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I. INTRODUCTION AND SUMMARY 

In the mid-1960's two quite separate but fundamental questions 
in capital theory were first debated in this Journal. On the one hand, 
the original paper by Levhari (1965) gave rise to the widely cited series 
of papers published jointly in November, 1966, as "Paradoxes in 
Capital Theory: A Symposium," which has since spawned dozens of 
articles and several books.1 This debate now constitutes a crucial part 
of "The Cambridge Controversy." On the other hand, that same 
November, 1966, issue of this Journal also contained Hahn's seminal 
paper on the dynamic properties of heterogeneous capital good 
models, and subsequent research on "the Hahn problem" has been 
voluminous, continuing to this time.2 

The issues are different. The fundamental aspect of the Cam- 
bridge controversy we are concerned with in this paper centers on 
comparisons of alternative steady-state equilibrium positions when 
the profit or interest rate is varied as an exogenous parameter. Thus, 
for example, if we confine our attention to interest rates above the 
Golden Rule value (the exogenous rate of labor force growth g), it is 
possible that a fall in the rate of interest results in a fall in steady-state 
per capita consumption (measured in the per capita number of fixed 
consumption baskets). In this case the economy is said to exhibit 
"paradoxical consumption behavior," the "paradox," of course, being 
that this consumption behavior contradicts the neoclassical parable. 

* E. Burmeister acknowledges with thanks research support from the John Simon 
Guggenheim Memorial Foundation, the Australian National University, the Center 
for Advanced Studies at the University of Virginia, and the National Science Foun- 
dation. 

1. Harcourt (1972), Blaug (1975), and Brown, Sato, and Zarembka (1976) are 
examples. 

2. See, for example, Hahn (1966), Samuelson (1967), Shell and Stiglitz (1967), 
Kurz (1968), Burmeister and Graham (1974), and Cass and Shell (1976). 

? 1977 by the President and Fellows of Harvard College. Published by John Wiley & Sons, Inc. 
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More precisely, the Solow-Swan one-sector model leads us to expect 
that any economy in a steady-state equilibrium with a lower interest 
rate (but still above g) will also have a higher value of steady-state per 
capita consumption. Furthermore, in the Solow-Swan model, where 
there is no problem of aggregating bolts and hammers into a single 
measure of "capital," a lower steady-state interest rate always implies 
a larger value in the stock of homogeneous machines (Swan's meccano 
sets or Joan Robinson's (1966) LEETS). 

"The Hahn problem" is not concerned with such comparisons 
of alternative steady-state equilibria positions, but rather it is about 
the stability of a model that is identical but for the addition of an extra 
condition to determine simultaneously the interest rate as one (en- 
dogenous) variable in a complete general equilibrium system. Gen- 
erally, any "savings equals investment" equation or, equivalently, any 
consumption function will suffice as the additional condition; Hahn's 
original formulation used the Marx-Kalecki assumption that all 
profits are saved (reinvested) and all wage income is spent on con- 
sumption goods, but this is not essential to his conclusions. Thus, 
given a complete general equilibrium model, "the Hahn problem" is 
concerned with whether or not the economy is dynamically stable, i.e., 
whether or not the vector of per capita capital stocks will converge 
to some (perhaps unique) steady-state equilibrium or rest point. 
Hahn's startling conclusion was that in general such convergence is 
not to be expected; a model with heterogeneous capital goods is fea- 
tured by a generalized saddlepoint equilibrium, and the economy will 
converge to a steady state (a rest point of the dynamic system) only 
if the initial values of the n capital stocks and the initial values of their 
respective prices lie in a restricted subset of the 2n-dimensional 
price-capital space. Since the initial vector of per capita capital stocks 
is exogenous, this means that only particular and very special choices 
of the initial price vector will yield convergence. Moreover, if we dis- 
card the possibility of perfect markets for every commodity into the 
infinite future as unrealistic in any descriptive model,3 then there is 
nothing in the economic system to assure that the initial price vector 
will be consistent with convergence. One is left with the uncomfortable 
conclusion that dynamic heterogeneous capital good models exhibit 
"Hahn instability." (Perhaps uncertainty will provide one resolution 
of this difficulty, but the work to date is fragmentary; Burmeister and 
Graham (1974) illustrate one conceivable approach.) 

As already noted, the structures of the economic models used to 
analyze questions pertaining to the Cambridge controversy and the 

3. See Samuelson (1967) and Shell-Stiglitz (1967). 
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Hahn problem are identical, except that for the former questions the 
interest rate is taken as an exogenous parameter (which varies to 
generate alternative steady-state equilibria), while for the latter 
stability question a savings-investment condition must be supple- 
mented so that the interest rate is determined endogenously. This 
formal similarity is enough to suggest that there exists some rela- 
tionship between paradoxical behavior and Hahn instability. More 
precisely, it is natural to conjecture a form of Samuelson's Corre- 
spondence Principle;4 that is, to conjecture that steady-state points 
that exhibit paradoxical behavior are dynamically unstable in some 
sense, and conversely. To illustrate that this conjecture is an exact 
application of the Correspondence Principle, at least when the labor 
force is constant, we quote Samuelson's original statement: 

In a previous paper5 it was pointed out that there exists an intimate formal de- 

pendence between comparative statics and dynamics. To my knowledge this had not 

previously been explicitly enunciated in the economic literature, and for lack of a better 

name I shall refer to it as the Correspondence Principle. It is the purpose here to probe 

more deeply into its analytical character, and also to show its two-way nature: not only 

can the investigation of the dynamic stability of a system yield fruitful theorems in 

statical analysis, but also known properties of a (comparative) statical system can be 

utilized to derive information concerning the dynamic properties of a system.6 

The notion that some Correspondence Principle provided a 
logical connection between the Cambridge controversy and the Hahn 
problem was implicit in private conversations around M.I.T. in the 
later 1960's, but to our knowledge the only published version of this 
idea is Solow's statement in his Foreword to Burmeister and Dobell 
(1970): 

Third, there are problems connected with the "paradoxes" discussed by Bur- 

meister and Dobell in Chapter 8. The key difficulty may be one of interpretation. The 

paradoxes themselves show that some simple conclusions deduced from models with 

one capital good need not hold from more general models, but it remains to be seen 

how significant this is. If the paradoxes matter at all, they are likely to matter for this 

ubiquitous question of convergence to steady states. The simpler question is whether 

such paradoxes can be observed in an optimizing economy, or whether if an optimal 

path comes upon such a situation, it will go around it, so to speak, so "paradoxical be- 

havior" will never be observed along an optimal path. In general, even this question 

remains unanswered, although some particular cases, with especially simple criterion 

4. All the conclusions of our analysis here remain valid when the exogenous growth 
rate of labor g is set equal to zero. In this special case the steady-state comparisons we 
are making involve comparative statics. (When g > 0, the alternative comparisons 
involve comparative dynamics.) 

5. Samuelson (1941). 
6. Samuelson (1942), p. 1; also see Samuelson (1941). Both the above are reprinted 

in Samuelson (1966). 
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functions, have been studied. Nobody knows what sort of path an unplanned profit- 
maximizing economy would follow in similar circumstances. These sound like very hard 

problems, but important ones.7 

Surprisingly, with the exception of Burmeister and Hammond 
(1977), not a single paper has been published investigating such a 
relationship. Thus, although the idea is rather obvious and intuitively 
appealing, it is not easy to formulate in a precise statement. A careful 
reading of Samuelson (1941, 1942) reveals the basic difficulty: the 
Correspondence Principle is a statement about a single system of 
functional equations while, as already noted, the Cambridge contro- 
versy and the Hahn problem are concerned with systems that differ 
with respect to determination of the interest rate. Having noted this 
difficulty, however, a remedy immediately suggests itself. It is well- 
known that the Hahn instability feature of descriptive economic 
models is closely related to the saddlepoint property of optimal eco- 
nomic models (see, for example, Kurz (1968), Burmeister and Dobell 
(1970), especially pp. 402-406, and the references cited there). What 
is possible, therefore, is that we may find a valid Correspondence 
Principle between paradoxical points and the dynamic stability 
properties of the rest points to an optimizing problem (rather than 
to Hahn's descriptive problem). The obvious candidate for the opti- 
mizing problem is 

(1) max u(c)e-Pldt, 

subject to initial conditions and restrictions imposed by the feasible 
technology set, where k is a vector of per capita capital stocks, u (c) 
is instantaneous utility of per capita consumption c, and p _ 0 is the 

exogenous rate of time discount. Two features of the solution to 
problem (1) are crucial: 

(i) Along an optimal trajectory solving (1), r(t) = p + g = r is 

constant for all t, where r(t) is the own-rate of return in terms of the 
numeraire u(c). 

(ii) The solution to (1) entails 2n necessary differential equations, 
namely n differential equations describing the accumulation of the 
per capita capital stocks and the n differential equations governing 
the price movements of these capital goods. (These prices are in terms 
of "utility units" as numeraire and are denoted by the vector p.) 
When the utility function is linear with u(c) = c, this set of 2n dif- 
ferential equations is identical to the dynamic equations for the Hahn 
problem with a fixed value of r. 

7. Solow's Foreword to Burmeister and Dobell (1970), pp. viii-ix. 
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In view of (i) we may consider p both as a parameter of problem 

(1) and as the parameter that is varied to generate the alternative 

steady-state equilibria discussed in connection with the Cambridge 

controversy. In this paper we restrict our attention to steady states 

characterized by p _ 0, which are therefore efficient equilibria in the 

Phelps-Koopmans sense. Before proceeding, we now must introduce 

some preliminary notation and definitions. For simplicity we assume 

that there is a single consumption good. Let c and k denote steady- 

state equilibrium values of per capita consumption and the vector of 

per capita capital stocks, respectively. 

DEFINITION 1. A steady-state rest point (c, j5, k) is not para- 

doxical if 

p sgn d =-sgn (r-g) forp= r-g#0. 

DEFINITION 2. An economy is termed regular if 

E Pi-< 0 for all r. 
i=1 dr 

Since 

&F n dkh 
=P pi 

dp i=1 dp 

an economy is free of paradoxical rest points if and only if it is regular 

(see Burmeister and Dobell (1970, Ch. 9) and Burmeister and Turn- 

ovsky (1972)). 

DEFINITION 3. A rest point solution (p, k) to problem (1) is 

called a regular saddlepoint if the associated linear system of 

the necessary 2n differential equations has n characteristic 

roots with negative real parts and n characteristic roots with 

positive real parts. It is called an unstable saddlepoint if more 

than n such roots have positive real parts and if none have a zero 

real part. 

Suppose that a rest point solution (p, k) to problem (1) is a reg- 

ular saddlepoint. Then for given initial capital stocks sufficiently close 

to the k equilibrium, there exists a unique set of n initial prices sat- 

isfying the necessary conditions for the optimization problem (1) such 

that the unique solution path jp(t), k(t)} converges asymptotically 

to (pi h). On the other hand, if (p, k) is an unstable saddlepoint, then 

given initial capital stocks sufficiently close to the equilibrium k, the 
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optimizing path {p (t), k (t)I converges to (p', k) only if the given initial 
capital stocks happen to be in certain very special ratios. 

Equipped with these definitions, we are able to state precisely 
a candidate Correspondence Principle: 

Conjecture CP (Correspondence Principle) 

An efficient steady-state point (c, -, k) is paradoxical 
if and only if it is not a regular saddlepoint with more than 
n characteristic roots of the associated linear system hav- 
ing positive real parts, i.e., if and only if it is an unstable 
saddlepoint. 

Upon reflection it should be realized that Conjecture CP is too 
good to be true. If it were valid generally, it would justify nearly all 
of the conventional neoclassical wisdom based on the Solow-Swan 
one-sector model. For example, were Conjecture CP valid, it could 
be argued legitimately that while paradoxical steady-state equilibria 
are possible, an optimizing economy "almost never" would be ob- 
served at (or near) such a rest point because, as we shall argue below, 
that point would be an unstable saddlepoint in the sense of Definition 
3. Likewise, as we shall prove in Section V below, were Conjecture CP 
valid, transitions between steady-state equilibria based on a naive rule 
using Solow's concept of the social rate of return would never cause 
movements away from a saddlepoint-stable rest point solution to 
problem (1) in the (c, p) plane. 

It is precisely because Conjecture CP is so powerful that it be- 
comes crucial to learn under what conditions it may be valid. In re- 
trospect the answer is not surprising; as we shall prove below as 
Theorem 1, Conjecture CP is valid when there exists only one kind 
of capital good, i.e., n = 1. While this result will be disappointing to 
ardent neoclassicists, it is not a trivial proposition because "para- 
doxical consumption behavior" definitely can occur even when n = 

1, provided that the possibility of joint production is admitted.8 
For n > 1 our analysis is divided into two cases: (a) joint pro- 

duction is excluded, and (b) joint production exists. The simplicity 
of the no-joint production case is due to the fact that for any given p, 
a corresponding rest point solution to problem (1), if it exists, must 
be unique. In case (a) we then are able to prove, under certain as- 
sumptions,9 that the local stability properties of all rest points are 

8. See Burmeister and Turnovsky (1972). 
9. Most important, our assumptions must be strong enough to justify a local 

stability analysis based on the associated linear system. The validity of these linear 
approximations necessitates that none of the 2n characteristic roots of the associated 
linear system has a zero real part (thereby excluding both zero and purely imaginary 
roots). 
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identical. If the rest point corresponding to the Ramsey problem with 
p = 0 is a regular saddlepoint, as will be true for nonpathological 
problems, it follows that every rest point solution to problem (1) is 
also a regular saddlepoint. As an immediate consequence of our re- 
sults, we find that under these conditions unstable points (in the 
saddlepoint sense) and hence limit cycles are precluded. 

In the joint production case there may exist several rest point 
solutions to problem (1) for the same value of p (necessarily positive 
since the Golden Rule point at p = 0 is unique). Ironically, we are then 
able to state a valid Correspondence Principle and to prove what in 
1942 Samuelson called a "separation" theorem;10 our results are quite 
parallel." 

What, then, shall we be able to conclude from our analysis, which 
follows? First, while the most powerful form of a Correspondence 
Principle, stated above as Conjecture CP, would justify many results 
based on the neoclassical parable, it is valid generally only when there 
is one type of capital good, i.e., n = 1. Second, when there is no joint 
production and certain other assumptions are satisfied, every rest 
point is a regular saddlepoint in the sense of Definition 3. Third, when 
joint production exists, a Correspondence Principle is valid in that, 
under certain conditions, a paradoxical point in the sense of Definition 
1 is not a regular saddlepoint in the sense of Definition 3. Moreover, 
a Separation Theorem obtains in that regular saddlepoints are sep- 
arated from unstable saddlepoints. Finally, if (i) a steady-state point 
(p-, k) is unique for a given p _ 0 (which is always true when joint 
production is excluded), or (ii) the economy is regular in the sense of 
Definition 2 (which implies uniqueness of rest points for our model), 
then it can be shown that, with certain additional assumptions, every 
steady state is a regular saddlepoint in the sense of Definition 3, thus 
proving a Correspondence Principle that regularity implies sad- 

dlepoint stability. While the conditions under which these statements 
are true are restrictive, they do seem to include cases of genuine eco- 
nomic interest. 

Given that we have demonstrated that optimal dynamics are 

extremely complex, what can one say with regard to policy? When 

does a simple rate of return rule lead to qualitatively correct policy 
advice? Again we show that the Correspondence Principle applies 
here: For regular economies, a simple rule based on Solow's social 
rate of return will lead to the correct optimal rest point. 

The remainder of this paper is divided into four sections. In 

10. "Points of stable equilibrium (in the small) are separated by points of defi- 
nitely unstable equilibrium; and vice versa." Samuelson (1942), p. 10. 

11. See Theorem 5 in Section IV below. 
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Section II we introduce the basic model, notation, and assumptions, 
and we then prove that Conjecture CP is valid when n = 1. In Section 
III we treat the no-joint production case, while the complicated joint 
production case in which there may exist multiple rest points for the 
same value of p is analyzed briefly in Section IV. Finally, in Section 
V we apply our previous results and derive the conditions under which 
rules based on Solow's social rate of return do or do not provide le- 
gitimate criteria for transitions between steady states. 

II. THE BASIC MODEL, NOTATION AND ASSUMPTIONS, AND 

ANALYSIS OF THE n = 1 CASE 

2.1. The Basic Model, Notation, and Assumptions 

The economy produces n investment goods Yi (i = 1, 2,... , n) 
and one consumption good12 C, using labor L, and capital Ki (i = 1, 
2, ... , n), where every factor of production is required, either directly 
or indirectly, to produce the consumption good and where no output 
of any commodity is possible without a positive labor input. The labor 
force grows at a constant rate g _ 0, and we have 

(2.1) ki(t) = yi(t) - (g + bi)ki(t), 

where ki = Ki/L, yi = Yi/L, and bi is the exponential depreciation rate 
for the ith capital good. 

The economy's production set is W c R 2n+2 a set of techno- 
logically feasible input-output combinations (C, Y, K, L) _ (0, 0, 0, 
0). W is a cone with vertex 0, implying constant returns to scale. The 
per capita production set is 

V = {(c, y, k) c R+n+1I TL, (Lc, Ly, Lk, L) e WI. 

V is clearly convex. Let D be the projection of V on the (y, k) space. 
For any point (y, k) E D we define the function, 

G (y, k) = maximum c. 

(c,y,k) e V 

In what follows, static efficiency is assumed, so that we shall write 

(2.2) c = G(y, k) 

for (y, k) e D. It will be assumed that G (y, k) is a well-behaved con- 
cave function, with G (0, 0) = 0 and 

12. There is no essential difference if there are many consumption goods. 
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Gc/byi <0 ? G/cki >0 

b2G/(byi)2 <0 b2G/(bki)2 _ 0. 

The production set W is said to exhibit no-joint production if 
it is (or may be regarded as being) generated by n + 1 neoclassical 
production functions, as defined by Burmeister and Dobell (1970, pp. 
9-10), 

C = FO(Lo, Ko, Kno) 

Yi = Fi(Li, K1i, . . ., Kni) (i = 1, 2, . .. , n). 

Some or all of these functions may be identical. Joint production is 
said to exist if the production set is not generated by individual pro- 
duction functions for every commodity. 

Using (2.1) and (2.2), we may write 

C= G[. ki + (g+ bi)ki ... .; ki, ] 

hence 

(2.3) C = F(k, k). 

We assume that there exists a unique k * maximizing F(O, k) and that 
F(0, k*) > 0. It can be shown that our assumption that labor is es- 
sential implies that all feasible ki (t) paths are bounded. This ensures 
that each ki is finite in a steady state. 

Consider now the problem of choosing ki(t) and c(t) so as to 
solve 

'-S 

(2.4) max e-Ptu[c(t)]dt 
im(t)l 0 

subject to given p _ 0 and 

(2.5) c = F(k, k) 

(2.6) k(0) = ko 

(2.7) c(t) _ 0 

(2.8) yi = ki + (g + bi)ki >-0, i = 1, . .. , n 

where u (c) is a concave and strictly increasing function. We define 

(2.9) T(k, k) = u[F(k, k)] = T(x, k), x -k. 

The Hamiltonian function for the problem (2.4) is 

(2.10) Ho(p, k, k) = T(k, k) + pk. 
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Let 

(2.11) H(p, h) = maxHo(p, k, k). 
1ki 

An optimal trajectory must satisfy 2n differential equations: 

(2.12) ki= )H/)pi 

(2.13) Pi = ppi - -H/cki. 

Note that for given (p, k), k maximizes Ho(p, k, k), implying that 

(2.14) TXi + Pi _ ?, Xi - i 

with equality if ki + (g + bi)ki > 0. 
Since we are not interested in the problem of nonuniqueness of 

momentary equilibrium, it will be assumed that the maximization 
of Ho(p, k, k) for given (p, k) yields a unique vector k, at least in some 
neighborhood of any rest point (p, k). Technically, this assumption 
is satisfied if T(k, k) is strictly concave in k in some neighborhood N, 
of (k, k) = (0, k), or the matrix Txx is negative definitely3 almost ev- 
erywhere in Ne. 

We are interested in the local stability characteristics of rest 
points, and in particular the relation between instability and "para- 
doxical" behavior in the sense of Definition 1. The linear system as- 
sociated with the system (2.12)-(2.13) is 

(2.15a) ( =J (t)- I) 

where (p, k) is a rest point. The entries of matrix J are evaluated at 

(PT k), and 

(2.15b) ( H~k p Hpp 
\Hkkz pI - Hpk/ 

It is interesting, and perhaps suggestive, to note that "paradox- 
ical" steady states are related to a quadratic form involving the matrix 

13. To prove that H p is positive definite if and only if TX is negative definite, 
differentiate (2.12) and (2.14), with dk = 0: 

Hppdp = dk 

-T.Adk = dp; 

hence 

orp [_ r Xm -1. 
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J. At a steady-state rest point (T-h k) we have, from (2.12) and 
(2.13), 

(2.16) bH/lpi = 0 

(2.17) pji- H/bkj = 0. 

Differentiating (2.16) and (2.17) with respect to p, we obtain 

(2.18) M ($)= = p', etc., 

where it is understood that we have now dropped the bars and denote 
steady-state values - and k simply by p and k; and where 

(2.19) M= ( Hp Hk 
pI - Hk -Hkk/ 

(2.20) =J (I I) 

From (2.19) 

(2.21) (pIT, k'T)M (k;) = _pTk 

where p T denotes the transposed p, etc. But 

diF dT dki 
sgn-= sgn-= sgn 2; Tk(O, k) i 

dp dp dp 

= sgn (pYpik') 

(2.22) = sgn (ppTk').14 

2.2. The n = 1 Case 

a. No-joint production. In this case, for any given p _ 0, a steady 
state, if it exists, is unique, and has the regular saddlepoint property. 
Steady states are nonparadoxical in the sense of Definition 1 (see 
Theorem 2 below). 

b. Joint production case. In this case, for any given p > 0, there 
may exist more than one steady state. This possibility was considered 
in Liviatan and Samuelson (1969), where the relationship between 
instability and dk/dp was established: for p > 0, steady-state rest 
points at which dk/dp < 0 are regular saddlepoints and those at which 
dk/dp > 0 are unstable in the sense of Definition 3. 

14. See Burmeister and Dobell (1970), pp. 286-87, and Brock and Burmeister 
(1976) for further discussion. 
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We now present a proof of Conjecture CP for the case n = 1. 

THEOREM 1. For n = 1, a rest point (c, j, k) is paradoxical if and 
only if it is not a regular saddlepoint. 

Proof. We consider only the case where det J 5r-4 0 (otherwise local 
stability analysis based on linearization is not justified). From (2.20) 
we have det J = -det M. Now, from (2.18) 

(2.23) (P:) = M-1 ( ); 

then by direct computation 

(2.24) .pTk' = [0, -pT]M1 (0) 

(2.25) = pTHppp/detM. 

But Hpp = [-Txx]-1 > 0 because -o < Txx <0 for c, y > 0. Hence 
using (2.22), we see that 

-F 0 as det J 0 for p > 0. 
dp 

For the case p = 0 there exists a unique rest point (p*, k*). Under our 
assumption that det J 5r-4 0, this rest point is a regular saddlepoint with 
roots X1 =-2 $ 0 if det J = X1X2 < 0. Thus, it suffices to prove that 

det J < 0; but det J = -det M = HppHkk - (Hpk)2 ? 0, since H is 

concave in k and convex in p; see Samuelson (1972). This completes 
the proof. 

Finally, we establish a property that is true for the n = 1 case but 

not true for the more general (n > 1) case. 

THEOREM 2. For n = 1, a paradoxical steady-state point occurs 

only at values of p giving rise to multiple rest points. In other 
words, dc/dp 0 for p $ 0. 

Proof. Suppose that there were some p0 5r-4 0 at which dc/dp = 

0. Then pk'(p?) = 0 by (2.22). But p 5? 0 by (2.14), and hence k'(p?) 
= 0. Thus, (2.18) implies that 

(p - Hpk)P' = -p 

(Hpp)p' = 0 

or 

Hpp= 0. 
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FIGURE I 

But Hpp = (-T..)-1 >0. Q.E.D. 

Theorem 2 rules out the behavior depicted in Figure I when 

n = 1. 

III. THE No-JOINT PRODUCTION CASE WITH n > 1 

First, we shall show that for any given p _ 0, a steady-state rest 

point, if it exists, is unique. 
Proof. Burmeister and Dobell (1970, Ch. 9) showed that there 

exists a nonempty set Z C (0, co) such that for any p E Z there exists 

unique (P, k) satisfying 

P = Fx(0, k), F(k, k) -F(x, k), 

pP = Fk(0, k). 

Hence, there exists unique (p, k) satisfying 

p = Tx(0, k) = u'[F(O, k)][Fx(0, k)] 

pp = Tk(0, k) = u'[F(O, k)]Fk(0, k) 

(= OH/?k). 

For the case p = 0, it is easily seen that a steady state exists and 

is unique under our assumption that the problem maxlkIF(0, k) has 

a unique solution k* with F(O, k*) > 0. 

Thus, for the no-joint production case the locus of steady states 

in the c-p plane is of the general shape depicted by Figure I. Using 

(2.5), (2.18), and (2.22), we can examine the relationship between 

paradoxical steady states and instability. From (2.5) 

(3.1) -= Fk(0, k)k'(p), 
dp 
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where k)(p), j = 1, ... , n, is finite for the no-joint production case 
provided that the cost functions have continuous second partial de- 
rivatives for feasible p E- Z. 

Now, from (2.18), whenever M-1 exists, 

(3.2) (7,) = (adj M) (0) jdet M. 

Thus, k'(p) is of the form 

(3.3) k (p) = Zi (p)/det M 

and 

Cp) = E Fkj (0, k)Zj (p)/det M 
J 

(3.4) = N(p, k, p)/D(p, k, p), 

where 

(3.5) D(p, k, p) det M(p, k, p). 

Consider the following assumption. 

ASSUMPTION N. Let (pO, k0) be a steady state at the rate of 
interest p0 + g. Then F'(pO) = 0 implies N(pO, k0, p0) = 0 and 
D(p?, k?, p?) # 0, where N and D are defined by (3.4) and (3.5). 
Similarly c'(p?) - + O implies that D(p?, k?, p?) = 0 and N(p?, 
k?, pO) 74 0. If D(p?, k?, p?) = 0, then N(p?, k?, p?) 74 0. 

Assumption N serves to rule out zero divided by zero indeterminacies, 
which require the application of l'Hospital's rule, thereby compli- 
cating the analysis without adding any economic insights. 

The following proposition can now be proved. 

PROPOSITION 1. For the no-joint production case, the matrix 
J of system (2.15a) has no zero root. 

Proof. Since det J = HI=', Xi, we need only to show that det J = 

-det M 74 0. It can be shown that c'(p) is finite for the no-joint pro- 
duction case, and this implies that det M -4 0. Q.E.D. 

While multiple rest points are ruled out, paradoxical steady states 
may exist, as illustrated in Figure I. Under the following assumptions, 
we can show that every rest point is a regular saddlepoint. 

ASSUMPTION A.1. The steady state (p*, k*) corresponding to 
p = 0 is a regular saddlepoint. 



UNRESOLVED QUESTIONS IN CAPITAL THEORY 303 

In every economic example we have seen the Golden Rule point 
at p = 0 is a regular saddlepoint, and thus the class of economic models 
for which our assumption is valid is obviously wide and of significant 
interest. 

ASSUMPTION A.2. For all p C Z the matrix J(p) has no pure 
imaginary roots. 

Without Assumption A.2, the inference about the stability 
properties of a nonlinear system using its associated linear system is 
not valid.15 

THEOREM 3. Under A.1 and A.2 all rest points are regular 
saddlepoints. 

Proof. Propositions 1 and A.2 imply that real parts of roots of J 
do not change sign. (Note that roots of J vary continuously with p.) 
Hence the stability properties of all rest points are the same as those 
of the rest point (p*, k*) at p = 0. Assumption A. 1 completes the 
proof. Q.E.D. 

Under these conditions the existence of a limit cycle around an 
unstable saddlepoint (or completely unstable point) is impossible. 

IV. THE JOINT PRODUCTION CASE WITH n > 1 

For the joint production case, for any given p > 0, there may exist 
more than one steady state. Consider the equations, 

(4.1) k = OH/Ip = 0 

(4.2) 6= pp- H16k = O. 

or, more simply, 

(4.3) 4(p, p, k) = O. 

Let S be the solution set of the equations (4.3), that is, S = $(p, p, k) Ip 
_ 0, (p, k) C ER+ A/p p, k) = 0}. We assume that S is nonempty and 
S C [0, co) x (R++)2 , where R++ (0, c). Brock (1973) showed that 
if det M $ 0 for all (p, p, k) E S and if (p, k) is unique for p = 0, then 
for given p > 0, (p, k) is uniquely determined. As we have shown, det 

15. See Berger and Berger (1968), pp. 147-48, for an interesting example. In such 
instances a more complex analysis is required using approximation involving higher 
order terms of a Taylor series expansion around equilibrium; similar results then can 
be derived. We also note that if J has a pure imaginary root, the associated linear system 
will have a closed path about the equilibrium point. We are not aware of any continu- 
ous-time economic model with our criterion function for which the optimizing trajectory 
is a closed path. 
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M $ 0 for the no-joint production case. For the joint production case, 
the assumption det M s 0 is too strong; we make only the following 
assumption. 

ASSUMPTION I. det M = 0 only at isolated points in S. 

Assumption I ensures that for any p > 0 the set Sp = (p, k) I (p, 
p, k) E S) is discrete. 

We shall need the following assumptions: 

ASSUMPTION U (local uniqueness of optimal path for a given 
initial vector ko). For p _ 0, any rest point (p, k) has at most n 
roots with negative real parts. 

Assumption U can be justified on the ground that nonuniqueness 
can be eliminated by dropping the goods that cause it (e.g., blue and 
green machines). 

ASSUMPTION C. For a given (feasible) value p = p0 > 0, there 
exist three steady-state consumption levels C1 > ' 2 > C corre- 
sponding to the three rest points (pl, kl), (p2, k2), and (p3, k3), 
as illustrated in Figure II. 

CC 

-21C 

C I3 

| . 
~~~p 

0 p0 

FIGURE II 

THEOREM 4. Under assumptions N, I, U, and C, and excluding 
inflection points of the c-p graph, if (pl, k1) is a regular sad- 
dlepoint, then (p2, k2) is unstable (with less than n roots having 
negative real parts). 

The proof of Theorem 4 is available from the authors upon re- 
quest. We cannot say much about (p3, k3) given only that (p1, k1) is 
stable. However, if we know that (p3, k3) is a regular saddlepoint as 
well as (p1, k 1), then we can state the following. 
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THEOREM 5 (separation theorem). The points of stable equi- 

librium (in the saddlepoint sense) (pl, k1) and (p3, k3) are sep- 
arated by a point of unstable equilibrium (p2, k2). 

It is interesting to note that if n is even, then (p2, k2) is not 

completely unstable. This result seems quite reasonable. For the case 
n = 2, apparently the policy functions ki = ki(k1, k2) are as depicted 
in Figure III, where in general the n policy functions k = k (k) repre- 

sent the solution to the synthesis problem, i.e., the optimal control 
law in feedback form. 

ki 

C= C3 

C=6 

k 

FIGURE III 

Finally, suppose that assumptions (A.1), (A.2), U, and N are 

satisfied, and suppose also that no two characteristic roots of J vanish 

simultaneously; then the following proposition holds (proof available 

from the authors). 

PROPOSITION. If for all p _ 0 there are no multiple rest points 
corresponding to a given p, then all rest points for which det J 

$ 0 are regular saddlepoints in the sense of Definition 3. 

This result represents a Correspondence Principle because multiple 

rest points cannot occur for economies that are regular in the sense 

of Definition 2. Moreover, an extension to this proposition may be 

proved that represents a verification of Conjecture CP under the 

stated assumptions. 

Consider the locus of steady-state points (c, p) in Fig- 
ure II. Those points (c, p) on this locus for which c > c' 

(and hence not paradoxical in the sense of Definition 1) 

correspond to regular saddlepoints in (p, k) space. Like- 



306 QUARTERLY JOURNAL OF ECONOMICS 

wise those points (c, p) such that c" < c < c' (and thus par- 

adoxical) are unstable in the sense of Definition 3. 

V. THE SOCIAL RATE OF RETURN 

Solow (1963, 1967) has introduced the concept of the social rate 
of return to savings-investment and has proved that under quite 

general conditions this social rate of return equals the interest rate. 
Specifically, for convenience we first outline a discrete-time variant 
of our model with a single consumption good. Consider an economy 
that has been in a steady-state equilibrium up to period t = 0 with per 

capita consumption c(t) = i, per capita capital stock vector k (t) = 

k, price vector p, and interest rate r(t) = T. Starting from these initial 
conditions, assume that prices remain at j5, and let 

(5.1) {c(t)}t=o 

be a feasible consumption stream that is also efficient in the sense that 
c(t') > c(t) is impossible unless c(t") < c(t) for some other time period 
t". Solow (1967, especially pp. 34-35) then has proved that, if the 
economy approaches a new steady-state equilibrium with c = c*, k 
= k*, p = p* = j-, and r = r* = r, then the present discounted value 
of the increment stream, 

(5.2) z(0)=1) + -.+ 
z 

( + --=0,Z(0 = 00 - 
1 +0 (l+ O)t 

has a root 0 = F. Analogously it can be shown that in continuous 
time 

00 

(5.3) z(t)e-Otdt = 0 

has a root 0 = T. (In this section we set g = LIL = 0 for convenience.) 
We are interested in nontrivial cases for which c 7 c*. But c~ and c* 
both represent steady-state consumption at identical prices j5 = p*; 

in this case there must exist a linearity in the production of the con- 

sumption good, thereby violating strict concavity of the technology 
or the assumption that the consumption good is produced by a neo- 

classical production function. For this reason we now consider tran- 
sitions withh 7? p * p 

An economy has a rate of time preference p > 0 and a social 

welfare function, 

(5.4) W = c(t)e -Ptdt. 
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Suppose that this economy is initially in a steady-state equilibrium 
with c = c, k = k, p = p, and r = T. We now no longer take prices as 
fixed at p, but rather suppose that there exists a feasible and efficient 
consumption stream, 

(5.5) C t=o 

such that the transition terminates at time t = T in a new steady-state 

equilibrium with 

c(T) = c*, k(T) = k*, p(T) = p*, and r(T) = r*. 

Further, suppose that this new steady state is "adjacent" to the initial 
one with 

(5.6) Ic*- l <E 

and 

(5.7) Ir* - TI < 

where e is an arbitrarily small positive number. Finally, if there exists 
a feasible and efficient finite-time transition from the steady state 
(T-, c) to (r *, c *), then we assume that there exists a reverse transition 
from (r*, c*) to (Tr, c), 

(5.8) ICO(t)}t=o, 

such that 

(5.9a) c'Nt) - = -[c(t) - c], t _ 0. 

Actually, an alternative and weaker condition will suffice for our 
purposes, namely, the condition that every efficient transition (5.5) 
from a steady state with consumption c to one with consumption c* 
has the property that the transition would be preferred, on welfare 
grounds, to remaining in the initial steady state if the rate of time 
preference were in fact r*, i.e., c(t) must satisfy 

(5.9b) c(t)e-r*tdt > f ie-r*tdt 

While the condition (5.9b) seems more obscure than (5.9a), they are 

interchangeable in all that follows. 
Note that we are assuming here that efficient transitions between 

these two "adjacent" steady states are possible, and that there exist 
such transitions satisfying (5.5)-(5.9a) or, alternatively, (5.5)-(5.7) 
and (5.9b). The technical problems involved to ensure that these 
conditions will be met are far from trivial, but they are not of economic 
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consequence for our expositional purposes in this section. Moreover, 
it is clear that transitions meeting all of our requirements do exist for 
a Leontief-Sraffa technology with alternative techniques of produc- 
tion (see Solow (1967)). With this important warning we proceed with 
our story. 

Should our imaginary economy undertake the transition just 
described? The answer to this question depends in part on the rela- 
tionship between c, T, c*, r*, and p. As a first step toward finding an 
answer, we prove a slight generalization of Solow's Theorem. 

THEOREM 6. Consider finite-time transitions satisfying 

(5.5)-(5.9a), or (5.5)-(5.7) and (5.9b), and define 

(5.10) f(O) [c(t) - c]e-Otdt. 

Assume that the technology c, = F(k, k) is strictly concave in 
k. Then the equation f(O) = 0 has a root 0 = r such that r C (ir, 

r*). We shall refer to such an r as a social rate of return for the 
associated transition. 

Proof. It is well-known that the steady-state point (Tr, c) would 
solve problem (1) given k (O) = k, u(c) = c, and p = T. Likewise (r*, c*) 
is an optimal rest point when k(0) = k*, u(c) = c, and p = r*. Thus, 
from (5.10) and (5.9a) we see that 

(5.11) f(ir) < 0 

and 

(5.12) f (r*) > o, 

where the strict inequality follows because F, x = k is negative 
definite almost everywhere. Since f (0) is continuous, there exists a root 
0 = r such that f (r) = 0 and r & (r-, r*). Alternatively, (5.9b) implies 
(5.12). Q.E.D. 

Theorem 6 might lead one to misuse of Solow's social rate of re- 
turn concept if no additional restrictions are placed on the transitions 
under consideration. For example: 

Naive Rule 

A transition from the steady state (r-, c) to (r*, c*), 
which satisfies (5.5)-(5.7) should be undertaken provided 
that Tr and r*, and hence a social rate of return r, exceed 
the rate of time preference p (provided that p exceeds r- 
and r*, and hence r), and provided that the new steady 
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C~~~~~~~~~ 

c 

C __I_ f 

g=0 p rr* 

FIGURE IV 

state has higher per capita consumption with c* > c (and 
provided that c * < c). 

An economy that follows this Naive Rule exhibits an inter- 
esting Correspondence Principle similar to our Conjecture CP, 
namely, it will converge to the correct optimal rest point that solves 
problem (1) if the economy is regular in the sense of Definition 2. On 
the other hand, if the optimal steady-state point (p, J) is paradoxical 
in the sense of Definition 1, then (p, c) is unstable in that, starting from 
an initial steady-state point (-, c-) arbitrarily close, an economy fol- 
lowing the Naive Rule will move away from (p, J). These results are 
illustrated in Figures IV and V. 

When is the Naive Rule reasonable? Clearly a transition satis- 
fying the conditions of the Naive Rule is desirable on legitimate 
welfare grounds if and only if the welfare increments for transitions 
from (V, c-) to (r*, c*) are positive; these welfare increments are equal 

C* --------- 

- I I 
C---- - ?---- 

9=0 P r* 
? 

FIGURE V 
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to f (p), where f (O) is defined by (5.10). Suppose, for example, that the 
social rate of return 0 = r is unique, as indicated in Figure VI for 

f () 

0e 
P r* r 

FIGURE VI 

transitions from (r, c) to (r*, c*) with c* > c-. In this case we know that 

f (0) = a) since c * > c; but from the proof of Theorem 6, we also have 
f (r*) > 0 and f (T) < 0. Thus, f (p) > 0 when p is less than both r* and 
T, while f (p) < 0 when r* and r both exceed p. 

An intuitively appealing class of transitions does have unique 
social rates of return. Thus, suppose that the transition (5.5) also 
satisfies 

Ac(t)<c AlO~^ 

(5.13) sC~ _c, t t^, (3(t) = c* > c, te[T-,c), 

as pictured in Figure VII. When transitions satisfy (5.13), it is 
straightforward to prove that any root of f (0) = 0 is unique. The crucial 

c (t) 

/ I 

FIGURE VII 
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aspect of such transitions is that there are two phases: The first phase 
may be identified with a "consumption sacrifice" that allows the 
economy eventually to attain a higher level of steady-state con- 
sumption c* > c-; the second phase is characterized by c(t) _ c-. Sim- 
ilarly, any transition from a high steady-state level of consumption 
to a lower one will have a unique rate of return if it consists of two 
phases: the first phase is a "consumption binge," which results, in 
phase two, in a lower consumption level than the original one. 

However, even if the social rate of return r is not unique, for 
regular economies we can establish, when (5.5)-(5.9a) (or (5.5)-(5.7) 
and (5.9b)) hold, that transitions to a steady state sufficiently close 
to (p, c) will have an associated welfare increment that is positive. To 
see this fact, consider an initial steady state (T, c) with c < c and Tr > 
p. Because the economy is regular, there exists a steady state (r*, c*) 
with p < r* < T and c > c* > J. As argued above, f(r*) > 0 for this 
transition, and thus we may select a c * sufficiently close to c that f(p) 
> 0. In this case the Naive Rule improves welfare. We emphasize that 
this result does not depend upon the uniqueness of the social rate of 
return for transitions. 

Unfortunately, with irregular economies these apparently 
plausible results no longer remain valid. Thus, consider an irregular 
economy for which the rest points corresponding to all 0 & [p, r*] are 
paradoxical in the sense of Definition 1. Now a transition satisfying 
(5.5)-(5.9a) (or (5.5)-(5.7) and (5.9b)) with c* > c must entail r* > 
Tr because a rise in steady-state consumption is accompanied by a rise 
in the steady-state interest rate when there is paradoxical behavior. 
Therefore, we see that f (0) defined by (5.10) must be as illustrated in 
Figure VIII with more than one root to f (0) = 0; this fact follows im- 
mediately from the continuity of f(0), f(0) > 0, f(ri) < 0, f(r*) > 0, and 

B 

FIGURE VIII 
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r* > r. Accordingly, under these circumstances transitions between 

adjacent paradoxical steady states that have a unique social rate 
of return do not exist. Hence for a feasible transition from c to c* > 
c, satisfying (5.5)-(5.9a) (or (5.5)-(5.7) and (5.9b)), we have c(t) = c 
at more than one value of t > 0. (In particular, such transitions also 
satisfying (5.13) do not exist between adjacent paradoxical steady 
states). Conversely, if there exist transitions satisfying (5.5)-(5.9a) 
(or (5.5)-(5. 7) and (5.9b)), which have a unique social rate of return, 
the associated steady states cannot be paradoxical. 

VI. CONCLUDING REMARKS 

For practical economic policy, one cannot expect to solve optimal 
control problems of the form (1). On the other hand, it is quite rea- 
sonable to suppose that an actual economic policy will be implemented 
if the calculated benefits exceed estimated costs. We have seen that 
such cost-benefit planning is potentially quite dangerous if it is based 
upon rate-of-return calculations and the social rate of return is not 

unique. In this case the economy may move away from the true rest 

point solution for the appropriate criterion, i.e., for problem (1), if the 

economy is not regular. However, the Burmeister-Turnovsky (1972) 
concept of a regular economy does provide some rationale for the 

Naive Rule based on rates of return; if the economy is regular (i) such 
a Naive Rule results in convergence to the appropriate, i.e., truly 
optimal, steady state, and (ii) there exists a c* sufficiently close to the 

optimal consumption level c such that a transition from c to c* entails 

a strictly positive welfare increment. 
For descriptive economics the Hahn instability problem still 

exists, but it can be argued that the Hahn formulation in which actual 
and expected rates of price change always coincide is an incorrectly 
specified model. Once price expectations are introduced, a descriptive 
heterogeneous capital good model may be stable; see Burmeister and 
Graham (1974). But this is quite another story. 

The existence of many capital goods is a severe complication. A 

powerful Correspondence Principle, our Conjecture CP, is valid when 
n = 1; see Theorems 1 and 2. But it does not follow that neoclassical 

parables lose all relevance when heterogeneous capital goods exist, 
i.e., when n > 1. Rather, we now require additional assumptions to 
establish the same qualitative conclusions; see Theorems 3 and 5. 
When the economy is regular, thereby excluding paradoxical behavior, 
and when every rest point to problem (1) is a regular saddlepoint, 
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much of the conventional wisdom based on the one-capital good case 
again prevails. We find this reassuring. 
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