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Enhancement of the quality of laser wake-field accelerated (LWFA) electron beams
implies the improvement and controllability of the properties of the wake waves
generated by ultra-short pulse lasers in underdense plasmas. In this work we present
a compendium of useful formulas giving relations between the laser and plasma target
parameters allowing one to obtain basic dependences, e.g. the energy scaling of the
electrons accelerated by the wake field excited in inhomogeneous media including
multi-stage LWFA accelerators. Consideration of the effects of using the chirped laser
pulse driver allows us to find the regimes where the chirp enhances the wake field
amplitude. We present an analysis of the three-dimensional effects on the electron
beam loading and on the unlimited LWFA acceleration in inhomogeneous plasmas.
Using the conditions of electron trapping to the wake-field acceleration phase we
analyse the multi-equal stage and multiuneven stage LWFA configurations. In the
first configuration the energy of fast electrons is a linear function of the number of
stages, and in the second case, the accelerated electron energy grows exponentially
with the number of stages. The results of the two-dimensional particle-in-cell
simulations presented here show the high quality electron acceleration in the triple
stage injection–acceleration configuration.

1. Introduction

Laser-driven charged particle acceleration is an attractive alternative to standard
accelerators, promising to provide a much greater acceleration rate via a much more
compact facility. In the laser wake-field accelerator (LWFA) concept introduced in
Tajima & Dawson (1979), a long-lived strong wake field, induced by a short intense
laser pulse in its wake in a low-density collisionless plasma, accelerates duly injected
electrons.

Within the framework of the laser wake-field accelerator paradigm (Tajima &
Dawson 1979; Esarey, Schroeder & Leemans 2009; Hooker 2013) a regular and
strong electric field having the form of a wave propagating with a phase velocity
close to speed of light in a vacuum is excited in underdense plasmas by short
pulse relativistically intense laser radiation. The electrons injected into the wake-field
acceleration phase with an initial energy corresponding to the velocity equal to the
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wake wave phase velocity are then accelerated up to significantly higher energy. The
achievable electron energy is determined by several processes among which the first
is the electron slippage with respect to the accelerating phase of the wake wave and
the second is the laser energy depletion. The dephasing and depletion lengths being
inversely proportional to the plasma density are of the same order.

Today’s highest electron energy achieved in experiments on the single laser pulse
interaction with an underdense plasma target is in the multi-GeV range being of
3 GeV in the case reported by Kim et al. (2013) and above 4 GeV in the experiment
(Leemans et al. 2014), where petawatt class lasers and targets of the size of the order
of ten centimetres have been used.

The multistage LWFA system based on using succeeding accelerating stages
wherein the wake waves are driven by multiple laser pulses may enable electron
acceleration over distances significantly longer than the dephasing and depletion
lengths (Cheshkov et al. 2000; Chiu, Cheshkov & Tajima 2000; Leemans & Esarey
2009; Schroeder et al. 2010; Nakajima et al. 2011; Mehrling et al. 2012). The use
of multi-stage LWFA accelerators also has the potential for improving the quality of
the beams of the accelerated electrons (Pollock et al. 2011; Nakahara et al. 2013;
Zhang et al. 2016).

The theoretical work is mainly devoted to discussing the multi-stage accelerator
configurations comprised of stages of equal length and density (however, see recently
published paper Zhang et al. (2015) where a three uneven stage accelerator has
been theoretically considered). Experimentally realized multi-stage accelerators (at the
moment they are two stage systems (Pollock et al. 2011; Kim et al. 2013; Steinke
et al. 2016)) consist of plasma slabs with different density (Pollock et al. 2011;
Kim et al. 2013) or a plasma slab and a capillary discharge waveguide (Steinke
et al. 2016). The dense plasma stage is used as an injector of the electrons which
are further accelerated in a relatively low-density region. Such configurations may
be considered as corresponding to the scheme of the density downramp injection
due to the phase-mixing process of the plasma waves in an inhomogeneous plasma
(Bulanov et al. 1998; Suk et al. 2001; Thompson, Rosenzweig & Suk 2004; Tomassini
et al. 2004; Brantov et al. 2008; Zhang et al. 2016). A transient density ramp can
be produced by a laser prepulse (Zhidkov et al. 2004b; Chien et al. 2005) or in
specially designed gas targets (Kononenko et al. 2016). The electron injection in the
descending plasma density target has been studied in detail in experiments which are
presented in Geddes et al. (2008). Moreover, the acquired electron energy can be
substantially increased by implementing a tailored plasma target (Katsouleas 1986;
Bulanov et al. 1997b; Sprangle et al. 2002; Rittershofer et al. 2010; Abuazoum et al.
2012; Sharma et al. 2014; Yoon, Palastro & Milchberg 2014; Döpp et al. 2015).

We note here that multi-stage laser ion accelerator configurations have been
analysed in Kawata et al. (2014, 2016).

Since there is a demand to formulate a systematic theoretical conception, in
spite of the vast literature published so far devoted to studying various aspects
of multi-stage laser wake-field accelerators, in the present paper we analyse the
wake-field accelerator in an inhomogeneous plasma and in multi-stage configurations
which provide the means for controlling and optimizing the accelerated electron
bunch energy and the particle number. In order to derive relevant formulae we often
use simple models enabling analytical description of the process under consideration.
Apparently, our theory cannot encompass a substantial part of problems related to
the LWFA acceleration mechanism: e.g. positron acceleration (Esirkepov et al. 2006)
and radiation friction effects (Thomas et al. 2012) remain beyond the scope of the
present work.
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The paper is organized as follows. In § 2 we recover basic dependences of the
wake field on the parameters used below. Then, in § 3, we consider the conditions
of electron trapping into the wake-field acceleration phase and discuss characteristic
features of the energy spectrum of the accelerated particles. In § 4, the energy
scaling of the accelerated electrons is derived. Section 5 is devoted to describing
the regime of unlimited electron acceleration based on the use of tapered plasma
targets. In § 6, we analyse the three-dimensional (3-D) effects on the electron beam
dynamics inside the cavity formed in a plasma by an ultra-short laser pulse. In § 7,
we present the description of the LWFA electron acceleration in the multi-equal stage
and multi-uneven stage configurations. Then, in § 8, the results of particle-in-cell
(PIC) simulations of the injection–acceleration triple-stage configuration are presented.
At the end of the paper, in § 9, we summarize the results obtained.

2. Basic parameters of the wake field

2.1. 1-D wake wave

Assuming that the ions are at rest and the electron temperature is equal to zero (for the
finite temperature effects on the nonlinear plasma waves see Bulanov et al. (2012a,b),
Grassi et al. (2014) and the literature cited therein) in the 1-D approximation the wake
wave driven by a given electromagnetic pulse can be written as a system of equations
in partial derivatives:

∂tn + ∂x(nv) = 0, (2.1)

∂tp + v∂xp = −E −
∂x|a|2

2γ
, (2.2)

∂xE = 1 − n. (2.3)

Here the electron density n and the x-component of the electron velocity v = p/γ are
normalized by the ion density n0 and by the speed of light in a vacuum, c, respectively.
The x-component of the electron momentum p is normalized by mec. The wake wave
electric field E = Eex is measured in units of meωpe c where ωpe = (4πn0e2/me)

1/2 is
the Langmuir frequency. The transverse electromagnetic pulse is characterized by its
vector potential A(x, t); being normalized by mc2/e it is a(x, t). In the 1-D geometry,
due to the homogeneity of the problem along the transverse directions, the transverse
component of the generalized electron momentum, p⊥ − a = constant. Using the
generalized transverse momentum conservation, we obtain that the electron relativistic
Lorentz factor is given by

γ = (1 + |a|2 + p2)1/2. (2.4)

The electrostatic potential ϕ normalized by mec
2/e and the electric field E are related

to each other by E =−∂xϕ. The coordinate x and time t are measured in units of cω−1
pe

and ω−1
pe , respectively. For the sake of simplicity here and below we assume that the

electromagnetic wave is circularly polarized with |a| = a.
In the case of the driver pulse and wake wave propagating with a constant phase

velocity vw = βw all the functions in (2.1)–(2.3) depend on the variable

X = x − βwt. (2.5)

As a result (2.1)–(2.3) are reduced to ordinary differential equations:

(γ − βwp)′ = −E, (2.6)
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and
E′ =

v

βw − v
. (2.7)

Here the prime denotes a differentiation with respect to the variable X defined
by (2.5).

Expressing the electric field via the electrostatic potential ϕ as (E = −ϕ′) and using
(2.4), (2.6), and (2.7) we find the equation for the electrostatic potential, which has
the form (see also Bulanov et al. 1999b; Esarey et al. 2009)

ϕ′′ = βwγ 2
w

(

1 + ϕ
√

(1 + ϕ)2 − (1 + a2)γ −2
w

−
1

βw

)

, (2.8)

where γw = 1/
√

1 − β2
w.

We assume that the driver pulse has a constant amplitude, |a| = constant for X < 0
and its amplitude is equal to zero for X > 0. Multiplying (2.8) by ϕ′ and integrating
over X we obtain the integral

1

2
(ϕ′)2 = βwγ 2

w

(

√

(1 + ϕ)2 − (1 + a2)γ −2
w −

ϕ

βw

)

+ C. (2.9)

Here C is a constant determined by the boundary conditions. If at the driver pulse
front X = 0 the potential ϕ(0) and the electric field, E(0) = −ϕ′(0), are equal to zero,
the integration constant is given by

C = −βwγ 2
w

√

1 − (1 + a2)γ −2
w . (2.10)

The electric field and electrostatic potential dependence on the coordinate X are
shown in figure 1(a), for the wake wave generated by a flat top driver pulse with
amplitude a = 5 in a plasma with βw = 0.9999 (γw = 70). The electrostatic potential
has a maximum at the point where the ϕ′ = 0, i. e. where the electric field vanishes.
Equations (2.9) and (2.10) yield for the maximum potential

ϕmax = 2βwγ 2
w

(

βw −
√

1 − (1 + a2)γ −2
w

)

, (2.11)

which, in the limit |a| ≪ 1, is given by ϕmax ≈ a2/βw and cannot exceed the value
2β2

wγ 2
w reached for the driver laser amplitude equal to

|a| = βwγw. (2.12)

At the minimum, the electrostatic potential vanishes, ϕmin = 0.
If the driver amplitude is above βwγw, the wake wave breaks. It cannot be described

within the framework of the stationary wave approximation (see discussions of the
electric field behaviour in breaking wake waves in Bulanov et al. (2012a)). The
electric field maximum corresponds to the extremum of the second derivative of the
electrostatic potential, i.e. when the right-hand side of (2.8) vanishes. This condition
gives an expression for the electrostatic potential at the electric field extremum:

ϕex = ±
√

1 + a2 − 1. (2.13)
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(a) (b)

(c) (d)

FIGURE 1. Electric field and electrostatic potential of the wake wave generated (a) by a
semi-infinite flat top driver pulse with the amplitude a = 5 in a plasma with βw = 0.9999
(γw = 70); (b) by a flat top driver pulse (indicated as a(X)) of the optimal length lopt with
amplitude a = 5 in a plasma with βw = 1, (llas = 10.6969); (c) by a wakeless driver pulse
(indicated as a(X)) of the double optimal length, llas = 2lopt with the amplitude a = 5 in a
plasma with βw = 1, (llas = 21.3939); (d) by an ultra-short driver pulse (indicated as a(X))
with the amplitude a = 0.5 and length llas = 0.5, i.e. llas = 0.04674 lopt, in a plasma with
βw = 1.

Substitution of this expression into (2.9) with the constant C given by (2.10) results
in

|Em| =
√

γ 2
w ∓

√

1 + a2 − βwγw

√

γ 2
w − (1 + a2). (2.14)

If |a| ≪ 1, the maximum electric field is proportional to the square of the driver pulse
amplitude: |Em| ≈ a2/2βw. Figure 2 shows the maximum electric field dependence on
the driver pulse amplitude a and the wake wave phase velocity βw. For a given phase
velocity of the wake wave, the stationary wave can exist provided the driver amplitude
is less than alim =

√

γ 2
w − 1.
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FIGURE 2. Maximum electric field dependence on the driver pulse amplitude a and the
wake wave phase velocity βw.

The upper limit on the electric field in a stationary wake wave inside the laser pulse
corresponds to the condition given by (2.12). This yields

max[|Em|] = γw

√

1 − γ −1
w . (2.15)

As for the wake wave left in a plasma the amplitude of the laser driver pulse with
optimal duration cannot exceed the Akhiezer–Polovin wave breaking limit (Akhiezer
& Polovin 1956):

|EA−P| =
√

2(γw − 1). (2.16)

2.2. Limit βw → 1

In the case of a cold plasma, when the front of the driver pulse propagates with
a velocity equal to the speed of light in a vacuum, which corresponds to the limit
βw → 1 (i.e. γw → ∞), (2.8) takes the form (see review article Esarey et al. (2009)
and references therein)

ϕ′′ =
1

2

(

1 + a2

(1 + ϕ)2
− 1

)

. (2.17)

The integral (2.9), in the case of constant-amplitude driver pulse, for the boundary
conditions ϕ(0) = 0 and ϕ′(0) = 0 has the form

(ϕ′)2 =
ϕ(a2 − ϕ)

1 + ϕ
. (2.18)

We see that the electrostatic potential value varies between the minimum equal to 0
and the maximum, which equals ϕm = a2. The maximal value of the electric field is
reached at the point of the electrostatic potential extremum where its second derivative
vanishes. Using (2.17) we find that at the electric field maximum, the electrostatic
potential is ϕex =

√
1 + a2 − 1. Substituting this expression into the right-hand side of

(2.18) we obtain for the electric field maximum,

|E|m =
√

1 + a2 − 1. (2.19)
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Solution of (2.17) can be expressed in terms of elliptic functions (Bulanov, Kirsanov
& Sakharov 1989). The dependence of the electrostatic potential ϕ on the coordinate
X can be written in the implicit form:

X = 2

[
√

(a2 − ϕ)(1 + ϕ)

ϕ
+ E

(

sin
1

√
ϕ

, −a2

)

]

, (2.20)

where E(φ, k) is the elliptic integral of the second kind (Gradshteyn & Ryzhik 1980).

2.3. Optimal length of the laser pulse

The laser pulse is optimal for the excitation of the large-amplitude wake field left
behind it, if at the rear side of the the electrostatic potential is maximal. From (2.18)
follows the expression for the optimal pulse length, lopt:

lopt =
∫ a2

0

√

1 + ϕ

ϕ(a2 − ϕ)
dϕ = 2E(−a2), (2.21)

where E(k) is the complete elliptic integral of the second kind (Gradshteyn & Ryzhik
1980).

The wake wave wavelength equals λw = 4lopt in the limit of small laser amplitude
a ≪ 1 and it is approximately 2lopt for a ≫ 1.

In the small-amplitude limit, |a| ≪ 1, the optimal laser length is

lopt = π +
π

4
a2 −

3π

64
a4 + O[a2]3, (2.22)

and the wake wave wavelength in dimensional units equals λw = 2πc/ωpe. If the driver
amplitude equals unity, |a| = 1, the optimal laser length is 3.8202. For large laser
amplitude, a2 ≫ 1, we have

lopt = 2|a| +
(

1

2
+ 2 ln 2 − ln |a|

)

1

|a|
+ O

[

1

|a|

]3

(2.23)

with the wake wave wavelength in dimensional units equal to λw = 4c|a|/ωpe. In
figure 2 we plot the dependence of the optimal laser length on the pulse amplitude.

The electric field and electrostatic potential dependence on the coordinate X are
shown in figure 1(b), for the wake wave generated by a flat top driver pulse of the
optimal length lopt. The amplitude is a = 5. Equation (2.21) for this laser amplitude
gives lopt = 10.6969. The plasma is characterized by βw = 1 (γw = 70).

The wake wave left behind the driver laser pulse is described by (2.17) with a2 = 0.
For the boundary conditions ϕ(−lopt) = a2 and ϕ′(−lopt) = 0 the equation for the
electric field, E = −ϕ′, reads

E2 = a2 − ϕ −
a2 − ϕ

(1 + a2)(1 + ϕ)
. (2.24)

From this equation it follows that the electrostatic potential in the wake wave varies
between maximal and minimal values at the points where E = −ϕ′ = 0:

−
a2

1 + a2
< ϕ < a2. (2.25)
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FIGURE 3. Optimal laser length lopt versus the pulse amplitude a.

The electric field maximum is determined by the condition ϕ′′ = 0, which gives the
extremum of the electrostatic potential derivative reached at the points where ϕ = 0.
From (2.24) it follows that the electric field maximum equals (see also Esarey et al.

2009)

Em =
a2

√
1 + a2

. (2.26)

It is larger than the maximum of the wake field inside the driver laser pulse given by
(2.19), as also seen in figure 1(b).

If the laser pulse has double the optimal length, llas = 2lopt, then the wake wave
left behind the laser pulse vanishes with the electric field and electrostatic potential
localized only inside the laser pulse, as illustrated in figure 1(c), where the electric
field and electrostatic potential of the wake wave generated by a wakeless driver pulse
(indicated as a(X)) of double the optimal length, llas = 2lopt with amplitude a = 5 in a
plasma with βw = 1 are shown as functions of the coordinate X.

Formally, a laser pulse of double the optimal length does not lose energy in the
wake wave generation because the energy lost at the front returns back at the rear
side of the pulse. Actually, the laser pulse etching (see consideration of this effect in
§ 2.5 below) and the laser pulse self-modulation (Andreev et al. 1992; Antonsen &
Mora 1992; Sprangle et al. 1992; Bulanov et al. 1996) will result in a change of the
laser pulse length, amplitude and form, eventually leading to the appearance of a final
amplitude wake wave in the plasma behind the laser pulse and to laser pulse energy
depletion.

2.4. Wake wave excitation by the ultra-short laser pulse

In the case when the laser pulse length llas is substantially shorter than the optimal
length given by (2.21), the electric field and the electrostatic potential at the rear end
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of the pulse can be found from (2.17). They are equal to

E1 =
llas

2
a2 (2.27)

and

ϕ1 =
l2
las

4
a2, (2.28)

respectively. The wake wave wavelength, in this case, is equal to

λw,1 = 2llasa
2. (2.29)

The electric field and electrostatic potential dependence on the coordinate X are
shown in figure 1(d), for the wake wave generated by an ultra-short driver pulse with
the length and amplitude equal to llas = 0.25 and a = 5, respectively, in a plasma with
βw = 0.9999 (γw = 70).

The electrostatic potential has a maximum at the point where ϕ′ = 0, i.e. where
the electric field vanishes. Equation (2.9) yields the equation determining the potential
maximum and the minimum

ϕm +
1

1 + ϕm

= 1 +
(

llas

2

)2

a4, (2.30)

which has the solution:

ϕmax =
llasa

2

8

[
√

16 +
(

llasa2
)2 + llasa

2

]

(2.31)

for the electrostatic potential maximum and

ϕmin = −
llasa

2

8

[
√

16 +
(

llasa2
)2 − llasa

2

]

(2.32)

for the minimum, respectively.
In the limit (llas/2)a2 ≪ 1, we find ϕmax ≈ (llas/2)a2. The electric field in the

wake wave is approximately equal to E1 given by (2.27). If (llas/2)a2 ≫ 1 the
maximum potential is approximately equal to (llas/2)2a4. For minimum value of the
electrostatic potential we have ϕmin ≈ −(llas/2)a2 in the limit of relatively small laser
amplitude, (llas/2)a2 ≪ 1, and it is equal to −1 for substantially high laser amplitude,
(llas/2)a2 ≫ 1, respectively.

2.5. Propagation velocity of the laser pulse front

In the expressions obtained above the phase velocity of the wake wave, βw, is equal
to the propagation velocity of the laser pulse front. Apart from its dependence on the
group velocity of the electromagnetic wave determined by the plasma density, it is
also determined by the process of laser pulse energy depletion, which results in the
change of the laser pulse form manifesting itself in the formation of a shock-wave-like
front and in carrier frequency down shift. These phenomena have been discussed by
Bulanov et al. (1992, 1993), Decker et al. (1996), Lu et al. (2007), Schroeder et al.
(2011), Bulanov et al. (2015). The laser energy depletion associated with the so-called
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FIGURE 4. The laser energy depletion leads to the laser pulse shortening llas = llas,0 −
(vg − vD)t and to slower propagation of the pulse front with velocity vD < vg. The shaded
region shows the damped part of the pulse.

etching (Nakajima et al. 2011) of the pulse, makes the pulse front velocity βD become
smaller than the group velocity of the laser radiation βg. This process is illustrated in
figure 4.

In order to find the laser pulse front velocity we should take into account the
balance between the lost laser energy

m2
eω

2c2a2

4e2π
(vg − vD)t (2.33)

and the wake wave energy
mec

2na2vDt. (2.34)

This gives the relationship between the group velocity of the laser pulse and the
velocity of propagation of the pulse front, which in normalized units reads:

βD =
βg

1 + (ωpe/ω)2
. (2.35)

Here, a 1-D geometry is assumed; the 3-D scaling has been found in Bulanov et al.
(2015). The group velocity βg of the relativistically intense electromagnetic wave
according to Akhiezer & Polovin (1956) depends on its amplitude: associated with
the group velocity Lorentz factor in the case of a circularly polarized wave

γg =
1

√

1 − β2
g

=
(

ω

ωpe

)

(1 + a2)1/4. (2.36)

In the limit |a| ≫ 1 it is proportional to the square root of the wave amplitude.
This dependence has important implications for determining the wake wave breaking
threshold (Zhidkov et al. 2004a,b), which in its turn determines the threshold of
electron self-injection to the wake field. Due to laser energy depletion the laser pulse
length decreases as

llas = llas,0 − (vg − vD)t, (2.37)

where llas,0 is the initial pulse length. From this expression and (2.35), (2.36) follows
that the depletion length is equal to (for details see Bulanov et al. (1992), Decker
et al. (1996))

ldep =
llas,0

βg − βD

≈ llas,0

(

ω

ωpe

)2

. (2.38)
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We note that the laser pulse with the length llas,0 substantially larger than the
wavelength of the wake wave is unstable against various instabilities. As a result
the self-modulated wake wave regime occurs (Andreev et al. 1992; Antonsen &
Mora 1992; Sprangle et al. 1992), which has been studied in experiments on short,
but not too short, laser pulse interaction with underdense plasma targets (Hidding
et al. 2006; Mori et al. 2006). In the self-modulated wake-field regime, the depletion
length is shorter than the length given by expression (2.38), in which we should
instead of llas,0 use the wavelength of the wake wave ≈4E(−a2) (see (2.21)).

The energy depletion length of the laser pulse of the short length exciting the wake
wave electrostatic potential according to (2.31) is

ldep =
8c2ω2

ω3
pe

[

llasωpea2 +
√

16c2 +
(

llasωpea2
)2
] . (2.39)

It is written in dimensional units.
In the limit llasωpea

2/2c ≪ 1, the depletion length

ldep =
2c

ωpe

(

ω

ωpe

)2

(2.40)

neither depends on the laser pulse amplitude nor length.
When llasωpea

2/2c ≫ 1 the depletion length

ldep = 4llas

(

c

aωpellas

)2 (
ω

ωpe

)2

(2.41)

is inversely proportional to the laser pulse length, ldep ∝ 1/llas.

2.6. Wake wave generation by chirped laser pulse driver

As has been shown in Deutsch, Meerson & Golub (1991), Khachatryan et al. (2005),
Kalmykov et al. (2012), the use of the frequency modulated laser pulse (chirped
pulse driver) can improve the quality of the wake wave generated in plasmas. A
properly chosen chirp can compensate the frequency downshift effect on the front of
the laser pulse (see discussion of this effect in Bulanov et al. (1992, 1993), Decker
et al. (1996)) thus mitigating consequences of dark current formation. Here we would
like to draw attention to the fact that the chirped laser pulse propagating through
a low-density plasma changes its length. The pulse stretches for the negative chirp,
when the frequency monotonically changes being higher at the laser pulse front than
at the rear pulse side. In the case of the positive chirp, when the frequency is lower
at the front than at the rear side of the laser pulse, the pulse shrinks.

As an example, we consider the laser pulse dependence on coordinate and time
given by the formula

a(t, x) = |a(t, x)| exp (−i(ω0t − k0x + θ(t, x))), (2.42)

where ω0 and k0 are, respectively, the high carrier frequency and wavenumber, related

to each other by the dispersion equation ω0 =
√

k2
0c2 + ω2

pe. Dependence of the phase

shift θ(t, x) on time and coordinate describes the chirp.
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The laser pulse evolution within the framework of the approximation of slowly
varying amplitude |a(τ , ζ )| and phase θ(τ , ζ ) can be described by (5) obtained by
Bulanov et al. (1992) or (80) from Esarey et al. (2009). Here we use normalized
variables τ = ω0t and ζ = k0x − ω0t. Assuming the that the time scale of the laser
pulse shrinking/stretching, ts, is substantially shorter than the laser pulse energy
depletion time (see discussion above and expressions given by (2.39)–(2.41)), we
can easily find that in the self-similar evolution regime the laser pulse phase and
amplitude dependence on the time τ and coordinate ζ are given by

θ(τ , ζ ) =
ζ 2

2(k0l0)2s(τ )
, (2.43)

and

|a(τ , ζ )| = |a(0, 0)|

√

1

s(τ )

(

1 −
ζ 2

(k0l0s(τ ))2

)

, (2.44)

respectively. Here the function s(τ ) depends on time as

s(τ ) = 1 ∓
2ω2

peτ

ω2
0(k0l0)2

(2.45)

with |a(0, 0)| and l0 being the laser pulse amplitude and half-width, respectively, at
τ = 0. The sign ∓ corresponds to positive (minus) and negative (plus) chirp. The laser
pulse is localized between the points ζ = ±s(τ )(k0l0). Its width increases or decreases
according to expression (2.45) for positive or negative chirp, but the pulse energy
proportional to

∫ s(τ )k0l0

−s(τ )k0l0

|a(τ , ζ )|2 dζ =
5

3
|a(0, 0)|2k0l0 (2.46)

remains constant. The time scale of the laser pulse shrinking/stretching equals

ts =
(k0l0)

2

2ω0

(

ω0

ωpe

)2

. (2.47)

As follows from (2.27) and (2.29) the electric field amplitude and the wake wave
wavelength excited by an ultra-short laser pulse do not change during evolution of the
chirped pulse provided its length is substantially less than the optimal pulse length
given by (2.21).

When the laser pulse length approaches the optimal length the wake field amplitude
can either increase or decrease depending on the laser pulse and plasma parameters.
The wake-field amplitude according to (2.27) is determined by the short pulse laser
energy, (we introduce the notation εlas = |a|2llas), i.e. Em = εlas in the limit llas ≪
lopt. Assuming that |a| ≫ 1, we can present the wake-field amplitude in the case of
the optimal length pulse (2.26) as Em = (εlas/2)1/3 for llas ≈ lopt. These two values
become equal to each other for εlas = 1/

√
2. In dimensional form this condition can

be rewritten as a relationship between the laser intensity I and the plasma density ne,

I = 5.6 × 1018

(

ncr

ne

)1/2 (1 µm

llas

)(

λ0

1 µm

)3 W

cm2
. (2.48)

As a result, assuming the plasma density is given, for the intensity higher than that
given by (2.48) the laser chirp can enhance the wake wave amplitude.
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3. Electron wake-field acceleration: trapping and injection

3.1. Electron trapping into a wake wave

In the laser wake-field accelerator concept introduced in Tajima & Dawson (1979),
a long-lived wake-field, induced by a short intense laser pulse in its wake in a
low-density collisionless plasma, accelerates duly injected electrons. To provide
electrons, one must use an externally preaccelerated electron bunch or exploit the
effect of self-injection due to a longitudinal Langmuir wave break in homogeneous
(Bulanov, Kirsanov & Sakharov 1991; Bulanov et al. 1992; Coverdale et al. 1995;
Gordon et al. 1998; Zhidkov et al. 2004a; Ohkubo et al. 2006) and/or inhomogeneous
plasma targets (Bulanov et al. 1998; Suk et al. 2001; Thompson et al. 2004;
Tomassini et al. 2004; Brantov et al. 2008; Geddes et al. 2008; Buck et al. 2013;
Corde et al. 2013) and/or a transverse wave break (Bulanov et al. 1997a; Liseikina
et al. 1999; Pukhov & Meyer-ter Vehn 2002; Kando et al. 2007; Corde et al. 2013).
The optical injection mechanism can also provide preaccelerated electron beams with
the required properties (Esarey et al. 1997; Kotaki et al. 2004; Faure et al. 2006;
Kotaki et al. 2009; Rechatin et al. 2009b). The two-colour ionization injection scheme
(Schroeder et al. 2015) and an external static magnetic field (Hosokai et al. 2006b)
enable the control of the properties of the injected/accelerated electron beams.

Electrons immersed in the wake field oscillate in a regular way. In a plasma with the
electron density well below the critical one ne ≪ ncrmeω

2/4πe2, the wake wave phase
velocity vw = cβw is close to the speed of light in a vacuum, which corresponds to a
large value of the relativistic Lorentz factor, γw. The group velocity of the wake wave
is equal to zero and the phase velocity vw is equal to the velocity at which the laser
pulse front propagates. This is given by (2.35). From these expressions, it is easy to
obtain a relation between the electromagnetic pulse wavelength λ0 and the wavelength
λw of the wake field:

λw = λ0

√
γwE(−a2)

π
. (3.1)

Assuming that the characteristic change in the electron density in the wake wave is
of the order of the plasma density and considering the weakly nonlinear wave that
is of interest to the discussed concept of a laser electron–positron collider (Leemans
& Esarey 2009), we can estimate the amplitude of the electrostatic potential in
the wave as ϕw ≈ 1. The energy of the electrons accelerated by the wake wave is
(1 − βw)−1 times greater than ϕw, i.e. the electron gamma-factor is γe = 2γ 2

w . The
electron acceleration length is

lacc ≈
λw

4(1 − βw)
, (3.2)

which is equivalent to the expression lacc ≈ λ0γ
3
w . Using this we obtain the relation

between the acceleration length, the laser wavelength and the energy of the fast
electrons: lacc ≈ λ0γ

3/2
e . For laser wavelength λ0 = 1 µm and electron energy 1 TeV,

i.e. for γe = 2 × 106, we find that the acceleration length (the accelerator size) should
be of the order of 2.7 km. In the case of 1 GeV electron energy the acceleration
length is approximately 8.6 cm. We note that this is the length of the target irradiated
by a 40 TW pulse laser in experiments (Leemans et al. 2006), which reported 1 GeV
electron detection.

Here, we present a description of the electron dynamics in the wake wave, limited
to the 1-D approximation (Esirkepov et al. 2006), for the geometry where all
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functions depend on the time t and one coordinate x. In the framework of classical
electrodynamics, 1-D motion of electrons in the fields of an electromagnetic and
wake plasma wave is described by the Hamiltonian (Landau & Lifshitz 1980)

H=
√

1 + (p⊥ − a(x, t))2 + p2
‖ − ϕ(x, t), (3.3)

where p⊥ and p‖ are the components of the generalized momentum perpendicular and
longitudinal with respect to the direction of the electromagnetic wave propagation, a
is the vector potential of the laser pulse and ϕ is the wake-field scalar potential.

Neglecting the influence of dispersion on the propagation of electromagnetic waves,
we assume that a and ϕ depend only on the variable X = x − βwt. The Hamiltonian
in (3.3) has a symmetry, which implies that there are integrals of motion

H− βwp = h0, p⊥ = p⊥,0. (3.4a,b)

Here and below we use the notation p for the longitudinal component of the electron
momentum. It then follows that the electron energy at the coordinate X is

γ = γ 2
w

[

ϕ(X) + h0 ± βw

√

(ϕ(X) + h0)
2 −

1 + a(X)2

γ 2
w

]

. (3.5)

Here the plus sign corresponds to the coordinate X increasing with time and the minus
sign corresponds to decreasing X. The electromagnetic pulse a(X) is given and the
electrostatic potential ϕ(X) is described by the Poisson equation (2.17). The constant
h0 is determined by the initial conditions at X = X0:

h0 =
√

1 + a2(X0) + p2
0 − βwp0 − ϕ(X0) (3.6)

with p0 being the longitudinal component of the electron momentum at X = X0.
If an ultra-relativistic electron is injected into the wake field with an energy γ0

substantially higher than 2
√

1 + a2 the constant h0 given by (3.6) is approximately
equal to γ0(1 − βw) − ϕ0, where ϕ0 = ϕ(X0). In this limit, the relative energy gain is

γ (X) − γ0

γ0
=

ϕ(X) − ϕ0

γ0(1 − βw)
. (3.7)

As we see, it is of the order of or less than (2a4 + a2)/(1 + a2)3/2, which for |a|≫ 1 is
about |a|. Here we have assumed that ϕ(X) equals the electrostatic potential maximum
ϕmax = a2 and ϕ0 is equal to the potential minimum ϕmin = −a2/(1 + a2) (see (2.25)).
To increase the relative energy gain one should consider an as low as possible initial
electron energy γ0 provided it is above the injection energy threshold. The injection
threshold can be found from the condition of the radical expression on the right-hand
side of (3.5) vanishing, i.e.

(ϕ(X) + h0)
2 −

1 + a(X)2

γ 2
w

= 0. (3.8)

Taking into account that at the injection point ϕ(X) = ϕ0 we obtain from (3.5) for the
injection energy threshold:

γinj =
√

1 + a2γw, (3.9)
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FIGURE 5. Phase plane (X, p‖). The singular point at (Xs, pw) is a point of crossing of the
separatrix branches (blue curves). The particle injected near the bottom of the separatrix
within the region enclosed by the separatrix moves along the trajectory (red curve) close
to the separatrix.

inside the laser pulse and γinj = γw behind the pulse. The electron velocity at the
injection threshold βinj = pinj/γinj with pinj = βwγw

√
1 + a2, according to (3.9), is equal

to the wake wave phase velocity βinj = βw, which is the condition of electron trapping
by the wake field.

The injection threshold corresponds to the particle to being at the singular point
on the separatrix in the phase space (X, p‖). From (3.4) and (3.6) we can find the
dependence of the electron momentum p‖ on the coordinate X. It is given by

p‖ = γ 2
w

[

βw(ϕ(X) + h0) ±

√

(ϕ(X) + h0)2 −
1 + a(X)2

γ 2
w

]

. (3.10)

The separatrix is determined by the constant h0 equal to hs, where

hs =
√

(1 + a2(Xs))(1 − β2
w) − ϕ(Xs). (3.11)

Here Xs is the coordinate of the singular point, where the potential has a minimum
(see figures 1 and 5). The momentum at the singular point equals
pw = βw

√

(1 + a2)/(1 − β2
w). Behind the laser pulse, where a = 0, the constant hs

is equal to hs =
√

1 − β2
w − ϕ(Xs). The electron injected near the singular point Xs

can be accelerated from the momentum pinj = pw to pmax ≈ pinj + 2γ 2
wϕmax, when the

trajectory approaches the top of the upper branch of the separatrix, which corresponds
to the ‘plus’ sign in (3.10).

The minimum of the momentum with which the electron can be injected into the
accelerating electric field corresponds to the bottom of the separatrix at the point
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(Xm, pm) in the phase plane. At the lower separatrix branch we should take the ‘minus’
sign in (3.10). In the limit γw ≫ 1, the minimum of the momentum is

pm ≈ ϕ(Xm)/2. (3.12)

The electron injected near the bottom of the separatrix within the region enclosed
by the separatrices moves along the trajectory close to the separatrix, as shown by
the red curve in figure 5. It can reach the momentum pmax ≈ 2γ 2

wϕmax in the vicinity
of the top of the separatrix. We note that the electron acceleration time (and the
acceleration distance), in this case, is twice as large as the acceleration time for the
particle injected at the singular point Xs.

3.2. Effect of plasma inhomogeneity

Plasma inhomogeneity effects can lower the phase velocity of the wake wave left
behind the driver laser pulse, thus lowering the injection energy threshold (Bulanov
et al. 1998; Fubiani et al. 2006; Brantov et al. 2008). Within the framework of the
approximation assuming that the wake wave is below the wave breaking threshold and
assuming, in particular, that the electron displacement inside the wake is substantially
less than the scale length of the plasma density inhomogeneity, we can write the phase
of the wake wave in the form

Ψ (x, t) = ωpe(x)

(∫ x

0

dx

vg(x)
− t

)

= ωpe(x)

∫ x

xlas(t)

dx

vg(x)
. (3.13)

Here ωpe(x) and vg(x) are the local values of the Langmuir frequency and the laser

pulse group velocity (equal to vg = k0c2/

√

k2
0c2 + ω2

pe(x)), respectively. The function

xlas(t) is the laser pulse coordinate at time t given by the equation
∫ xlas(t)

0

dx

vg(x)
= t. (3.14)

In a homogeneous plasma the phase (3.13) depends on the variable X as

Ψ (x, t) = −
ωpeX

vg

. (3.15)

The local wavenumber of the wake wave is the gradient of the phase function,
kw = ∂xΨ , and the local frequency is proportional to its rate of change, ωw = −∂tΨ .
Differentiating the phase Ψ , given by (3.13), with respect to time and coordinate we
find the frequency and wavenumber of the wake wave as:

ωw = ωpe(x), (3.16)

and
kw =

ωpe

vg(x) − ∂xωpe(x)

∫ xlas(t)

x

dx

vg(x)

, (3.17)

respectively.
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In a downramp density plasma, where the coordinate derivative of the Langmuir
frequency is negative, the wavenumber kw(x) increases with the growth of the
distance between the laser pulse and the point with coordinate x. This corresponds to
decreasing of the wake wave phase velocity, defined as

vw =
ωw

kw

= vg

ωpe

ωpe − vg∂xωpe

∫ xlas(t)

x

dx

vg(x)

, (3.18)

i.e. lowering the injection threshold. Eventually the wake wave breaks, as discussed in
detail by Bulanov et al. (1998), Brantov et al. (2008), Lobet et al. (2013). The change
of the wake wave wavelength, λw = 2π/kw, leads to a change of the wake wave crest
position where the electron injection occurs. The position of the wake wave crest is
marked by the value of the phase Ψ . Using (3.13) we obtain the velocity of the point
of constant phase,

ẋΨ = vg

ω2
pe

ω2
pe + Ψ vg∂xωpe

. (3.19)

The corresponding gamma factor γΨ = (1 − β2
Ψ )1/2, with βΨ = ẋΨ /c can be written in

the limit of low density plasma, n/ncr ≪ 1, as

γΨ ≈
1

(

ω2
pe

ω2
+ Ψ

2c

ωpeL

)1/2 . (3.20)

Here we make use of the fact that the laser pulse group velocity is given by vg = c(1−
ω2

pe(x)/ω
2)1/2 and introduce the plasma inhomogeneity scale length L = |ωpe/∂xωpe|.

As we see, the plasma inhomogeneity effects are important provided the the plasma
inhomogeneity scale length is small enough and/or the wake wave phase is sufficiently
large: L < 2Ψ cω2/ω3

pe.
Figure 6 illustrates the above discussed effects. Plots are drawn in arbitrary units.

Figure 6(a) shows the electron density profile approximated by the expression

ne =
n1 + n2

2
−

n1 − n2

2
tanh

( x

L

)

, (3.21)

where n1 and n2 are the electron density at x → ±∞. In the plot (a) n1 = 1.5, n2 = 1
and L = 5. Figure 6(b) presents the trajectories of the constant phase points in the
(x, t) plane. As we see, the distance between the trajectories in the region of the
plasma inhomogeneity becomes smaller the larger the time t is. In figure 6(c) we
see the phase dependence on the coordinate x at t = tm for tm = 125 with decreasing
scale of the inhomogeneity in the region in the vicinity of the coordinate x = 0.
Figure 6(d) presents the profile of the wake wave phase velocity vph at t = 0, 0.125tm,
0.25tm, 0.5tm, 0.75tm, tm. Within the region of the plasma inhomogeneity, the wake
wave phase velocity at first for x < 0 gradually decreases and then, where x > 0,
gradually increases. Within the interval where the phase velocity becomes lower than
the electron quiver velocity the wake wave breaks, resulting in electron trapping.
Then, the electrons moving together with the wave appear in the region of high
phase velocity. During the injection process, the electrons remain trapped by the
wave which can be explained by the process similar to the ‘phase stability principle’
of Veksler (1944), McMillan (1945).
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(a)

(b)

(c) (d)

FIGURE 6. Plasma inhomogeneity effects on the phase velocity of the wake wave.
(a) Electron density profile given by (3.21) with n1 = 1.5, n2 = 1, and L = 5. (b) The
trajectories of the constant phase points in the (x, t) plane. (c) The phase dependence on
the coordinate x at t = tm for tm = 125. (d) The wake wave phase velocity vph versus
coordinate x at t = 0, 0.125tm, 0.25tm, 0.5tm, 0.75tm, tm. Plots are drawn in arbitrary units.

3.3. Electron injection at the interface between two regions with different plasma

density

When the plasma density changes abruptly at the interface between two plasmas the
injection mechanism is different from the one considered above. We consider the
plasma configuration shown in figure 7 with the plasma density changing from n1 at
x → −∞ to n2 for x → +∞. At the border between these two plasmas, the electrons
with momentum equal to p1 appear inside the wake wave generated by the laser pulse
in the lower plasma density region. The momentum p1 equals either γw,1 = (ω0/ωpe,1)

if they are preinjected into the wake field or is approximately equal to the quiver
momentum determined by the wake wave amplitude if no preinjection occurs, as in
the case of the injection mechanism formulated by Suk et al. (2001).

For the sake of brevity, we assume that the electrons are preinjected, the laser pulse
driver of optimal length has amplitude equal to unity and the length of the left-hand
side of the plasma region is of the order of the acceleration length. This scenario can
be considered as the ‘rephasing’ mechanism of electron energy boost, which has been
analysed by Döpp et al. (2015), Guillaume et al. (2015b).

In the case under consideration, the electrons with maximum momentum are
localized at the top of the separatrix in the phase plane (x, p), as shown in figure 7.
The distance between the electron bunch and the front side of the wake wave δx is

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623


On some theoretical problems of laser wake-field accelerators 19

FIGURE 7. The electron bunch injection/rephasing at the interface between two regions
with different plasma density. In the plasma region on the left-hand side with density
n1 the LWFA electron bunch is preaccelerated to momentum p1 reached at the interface
between the two plasmas. In the plasma region on the right-hand side the density is
substantially lower than in the region on the left-hand side, n2 ≪ n1. Here the electron
bunch occurs in the region in the phase plane (x, p) within the separatrix (provided
p1 = pinj = pw,2) close to the front of the wake wave bucket. Then the electron bunch
is accelerated moving along the trajectory (red curve) close to the separatrix.

of the order of the laser pulse driver of optimal length given by (2.21). Since both
the relativistic electron bunch and the laser pulse move with velocity close to the
speed of light, at the time, when they enter the plasma region on right-hand side, the
distance between them remains almost unchanged. As a result the electron bunch in
the plasma region on left-hand side appears to be relatively close to the front of the
wake wave bucket. In order to be further accelerated, the electron bunch should be
inside the region in the phase plane enclosed by the separatrix. This is equivalent to
the requirements n2/n1 ≪ 1 and p1 ≈ pw,2, where the injection momentum pinj = pw,2

corresponds to the electrons with the energy equal to γw,2 calculated for the phase
velocity of the wake wave in the right-hand side region.

If the requirements formulated above are fulfilled, the electron bunch trapped inside
the separatrix close the wake wave front then moves along the trajectory in the phase
plane shown by the red curve on the upper right-hand side in figure 7. In the limit
n2/n1 ≪ 1 the energy of accelerated electrons can be of the order of γ 2

w,2 ≈ n1/n2.
We note that in the case when the electron bunch appears to be injected at a

position too close to the front of the wake wave in the first bucket, the properties of
the accelerated electrons such as the transverse emittance, energy spectrum width, etc.,
can be modified due to interaction with the laser pulse driver (e.g. see Kotaki et al.

2015). In view of this, to optimize the electron injection and/or ‘rephasing’ whilst
avoiding the electron–laser interaction the electron bunch should be preaccelerated,
or injected, in the second, or third and so on buckets. This can be done by choosing
the plasma density inhomogeneity scale length within the framework of the injection
mechanism discussed in the previous subsection.

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623


20 S. V. Bulanov and others

(a)

(b)

FIGURE 8. The wake wave left behind the laser pulse of amplitude a = 1 and of the
length l = 27 propagating in a plasma characterized by βw = 0.9995. (a) The electrostatic
potential changes inside the pulse between ϕmax = 1 and ϕmin = 0 and between ϕmax = 1 and
ϕmin = −1/2 behind the pulse, respectively. The electric field inside the pulse is smaller
than behind. The wake wave wavelength is larger inside the pulse than behind it. (b) The
electron density and the laser pulse versus the coordinate X.

3.4. Electron acceleration by the wake field

Assuming ϕ(X) − ϕ0 = ϕmax − ϕmin, which is equal to (2a4 + a4)/(1 + a2) in the
case of electron injection to the wake wave behind the laser pulse and to a2 when
the injection phase corresponds to the wake wave inside the laser pulse, we find the
maximal electron energy. In the case of the electron acceleration in the wake field
behind the laser pulse, the energy is

γ = γinj +
a4 + 2a2

(1 − βw)(1 + a2)
, (3.22)

and it is equal to

γ = γinj +
a2

1 − βw

, (3.23)

when the acceleration occurs in the wake field inside the laser pulse.
In figure 8 we show the electrostatic potential and electric field in the wake wave

generated by a flat top laser pulse of amplitude a = 1 and of length l = 27 propagating
in a plasma characterized by βw = 0.9995. For these parameters (3.22) and (3.23) give
for the normalized energy of the accelerated electrons with values equal to γe = 3000
in the case of electron acceleration in the wake field behind the laser pulse, and
to γe = 2000 when the acceleration occurs in the wake field inside the laser pulse,
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FIGURE 9. The phase plane (X, p) for the same laser–plasma parameters as in figure 8.
The inset on the right-hand side shows a zoomed (15 < X < 30) part of the phase plane.
The inset on the left-hand side shows a zoomed (−25 < X < −5) part of the phase plane.

respectively. The electrostatic potential varies in the wake inside the pulse between
ϕmax = 1 and ϕmin = 0 and it changes between ϕmax = 1 and ϕmin = −1/2 behind the
pulse, respectively. The electric field inside the pulse is smaller than behind.

The wake wave wavelength is larger inside the pulse than behind it. Figure 8(b)
shows the electron density and the laser pulse versus the coordinate X. As we see,
the electron density modulations are stronger in the wake wave behind the laser
pulse than inside it. This may have important implications in the Relativistic Flying
Mirror paradigm (see review articles Bulanov et al. (2013a), Bulanov et al. (2016)
and literature cited therein), because the larger the electron density modulations in
the wake wave the higher the reflectivity of the dense electron layer is.

Figure 9 presents the electron phase plane (X, p) for the same laser–plasma
parameters as in figure 8. The injection energy given by (3.9) is equal to 31.6 behind
the laser pulse and to 44.7 inside the laser pulse, respectively.

In the case of an ultra-short laser pulse, by using (2.31) we can obtain for the
accelerated electron energy

γe = γinj +
a2llas

1 − βw

. (3.24)
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We have assumed that a2llas ≪ 1. As we have seen above and as noted by Esirkepov
et al. (2006) the laser-driven wake field is not periodical, and a thorough analysis of
the electron dynamics in the vicinity of the laser pulse front is of great importance.
In Khachatryan et al. (2004), the localized electron energy spectrum was attributed
to electrons with velocity greater than the velocity of the laser pulse front βw that
overtake the laser pulse due to acceleration in the wake-field first cycle. At the
laser pulse front, conditions can be met for the so-called ‘ponderomotive’ electron
acceleration. In figure 9 these trajectories correspond to the horizontal lines ahead of
the laser pulse. It is easy to see that the energy gain is equal to zero if the electrons
have been injected to the acceleration phase of the wake field inside the laser pulse.
In this case, when the electrons are injected into the region behind the pulse then
when they have overtaken the pulse their energy becomes equal to

γover = γinj +
|ϕmin|

1 − βw

. (3.25)

If the laser pulse has the length optimal for wake-field generation (see (2.21)), the
energy gain is

γe − γw ≈ 2γ 2
w

a2

(1 + a2)
. (3.26)

Which scales as the square of the wake wave gamma factor, ∝γ 2
w .

3.5. Energy spectrum

When a relatively long, initially quasi-monoenergetic, electron bunch is injected at the
minimum of the electrostatic potential and accelerated by the wake-field wave, its
particles are distributed along the separatrix with some density N (X). This results
in the particle energy spectrum broadening from the initial energy γinj ≈ γw to the
maximum energy γmax. Besides these two limits, the spectrum has peculiarities as
noticed by Bulanov & Tajima (2005), Bulanov et al. (2005), Esirkepov et al. (2006).
Near the top of the separatrix, the particle energy has a parabolic dependence on X

γe(X) ≈ γmax

[

1 −
(Xt − X)2

l2
acc

]

, (3.27)

with the acceleration length determined by (3.2). This is a consequence of the local
parabolic profile of the electrostatic potential in the wake wave near its maximum.
The energy spectrum of particles collected over the wake-field period, i.e. integrated
over the coordinate X, in the vicinity of the maximum energy is determined by the
contribution from particles with energy near the maximum:

dN

dγe

∣

∣

∣

∣

γe→γmax−0

=
N (X)

|dγe/dX|
≈

N (Xt)lacc

2
√

γmax (γmax − γe)
, (3.28)

where γ < γmax. The spectrum has an integrable singularity at γ → γmax. In
addition, it has a rather large spread; e.g. half of the particles occupy the energy
interval 3γmax/4γ < γmax. Due to these properties the spectrum has been called
‘quasi-monoenergetic’ (Bulanov & Tajima 2005; Bulanov et al. 2005).
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A contribution to the spectrum from particles overtaking the laser pulse can be
obtained from the dependence given by (3.25). Taking, for simplicity, the model
dependence

γe(X) ≈ γover

[

1 + D exp

(

−
X

Xover

)]

, (3.29)

where the constant D ≈ γmax/γover and Xover is a coordinate of a point ahead of the
laser pulse, we obtain

dN

dγe

∣

∣

∣

∣

γe→γover+0

=
N (X)

|dγe/dX|
≈

N (Xover)Xover

γe − γover

. (3.30)

3.6. Inverse problem of LFWA

As we see from (3.27) and from expressions obtained above for the electrostatic
potential in the wake wave, the energy spectrum of the accelerated electrons is
determined by the potential profile near its maximum. The spectrum is narrower for
flatter potential profiles. In order to find the conditions for wake wave generation
with such a dependence of the potential on the spatial coordinate, we analyse (2.8)
considering it as an equation for the laser pulse profile required for generating a wake
field with the desired parameters. This gives for the laser pulse profile the expression

a2(X) = γ 2
w

{

[1 + ϕa(X)]2 − β2
w

[

1 + ϕa(X)

ϕ′′
a (X)γ 2

w − 1

]2
}

− 1, (3.31)

with given dependence ϕa(X).
Actually, the realization of a wake field with the desired parameters by using the

driver laser pulse given by (3.31) requires the boundary conditions to be fulfilled
with high enough precision. In order to reveal the discrepancy (it is also called
the ‘residual’) we, as a typical example, assume the super-Gaussian profile for the
electrostatic potential:

ϕa(X) = F exp

[

−
(

X

L

)2q
]

(3.32)

with the index q > 1 and width L. Substituting a2(X) obtained from (3.31) and (3.32)
into the right-hand side of (2.8) we solve it numerically for the boundary conditions
ϕ = 0 and ϕ′ = 0 at a coordinate far enough ahead the driver pulse. The results are
presented in figures 10 and 11.

In figure 10 we present the case of a relatively long laser pulse corresponding to the
trial potential ϕa given by (3.32) having index 2q = 6, length L = 50 and amplitude
F = 1 propagating in a plasma characterized by βw = 0.9995 (γw = 31.6). The laser
pulse generates the electrostatic potential and electric field shown in figure 10(a). The
electrostatic potential and electric field are well localized within the region where the
laser pulse is. The electron density perturbations are weak, as seen in figure 10. The
electron trajectories in the phase plane (X, p), plotted in figure 10(b), demonstrate that
the normalized momentum for the electron trajectory on the separatrix equals 1000. In
this case, the laser–plasma interaction can be described within the framework of the
adiabatic approximation assuming that the left-hand side of (2.8) vanishes. This yields
for the electrostatic potential

ϕ(X) =
√

1 + a2(X) − 1. (3.33)
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(a)

(b)

FIGURE 10. (a) Electrostatic potential, electric field, electron density and the laser pulse
(dashed line) versus the coordinate X. (b) The electron phase plane (X, p). The laser pulse
corresponding to the trial potential ϕa given by (3.32) having index 2q = 6, length L = 50
and amplitude F = 1 propagating in a plasma characterized by βw = 0.9995 (γw = 31.6).

Near the top of the separatrix, the particle energy has a dependence on X given by
the expression

γe(X) ≈ γmax

[

1 −
(Xt − X)2q

l
2q
acc

]

. (3.34)

The energy spectrum of particles collected over the wake-field period, in the vicinity
of the maximum energy, is determined by the contribution from particles with energy
near the maximum:

dN

dγe

∣

∣

∣

∣

γe→γmax−0

≈
N lacc

21/2q
[

γmax (γmax − γe)
](2q−1)/2q

, (3.35)

where γe < γmax. The spectrum has an integrable singularity at γe → γmax. In addition,
it has a rather large spread; e.g. half of the particles occupy the energy interval
γmax(1 − 2−2q) < γe < γmax. This expression can be rewritten in the form

1γe

γmax

= 2−2q, (3.36)

where 1γe = γmax(1 − 2−2q)− γmax. As we see, the larger the index 2q is, the narrower
the energy spectrum is.

If the laser pulse is approximately three times shorter than in the case considered
above, the discrepancy between the trial potential ϕa given by (3.32) and the
electrostatic potential generated in the plasma becomes significant, as clearly seen
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(a)

(b)

(c)

FIGURE 11. The same is in figure 10 for the laser pulse corresponding to the trial
potential ϕa given by (3.32) having index 2q = 6, length L = 15 and amplitude F = 1
propagating in a plasma characterized by βw = 0.9995 (γw = 31.6).

in figure 11, where we present the same dependences as in figure 10 for the laser
pulse with length equal to L = 15. The wake wave excited at the front and rear
side of the laser pulse substantially modulates the electrostatic potential dependence
on the coordinate X. This will result in an accelerated electron energy spectrum
with multiple maxima, in whose vicinities the spectrum can be approximated by the
expression (3.28).

4. Energy scaling

Due to relativistic self-focusing (Litvak 1970; Sun et al. 1987) the laser pulse
amplitude and waist are different from their values in a vacuum. Taking into account
the self-focusing resulting from the laser pulse channelling inside a channel of radius
rc =

√
a (in dimensional units it is rc = c

√
a/ωpe), we find a relationship between the

electromagnetic wave amplitude and power P (e.g. see Gordienko & Pukhov 2005;
Lu et al. 2007; Bulanov et al. 2008b),

a3 =
P

P̄

(ωpe

ω

)2
, (4.1)
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where the power characteristic in the theory of relativistic self-focusing is

P̄ = 2m2
ec5/e2 ≈ 1.74 × 1016 erg s−1 ≈ 17.4 GW. (4.2)

The criterion for self-focusing is

P > P̄

(

ω

ωpe

)2

. (4.3)

A finite waist laser pulse generates a wake field of the form called the ‘cavity’,
‘blowout’ and/or ‘bubble’ (see Pukhov & Meyer-ter Vehn 2002; Gordienko & Pukhov
2005; Lu et al. 2007). The transverse size of the cavity is of the order of

√
a. The

form of the cavity in the electron density behind the laser pulse can be found from
the fact that all electrons in the way of the laser pulse are pushed aside, forming
a multi-stream configuration in the collisionless plasma (Esirkepov, Kato & Bulanov
2008). The plasma inside the cavity is positively charged. It attracts those electrons
from the side regions that have not experienced the ponderomotive force action.

The electrostatic potential inside the cavity is approximately ϕc = a and the electric
field is of the order of

√
a. Using these expressions and (4.1) we can find the

accelerated electron energy expressed in terms of the laser power and plasma density
(via the ratio ω/ωpe), we find

γe ≈
(

P

P̄

ω

ωpe

)2/3

, (4.4)

where we have taken into account the dependence of the laser group velocity and
the pulse etching velocity on the laser amplitude. As we see, the fast electron energy
is for a given laser power higher for lower plasma density, i.e. as high as the ratio
ω/ωpe is. However, since the self-focusing condition (4.3) imposes a constraint on the
maximum of this ratio, the maximal electron energy scales as

γe,m ≈
(

P

P̄

)

. (4.5)

From this expression it follows that to obtain 1 GeV electrons with a 1 PW
power laser pulse the plasma density should be equal to 4.3 × 1018 cm−3. Under
these conditions, the laser pulse amplitude equals a = 3 and the acceleration length
lacc ≈ 2 cm.

According (4.5) a PW class laser can provide electrons with the energy of the order
of 25 GeV. With a 200 TW laser the achievable electron energy is approximately
5 GeV. The acceleration length lacc ≈ λ(P/P̄)3/2 is equal to 30 m in the first case
and is equal to 75 cm in the second.

In figure 12 we present the energy of the LWFA accelerated electrons experimentally
obtained with laser facilities having different power. Here we have used the
energy–power plot from Kando et al. (2012) with the results of the numbers from 1
to 18 adding the points from 19 to 22 corresponding to the experiments reported
by Kim et al. (2013), Walker et al. (2013), Wang et al. (2013) and Leemans et al.

(2014), respectively. The experimental data can be fitted by formula γe ≈ (P/P̄)0.85,
with the index 0.85 in between the values corresponding to dependences given
by (4.4) and (4.5).
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FIGURE 12. Experimental results on LWFA electron energy versus laser power (see
Kando et al. 2012). The indicated numbers correspond to the results reported as follows:
1 – Miura et al. (2005), 2 – Mangles et al. (2004), 3 – Geddes et al. (2004), 4 – Faure
et al. (2004), 5 – Yamazaki et al. (2005), 6 – Hafz et al. (2006), 7 – Hosokai et al.
(2006a), 8 – Hsieh et al. (2006), 9 – Hidding et al. (2006), 10 – Mori et al. (2006),
11 – Mangles et al. (2006), 12 – Leemans et al. (2006), 13 – Kameshima et al. (2008),
14 – Hafz et al. (2008), 15 – Osterhoff et al. (2008), 16 – Karsch et al. (2007),
17 – Kneip et al. (2009), 18 – Froula et al. (2009), 19 – Kim et al. (2013), 20 – Leemans
et al. (2014), 21 – Wang et al. (2013), 22 – Walker et al. (2013). The fitting line
corresponds to the dependence between the electron energy and laser power of the form
Ee = 0.51(P/17 GW)0.85 MeV.

The laser energy Elas required for acceleration of electrons up to the energy mec
2γe

can be found from the condition on the laser pulse length llas to be equal to the
optimal length lopt(a) given by (2.21). Under this condition, the laser energy is

Elas =
P lopt(a)

c
= 2Ē

(

P

P̄

)(

ω

ωpe

)

E(−a2) (4.6)

with

Ē =
2π P̄

ω
=

4πm2
ec5

e2ω
≈ 33

(

λ

1 µm

)

µJ. (4.7)

In the case of the maximum of the accelerated electron energy given by (4.5),
corresponding to the condition on the laser amplitude a = 1, the laser energy and
power are related to each other as

Elas = 3.8 Ē

(

P

P̄

)3/2

. (4.8)

For example, with 1 PW power, a 1.8 KJ laser can accelerate electrons up to 30 GeV,
and with 10 PW power, a 60 KJ laser can accelerate electrons up to 300 GeV. The
required electron density, n=ncr/γe,m, with ncr =1.74×1021 cm−3 for laser wavelength
λ= 800 nm, is equal to ≈3 × 1015 cm−3, in the first case of a 1 PW power, and to
≈3 × 1016 cm−3, in the case of a 10 PW power laser, respectively.
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FIGURE 13. The wavelength and electric field amplitude changes being different at
different times t1 and t2 due to the change of plasma density leading to a change in the
laser pulse parameters. For a matched plasma density profile, the accelerated electrons
remain in the acceleration phase of the wake field.

5. Unlimited acceleration regime with a tapered plasma target

The electron acceleration by the wake field excited in inhomogeneous plasma can be
substantially enhanced. For matched laser–plasma parameters the electron acceleration
can occur in an unlimited acceleration regime. This regime implies that the electron
inside the wake wave does not leave the acceleration phase, i.e. the dephasing length
is formally infinite, and its energy grows in time, being not limited asymptotically. The
constant phase condition corresponds to the case when the gamma factor γw calculated
with the phase velocity of the wake wave remains equal to the electron Lorentz factor
γe during the electron interaction with the wake field. This condition can be realized
when the laser pulse generates the wake wave in a downramp density plasma, where
the laser pulse group velocity increases along the pulse propagation path which results
in the increasing of the wake wave phase velocity and wavelength, providing constant
acceleration phase conditions. Although the electric field decreases at this phase the
integral of the electric field along the electron trajectory diverges, i.e. the energy gain
formally is infinite. In figure 13 we illustrate the unlimited acceleration concept.

Within the framework of the 1-D approximation, assuming that the wake wave is
generated by an ultra-short laser pulse with constant amplitude allas ≪ 1 (see (2.27)–
(2.32)), it has been shown in Bulanov et al. (1997b) that in the plasma target with a
downward gradient density n ∼ x−2/3 the electron energy grows proportionally to ∼x1/3.
The constant-amplitude condition can be satisfied, in particular, when the laser pulse
is guided inside a constant radius waveguide filled by an inhomogeneous plasma. For
laser pulse guiding, plasma filled capillaries have been extensively used (Ehrlich et al.
1996; Hosokai et al. 2000; Bobrova et al. 2001, 2013; Esarey et al. 2009; Kameshima
et al. 2009; Leemans et al. 2014) as well as the channels produced in plasma by the
ponderomotive force from picosecond pulses (Mizuta et al. 2012, 2016).

The phase velocity of the laser pulse propagating inside a plasma filled waveguide is
determined by the waveguide transverse size and by the plasma density (see Benedetti
et al. (2015) for a detailed discussion of the laser pulse phase velocity dependence
on the waveguide parameters). If the waveguide radius R is small enough, R ≪ rc =√

ac/ωpe with kp = ωpe/c, the wake wave phase velocity is independent of the plasma
density being determined by the waveguide radius with γw ≈ kR, where k0 = ω0/c. For
R/rc ≫ 1 we have γw ≈ k0/kw with kw = 1/rc. Figure 14 illustrates the wake wave
excited inside a tapered waveguide.
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FIGURE 14. Sketch of the wake wave excited inside a tapered waveguide.

5.1. High-amplitude limit

For given laser power the laser amplitude is higher the smaller the waveguide radius
is. On the other hand, the smaller the channel radius is the lower the wake wave phase
velocity is. Taking into account these constraints we assume that

kwR = π, (5.1)

i.e. the channel diameter is equal to the wake wave wavelength. This condition gives
a relationship between the plasma density and the channel radius.

We assume that the laser pulse excites a wake field inside the bubble with the radius
rc = c

√
aωpe. Its amplitude can be estimated to be equal to

Ew = 2πenerc =
mec

2

2eπλ

(ωpe

ω

)2/3
(

P

P̄

)1/6

. (5.2)

Here we have used the relationship between the laser pulse amplitude, power and
plasma density given by (4.1). In the case of an inhomogeneous gas target for a
given laser power the electromagnetic pulse amplitude depends on the plasma density
according to relationship (4.1). For the normalized electron energy γe we have the
equation

dγe

dx
=

eEw

mec2
. (5.3)

Assuming that the accelerated electron Lorentz factor equals that calculated for the
wake wave phase velocity, γe = γw, and taking into account that

γw =
√

a

(

ω

ωpe

)

=
(

P

P̄

)1/6 (
ω

ωpe

)2/3

(5.4)

and Ew =
√

amecωpe/e, we obtain a differential equation determining the electron
density profile:

d

dx

(

ω

ωpe

)2/3

=
π

λ

(ωpe

ω

)2/3
. (5.5)
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Its solution gives

n(x) = ncr

[

4πx

3λ
+
(

ω

ωpe(0)

)4/3
]−3/2

, (5.6)

where ωpe(0) is the Langmuir frequency at x = 0. The electron energy asymptotically
grows in the regime of unlimited acceleration as

γe(x) ≈
(

P

P̄

)1/6 (4πx

3λ

)1/2

. (5.7)

From (5.1), (4.1) and (5.6) it follows that the radius of the tapered channel should
linearly depend on the coordinate x,

R(x) =
λ

2

(

P

P̄

)1/6
[

4πx

3λ
+
(

ω

ωpe(0)

)4/3
]

. (5.8)

5.2. Short pulse driver laser

Since it is difficult to keep the optimal length of the laser pulse when it propagates
in an inhomogeneous plasma, we shall consider here the case of a short pulse laser,
i.e. a2llas ≪1. The wake-field amplitude and wavelength are given by (2.27) and (2.29),
respectively. In dimensional units, the wake-field amplitude is equal to

Ew =
meω

2
pe

2e
a2llas (5.9)

and the wake wave wavelength is 2llasa
2. This approximation implies that the laser

power is below threshold of relativistic self-focusing, i.e. P/P̄ < ncr/n. Assuming that
the waveguide radius is of the order of c/ωpe we obtain for the normalized laser pulse
amplitude

a2 =
P

P̄

(ωpe

ω

)2
(5.10)

and the wake-field amplitude

Ew =
me

2e
a2 2π

2llas

λ2

(ωpe

ω

)4 P

P̄
. (5.11)

Using equation (5.3) with γe = γw = (ω/ωpe) and the electric field on the right-hand
side given by (5.11), we write the differential equation for the plasma density profile
as

d

dx

(

ω

ωpe

)

=
2π

2llas

λ2

(ωpe

ω

)4 P

P̄
. (5.12)

The solution of this equation gives the plasma density dependence on the coordinate x

n(x) = ncr

[

10π
2llasx

λ2

(

P

P̄

)

+
(

ω

ωpe(0)

)5
]−2/5

. (5.13)
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FIGURE 15. Electron bunch of radius R(b) inside a cavity of radius rc.

The gamma factor of accelerated electrons asymptotically grows with the coordinate
x in this regime of unlimited acceleration as

γe(x) ≈
[

10π
2llasx

λ2

(

P

P̄

)]1/5

. (5.14)

Using the relationships obtained we can find that the radius of the tapered channel
should depend on the coordinate proportional to x1/5,

R(x) = λ
[

10π
2llasx

λ2

(

P

P̄

)

+
(

ω

ωpe(0)

)5
]1/5

. (5.15)

6. Electron beam dynamics inside the cavity

One of the limits on the LFWA operation is due to the effects produced by the
electromagnetic field of the accelerated electron bunch (Esarey et al. 2009). When
the electric charge of the accelerated electrons is high enough to produce an electric
field of the order of the electric field inside the cavity, in an uncontrollable regime
the quality of the accelerated electron bunch deteriorates, although when the bunch is
carefully shaped, the total electric field can be made constant over the bunch length,
which minimizes the energy spread (Wilks et al. 1987; Tzoufras et al. 2008). The
problem of beam loading has been addressed experimentally and theoretically in a
number of works, e. g. see Rechatin et al. (2009a), Guillaume et al. (2015a) and
the review article Esarey et al. (2009) and references therein. The beam overloading
constraint imposes an upper limit on the number of accelerated particles. The latter is
crucial for various applications of LFWA accelerators.

Here we consider the electron bunch equilibrium and oscillation around equilibrium
inside the wake when its transverse size is substantially smaller than its length,
assuming that the longitudinal scale length (along the x axis) of the fast electron
bunch is much greater than its scale length in the transverse direction (see figure 15
and Kando et al. (2007)). Such an approximation may be valid in the near-axis region
of the wake when the injection time is of the order of the electron acceleration time.
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6.1. Equations of motion

The equations of the motion of a fluid element of the electron bunch in the transverse
direction are

∂tn
(b) +

1

r
∂r(n

(b)v(b)
r ) = 0, (6.1)

for the beam density n(b)(t, r), and

∂tp
(b)
r + v(b)

r ∂rp
(b)
r −

v
(b)
θ p

(b)
θ

r
= −e

(

Er +
v(b)

x

c
Bθ −

v
(b)
θ

c
Bx

)

, (6.2)

∂tp
(b)
θ + v(b)

r ∂rp
(b)
θ +

v(b)
r p

(b)
θ

r
= −e

v(b)
r

c
Bx, (6.3)

for the radial and azimuthal components of the beam momentum, respectively. The
subscript (b) stands for the functions describing the beam. The beam momentum
components are related to the components of the beam velocity as p(b)

r = γ (b)mev
(b)
r

and p
(b)
θ = γ (b)mev

(b)
θ and v(b)

x = cβ(b) is the beam velocity in the x direction. We
introduce the associated gamma factor,

γ (b) = 1/
√

1 − β(b) 2, (6.4)

with β(b) = v(b)
x /c corresponding to the beam velocity along the direction of the laser

pulse propagation. Here and below in this subsection we assume v(b)
x to be constant,

which implies that the x-component of the electron momentum p(b)
x = mev

(b)
x γ (b) is

substantially larger than the momentum transverse components, p(b)
x ≫ {p(b)

r , p
(b)
θ },

which corresponds to the well-known betatron approximation (Humphries 1990).
The electric field in the right-hand side of (6.2) is a sum of the radial component

of the electric field inside the cavity 2πn0er produced by positively charged ion
background and of the electric field of the electron beam E(b)

r , which is governed by
equation

1

r
∂r(rE(b)

r ) = 4πn(b)e. (6.5)

The magnetic field B = Bxex + Bθeθ is a combination of an external magnetic field
Bxex directed along the laser pulse propagation and the magnetic field produced by the
electric current carried by the electron beam Bθeθ . Here ex and eθ are the unit vectors
in the x and θ directions.

An axial magnetic field Bxex can be generated by the circularly polarized laser
radiation via the inverse Faraday effect and/or it can be externally imposed. Strong
magnetic fields can change the whole scenario of the laser plasma interaction
(Askar’yan et al. 1994; Pukhov & Meyer-ter Vehn 1996; Bulanov et al. 2013b;
Rassou, Bourdier & Drouin 2015) and, in particular, they modify the charged particle
acceleration by electrostatic waves Katsouleas & Dawson (1983), Bulanov & Sakharov
(1986), Berezinskii et al. (1990), Dieckmann, Shukla & Drury (2008), Neishtadt et al.

(2009) and injection (Vieira et al. 2011, 2012). An externally imposed homogeneous
magnetic field can significantly improve the quality and stability of laser wake-field
accelerated electrons (Hosokai et al. 2006b, 2010). Below we assume that an axial
magnetic field is given.
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The magnetic field produced by the electric current carried by of the electron beam
should be found from equation

1

r
∂r(rB

(b)
θ ) = 4πnbeβ(b). (6.6)

To solve the system of equations (6.1)–(6.6) it is convenient to use the Lagrange
variables t′, r0 related to the Euler variables t, r as

t′ = t and r = r0 + ρ(t, r0), (6.7a,b)

where the Lagrange coordinate r0 is chosen to be the initial (t = 0) coordinate of the
element of the electron fluid with ρ(t, r0) being the electron displacement from the
initial position.

The solution of the continuity equation (6.1) is given by

n(b)(t, r0) = n(b)(0, r0)

∣

∣

∣

r0

r
∂rr0

∣

∣

∣
, (6.8)

which can be written in the form

n(b)(t, r0) = n(b)(0, r0)
r0

(r0 + ρ)(1 + ∂r0ρ)
, (6.9)

where (r0/r)∂r0r equal to r0/[(r0 + ρ)(1 + ∂r0ρ)] in the right-hand side of (6.8) and
(6.9) is the Jacobian of the transformation from the Euler to Lagrange coordinates.
The function n(b)(0, r0) gives the electron density distribution at t = 0.

From (6.1), (6.5) and (6.6) we obtain that the electric and magnetic field produced
by the bunch depend on the variables t and r0 as

E(b)
r (t, r0) =

2eN(b)(r0)

r0 + ρ
(6.10)

and

B
(b)
θ =

2eN(b)(r0)β
(b)

r0 + ρ
, (6.11)

respectively. As we see, there is a relationship, B
(b)
θ = β(b)E

(b)
θ between the beam

generated electric and magnetic fields. In (6.10) and (6.11), N
(b)(r0) is the electron

number within the radius r0 per unit length in the bunch. It is equal to the integral
over the surface of the radius r0

N
(b)(r0) = 2π

∫ r0

0
n(b)(0, s)s ds. (6.12)

Integration of equation (6.3) written in the Lagrange variables,

ṗ
(b)
θ +

v(b)
r p

(b)
θ

r0 + ρ
=

e

c
v(b)

r Bx, (6.13)

results in the dependence of the θ component of the electron momentum on r0, t

(r0 + ρ(r0, t))p
(b)
θ (r0, t) =

e

2c
(r0 + ρ(r0, t))2Bx +M

(b)
θ (r0), (6.14)

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623


34 S. V. Bulanov and others

with the function M
(b)
θ (r0) determined by the initial distribution of the angular

momentum inside the bunch. Here and below a dot stands for differentiation with
respect to time. We have used the fact that the radial component of the beam velocity
in Lagrange variables is equal to the partial derivative of the radial coordinate on
time, v(b)

r = ∂tρ. The integral (6.14) stems from the conservation of total angular
momentum in electrodynamics.

Substituting the relationships obtained to (6.2) written into the Lagrange variables
we obtain it as

r̈ + ω2
UHr =

M
(b) 2
θ (r0)

m2
eγ

(b)r3
+

2e2
N

(b)(r0)

meγ (b) 3r
, (6.15)

where r(r0, t) = r0 + ρ(r0, t) is the radius of the electron fluid element located initially
at r0 and

ω2
UH =

ω2
pe

2γ (b)
+

ω2
Be

4γ (b)
(6.16)

is the square of the frequency of betatron oscillations of a single electron moving
inside the wake-field cavity in the presence of the magnetic field Bxex. The frequency
ωpe/

√

2γ (b) is the frequency of betatron oscillations in the case of zero axial magnetic
field (for details see review article Corde et al. 2013). The frequency ωBe = eBx/mec
is the Larmor frequency for an electron in magnetic field Bx.

The equation (6.15) has a form similar to the Kapchinskij–Vladimirskij equation
(Kapchinskij & Vladimirskij 1959) for the particle beam envelope. The Kapchinskij–
Vladimirskij equation is well known in the theory of standard accelerators of charged
particles (e.g. see Chao 1993). It has also been used in Bulanov, Mourou & Tajima
(2008a) to describe the relativistic electron slicing by a wake field excited in laser
plasma.

The term M
(b) 2
θ (r0)/meγ

(b) on the right-hand side of (6.15) describing the effects of
the electron momentum is proportional to the square of the transverse emittance of the
bunch. The last term on the right-hand side of (6.15) describes space charge effects.

We note here, that if the wake wave is excited in a transversally inhomogeneous
plasma with density n0(r), e.g. when the laser pulse driver propagates inside the
capillary wave guide, the second term on the left-hand side should be

4πe2

meγ (b)(r0 + ρ)

∫ r0+ρ

0
n0(s) s ds. (6.17)

Equation (6.15) describes the finite-amplitude betatron oscillations of the electron
bunch around the equilibrium. In a transversally inhomogeneous plasma the nonlinear
dependence of the frequency on the radius via (6.17) should result in the so-called
phase-mixing phenomenon.

6.2. Equilibrium

At the equilibrium (ρ = 0) (6.15) yields

ω2
UHr(b) 4 −

2e2
N

(b)(r(b))

meγ (b) 3
r(b) 2 −

M
(b) 2
θ (r(b))

m2
eγ

(b)
= 0, (6.18)

where r(b) is the coordinate of the electron fluid layer. If the angular momentum
M

(b)(R(b)) and the number of particles N
(b)(R(b)) are given parameters characterizing
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the electron bunch of the radius R(b) (this is the outermost radial coordinate of
the electrons), then (6.18) is the algebraic quadratic equation for the bunch radius
r(b) = R(b). As a result we find that the bunch radius is equal to

R(b) =

√

√

√

√

√

(

e2N(b)

meγ (b) 3ω2
UH

)



1 +

√

1 +
M

(b) 2
θ γ (b) 5ω2

UH

e4N(b) 2



. (6.19)

If the electron density n(b) is homogeneous inside the bunch, and and the angular
momentum distribution corresponds to the rigid rotation of the bunch with constant
angular frequency Ω (b), then the total number of particles and angular momentum,

N
(b) = πn(b)R(b) 2 and M

(b)
θ = meΩ

(b)R(b) 2, (6.20a,b)

are proportional to square of the radius R(b). In this case, from (6.18) it follows that
at equilibrium the electron bunch density equals

n(b) = γ (b) 2

(

n0 +
ω2

Be − Ω2

8πmec2

)

. (6.21)

As we see, for zero magnetic field, Bx = 0, and a non-rotating bunch with Ω = 0
the equilibrium bunch density is a factor γ (b) 2 higher than the background plasma
density n0. A strong enough magnetic field (ωBe/ωpe ≫ 1) and fast enough rotation
(Ω/ωpe ≫ 1) can significantly either increase for ω2

Be > Ω2 or decrease the electron
bunch density, if ω2

Be < Ω2. The equilibrium radius R(b) can accordingly be smaller
in the case ω2

Be > Ω2 or larger if ω2
Be < Ω2. In turn a smaller bunch radius implies

relatively narrower energy spectrum of accelerated electrons because they see locally
a more homogeneous accelerating electric field.

6.3. The m = 0 betatron oscillations

The ordinary differential equation (6.15) has an integral

ṙ2

2
+ ω2

UH

r2

2
= −

M
(b) 2
θ (r0)

2m2
eγ

(b)r2
+

2e2
N

(b)(r0)

meγ (b) 3
ln r + C, (6.22)

where the constant C is determined by the initial conditions r0 and ṙ0. Equation (6.15),
taking into account the integral (6.22), describes nonlinear betatron oscillations.

Linearizing (6.15) around the equilibrium given by (6.19), i.e. assuming r = R(b) +
δr(t) with δr/R(b) ≪ 1, we obtain a linear ordinary differential equation for the
function δr(r0, t). It describes the radial oscillations of the electron bunch (such a
mode is called the m = 0 mode) with frequency

ω(b) =

√

ω2
UH +

2e2N(b)(R(b))

meγ (b) 3R(b) 2
+

3M(b) 2
θ (R(b))

2m2
eγ

(b)R(b) 4
. (6.23)

This frequency is higher than the betatron frequency of a single electron ωUH . For
example, if the bunch does not rotate, M

(b)
θ , and the longitudinal magnetic field

vanishes, Bx = 0, the formula (6.23) gives that the frequency of collective betatron
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(a) (b)

FIGURE 16. Projections of two electron trajectories on the transverse (y, z) plane for
(a) the case of radial oscillations and relatively fast rotation with r0 =1, M(b)

θ =1, N(b) =10,
γ (b) = 5, ωBe/ωUH = 1/2, r0 = 1 and (b) the case of radial oscillations and relatively slow
rotation with r0 = 1, M

(b)
θ = 0.01, N

(b) = 50, γ (b) = 5, ωBe/ωUH = 0.05.

oscillations is two times larger than the betatron frequency of a single electron,
ω(b) = 2 ωUH . Here we have taken into account that according to (6.19), in the case
under consideration, the equilibrium radius equals R(b) =

√

2e2N(b)/meγ (b) 3ω2
UH and

have substituted it into (6.23).
In order to consider in more detail the betatron oscillations, it is convenient to

introduce dimensionless variables whose units are defined as follows:

[t] = ω−1
UH, [r] = c/ωUH, [p] = mec, [N(b)] = mec

2/2e2,

[M(b)] = mec
2/ωUH, [n(b)] = n0.

}

(6.24)

In normalized variables (6.14) and (6.15) take the form

rp
(b)
θ (r0, t) =

ωBe

2ωUH

r2 +M
(b)
θ , (6.25)

and

r̈ + r =
M

(b) 2
θ

γ (b)r3
+

N
(b)

γ (b) 3r
, (6.26)

respectively. The functions M
(b)
θ and N

(b) depend on the Lagrange coordinate r0 and
on a parameter.

In figure 16 we show the projections of two electron trajectories on the transverse
(y, z) plane obtained with numerical integration of (6.25) and (6.26). The angle
coordinate θ obeys the equation

rθ̇ =
pθ

γ (b)
. (6.27)

The parameters corresponding to figure 16(a,b) are as follows. In the frame (a) the
Lagrange coordinate equals r0 =1, the angular momentum and charge inside the radius
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r0 are M
(b)
θ = 1 and N

(b) = 10, respectively, the bunch gamma factor is γ (b) = 5, and
the ratio ωBe/ωUH is equal to 1/2. The trajectory in figure 16(b) is obtained for r0 = 1,
M

(b)
θ = 0.01, N

(b) = 50, γ (b) = 5, ωBe/ωUH = 0.05. As we see, the trajectories are
confined within the ring limited by rmax and rmin determined by the energy integral
(6.22). The element of the electron fluid oscillates in the radial direction between rmax

and rmin and rotates. In the case shown in figure 16(a) the angular momentum and
the magnetic field, i.e. the Larmor frequency ωBe, are relatively large. The trajectory
in figure 16(b) shows relatively slow rotation.

6.4. Constraint on the number of particles in the bunch

At the equilibrium the bunch density is given by expression (6.21). As can be seen, in
the case when the bunch rotation effects are negligibly weak, the equilibrium bunch
density n(b) = n0γ

b 2 is a factor γ b 2 larger than the density of the ions inside the cavity.
By comparing the electric field produced by the electron bunch (6.10) at the distance
of the order of the cavity radius rc with the electric field in the cavity 2πn0erc we
find the constraint on the number of particles per unit length in the bunch to be below
the overloading limit:

N(b) < 2πn0r2
c . (6.28)

Thus the total number of electrons in the bunch should be less than

N(b)
tot ≈ 4πn0r3

c/3. (6.29)

From this equation it follows that N(b)
tot ∝ n

−1/2
0 , i.e. the lower the plasma density the

higher the accelerated electron number can be. Using the relationship between the
driver laser power, the laser amplitude and the plasma density given by (4.1) we can
express the overloading threshold as

N(b)
tot ≈

λ

6πre

√

P

P̄
, (6.30)

where re = e2/mec
2 = 2.8 × 10−13 cm is the classical electron radius. For a 1 µm laser

wavelength the ratio λ/6πre is equal to 1.8 × 107. If the laser power equals 1 PW this
yields N(b)

tot ≈ 4.3 × 109, which is equivalent to the electric charge of 800 pC.

7. Multi-stage configurations

A multi-stage LWFA accelerator consists of several succeeding accelerating stages
inside of which the wake waves are generated by a single or by multiple laser pulses.
The electron injection can be provided either in the nonlinear wake wave breaking
in homogeneous (Bulanov et al. 1992; Modena et al. 1995; Bulanov et al. 1997a;
Pukhov & Meyer-ter Vehn 2002) or inhomogeneous plasmas (Bulanov et al. 1998; Suk
et al. 2001; Thompson et al. 2004; Tomassini et al. 2004; Brantov et al. 2008), or
by optical injection (Esarey et al. 1997; Kotaki et al. 2004; Faure et al. 2006; Kotaki
et al. 2009), by ionization injection (Schroeder et al. 2015) mechanisms and from the
clusters (Fukuda et al. 2007).

The second and subsequent stages can be used for enhancing the energy of the
accelerated electron bunch and for improving its quality. Enhancing the bunch quality
in a two stage LWFA accelerator has been demonstrated in experiments (Pollock
et al. 2011; Otsuka et al. 2015). An electron bunch being accelerated in the previous
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(injector) stage has the length determined by the process of the wake wave breaking
and by the length of the wake wavelength. In the subsequent stage, if the plasma
density there is substantially lower than in the injector stage, it appears to have a
length significantly shorter than the wake wave wavelength. Under these conditions
the bunch rotation in the phase space can lead to the electron energy narrowing
provided the bunch leaves the stage being at the top of the separatrix. Thus the
subsequent stage operates as an accelerator and phase rotator (Otsuka et al. 2015).
The phase rotator has been demonstrated to improve the quality of laser accelerated
ion beams (Noda et al. 2006; Nakamura et al. 2007).

7.1. Injector

Assuming the wake wave breaking mechanism of the electron injection we shall
consider the first stage(s) of the multi-stage accelerator as the injector. The condition
of the wake wave breaking corresponds to the case when the wake field given by
(2.26) exceeds the wave breaking threshold (2.16). In the limit γw ≫ 1 this condition
yields a relationship between the amplitude of the driver laser pulse and γw:

1 + a2
> γw, (7.1)

which is equivalent to the condition a3/2 > (ω/ωpe). Using the relationship between
the driver laser power, the laser amplitude and the plasma density given by (4.1) we
can write the wake wave breaking condition in the form

P > P̄

(

ω

ωpe

)4

, (7.2)

which is well above the threshold of the relativistic self-focusing (Litvak 1970; Sun
et al. 1987). The driver length optimal for wake wave generation, (2.21)–(2.23), in
the limit a ≈ 1 for driver power at the wave breaking threshold (7.2), equals

lopt ≈
πc

ωpe

. (7.3)

This results in the requirement on the laser pulse energy Elas =P lopt/c:

Elas = Ē

(

ω

ωpe

)3

, (7.4)

where Ē = (2π/ω)P̄ ≈ 33µJ. From (7.2) and (7.4) follows that the energy of the laser
injector can also be expressed in terms of the laser power:

Elas = Ē

(

P

P̄

)3/2

. (7.5)

For example, the energy of a 2 PW laser injector should be of the order of 30 J, and
the energy of a 200 TW laser is approximately 30 times lower.

As we see, the 1-D approximation implies too high requirements for the laser pulse
power and energy. These requirements can be mitigated in the 3-D regime when the
laser pulse undergoing the relativistic self-focusing forms a cavity (bubble) in an
underdense plasma (Pukhov & Meyer-ter Vehn 2002). Inside the cavity the wake
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(a)

(b)

FIGURE 17. Multi-even stage accelerator comprising the injector and equal stages.
(a) Schematic of the multi-equal stage LWFA accelerator. (b) Phase plots (X, γ )
corresponding to the j − 1th, jth, and j + 1th stages of the accelerator.

wave breaking develops in the transverse wave breaking regime described in Bulanov
et al. (1997a), Bulanov et al. (1999a), Liseikina et al. (1999), Kando et al. (2007),
Corde et al. (2013), Islam et al. (2015). The electron energy ≈mec

2a is of the order
of or above the injection threshold given by (3.12) for ϕm ≈ mec

2a/e.
In a plasma with inhomogeneous density, the phase-mixing phenomenon leads

to the wake wave breaking with the electron injection even for an initial electron
energy determined by the wake wave amplitude well below the injection threshold in
homogeneous plasmas (Bulanov et al. 1998; Brantov et al. 2008; Geddes et al. 2008).
However, in the limit of substantially low wave amplitude, this regime requires a
good enough quality wake wave to be formed and it may result in electron injection
into a bucket located far behind the laser pulse driver.

7.2. Multi-equal stage configuration

In the case of a multi-stage configuration with equal stages the energy gain in each
subsequent stage is given by (3.22), i.e.

1γ =
a4 + 2a2

(1 − βw)(1 + a2)
, (7.6)

provided the electron has been injected at the local minimum of the electrostatic
potential as illustrated in figure 17. Having interacted with J stages, the electron
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injected in the injector with energy γinj = γw achieves a final energy equal to

γJ = γw +
J(a4 + 2a2)

(1 − βw)(1 + a2)
(7.7)

As seen, for a ≈ 1, the final energy is of the order of γJ ≈ 3Jγ 2
w . The length of one

stage is equal to the dephasing length, lacc, given by (3.2): lacc = λγ 3
w . Thus the total

length of the multi-stage accelerator with equal length stages is

Lacc = Jλγ 3
w = λ(γJ/3)3/2J−1/2, (7.8)

i.e. for fixed final energy of the accelerated electrons, γJ , the acceleration length is
shorter for a larger number of stages J. Apparently, the number of the stages cannot
be arbitrarily large, because the length of one stage cannot be smaller than lst =
λ(llas/πλ)

3 under the conditions requiring the laser pulse length to be optimal for the
wake wave excitation.

An additional constraint on the number of the stages J stems from the matching
requirement between the electron bunch accelerated in the ( j − 1)th stage with the
wake field in the ( j)th stage. Under more or less realistic conditions, when the
matching is not ideal, the unavoidable deterioration of the electron beam quality
(e.g. see Cheshkov et al. 2000; Chiu et al. 2000; Deng et al. 2012) may become
unacceptably high for a large enough number of stages.

7.3. Multi-uneven stage configuration

The number of the stages can be made smaller in a multi-uneven stage LWFA
accelerator, whose schematic view is presented in figure 18. In this configuration,
the plasma density in the succeeding stage is lower than the plasma density in the
preceding stage, and the length of the succeeding stage is larger than that of the
preceding.

The energy gained by the electrons accelerated in the preceding stage γj−1 ≈ γ 2
w,j−1

(here we assume that the laser driver pulse normalized amplitude is of the order of
unity, aj−1 = 1) is equal to the injection energy for the succeeding stage, i.e.

γ 2
w,j−1 = γw,j. (7.9)

It is assumed that the electrons enter the wake field in succeeding stages in the phase
corresponding to the singular point, X-point, on the separatrix as shown in figure 14(b).
We note a similarity between this process and the ‘rephasing’ considered by Döpp
et al. (2015), Guillaume et al. (2015b). The equation (7.9) gives a relationship
between the parameters of the ( j − 1)th and jth stages. From (7.9) it follows that for
known plasma density in the first stage, n1, determined by the matching conditions
with the injector stage, the density in the jth stage is equal to

nj = ncr

(

n1

ncr

)2j

. (7.10)

The jth stage length depends on the stage number as

lj = λ
(

ncr

n1

)3j

= λ
(

l1

λ

)3j

, (7.11)
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(a)

(b)

FIGURE 18. Multi-uneven stage accelerator comprising the injector and unequal stages.
(a) Scematic of the multi-unequal stage LWFA accelerator. (b) Phase plots (X, γ )
corresponding to the j − 1th, jth and j + 1th stages of the accelerator.

where l1 = λ(ncr/n1)
3 is the length of the first stage. The energy of the electrons

achieved as a result of interacting with J stages equals

γJ =
J
∑

j=1

(

ncr

nj

)

=
J
∑

j=1

(

ncr

n1

)2j

=

(

ncr

n1

)2J

− 1

1 −
(

n1

ncr

)2 ≈
(

ncr

n1

)2J

. (7.12)

As we see, the accelerated electron energy grows exponentially with the number of
stages in the limit J → ∞:

γJ ≈ exp

(

J ln
ncr

n1

)

. (7.13)

In the relationships obtained above the electron density inside the first stage
has remained undetermined. It can be found from the condition imposed on the
required electric charge of the accelerated electron bunch. According to (6.29) we
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have a relationship between the total number of accelerated electrons and the plasma
density. The ratio ncr/n1 can also be chosen for desired electron energy γJ and the
finite number of the stages, J. The required laser power and energy, given by the
relationships obtained above in § 5.1, are determined by the parameters of the last,
Jth stage.

8. PIC simulations of the injection–acceleration triple-stage configuration

In order to achieve energy spreads and transverse emittances necessary for various
applications, e.g. for the table-top free electron X-ray laser, we are considering
staged acceleration of LWFA electrons as a possible method. In this scheme three
stages are used in the electron beam acceleration: (i) beam injector, (ii) phase rotator
and (iii) booster. The use of a multi-stage LWFA configuration has the potential to
dramatically improve the quality of the accelerated electron bunch.

8.1. Simulation parameters and set-up

The simulation parameters are chosen so that the LWFA electrons can have energies
above 1 GeV, a charge of over 10 pC, be stable, have relative energy spreads between
10−3 and 10−4 and have a transverse emittance of less than 0.1 mm mrad.

The beam injector involves using a moderate power laser pulse for the LWFA of
electrons generating electron beams with energies of the order of 30 to 40 MeV. These
electron beams are then phase space rotated via conventional accelerator components
or a laser wake field to reduce their relative energy spread. The phase space rotated
electron beams are then again accelerated in a booster using a high power laser via
LWFA to 1 GeV. The final electron beam is expected to have sufficiently low energy
spread and transverse emittance for injection into an undulator for lasing. Here we
examine the (i) beam injector and (ii) phase rotator stages both using LWFA with a
moderate power laser pulse.

For control of the beam energy we consider injection via a sharp density gradient
(Suk et al. 2001; Tomassini et al. 2004; Brantov et al. 2008). For this study we
performed 2-D PIC simulations using the REMP code (Esirkepov 2001). We have
previously presented PIC simulations in Koga et al. (2016) using a density gradient
to inject electrons. Here, we present simulations where we have further modified the
density profile to achieve smaller energy spread.

The simulation box is 300λ0 in the x (laser propagation) direction and 240λ0 in
the y direction where the grid size is ∆x = λ0/16 and ∆y = λ0/8. The simulation box
moves in the +x direction at the speed of light, c.

Figure 19 shows the density profile for the simulation in the laser propagation
direction with the laser pulse entering from the left. The density is normalized by the
peak electron density ne which corresponds to ωpe/ω0 =0.05 where ωpe =

√

4πe2ne/me

with e being the electron charge, me being the electron mass and ω0 is the laser
frequency. A maximum of 6 macro-particles per cell are used at the peak density.
In the direction perpendicular to the laser propagation direction, y, the density is
taken to be uniform. The density profile can be seen to be composed of three stages
in the laser propagation direction: (i) injector, (ii) phase rotator and accelerator and
(iii) booster.

(i) In the propagation direction, x, initially a vacuum region up to x1 = 50λ0 exists
at which point the density starts at n1 = 0.1ne and then increases to a peak of n2 = ne

at x2 = 175λ0 according to

n(x) = n1 + (n2 − n1)

[

3 − 2

(

x − x1

x2 − x1

)](

x − x1

x2 − x1

)2

. (8.1)
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FIGURE 19. Plasma density profile with a sharp density gradient of width 20λ0 at x =
175λ0 (injector) and a sharp density drop off at x = 895λ0 (end of phase rotation and
acceleration) along the laser propagation direction with the laser entering from the left.
The density is normalized by the peak plasma density ne and the propagation distance is
normalized by the laser wavelength λ0.

After this peak the density drops off as a linear function to n3 = 0.6ne at x3 = 195λ0

over a distance of 1x = 20λ0. Such a type of sharp density drop off can be produced
via the generation of a shock front by inserting a razor blade into the supersonic gas
jet exiting from a de Laval nozzle (Schmid et al. 2010).

(ii) From x3 to x4 = 895λ0 the density varies as

n(x) = n3 + (n4 − n3)

[

3 − 2

(

x − x3

x4 − x3

)](

x − x3

x4 − x3

)2

, (8.2)

where n4 = 0.5ne. In this region the injected electron bunch is expected to be
simultaneously accelerated and phase rotated.

(iii) At the end of this region we have the density drop off sharply as a power-law
function,

n(x) = n4

[(

x − x4

b

)

+ 1

]m

, (8.3)

where b = 30 and m = −3 until x5 = 1695λ0, after this the density is held constant
at 0.001ne, which is effectively zero. In this study we leave the investigation of this
booster region up to 1 GeV by a second high power laser pulse for future work.

The reason for the second sharp drop off near the end of the laser propagation is
to stop the acceleration of the electrons in the wake field near the point of dephasing
where the energy spread is expected to be smallest (see also Geddes et al. 2004). In
other words we are phase rotating the electron bunch until the phase space volume is
minimized in (x, px) space.

The laser is injected initially from the left boundary of the simulation box with
a pulse length of 12.5λ0 (FWHM – Full Width Half Maximum) and a spot size of
12.5λ0 (FWHM) at the focus point, which is at the beginning of the sharp density drop
off at 175λ0 with the assumption of Gaussian focusing. The normalized amplitude,
a0 ≡ eE0/meω0c, where E0 is the peak field amplitude, is set to be 1.5.

8.2. Simulation results

Figure 20(a) shows the density of the plasma right after the laser pulse has passed
the sharp density gradient at x = 175λ0 with the laser propagating from left to right
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(a) (b)

FIGURE 20. Density distribution of the plasma electrons (a) at t = 230 in the (x, y) plane
just after the laser has passed the sharp density gradient at x = 175λ0 (injector) along
the laser propagation direction with the laser entering from the left where the density is
normalized by the peak plasma density ne; (b) at t = 920 when the laser propagates in the
lower gradually decreasing plasma density region (phase rotation and acceleration); the x
and y axes are normalized by the laser wavelength λ0 and the time, t, is normalized by
2π/ω0.

(injector). The density is normalized by ne where darker colours refer to higher
densities on a logarithmic scale as indicated by the colour bar on the top right.
In figure 20(b) one can see where an electron bunch has been injected into the
second bucket of the wake wave and is being further accelerated (phase rotation and
acceleration). Since the injection point is determined by the depth and length of the
sharp density gradient, we have chosen the injection into the second bucket, because
we have found that with our investigated parameters the electron bunch is modified
by the back of the laser pulse when it is injected into the first bucket (see discussion
at the end of § 3.3). Such modifications have been experimentally observed and used
as a measurement of the electron bunch duration (Kotaki et al. 2015).

In figure 21 we show the density profile of the electrons after they have exited the
plasma at t = 2000 which is normalized by 2π/ω0. The first electron bunch indicated
by the arrow in the figure has a maximum spatial duration of 1x∼15λ0 and maximum
width of 1y ∼ 30λ0.

Figure 22(a,b) show the electron phase space (x, px) and energy, Ee, distribution,
respectively, at the same time as figure 21. From the phase space plot we see that
the electron bunch has a spread in longitudinal momentum of 1px ∼ 35mec. From the
energy distribution it can be seen that the bunch is quasi-monoenergetic with a peak
at around 25 MeV. The maximum electron energy is 27.41 MeV as indicated in the
figure.

Figure 23(a,b) show the electron bunch energy spectrum and distribution of the first
electron bunch (x′/λ0 > 210) along the x′-axis, which is expressed in terms of the
simulation box coordinates, x′ = x − ct, where t is the same time as figure 21. The
average electron energy is 〈Ee〉 = 24.6 MeV and the spectrum width has a standard
deviation of σ = 1.46 MeV resulting in a relative energy spread of approximately
σ/〈Ee〉 ≈ 6 %. Further reduction is possible by rotation in phase space due to some
local linear dependence of the energy on spatial coordinate.

The spatial width of the electron bunch has a standard deviation of ≈1.94λ0. The
electron bunch electric charge is equal to ≈2.45 pC. In the next phase of our research
we will examine the further acceleration of this bunch by a high power laser (booster).
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FIGURE 21. Density distribution of electrons in the plane (x, y) after the laser has exited
the plasma (practically in vacuum) at t = 2000 which is normalized by 2π/ω0. An electron
bunch (indicated by the arrow) can be seen on the right side of the simulation box
where the density is normalized by the peak plasma density ne and the x′ and y axes
are normalized by the laser wavelength λ0. Here x′ = x − ct is the coordinate used in
simulation.

(a) (b)

FIGURE 22. (a) Electron phase space (x′, px) and (b) energy spectrum at t = 2000; the
x′ axis is normalized by the laser wavelength λ0 which is expressed in terms of the
simulation box coordinates, x′ = x − ct, and the momentum px is normalized by mec.

These electron bunch parameters are sufficient for further acceleration by proper
matching with subsequent stages up to the energy required for various applications
including table-top free electron lasers.

We notice here that for achieving the optimal acceleration regime the matching
between the injection and acceleration stages should be respected. In other words, the
electron energy of the electrons at the exit of the injection stage should be equal to
the injection energy of the acceleration phase according to a recipe formulated in § 3.1
(see (3.9)) and in § 7.3, i.e. γinj = γw.
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(a) (b)

FIGURE 23. (a) Electron spectrum and (b) electron bunch profile of the first bunch in
figure 21; the x′ axis is normalized by the laser wavelength λ0, which is expressed in
terms of the simulation box coordinates, x′ = x − ct.

9. Conclusion

In this work we have presented a compendium of useful formulas giving relations
between the laser and underdense plasma target parameters allowing for obtaining
basic dependences of the wake field on the parameters, e.g. the energy scaling of the
electrons accelerated by the wake field excited in inhomogeneous media including
the multi-equal stage and multi-unequal stage LWFA configurations. The obtained
analytical expression for the optimal length of the laser pulse driver can be used for
choosing the experiment/simulation parameters in the limit of nonlinear laser–plasma
interaction. Using the conditions of the electron trapping to the wake-field acceleration
phase we have discussed two scenarios of electron injection with gradual and abrupt
density downramp. The analysis of the electron trapping and acceleration allowed
us to describe basic properties of the energy spectrum of accelerated particles. The
effects of using the chirped laser pulse driver for exciting the wake wave has also
been considered. We have found the parameters of the chirped pulse where the chirp
can enhance the amplitude of the wake field. We have extended an analysis of the
electron beam loading into the accelerating phase taking into account the effects of
3-D geometry of the cavity formed in a plasma behind the ultra-short laser pulse as
well as the effects of the longitudinal magnetic field. It has been revealed that the
space charge effects change the frequency of the collective betatron oscillations of
the electron bunch inside the cavity. The 3-D geometry of the laser pulse and of the
guiding structure has been also taken into account in finding regimes of the unlimited
LWFA acceleration in inhomogeneous plasmas, in the high laser amplitude limit and
in the limit of ultra-short pulse laser with the pulse length substantially less than the
optimal length. We have presented the scaling of the LWFA electron acceleration in
the multi-even stage and multi-uneven stage configurations. In the first configuration
the energy of fast electrons is a linear function of the number of stages. In the second
case, the accelerated electron energy grows exponentially with the number of stages.
The results of 2-D PIC simulations presented here show the high quality electron
acceleration in the triple-stage configuration.

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623


On some theoretical problems of laser wake-field accelerators 47

Acknowledgements

This work was funded by ImPACT Program of Council for Science, Technology and
Innovation (Cabinet Office, Government of Japan). T.Zh.E. acknowledges the support
from JSPS (grant no. 25390135).

REFERENCES

ABUAZOUM, S., WIGGINS, S. M., ERSFELD, B., HART, K., VIEUX, G., YANG, X., WELSH, G. H.,
ISSAC, R. C., REIJNDERS, M. P., JONES, D. R. et al. 2012 Linearly tapered discharge
capillary waveguides as a medium for a laser plasma wakefield accelerator. Appl. Phys. Lett.

100, 014106.
AKHIEZER, A. I. & POLOVIN, R. V. 1956 Theory of wave motion of an electron plasma. Sov. Phys.

JETP 3 (5), 696–704.
ANDREEV, N. E., GORBUNOV, L. M., KIRSANOV, V. I., POGOSOVA, A. A. & RAMAZASHVILI, R. R.

1992 Resonant excitation of wakefields by a laser pulse in a plasma. JETP Lett. 55 (10),
571–576.

ANTONSEN, T. M. & MORA, P. 1992 Self-focusing and raman scattering of laser pulses in tenuous
plasmas. Phys. Rev. Lett. 69, 2204–2207.

ASKAR’YAN, G. A., BULANOV, S. V., PEGORARO, F. & PUKHOV, A. M. 1994 Magnetic interaction
of self-focusing channels and fluxes of electromagnetic radiation: their coalescence, the
accumulation of energy, and the effect of external magnetic fields on them. JETP Lett. 60,
251–257.

BENEDETTI, C., ROSSI, F., SCHROEDER, C. B., ESAREY, E. & LEEMANS, W. P. 2015 Pulse
evolution and plasma–wave phase velocity in channel-guided laser–plasma accelerators. Phys.

Rev. E 92, 023109.
BEREZINSKII, V. S., BULANOV, S. V., GINZBURG, V. L., DOGIEL, V. A. & PTUSKIN, V. S. 1990

Astrophysics of Cosmic Rays. North Holland.
BOBROVA, N. A., ESAULOV, A. A., SAKAI, J.-I., SASOROV, P. V., SPENCE, D. J., BUTLER, A.,

HOOKER, S. M. & BULANOV, S. V. 2001 Simulations of a hydrogen-filled capillary discharge
waveguide. Phys. Rev. E 65, 016407.

BOBROVA, N. A., SASOROV, P. V., BENEDETTI, C., BULANOV, S. S., GEDDES, C. G. R.,
SCHROEDER, C. B., ESAREY, E. & LEEMANS, W. P. 2013 Laser-heater assisted plasma
channel formation in capillary discharge waveguides. Phys. Plasmas 20 (2), 020703.

BRANTOV, A. V., KANDO, ZH., KOTAKI, M., YU, H. & BULANOV, S. V. 2008 Controlled electron
injection into the wake wave using plasma density inhomogeneity. Phys. Plasmas 15 (7),
073111.

BUCK, A., WENZ, J., XU, J., KHRENNIKOV, K., SCHMID, K., HEIGOLDT, M., MIKHAILOVA, J. M.,
GEISSLER, M., SHEN, B., KRAUSZ, F. et al. 2013 Shock-front injector for high-quality laser–
plasma acceleration. Phys. Rev. Lett. 110, 185006.

BULANOV, S. V., MOUROU, G. & TAJIMA, T. 2008a Relativistic electron beam slicing by wakefield
in plasmas. Phys. Lett. A 372 (27–28), 4813–4816.

BULANOV, S., NAUMOVA, N., PEGORARO, F. & SAKAI, J. 1998 Particle injection into the wave
acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58, R5257–R5260.

BULANOV, S. S., BRANTOV, A., BYCHENKOV, V. YU., CHVYKOV, V., KALINCHENKO, G.,
MATSUOKA, T., ROUSSEAU, P., REED, S., YANOVSKY, V., LITZENBERG, D. W. et al.

2008b Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in
the directed-coulomb-explosion regime. Phys. Rev. E 78, 026412.

BULANOV, S. S., ESAREY, E., SCHROEDER, C. B., BULANOV, S. V., ESIRKEPOV, T. ZH., KANDO,
M., PEGORARO, F. & LEEMANS, W. P. 2015 Enhancement of maximum attainable ion energy
in the radiation pressure acceleration regime using a guiding structure. Phys. Rev. Lett. 114,
105003.

BULANOV, S. V., CALIFANO, F., DUDNIKOVA, G. I., VSHIVKOV, V. A., LISEIKINA, T. V.,
NAUMOVA, N. M., PEGORARO, F., SAKAI, J.-I. & SAKHAROV, A. S. 1999a Laser acceleration
of charged particles in inhomogeneous plasmas ii: particle injection into the acceleration phase
due to nonlinear wake wave-breaking. Plasma Phys. Rep. 25 (6), 468–480.

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623


48 S. V. Bulanov and others

BULANOV, S. V., ESIRKEPOV, T. J., NAUMOVA, N. M., PEGORARO, F., POGORELSKY, I. V. &
PUKHOV, A. M. 1996 Controlled wake field acceleration via laser pulse shaping. IEEE Trans.

Plasma Sci. 24 (2), 393–399.
BULANOV, S. V., ESIRKEPOV, T. ZH., KANDO, M., KOGA, J., PIROZHKOV, A. S., NAKAMURA,

T., BULANOV, S. S., SCHROEDER, C. B., ESAREY, E., CALIFANO, F. et al. 2012a On the
breaking of a plasma wave in a thermal plasma. I: the structure of the density singularity.
Phys. Plasmas 19, 113102.

BULANOV, S. V., ESIRKEPOV, T. ZH., KANDO, M., KOGA, J., PIROZHKOV, A. S., NAKAMURA,
T., BULANOV, S. S., SCHROEDER, C. B., ESAREY, E., CALIFANO, F. et al. 2012b On the
breaking of a plasma wave in a thermal plasma. II: electromagnetic wave interaction with
the breaking plasma wave. Phys. Plasmas 19, 113103.

BULANOV, S. V., ESIRKEPOV, T. Z., KANDO, M. & KOGA, J. K. 2016 Relativistic mirrors in laser
plasmas (analytical methods). Plasma Sources Sci. Technol. (accepted) arXiv:1603.07507v1.

BULANOV, S. V., ESIRKEPOV, T. ZH., KANDO, M., PIROZHKOV, A. S. & ROSANOV, N. N. 2013a

Relativistic mirrors in plasmas. Novel results and perspectives. Phys. Uspekhi 56 (5), 429–464.
BULANOV, S. V., INOVENKOV, I. N., KIRSANOV, V. I., NAUMOVA, N. M. & SAKHAROV, A. S.

1992 Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense
plasma. Phys. Fluids B 4 (7), 1935–1942.

BULANOV, S. V., KIRSANOV, V. I., NAUMOVA, N. M., SAKHAROV, A. S., SHAH, H. A. &
INOVENKOV, I. N. 1993 Stationary shock-front of a relativistically strong electromagnetic
radiation in an underdense plasma. Phys. Scr. 47 (2), 209–213.

BULANOV, S. V., KIRSANOV, V. I. & SAKHAROV, A. S. 1989 Excitation of ultrarelativistic Langmuir
waves by electromagnetic pulses. JETP Lett. 50 (4), 198–200.

BULANOV, S. V., KIRSANOV, V. I. & SAKHAROV, A. S. 1991 Limiting electric field of the wakefield
plasma wave. JETP Lett. 53 (11), 565–569.

BULANOV, S. V., NAUMOVA, N. M., VSHIVKOV, V. A., DUDNIKOVA, G. I., LISEIKINA, T. V.,
ESIRKEPOV, T. ZH., KAMENETS, F. F., CALIFANO, F. & PEGORARO, F. 1999b Interaction
of petawatt laser pulses with underdense plasmas. Plasma Phys. Rep. 25 (9), 701–714.

BULANOV, S. V., PEGORARO, F., PUKHOV, A. M. & SAKHAROV, A. S. 1997a Transverse-wake
wave breaking. Phys. Rev. Lett. 78, 4205–4208.

BULANOV, S. V. & SAKHAROV, A. S. 1986 Acceleration of particles captured by a strong potential
wave with a curved wave front in a magnetic field. JETP Lett. 44, 543–546.

BULANOV, S. V. & TAJIMA, T. 2005 On the quasi-monoenergetic electron beam generation in the
laser wakefield acceleration. J. Part. Accel. Soc. Japan 2, 35–41.

BULANOV, S. V., VSHIVKOV, V. A., DUDNIKOVA, G. I., NAUMOVA, N. M., PEGORARO, F. &
POGORELSKY, I. V. 1997b Laser acceleration of charged particles in inhomogeneous plasmas i.
Plasma Phys. Rep. 23 (4), 259–269.

BULANOV, S. V., YAMAGIWA, M., ESIRKEPOV, T. ZH., KOGA, J. K., KANDO, M., UESHIMA, Y.,
SAITO, K. & WAKABAYASHI, D. 2005 Spectral and dynamical features of the electron bunch
accelerated by a short-pulse high intensity laser in an underdense plasma. Phys. Plasmas 12

(7), 073103.
BULANOV, S. V., ZH. ESIRKEPOV, T., KANDO, M., KOGA, J. K., HOSOKAI, T., ZHIDKOV, A. G. &

KODAMA, R. 2013b Nonlinear plasma wave in magnetized plasmas. Phys. Plasmas 20 (8),
083113.

CHAO, A. W. 1993 Physics of Collective Beam Instabilities in High Energy Accelerators, Wiley
Series in Beam Physics and Accelerator Technology. Wiley.

CHESHKOV, S., TAJIMA, T., HORTON, W. & YOKOYA, K. 2000 Particle dynamics in multistage
wakefield collider. Phys. Rev. ST Accel. Beams 3, 071301.

CHIEN, T.-Y., CHANG, C.-L., LEE, C.-H., LIN, J.-Y., WANG, J. & CHEN, S.-Y. 2005 Spatially
localized self-injection of electrons in a self-modulated laser-wakefield accelerator by using a
laser-induced transient density ramp. Phys. Rev. Lett. 94, 115003.

CHIU, C., CHESHKOV, S. & TAJIMA, T. 2000 High energy laser-wakefield collider with synchronous
acceleration. Phys. Rev. ST Accel. Beams 3, 101301.

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

http://www.arxiv.org/abs/1603.07507v1
https://doi.org/10.1017/S0022377816000623


On some theoretical problems of laser wake-field accelerators 49

CORDE, S., THAURY, C., LIFSCHITZ, A., LAMBERT, G., TA PHUOC, K., DAVOINE, X., LEHE, R.,
DOUILLET, D., ROUSSE, A. & MALKA, V. 2013 Observation of longitudinal and transverse
self-injections in laser–plasma accelerators. Nat. Commun. 4, 1501.

COVERDALE, C. A., DARROW, C. B., DECKER, C. D., MORI, W. B., TZENG, K-C., MARSH,
K. A., CLAYTON, C. E. & JOSHI, C. 1995 Propagation of intense subpicosecond laser pulses
through underdense plasmas. Phys. Rev. Lett. 74, 4659–4662.

DECKER, C. D., MORI, W. B., TZENG, K.-C. & KATSOULEAS, T. 1996 The evolution of ultra-intense,
short-pulse lasers in underdense plasmas. Phys. Plasmas 3 (5), 2047–2056.

DENG, A. H., LIU, J. S., NAKAJIMA, K., XIA, C. Q., WANG, W. T., LI, W. T., LU, H. Y.,
ZHANG, H., JU, J. J., TIAN, Y. et al. 2012 Control of electron-seeding phase in a cascaded
laser wakefield accelerator. Phys. Plasmas 19 (2), 6.

DEUTSCH, M., MEERSON, B. & GOLUB, J. E. 1991 Strong plasma wave excitation by a ‘chirped’
laser beat wave. Phys. Fluids B 3 (7), 1773–1780.

DIECKMANN, M. E., SHUKLA, P. K. & DRURY, L. O. C. 2008 The formation of a relativistic
partially electromagnetic planar plasma shock. Astrophys. J. 675 (1), 586–595.

DÖPP, A., GUILLAUME, E., THAURY, C., LIFSCHITZ, A., PHUOC, K. T. & MALKA, V. 2015 Energy
boost in laser wakefield accelerators using sharp density transitions. Phys. Plasmas 23 (5),
056702.

EHRLICH, Y., COHEN, C., ZIGLER, A., KRALL, J., SPRANGLE, P. & ESAREY, E. 1996 Guiding of
high intensity laser pulses in straight and curved plasma channel experiments. Phys. Rev. Lett.

77, 4186–4189.
ESAREY, E., HUBBARD, R. F., LEEMANS, W. P., TING, A. & SPRANGLE, P. 1997 Electron injection

into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79, 2682–2685.
ESAREY, E., SCHROEDER, C. B. & LEEMANS, W. P. 2009 Physics of laser-driven plasma-based

electron accelerators. Rev. Mod. Phys. 81, 1229–1285.
ESIRKEPOV, T., BULANOV, S. V., YAMAGIWA, M. & TAJIMA, T. 2006 Electron, positron, and photon

wakefield acceleration: trapping, wake overtaking, and ponderomotive acceleration. Phys. Rev.

Lett. 96, 014803.
ESIRKEPOV, T. ZH. 2001 Exact charge conservation scheme for particle-in-cell simulation with an

arbitrary form-factor. Comput. Phys. Commun. 135 (2), 144–153.
ESIRKEPOV, T. ZH., KATO, Y. & BULANOV, S. V. 2008 Bow wave from ultraintense electromagnetic

pulses in plasmas. Phys. Rev. Lett. 101, 265001.
FAURE, J., GLINEC, Y., PUKHOV, A., KISELEV, S., GORDIENKO, S., LEFEBVRE, E., ROUSSEAU,

J. P., BURGY, F. & MALKA, V. 2004 A laser–plasma accelerator producing monoenergetic
electron beams. Nature 431 (7008), 541–544.

FAURE, J., RECHATIN, C., NORLIN, A., LIFSCHITZ, A., GLINEC, Y. & MALKA, V. 2006 Controlled
injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature

444 (7120), 737–739.
FROULA, D. H., CLAYTON, C. E., DÖPPNER, T., MARSH, K. A., BARTY, C. P. J., DIVOL, L.,

FONSECA, R. A., GLENZER, S. H., JOSHI, C., LU, W. et al. 2009 Measurements of the
critical power for self-injection of electrons in a laser wakefield accelerator. Phys. Rev. Lett.

103, 215006.
FUBIANI, G., ESAREY, E., SCHROEDER, C. B. & LEEMANS, W. P. 2006 Improvement of electron

beam quality in optical injection schemes using negative plasma density gradients. Phys. Rev. E
73, 026402.

FUKUDA, Y., AKAHANE, Y., AOYAMA, M., HAYASHI, Y., HOMMA, T., INOUE, N., KANDO, M.,
KANAZAWA, S., KIRIYAMA, H., KONDO, S. et al. 2007 Ultrarelativistic electron generation
during the intense, ultrashort laser pulse interaction with clusters. Phys. Lett. A 363 (1–2),
130–135.

GEDDES, C. G. R., NAKAMURA, K., PLATEAU, G. R., TOTH, CS., CORMIER-MICHEL, E., ESAREY,
E., SCHROEDER, C. B., CARY, J. R. & LEEMANS, W. P. 2008 Plasma-density-gradient
injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100, 215004.

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623


50 S. V. Bulanov and others

GEDDES, C. G. R., TOTH, CS., VAN TILBORG, J., ESAREY, E., SCHROEDER, C. B., BRUHWILER,
D., NIETER, C., CARY, J. & LEEMANS, W. P. 2004 High-quality electron beams from a laser
wakefield accelerator using plasma-channel guiding. Nature 431 (7008), 538–541.

GORDIENKO, S. & PUKHOV, A. 2005 Scalings for ultrarelativistic laser plasmas and
quasimonoenergetic electrons. Phys. Plasmas 12 (4), 043109.

GORDON, D., TZENG, K. C., CLAYTON, C. E., DANGOR, A. E., MALKA, V., MARSH, K. A.,
MODENA, A., MORI, W. B., MUGGLI, P., NAJMUDIN, Z. et al. 1998 Observation of electron
energies beyond the linear dephasing limit from a laser-excited relativistic plasma wave. Phys.

Rev. Lett. 80, 2133–2136.
GRADSHTEYN, S. & RYZHIK, I. M. (Eds) 1980 Table of Integrals. Series, and Products, Academic.
GRASSI, A., FEDELI, L., MACCHI, A., BULANOV, S. V. & PEGORARO, F. 2014 Phase space dynamics

after the breaking of a relativistic langmuir wave in a thermal plasma. Eur. Phys. J. D 68

(6), 1–8.
GUILLAUME, E., DÖPP, A., THAURY, C., LIFSCHITZ, A., GODDET, J.-P., TAFZI, A., SYLLA, F.,

IAQUANELLO, G., LEFROU, T., ROUSSEAU, P. et al. 2015a Physics of fully-loaded laser–
plasma accelerators. Phys. Rev. ST Accel. Beams 18, 061301.

GUILLAUME, E., DÖPP, A., THAURY, C., TA PHUOC, K., LIFSCHITZ, A., GRITTANI, G., GODDET,
J.-P., TAFZI, A., CHOU, S. W., VEISZ, L. et al. 2015b Electron rephasing in a laser-wakefield
accelerator. Phys. Rev. Lett. 115, 155002.

HAFZ, N., HUR, M. S., KIM, G. H., KIM, C., KO, I. S. & SUK, H. 2006 Quasimonoenergetic
electron beam generation by using a pinholelike collimator in a self-modulated laser wakefield
acceleration. Phys. Rev. E 73, 016405.

HAFZ, N. A. M., JEONG, T. M., CHOI, I. W., LEE, S. K., PAE, K. H., KULAGIN, V. V., SUNG,
J. H., YU, T. J., HONG, K.-H., HOSOKAI, T. et al. 2008 Stable generation of gev-class
electron beams from self-guided laser–plasma channels. Nat. Photon. 2 (9), 571–577.

HIDDING, B., AMTHOR, K.-U., LIESFELD, B., SCHWOERER, H., KARSCH, S., GEISSLER, M.,
VEISZ, L., SCHMID, K., GALLACHER, J. G., JAMISON, S. P. et al. 2006 Generation of
quasimonoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96, 105004.

HOOKER, S. M. 2013 Developments in laser-driven plasma accelerators. Nat. Photon. 7 (10), 775–782.
HOSOKAI, T., KANDO, M., DEWA, H., KOTAKI, H., KONDO, S., HASEGAWA, N., NAKAJIMA, K. &

HORIOKA, K. 2000 Optical guidance of terrawatt laser pulses by the implosion phase of a
fast z-pinch discharge in a gas-filled capillary. Opt. Lett. 25 (1), 10–12.

HOSOKAI, T., KINOSHITA, K., OHKUBO, T., MAEKAWA, A., UESAKA, M., ZHIDKOV, A.,
YAMAZAKI, A., KOTAKI, H., KANDO, M., NAKAJIMA, K. et al. 2006a Observation of strong
correlation between quasimonoenergetic electron beam generation by laser wakefield and laser
guiding inside a preplasma cavity. Phys. Rev. E 73, 036407.

HOSOKAI, T., KINOSHITA, K., ZHIDKOV, A., MAEKAWA, A., YAMAZAKI, A. & UESAKA, M. 2006b

Effect of external static magnetic field on the emittance and total charge of electron beams
generated by laser-wakefield acceleration. Phys. Rev. Lett. 97, 075004.

HOSOKAI, T., ZHIDKOV, A., YAMAZAKI, A., MIZUTA, Y., UESAKA, M. & KODAMA, R. 2010
Electron energy boosting in laser-wake-field acceleration with external magnetic field B similar
to 1 T and laser prepulses. Appl. Phys. Lett. 96 (12), 121501.

HSIEH, C.-T., HUANG, C.-M., CHANG, C.-L., HO, Y.-C., CHEN, Y.-S., LIN, J.-Y., WANG, J. &
CHEN, S.-Y. 2006 Tomography of injection and acceleration of monoenergetic electrons in a
laser-wakefield accelerator. Phys. Rev. Lett. 96, 095001.

HUMPHRIES, S. JR 1990 Charged Particle Beams, A Wiley-Interscience Publication. Wiley.
ISLAM, M. R., BRUNETTI, E., SHANKS, R. P., ERSFELD, B., ISSAC, R. C., CIPICCIA, S., ANANIA,

M. P., WELSH, G. H., WIGGINS, S. M., NOBLE, A. et al. 2015 Near-threshold electron
injection in the laser–plasma wakefield accelerator leading to femtosecond bunches. New J.

Phys. 17 (9), 093033.
KALMYKOV, S. Y., BECK, A., DAVOINE, X., LEFEBVRE, E. & SHADWICK, B. A. 2012 Laser

plasma acceleration with a negatively chirped pulse: all-optical control over dark current in
the blowout regime. New J. Phys. 14 (3), 033025.

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623


On some theoretical problems of laser wake-field accelerators 51

KAMESHIMA, T., HONG, W., SUGIYAMA, K., WEN, X., WU, Y., TANG, C., ZHU, Q., GU, Y., ZHANG,
B., PENG, H. et al. 2008 0.56 GeV laser electron acceleration in ablative-capillary-discharge
plasma channel. Appl. Phys. Express 1 (6), 066001.

KAMESHIMA, T., KOTAKI, H., KANDO, M., DAITO, I., KAWASE, K., FUKUDA, Y., CHEN, L. M.,
HOMMA, T., KONDO, S., ESIRKEPOV, T. ZH. et al. 2009 Laser pulse guiding and electron
acceleration in the ablative capillary discharge plasma. Phys. Plasmas 16 (9), 093101.

KANDO, M., FUKUDA, Y., KOTAKI, H., KOGA, J., BULANOV, S. V., TAJIMA, T., CHAO, A.,
PITTHAN, R., SCHULER, K. P., ZHIDKOV, A. G. et al. 2007 On the production of flat
electron bunches for laser wakefield acceleration. J. Expl Theor. Phys. 105 (5), 916–926.

KANDO, M., NAKAMURA, T., PIROZHKOV, A., ESIRKEPOV, T., KOGA, J. K. & BULANOV, S. V.
2012 Laser technologies and the combined applications towards vacuum physics. Prog. Theor.

Phys. Suppl. 193, 236–243.
KAPCHINSKIJ, I. M. & VLADIMIRSKIJ, V. V. 1959 Limitations of proton beam current in a

strong focusing linear accelerator associated with the beam space charge. In Proceedings, 2nd

International Conference on High-Energy Accelerators and Instrumentation, HEACC, Geneva,

Switzerland, pp. 274–287. CERN.
KARSCH, S., OSTERHOFF, J., POPP, A., ROWLANDS-REES, T. P., MAJOR, ZS., FUCHS, M., MARX,

B., HÖRLEIN, R., SCHMID, K., VEISZ, L. et al. 2007 Gev-scale electron acceleration in a
gas-filled capillary discharge waveguide. New J. Phys. 9 (11), 415.

KATSOULEAS, T. 1986 Physical mechanisms in the plasma wake-field accelerator. Phys. Rev. A 33,
2056–2064.

KATSOULEAS, T. & DAWSON, J. M. 1983 Unlimited electron acceleration in laser-driven plasma
waves. Phys. Rev. Lett. 51, 392–395.

KAWATA, S., KAMIYAMA, D., OHTAKE, Y., TAKANO, M., BARADA, D., KONG, Q., WANG, P. X.,
GU, Y. J., WANG, W. M., LIMPOUCH, J. et al. 2016 Controllable laser ion acceleration.
J. Phys.: Conf. Ser. 691 (1), 012021.

KAWATA, S., SATO, D., IZUMIYAMA, T., NAGASHIMA, T., TAKANO, M., BARADA, D., MA, Y. Y.,
WANG, W. M., KONG, Q., WANG, P. X. et al. 2014 Multi-stage ion acceleration in laser
plasma interaction. J. Phys.: Conf. Ser. 1, 015089.

KHACHATRYAN, A. G., VAN GOOR, F. A., BOLLER, K.-J., REITSMA, A. J. W. & JAROSZYNSKI,
D. A. 2004 Extremely short relativistic-electron-bunch generation in the laser wakefield via
novel bunch injection scheme. Phys. Rev. ST Accel. Beams 7, 121301.

KHACHATRYAN, A. G., VAN GOOR, F. A., VERSCHUUR, J. W. J. & BOLLER, K.-J. 2005 Effect
of frequency variation on electromagnetic pulse interaction with charges and plasma. Phys.

Plasmas 12 (6), 062116.
KIM, H. T., PAE, K. H., CHA, H. J., KIM, I. J., YU, T. J., SUNG, J. H., LEE, S. K., JEONG,

T. M. & LEE, J. 2013 Enhancement of electron energy to the multi-gev regime by a dual-stage
laser-wakefield accelerator pumped by petawatt laser pulses. Phys. Rev. Lett. 111, 165002.

KNEIP, S., NAGEL, S. R., MARTINS, S. F., MANGLES, S. P. D., BELLEI, C., CHEKHLOV, O.,
CLARKE, R. J., DELERUE, N., DIVALL, E. J., DOUCAS, G. et al. 2009 Near-gev acceleration
of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. Phys. Rev. Lett.

103, 035002.
KOGA, J. K., MORI, M., KOTAKI, H., BULANOV, S. V., ESIRKEPOV, T. ZH., KIRIYAMA, H. &

KANDO, M. 2016 Laser wakefield accelerated electron beam monitoring and control. AIP

Conf. Proc. 1721 (1), 8.
KONONENKO, O., LOPES, N. C., COLE, J. M., KAMPERIDIS, C., MANGLES, S. P. D., NAJMUDIN,

Z., OSTERHOFF, J., PODER, K., RUSBY, D. & SYMES, D. R. 2016 2d hydrodynamic
simulations of a variable length gas target for density down-ramp injection of electrons into
a laser wakefield accelerator. Nucl. Instrum. Meth. Phys. Res. A (in press).

KOTAKI, H., DAITO, I., KANDO, M., HAYASHI, Y., KAWASE, K., KAMESHIMA, T., FUKUDA, Y.,
HOMMA, T., MA, J., CHEN, L.-M. et al. 2009 Electron optical injection with head-on and
countercrossing colliding laser pulses. Phys. Rev. Lett. 103, 194803.

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623


52 S. V. Bulanov and others

KOTAKI, H., KAWASE, K., HAYASHI, Y., MORI, M., KANDO, M., KOGA, J. K. & BULANOV, S. V.
2015 Direct observation of the pulse width of an ultrashort electron beam. J. Phys. Soc. Japan

84 (7), 074501.
KOTAKI, H., MASUDA, S., KANDO, M., KOGA, J. K. & NAKAJIMA, K. 2004 Head-on injection of

a high quality electron beam by the interaction of two laser pulses. Phys. Plasmas 11 (6),
3296–3302.

LANDAU, L. D. & LIFSHITZ, E. M. 1980 The Classical Theory of Fields. Pergamon.
LEEMANS, W. & ESAREY, E. 2009 Laser-driven plasma–wave electron accelerators. Phys. Today 62,

44–49.
LEEMANS, W. P., GONSALVES, A. J., MAO, H.-S., NAKAMURA, K., BENEDETTI, C., SCHROEDER,

C. B., TÓTH, CS., DANIELS, J., MITTELBERGER, D. E., BULANOV, S. S. et al. 2014 Multi-
gev electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping
regime. Phys. Rev. Lett. 113, 245002.

LEEMANS, W. P., NAGLER, B., GONSALVES, A. J., TOTH, CS., NAKAMURA, K., GEDDES, C. G. R.,
ESAREY, E., SCHROEDER, C. B. & HOOKER, S. M. 2006 Gev electron beams from a
centimetre-scale accelerator. Nat. Phys. 2 (10), 696–699.

LISEIKINA, T. V., CALIFANO, F., VSHIVKOV, V. A., PEGORARO, F. & BULANOV, S. V. 1999
Small-scale electron density and magnetic-field structures in the wake of an ultraintense laser
pulse. Phys. Rev. E 60, 5991–5997.

LITVAK, A. G. 1970 Finite-amplitude wave beams in a magnetoactive plasma. Sov. Phys. JETP 30,
344–347.

LOBET, M., KANDO, M., KOGA, J. K., ESIRKEPOV, T. ZH., NAKAMURA, T., PIROZHKOV, A. S. &
BULANOV, S. V. 2013 Controlling the generation of high frequency electromagnetic pulses with
relativistic flying mirrors using an inhomogeneous plasma. Phys. Lett. A 377 (15), 1114–1118.

LU, W., TZOUFRAS, M., JOSHI, C., TSUNG, F. S., MORI, W. B., VIEIRA, J., FONSECA, R. A. &
SILVA, L. O. 2007 Generating multi-gev electron bunches using single stage laser wakefield
acceleration in a 3d nonlinear regime. Phys. Rev. ST Accel. Beams 10, 061301.

MANGLES, S. P. D., MURPHY, C. D., NAJMUDIN, Z., THOMAS, A. G. R., COLLIER, J. L.,
DANGOR, A. E., DIVALL, E. J., FOSTER, P. S., GALLACHER, J. G., HOOKER, C. J.
et al. 2004 Monoenergetic beams of relativistic electrons from intense laser–plasma interactions.
Nature 431 (7008), 535–538.

MANGLES, S. P. D., THOMAS, A. G. R., KALUZA, M. C., LUNDH, O., LINDAU, F., PERSSON, A.,
TSUNG, F. S., NAJMUDIN, Z., MORI, W. B., WAHLSTRÖM, C.-G. et al. 2006 Laser-wakefield
acceleration of monoenergetic electron beams in the first plasma–wave period. Phys. Rev. Lett.

96, 215001.
MCMILLAN, E. M. 1945 The synchrotron – a proposed high energy particle accelerator. Phys. Rev.

68, 143–144.
MEHRLING, T., GREBENYUK, J., TSUNG, F. S., FLOETTMANN, K. & OSTERHOFF, J. 2012 Transverse

emittance growth in staged laser-wakefield acceleration. Phys. Rev. ST Accel. Beams 15, 111303.
MIURA, E., KOYAMA, K., KATO, S., SAITO, N., ADACHI, M., KAWADA, Y., NAKAMURA, T. &

TANIMOTO, M. 2005 Demonstration of quasi-monoenergetic electron-beam generation in laser-
driven plasma acceleration. Appl. Phys. Lett. 86 (25), 3.

MIZUTA, Y., HOSOKAI, T., MASUDA, S., ZHIDKOV, A., MAKITO, K., NAKANII, N., KAJINO, S.,
NISHIDA, A., KANDO, M., MORI, M. et al. 2012 Splash plasma channels produced by
picosecond laser pulses in argon gas for laser wakefield acceleration. Phys. Rev. ST Accel.

Beams 15, 121301.
MIZUTA, Y., HOSOKAI, T., MASUDA, S., ZHIDKOV, A., NAKANII, N., JIN, Z., NAKAHARA, H.,

KOHARA, T., IWASA, K., KANDO, M. et al. 2016 Wave guided laser wake-field acceleration
in splash plasma channels. J. Phys.: Conf. Ser. 688 (1), 012069.

MODENA, A., NAJMUDIN, Z., DANGOR, A. E., CLAYTON, C. E., MARSH, K. A., JOSHI, C.,
MALKA, V., DARROW, C. B., DANSON, C., NEELY, D. et al. 1995 Electron acceleration
from the breaking of relativistic plasma waves. Nature 377 (6550), 606–608.

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623


On some theoretical problems of laser wake-field accelerators 53

MORI, M., KANDO, M., DAITO, I., KOTAKI, H., HAYASHI, Y., YAMAZAKI, A., OGURA, K.,
SAGISAKA, A., KOGA, J., NAKAJIMA, K. et al. 2006 Transverse dynamics and energy tuning
of fast electrons generated in sub-relativistic intensity laser pulse interaction with plasmas.
Phys. Lett. A 356 (2), 146–151.

NAKAHARA, H., MIZUTA, Y., KAJINO, S., MAKITO, K., KODAMA, R., HOSOKAI, T., MASUDA, S.,
NAKANII, N., ZHIDKOV, A., KANDO, M. et al. 2013 Steering of electron beams from laser
wakefield acceleration via transient plasma micro-optics. In Proceedings of the 13th Symposium

on Advanced Photon Research, Kizugawa, Kyoto, Japan; 15–16 Nov. 2012, vol. 2013-001,
pp. 56–59. Japan Atomic Energy Agency.

NAKAJIMA, K., DENG, A., ZHANG, X., SHEN, B., LIU, J., LI, R., XU, Z., OSTERMAYR, T.,
PETROVICS, S., KLIER, C. et al. 2011 Operating plasma density issues on large-scale laser–
plasma accelerators toward high-energy frontier. Phys. Rev. ST Accel. Beams 14, 091301.

NAKAMURA, S., IKEGAMI, M., IWASHITA, Y., SHIRAI, T., TONGU, H., SOUDA, H., DAIDO, H.,
MORI, M., KADO, M., SAGISAKA, A. et al. 2007 High-quality laser-produced proton beam
realized by the application of a synchronous rf electric field. Japan. J. Appl. Phys. 46 (8L),
L717–L720.

NEISHTADT, A. I., ARTEMYEV, A. V., ZELENYI, L. M. & VAINSHTEIN, D. L. 2009 Surfatron
acceleration in electromagnetic waves with a low phase velocity. JETP Lett. 89 (9), 441–447.

NODA, A., NAKAMURA, S., IWASHITA, Y., SAKABE, S., HASHIDA, M., SHIRAI, T., SHIMIZU, S.,
TONGU, H., ITO, H., SOUDA, H. et al. 2006 Phase rotation scheme of laser-produced ions
for reduction of the energy spread. Laser Phys. 16 (4), 647–653.

OHKUBO, T., BULANOV, S. V., ZHIDKOV, A. G., ESIRKEPOV, T., KOGA, J., UESAKA, M. & TAJIMA,
T. 2006 Wave-breaking injection of electrons to a laser wake field in plasma channels at the
strong focusing regime. Phys. Plasmas 13 (10), 103101.

OSTERHOFF, J., POPP, A., MAJOR, ZS., MARX, B., ROWLANDS-REES, T. P., FUCHS, M., GEISSLER,
M., HÖRLEIN, R., HIDDING, B., BECKER, S. et al. 2008 Generation of stable, low-divergence
electron beams by laser-wakefield acceleration in a steady-state-flow gas cell. Phys. Rev. Lett.

101, 085002.
OTSUKA, T., NAKMURA, H., NAKANII, N., MASUDA, S., SUEDA, K., PATHAK, N. C., IWASA, K.,

TAKEGUCHI, N., OSAKO, K., ZHIDKOV, A. G. et al. 2015 Staged laser wake filed acceleration
for stable ultrafast electron beam on herdes project. In 42nd EPS Conference on Plasma

Physics, Lisbon, Portugal.
POLLOCK, B. B., CLAYTON, C. E., RALPH, J. E., ALBERT, F., DAVIDSON, A., DIVOL, L., FILIP, C.,

GLENZER, S. H., HERPOLDT, K., LU, W. et al. 2011 Demonstration of a narrow energy
spread, ∼0.5 GeV electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett.

107, 045001.
PUKHOV, A. & MEYER-TER VEHN, J. 1996 Relativistic magnetic self-channeling of light in

near-critical plasma: three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76,
3975–3978.

PUKHOV, A. & MEYER-TER VEHN, J. 2002 Laser wake field acceleration: the highly non-linear
broken-wave regime. Appl. Phys. B 74 (4), 355–361.

RASSOU, S., BOURDIER, A. & DROUIN, M. 2015 Influence of a strong longitudinal magnetic field
on laser wakefield acceleration. Phys. Plasmas 22 (7), 073104.

RECHATIN, C., DAVOINE, X., LIFSCHITZ, A., ISMAIL, A. B., LIM, J., LEFEBVRE, E., FAURE, J. &
MALKA, V. 2009a Observation of beam loading in a laser–plasma accelerator. Phys. Rev. Lett.

103, 194804.
RECHATIN, C., FAURE, J., BEN-ISMAIL, A., LIM, J., FITOUR, R., SPECKA, A., VIDEAU, H., TAFZI,

A., BURGY, F. & MALKA, V. 2009b Controlling the phase-space volume of injected electrons
in a laser–plasma accelerator. Phys. Rev. Lett. 102, 164801.

RITTERSHOFER, W., SCHROEDER, C. B., ESAREY, E., GRьNER, F. J. & LEEMANS, W. P. 2010
Tapered plasma channels to phase-lock accelerating and focusing forces in laser–plasma
accelerators. Phys. Plasmas 17 (6), 11.

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623


54 S. V. Bulanov and others

SCHMID, K., BUCK, A., SEARS, C. M. S., MIKHAILOVA, J. M., TAUTZ, R., HERRMANN, D.,
GEISSLER, M., KRAUSZ, F. & VEISZ, L. 2010 Density-transition based electron injector for
laser driven wakefield accelerators. Phys. Rev. ST Accel. Beams 13, 091301.

SCHROEDER, C. B., BENEDETTI, C., BULANOV, S. S., CHEN, M., ESAREY, E., GEDDES, C. G. R.,
VAY, J.-L., YU, L.-L. & LEEMANS, W. P. 2015 Ultra-low emittance beam generation using
two-color ionization injection in laser–plasma accelerators. In Proceedings SPIE 9514, Laser

Acceleration of Electrons, Protons, and Ions III; and Medical Applications of Laser-Generated

Beams of Particles III, 951408 (May 14, 2015), vol. 9514. pp. 951408–951408–7.
SCHROEDER, C. B., BENEDETTI, C., ESAREY, E., GRÜNER, F. J. & LEEMANS, W. P. 2011

Growth and phase velocity of self-modulated beam-driven plasma waves. Phys. Rev. Lett.

107, 145002.
SCHROEDER, C. B., ESAREY, E., GEDDES, C. G. R., BENEDETTI, C. & LEEMANS, W. P. 2010

Physics considerations for laser–plasma linear colliders. Phys. Rev. ST Accel. Beams 13,
101301.

SHARMA, B. S., JAIN, A., JAIMAN, N. K., GUPTA, D. N., JANG, D. G., SUK, H. & KULAGIN,
V. V. 2014 Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield
acceleration. Phys. Plasmas 21, 023108.

SPRANGLE, P., ESAREY, E., KRALL, J. & JOYCE, G. 1992 Propagation and guiding of intense laser
pulses in plasmas. Phys. Rev. Lett. 69, 2200–2203.

SPRANGLE, P., PENANO, J. R., HAFIZI, B., HUBBARD, R. F., TING, A., GORDON, D. F., ZIGLER,
A. & ANTONSEN, T. M. JR 2002 GeV acceleration in tapered plasma channels. Phys. Plasmas

9 (5), 2364–2370.
STEINKE, S., VAN TILBORG, J., BENEDETTI, C., GEDDES, C. G. R., SCHROEDER, C. B., DANIELS,

J., SWANSON, K. K., GONSALVES, A. J., NAKAMURA, K., MATLIS, N. H. et al. 2016
Multistage coupling of independent laser–plasma accelerators. Nature 530 (7589), 190–193.

SUK, H., BAROV, N., ROSENZWEIG, J. B. & ESAREY, E. 2001 Plasma electron trapping and
acceleration in a plasma wake field using a density transition. Phys. Rev. Lett. 86, 1011–1014.

SUN, G.-Z., OTT, E., LEE, Y. C. & GUZDAR, P. 1987 Self-focusing of short intense pulses in
plasmas. Phys. Fluids 30 (2), 526–532.

TAJIMA, T. & DAWSON, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43, 267–270.
THOMAS, A. G. R., RIDGERS, C. P., BULANOV, S. S., GRIFFIN, B. J. & MANGLES, S. P. D.

2012 Strong radiation-damping effects in a gamma-ray source generated by the interaction of
a high-intensity laser with a wakefield-accelerated electron beam. Phys. Rev. X 2, 041004.

THOMPSON, M. C., ROSENZWEIG, J. B. & SUK, H. 2004 Plasma density transition trapping as a
possible high-brightness electron beam source. Phys. Rev. ST Accel. Beams 7, 011301.

TOMASSINI, P., GALIMBERTI, M., GIULIETTI, A., GIULIETTI, D., GIZZI, L. A., LABATE, L. &
PEGORARO, F. 2004 Laser wake field acceleration with controlled self-injection by sharp
density transition. Laser Part. Beams 22, 423–429.

TZOUFRAS, M., LU, W., TSUNG, F. S., HUANG, C., MORI, W. B., KATSOULEAS, T., VIEIRA, J.,
FONSECA, R. A. & SILVA, L. O. 2008 Beam loading in the nonlinear regime of plasma-based
acceleration. Phys. Rev. Lett. 101, 145002.

VEKSLER, V. I. 1944 A new method of the acceleration of relativistic particles. Dokl. Akad. Nauk

SSSR 44, 393–396.
VIEIRA, J., MARTINS, J. L., PATHAK, V. B., FONSECA, R. A., MORI, W. B. & SILVA, L. O.

2012 Magnetically assisted self-injection and radiation generation for plasma-based acceleration.
Plasma Phys. Control. Fusion 54 (12), 124044.

VIEIRA, J., MARTINS, S. F., PATHAK, V. B., FONSECA, R. A., MORI, W. B. & SILVA, L. O.
2011 Magnetic control of particle injection in plasma based accelerators. Phys. Rev. Lett. 106,
225001.

WALKER, P. A., BOURGEOIS, N., RITTERSHOFER, W., COWLEY, J., KAJUMBA, N., MAIER, A. R.,
WENZ, J., WERLE, C. M., KARSCH, S., GRÜNER, F. et al. 2013 Investigation of gev-scale
electron acceleration in a gas-filled capillary discharge waveguide. New J. Phys. 15 (4), 045024.

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623


On some theoretical problems of laser wake-field accelerators 55

WANG, X., ZGADZAJ, R., FAZEL, N., LI, Z., YI, S. A., ZHANG, X., HENDERSON, W., CHANG,
Y. Y., KORZEKWA, R., TSAI, H. E. et al. 2013 Quasi-monoenergetic laser–plasma acceleration
of electrons to 2 GeV. Nat. Commun. 4, 1988.

WILKS, S., KATSOULEAS, T., DAWSON, J. M., CHEN, P. & SU, J. J. 1987 Beam loading in plasma
waves. IEEE Trans. Plasma Sci. 15 (2), 210–217.

YAMAZAKI, A., KOTAKI, H., DAITO, I., KANDO, M., BULANOV, S. V., ESIRKEPOV, T. ZH., KONDO,
S., KANAZAWA, S., HOMMA, T., NAKAJIMA, K. et al. 2005 Quasi-monoenergetic electron
beam generation during laser pulse interaction with very low density plasmas. Phys. Plasmas

12 (9), 5.
YOON, S. J., PALASTRO, J. P. & MILCHBERG, H. M. 2014 Quasi-phase-matched laser wakefield

acceleration. Phys. Rev. Lett. 112, 134803.
ZHANG, Z., LI, W., LIU, J., WANG, W., YU, C., TIAN, Y., NAKAJIMA, K., DENG, A., QI, R.,

WANG, C. et al. 2016 Energy spread minimization in a cascaded laser wakefield accelerator
via velocity bunching. Phys. Plasmas 23 (5), 053106.

ZHANG, Z., LIU, J., WANG, W., LI, W., YU, C., TIAN, Y., QI, R., WANG, C., QIN, Z., FANG, M.
et al. 2015 Generation of high quality electron beams from a quasi-phase-stable cascaded laser
wakefield accelerator with density-tailored plasma segments. New J. Phys. 17 (10), 103011.

ZHIDKOV, A., KOGA, J., KINOSHITA, K. & UESAKA, M. 2004a Effect of self-injection on ultraintense
laser wake-field acceleration. Phys. Rev. E 69, 035401.

ZHIDKOV, A. G., KOGA, J., HOSOKAI, T., KINOSHITA, K. & UESAKA, M. 2004b Effects of plasma
density on relativistic self-injection for electron laser wake-field acceleration. Phys. Plasmas

11 (12), 5379–5386.

https://doi.org/10.1017/S0022377816000623 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000623

	On some theoretical problems of laser wake-field accelerators
	Introduction
	Basic parameters of the wake field
	1-D wake wave
	Limit βw 1
	Optimal length of the laser pulse
	Wake wave excitation by the ultra-short laser pulse
	Propagation velocity of the laser pulse front
	Wake wave generation by chirped laser pulse driver

	Electron wake-field acceleration: trapping and injection
	Electron trapping into a wake wave
	Effect of plasma inhomogeneity
	Electron injection at the interface between two regions with different plasma density
	Electron acceleration by the wake field
	Energy spectrum
	Inverse problem of LFWA

	Energy scaling
	Unlimited acceleration regime with a tapered plasma target
	High-amplitude limit
	Short pulse driver laser

	Electron beam dynamics inside the cavity
	Equations of motion
	Equilibrium
	The m=0 betatron oscillations
	Constraint on the number of particles in the bunch

	Multi-stage configurations
	Injector
	Multi-equal stage configuration
	Multi-uneven stage configuration

	PIC simulations of the injection–acceleration triple-stage configuration
	Simulation parameters and set-up
	Simulation results

	Conclusion
	Acknowledgements
	References


