error—the second row up in Tables 1 and 2.  Notice that a best overall strategy
indicated by the tables is the (2, 0) strategy in both cases.  One further point to notice
is that, although the bilinear elements require only about 3 work units per digit against
about 5 for the linear elements, the latter require less time for a fine grid relaxation
sweep because of the fact that in general only 7 operations are required at each point
instead of 9 in the bilinear case.

GRID
SIZE

BEST
STRATEGYto-

COST/
1 R

ITNS/
10  REDN

ERROR
TYPE

LINEAR
ELEMENTS

8x8

16 x  16

32  x  32

64 x  64

(4,0)
(2,3)

4.2
4.7

0.7
1.1

(3,0)
0,1)

4.5
4.2

0.9
1.5

(2,0)
(2,2)

4.4
3.9

1.3
1.0

(3,0)
(2,3)

4.6
3.9

1.0
0.9

R
S

R = RANDOM
S = SMOOTH
STARTING ERRORS

FIGURES   BASED
ON   3   ITNS

SOR   SWEEP  TIMES
■35 x  10 24 x   10

107 x  10-3,  425  x  10 3 secj

Table 3.   Best strategies

GRID
SIZE

BEST
STRATEGY

COST/
p.0-1 R

iras/
10       REDN

ERROR
TYPE

BILINEAR
ELEMENTS

8X8

16 x   16

32  x  32

64 x  64

(2,0)
0.1)

3.0
3.2

0.7
1.0

(2,0)
(1,1)

2.9
2.9

0.8
1.0

(2,0)
(1.1)

2.9
2.8

0.8
1.0

(2.0)
0.1)

3.1
2.8

0.8
0.9

STARTING  ERRORS
R = RANDOM
S  =  SMOOTH
FIGURES  BASED
ON 3  ITNS
SOR  SWEEP TIMES

■36 x  10

135 x  10"

-331 x  io
'.  540 x io"

Table 4.   Best strategies
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Consider next Tables 3 and 4.  These tables are intended to indicate the best strategies
found on the sequence of grids shown, so that some idea of the dependence upon the
grid size may be seen.  These tables contain data for the case of a smooth (actually
constant) as well as a random initial error.  We have also included additional informa-
tion, such as that shown in the fourth columns of the tables in order to convey some
idea of the time required to solve a given problem.  Thus, for example in the bilinear
case 0.8-1.0 multigrid cycles will generate about one correct digit in the numerical
solution, and (3-4) work units will be required to do the calculations.  The most im-
portant fact to be learned from Tables 3 and 4, however, concern the dependence on
the grid size.  It is clear that for all practical purposes the method has convergence
properties independent of the grid spacing.  It appears that whatever the mesh spacing,
in the bilinear case we can obtain each new digit at a cost of about 3 work units, and
in the linear case at a cost of about 4-5 work units.  Roughly speaking, this means
a cost of about 30—35 N multiplications to obtain each new digit in either case, where
N is the number of unknowns.  Furthermore, comparing the linear case with the opti-
mum SOR times, the multigrid method is 4 times faster for the 32 x 32 interval grid
for a given accuracy and 8 times faster for the 64 x 64 interval grid.  On a 128 x 128
interval grid the multigrid method would be 16 times faster than SOR.  The slight dis-
crepancies between Tables 3 and 4 and Tables 1 and 2 are caused mainly by the fact
that different random starting errors were used in the various cases.  Let us also note
that the cost figures for the case of fewer multigrid iterations are marginally lower on
average and those for more iterations marginally higher on average than those reported
in the tables.  No attempt has been made to optimize our figures.  The codes were all
run with the lowest level of compiler optimization and, as we said before, with the
relaxation parameter co = 1.  It would be possible to obtain further speed up factors
of about 10%-20% by adjustment of the various parameters.   However, our main con-
cern here is with the average behavior of the method over a wide class of problems,
and not with optimizing it for any specific application.  We regard the generality of
the algorithm as one of its most significant attributes.

A somewhat disturbing feature of Table 3 is the lack of regularity in the best
strategy in the various cases.  To show that this is not too serious a problem we pre-
sent Table 5 which contains the results of using in all cases the strategy (3, 0) on ran-

GRID
SIZE

BEST
STRATEGY

COST/
HO-1 R

iras/
10  REDN

ERROR
TYPE

LINEAR
ELEMENTS

8x8

16 x 16

32  x 32

64 x  64

(3,0)
(2.2)

5.1
4.9

(3,0)
(2,2)

4.5
4.2

(3,0)
(2.2)

4.6
3.9

(3,0)
(2.2)

4.6
4.0

1.0
1.1
1.0
1.0

1.0
1.0

R
S

STARTING ERRORS
R =  RANDOM
S =  SMOOTH

FIGURES  BASED
ON 3 ITNS
SOR  SWEEP TIMES
5 x  10~3,  24 x  10-3

107 x  io-3,  425 x 10"3 sec

Table 5.   Suboptimal strategies
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dorn errors and (2, 2) on smooth errors.  The solution costs are seen to be entirely
comparable with those of using the optimal strategies.  Notice that Tables 3, 4, and
5 show consistently lower costs for solving problems with a smooth starting error.  It
follows that such starting errors should be arranged for wherever possible.  However,
this cannot always be arranged, particularly when a sequence of elliptic problems is
to be solved in the course of solution of a time dependent problem, an eigenvalue
problem or similar situations.

To summarize our conclusions so far we may state that 30-35 N multiplications
per digit is a reasonable cost to allow for the solution of Poisson's equation in a square
using the algorithm described.  As an empirical observation, it is also suggested that
smoothing strategies of the form (px, 0) and (p2, p2) for small integers px and p2 axe
likely to be of greatest practical interest.

V.  Results for Poisson's Case II.   In this section we shall consider the same
equation as in Section 4, but with the boundary conditions

u = 0,   x = 0,    0<y < 1,

bu/bn = 0,    elsewhere on 9£2,

where bu/bn denotes differentiation in the direction of the outward pointing normal
to 9£2.  Equation (5.1) was treated in the usual way as a natural boundary condition.

The results of some calculations are summarized in Tables 6 and 7.

(5.1)

LINEAR ELEMENTS, 32 x 32 GRID, 3 ITERATIONS

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.7

RANDOM 6.6 5.9 5.6 5.9 6.4 7.1 8.3 10.3

SMOOTH 12.1 9.8 8.3 6.6 5.1 4.0 4.4 4.8

Table 6.  Costs as function of co

BILINEAR ELEMENTS, 32 x 32 GRID, 3 ITERATIONS

ERR" 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

RANDOM 4.5 4.1 4.0 4.4 5.1 5.4 6.2

SMOOTH 8.3 6.8 5.8 5.1 4.1 4.2 4.7 5.6

Table  7.  Costs as function of to

These tables are self-explanatory.   The smooth starting error referred to is a constant
vector.  The figures for the work units are those for the best strategy found in every
case.  As the tables show, eo = 1 is a satisfactory relaxation parameter for either ele-
ment type with a random starting error.  In this case, the best strategy for both types
of elements was stable for large variations in to about to = 1, and was found to be the
(2, 0) strategy.  The computation costs are a little higher than for the Dirichlet prob-
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lern.  A heuristic explanation of this fact is that the discrete system of equations now
contains a number of first order difference equations associated with the Neumann
condition, in addition to the second order equations associated with the interior points.
These first order equations necessarily exert a destabilizing effect on the algorithm,
and so increase the solution costs.  It is worth pointing out here that an analogous loss
of convergence speed occurs with SOR and other relaxation methods when applied to
problems involving Neumann data.

A more striking fact is the behavior in each case associated with the smooth
error.  Here, it turned out to be essential to overrelax in order to make the solution
costs comparable with those of the Dirichlet case.  A full explanation of this phenom-
enon would probably involve the fact that an error vector e, equal to 1 in every com-
ponent, has a residual which vanishes everywhere except near the left boundary of £2,
so that the residual equation in a sense contains relatively poor information. We shall
not go into this any further here.  Let us instead note that using the higher values of
to, say to = 1.5, enables the computation costs to once again be made comparable
with those for the Dirichlet case.  As with the random starting error, the best strategy
for both kinds of elements was very stable with respect to large changes in to about
its best value, and was in both cases the (1, 1) strategy.  Also, the costs for a given to
were found to behave similarly to those for the Dirichlet case under variations in the
smoothing strategy.   These computational costs are all essentially grid independent.

VI.   Modified Residual Reduction.  A major contribution to the solution cost
in using the multigrid method comes from the evaluation of the residual prior to its
reduction onto a coarser grid.  It is, therefore, natural to try to avoid this calculation.
Clearly, the best we can hope to do is to reduce the cost from that of a fine grid cal-
culation to that of an adjacent coarse grid calculation.  The most obvious method is
simply to calculate the residual at the coarse grid points only and to use the values so
obtained as the data for the reduced problem.  Apparently, to do anything else in the
finite difference case is wasteful [7, Eq. A.12a].   In the terminology of [7] this re-
duction method is called injection of the residuals.

The question that arises is whether or not the injection method can yield com-
parable accuracy for the smaller amount of work that it requires.  On the basis of a
considerable number of calculations, our conclusions about using injection in the fi-
nite element ease are as follows:   firstly, in no case were we ever able to obtain any
essential reduction in the computation cost, although in the Dirichlet cases it is usually
possible to obtain similar cost figures for the algorithms using injection on the one
hand and the weighted average reduction of previous sections on the other.  In the
case of the mixed problem of Section 4 the injection method is substantially more ex-
pensive to compute with.   Secondly, there is a loss of robustness with the injection
method.  For example, use of some plausible smoothing strategies can actually cause
divergence to occur.  We have yet to see divergence occur when solving a positive
definite problem using the full algorithm.  Tables 8 and 9 contain some results illustra-
ting these points.   For the mixed problem, results are not so bad when the starting
error is smooth (not shown in the tables) but are still 50% or so more than with the
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full algorithm.  Notice also in the mixed problem that there is a loss of stability, in
the sense that small changes in to can lead to relatively large changes in the costs.

142

9.0

9.4

7.3

6.1

7.0

7.5

6.4

6.7

5.8

5.8

5.4

5.6

5.4

5.5

4.7

4.7

4.6

5.2

5.1

4.9

4.6

4.4

5.0

5.0

5.0

4.8

4.4

4.5

4.8

LINEAR ELEMS.

DIRICHLET CASE

32 x 32 GRID

3 ITNS. RANDOM

INITIAL ERROR

* MEANS

DIVERGED

Table 8.  Strategies with injection (to = 1.0)

32  x 32 GRID,   3 ITNS,   R.   INITIAL ERROR, MIXED BDRY DATA

ELEM

LINEAR

BILINEAR

0.6

15.9

0.7

10.5

10.4

0.8

7.9

8.2

0.9

9.8

7.7

1.0

12.5

7.8

1.1

17.6

8.3

1.2

11.5

Table 9.  Costs as function of to, with injection

For these reasons, we do not recommend the use of injection as a general purpose
approach.   On the other hand, it may well be that in the context of optimizing an
algorithm for a specific problem, the storage saved (possibly as much as 1 grid length
vector for the finest grid) would outweigh the disadvantages.

VII.  Variable Coefficients.   In this short section we shall show some solution
costs for equations with smooth coefficients.  All the examples shown below were
computed using a random initial error, a (2, 0) smoothing strategy and three multigrid
iterations.

COEFFICIENTS

a = b =  [l + 5j(x4 - y4)] 2

a = b - [l + sin ij7r(x + y)]

a = b = [2 + tanh    4(x + y -  l)]2

a = b=[l+4|x- h\Y

a = b = e      sin(Vx + y )

a = 1    b = e      sln(Vx + y  )

COST/10-1  REDN.

3.3

3.3

3.3

3.3

3.0

3.4

grut

64 x 64

64 x 64

64 x 64

64 x 64

32 x 32

32 x 32

Table 10.   Smooth coefficients
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The first four of these examples are taken from [10].  No extensive comment
on Table 10 is needed.  It is clear that solving this type of problem is essentially equiv-
alent in terms of cost to solving Poisson's equation.   As with the latter case, the
costs do not depend on the grid size to any great extent.

VIII.   Discontinuous and Singular Coefficients.  Here we present some calcula-
tions carried out for equations with various kinds of singular coefficients.  All the
data shown are for bilinear elements with a random initial error, the (2, 0) smoothing
strategy and three multigrid iterations.

Example 1.  Here we take

a = b = Isin kx sin ky\,     c = 0,     /= 0,

with homogeneous Dirichlet data on 9£2; k is a parameter.  The results given in Table
11 are for the 32 x 32 and the 64 x 64 interval grids.  Costs are the usual work
units needed for a 10_1 reduction in the initial error.  Note that use of f = 0 and
homogeneous boundary data avoids the potential over-determination of this problem.

GRID

32 x  32

64 x 64

4.7

4.5

5.2

4.8

5.4

5.8

16

5.9

6.3

32

5.0

6.1

Table 11.  Costs
The vanishing of the coefficient a inside the region £2 when k > n means that the
quadratic form associated with this problem is not uniformly positive definite.  For
this reason the theory in [16] is not valid here.  Nevertheless, the results show that
the method is not very grid dependent; and that the computation costs are something
less than double what they are for the Poisson case.

A point worth observing is that for the larger values of k the coarser grids are
not such as to permit approximation of the differential operator in the usual senses.
They do, however, appear to be able to provide approximation properties appropriate
to the multigrid method.  This is because the discrete operators associated with the
coarser grids contain averaged information about the differential operator which is
made use of by the multigrid algorithm.  To see whether increasing the fineness of
the coarsest grid made any real difference to the solution costs we calculated some
additional examples.  Table 10 shows some calculations on the 32 x 32 interval grid
where the coarsest grid was taken as the 4x4 interval grid.  The coarsest grid prob-
lem was solved using the band solver in the code.  There appears to be a slight system-
atic improvement compared with Table 11 although in other examples not shown this
improvement is not always maintained.

32 x  32 4.7 5.1 5.0

16

5.4

32

4.8

Table 12.  Costs
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Example 2 [10].  To show that singular coefficients do not always lead to
greatly increased computation costs we mention the following example in which a =
b, c = f = 0 and

I 1.0,    0<x<0.5,

) 9.0,   0.5 <x< 1.0,
are solved under the same conditions as Example 1.  Here we found on the 64 x 64
interval grid the cost figure 3.4 units.   Similar costs are observed on other grids.

Example 3.  This is another example with discontinuous coefficients, although
with a positive definite energy functional.  Again we take a = b, c = 0 and / = 0
with Dirichlet data.  To define the coefficient a, the region is divided into 2k x 2k
equal squares by lines parallel to the x and y axes, a is then defined checkerboard
fashion as equal to e (a parameter) and 1 in alternate small squares.  Thus, for k = 1
there are four squares and reading left to right, top to bottom, a is alternately e, 1,
1, e.  We have computed these examples for k = 1,2, and 3, the latter case containing
64 changes in the coefficient a.  More complex problems of this type are of consider-
able practical interest [1].  The examples reported below are all for the 32 x 32 sub-
interval grid using bilinear elements, a random starting error, and three multigrid itera-
tions as previously.  In these examples, the coarsest grid was chosen to coincide with
the subdivision defining the coefficient a.   The coarsest grid problems were solved
directly by the banded elimination solver.  The results are reported in Table 13 for the
cases k = 1,2, and 3.

10

3.6

4.7

10

4.2

5.9

10

4.1

6.1

4.0 4.9 5.1 5.1

10

4.1

6.0

10

4.1

6.2

5.1

Table 13.  Costs

The anomalous behavior in the second row is not fully explained but may be caused
by a particularly difficult initial error.  The costs seem to be relatively independent of
e, although rising with k.   They are on average considerably less than twice the costs
for the Poisson case.

Example 4. The final example in this section is for the operator

(8.1) Lu £Uxx + uyy>

where e is a positive constant.  This case, which embodies certain characteristics of the
transonic flow small disturbance equation, is known to have a slow multigrid conver-
gence rate when e « 1.  A remedy is also known [14], [9], namely, to use line re-
laxation along lines x = constant.  Equations with a form of which (8.1) is a simple
model arise in many applications, particularly in nonlinear problems where the term(s)
multiplied by the small factor e may not be a priori known.
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The idea of our test here was to determine what coefficient ratio 1 : e can be
handled without too much loss of efficiency by point relaxation.  This is important
to us inasmuch as it delimits the area of usefulness of our general purpose approach-
that is, we hope to learn what can be done before special relaxation techniques be-
come necessary.

The calculations in Table 14 were obtained on the 32 x 32 interval grid in the
same circumstances as the previous examples of this section.

32 x  32

1.0

3.2

.75

3.4 4.0

.25

5.3 8.2

Table 14.  Costs

These data were obtained using a random initial error; they indicate that coefficient
ratios of the order 5 : 1 can be dealt with reasonably well.

A more stringent test suggested by the Fourier analysis of the smoothing prop-
erties of the point relaxation method [7] is to use a special starting error, namely the
following:   we use a vector constant on the lines x = constant and with the periodic
variation in the x direction 0, + 1, 0, -1.  The data for this example on two different
grids are shown in Table 15 below:

GRID

32  x  32

64 x 64

2.5

.75

2.9 4.0

2.6      3.0      4.3      7.9    17.7

.25

7.1 16.3

Table 15.  Costs

For the smaller values of e, these costs are considerably worse than those of Table 14.
However, they can be reduced by a change in the smoothing strategy to (3, 0) and
some slight overrelaxation to = 1.2 as shown in Table 16 for the 64 x 64 grid.

1.0 .75 .25 .1

32 x 32 3.0 3.0 3.2 4.2 10.9

Table 16.  Costs

It appears that with this modification (not the optimal one by any means) the figure
5 : 1 for the coefficient ratio is still realistic. In those applications where the coeffi-
cient ratio is considerably larger than 5 : 1 special relaxation methods become neces-
sary. With the use of these methods the cost figures once again become comparable
to those of the Poisson case.
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LX.   Indefinite Case,  in [17] we prove multigrid convergence results for the in-
definite case paralleling the results of the definite case in [16].  Generally speaking,
indefinite problems, of which the Helmholtz equation

(9.1) uxx + uyy +C2U=f       (c2 » 1)

is a prime example, are harder to solve iteratively than definite problems such as the
ones considered in previous sections.  The basic reason for this is that the standard
iterative methods, such as successive relaxation, the Jacobi method, and methods using
orthogonal polynomials for acceleration purposes (including the conjugate gradient
techniques) do not converge when the difference operator has both positive and nega-
tive eigenvalues.  It is possible to derive a positive definite operator by squaring the
indefinite one, but the deficiencies of this approach are well known.  It is, therefore,
of some interest to note [17] that the multigrid method not only converges, but con-
verges optimally (in the order of magnitude sense) when applied to a large class of in-
definite problems which includes (9.1) as a special case.

On the other hand, we must point out here that very substantial difficulties
arise when, e.g. we try to solve (9.1) with very large c2.    Quite apart from the difficul-
ties of representing the solution in this case, the multigrid method encounters its own
difficulties which we may sum up as follows:   for convergence the coarsest grid must
not be too coarse.  This does not conflict with the theoretical results as these are of an
asymptotic nature, valid in the limit as the mesh size tends to zero.  However, in
some settings it seems that we can have a situation where we cannot use a conveniently
coarse grid.  A conclusive resolution of this difficulty is not yet known to the author.

For the case of relatively small c2 however, which embraces many (if not most)
cases of practical interest, our tests so far indicate that the usual rapid convergence is
achievable.  We envisage here a situation where c2 is such that a small number (e.g. 6)
of eigenvalues of (9.1) are positive, while the rest are negative.  We shall report on
some computations along these lines, together with implementation guidelines in [12].
As an example of what can be achieved, we wish to mention one simple computation,
taken from [12].  This is a model of a problem in duct acoustics and, in fact, is simi-
lar to the three-sided Neumann data problem considered in Section 5.  We take the
equation

(9 2) Au + 4.0m = /

on the 32 x 32 interval grid, and specify the same data as in Section 5, (5.1).  The
operator in (9.2) with this data has one positive eigenvalue, X,, where

Xj = 4.0 - 7T2/4.

The other eigenvalues are negative.  Starting with a fairly smooth error, the (2, 0)
smoothing strategy, to = 1.0 and solving exactly on the 4 x 4 interval grid, we find
the cost figure 4.1 work units per 10-1 reduction in the initial error, for bilinear ele-
ments.  Thus, there are grounds for expecting that at least moderately indefinite prob-
lems can be efficiently solved.
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X.  Concluding Remarks.  Although we have considered only the simplest class
of problems in the previous sections it is reasonable to suppose that the basic multi-
grid algorithm will perform similarly well in more general settings.  In the author's
opinion, the basic algorithm is a highly efficient and versatile tool for solving positive
definite and moderately indefinite problems.  The situation is not so unequivocal in
the indefinite case for the reasons previously indicated.  Here we feel that for the ex-
ceptionally difficult problems, additional studies, both theoretical and practical, will
be required.

One major problem we have not mentioned so far is that of defining the nested
sequence of grids on an arbitrary region.  Our experience with this is that in any parti-
cular case this is relatively easy to do.  However, we encountered difficulty in construct-
ing a general code to handle an arbitrary region in a way that did not require a large
amount of extra input data—something to be avoided at all costs—from the user.  One
possible approach is to transform the physical region onto a union of simpler ones
where nested grids are easily defined. Unfortunately, efficient methods for numerically
carrying out such transformations have not so far been extensively studied.

Another topic of great potential value is that of adaptive computation.  In the
multigrid context, where adaptation is especially natural, this application has been in-
vestigated in [7], [8].  Adaptive finite element computation has been pioneered in
[2], [3], [4] although not using multigrid ideas in the sense we are considering them
here.  There is great scope for applying the multigrid methods in this context.

To conclude, we hope that our results have shed some light on implementation
questions arising from the multigrid method. Further computations are given in [18]
and program listings are obtainable from the present author.

Acknowledgments.  I would like to express my thanks to Mr. Craig Poling of the
College of William and Mary for his diligence and patience in obtaining the numerical
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