Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **25:3** (2011), 15–27 DOI: 10.2298/FIL1103015K

ON SOME VECTOR VALUED GENERALIZED DIFFERENCE MODULAR SEQUENCE SPACES

Vatan Karakaya and Hemen Dutta

Abstract

In this paper we generalize the modular sequence space $\ell \{M_k\}$ by introducing the sequence space $\ell \{M_k, p, q, s, \Delta_{(vm)}^n\}$. We give various properties relevant to algebraic and topological structures of this space and derived some other spaces.

1 Introduction

By w(X), we shall denote the space of all X -valued sequences spaces, where (X, q) is a seminormed space, seminormed by q. For X = C, the space of complex numbers, these represent the corresponding scalar valued sequence spaces. The zero sequence is denoted by $\overline{\theta} = (\theta, \theta, \theta, ...)$ where θ is the zero element of X.

The notion of difference sequence space was introduced by Kizmaz [5], who studied the difference sequence spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Colak [3] by introducing the spaces $\ell_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$.

Let r, s be non-negative integers and $v = v_k$ be a sequence of non-zero scalars Also let $Z = \{\ell_{\infty}, c, c_0\}$. Dutta [2] define the following sequence spaces

$$Z\left(\Delta_{(vr)}^{s}\right) = \left\{x = (x_k) \in w : \left(\Delta_{(vr)}^{s} x_k\right) \in Z\right\},\$$

where $\left(\Delta_{(vr)}^{s} x_{k}\right) = \left(\Delta_{(vr)}^{s-1} x_{k} - \Delta_{(vr)}^{s-1} x_{k-r}\right)$ and $\Delta_{(vr)}^{0} x_{k} = v_{k} x_{k}$ for all $k \in N$, which is equivalent to the following binomial representation :

$$\Delta_{(vr)}^s = \sum_{i=0}^s \left(-1\right)^i \binom{s}{i} v_{k-ri} x_{k-ri}.$$

²⁰¹⁰ Mathematics Subject Classifications. 40A05, 46A45, 46E30

Key words and Phrases. Sequence spaces, diffrence operator, Orlicz function, paranorm, completeness, AK - BK spaces.

Received: October 24, 2010

Communicated by Dragan S. Djordjević

In this expansion we take $v_k = 0$ and $x_k = 0$ for non-positive values of $k \in N$. Dutta [2] shown that these spaces can be made *BK*-spaces under the norm

$$\|x\| = \sup_{k} \left| \Delta_{(vr)}^{s} x_{k} \right|.$$

An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$, which is continuous, nondecreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \to \infty$, as $x \to \infty$. If convexity of Orlicz function M is replaced by

$$M\left(x+y\right) \le M\left(x\right) + M\left(y\right),$$

then this function is called a modulus function introduced by Nakano [9].

Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to construct sequence space

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

The space ℓ_M becomes a Banach space , with the norm

$$||x|| = \inf\left\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

which is called an Orlicz space .The space ℓ_M is closely related to the space ℓ_p which is an Orlicz sequence space with $M(x) = x^p$ for $1 \leq p < \infty$. Another generalization of Orlicz sequence spaces due to Woo [13]. Let $\{M_k\}$ be a sequence of Orlicz functions. Define the vector space $\ell \{M_k\}$ by

$$\ell \{M_k\} = \left\{ x \in w : \sum_{k=1}^{\infty} M_k \left(\frac{|x_k|}{\rho} \right) \le \infty, \text{ for some } \rho > 0 \right\}$$

and this space has a norm defined by

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M_k\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

Then $\ell \{M_k\}$ becomes a Banach space and is called a modular sequence space. The space $\ell \{M_k\}$ also generalizes the concept of modulared sequence space introduced by Nakano [10], who considered the space $\ell \{M_k\}$ when $M_k(x) = x^{\alpha_k}$, where $1 \leq \alpha_k < \infty$ for $k \geq 1$.

An Orlicz function M is said to satisfy the Δ_2 -condition for all values of u, if there exists a constant K > 0 such that $M(2u) \leq kM(u)$ $(u \geq 0)$. The Δ_2 condition is equivalent to the satisfaction of inequality $M(lu) \leq kluM(u)$ for all values of u and for l > 1 (see;[7]). The Δ_2 -condition implies $M(lu) \leq Kl^{\log_2 K}M(u)$ for all values u > 0, l > 1. Karakaya [6], Bektaş and Altin [1], Parasar and Choudhary [11], Mursaleen, Khan and Qamaruddin [8], Tripathy and Dutta [12] and many others have studied sequence spaces using Orlicz functions.

In [14], it is shown that a *BK*-spaces is a Banach space of complex sequences $x = (x_k)$ in which the co-ordinate maps are continuous, that is, $|x_k^n - x_k| \to 0$, whenever $||x^n - x|| \to 0$ as $n \to \infty$, where $x^n = (x_k^n)$ for all $n \in N$ and $x = (x_k)$.

Let A denotes the set of all complex sequences which have only a finite number of non-zero coordinates, λ denotes a BK-space of sequences $x = (x_k)$ which contains A. An element $x = (x_k)$ of λ will be called sectionally convergent if

$$x^n = \sum_{k=1}^n x_k e_k \to x \text{ as } n \to \infty ,$$

where $e_k = (\delta_{ki})$, where $\delta_{kk} = 1$, $\delta_{ki} = 0$, for $k \neq i$.

The space λ will be called AK-space if and only if each of its elements is sectionally convergent .Let $\mathbf{M} = (M_k)$ be a sequence of Orlicz functions, X be a seminormed space with seminorm q, $p = (p_k)$ be a sequence of positive real numbers and $v = (v_k)$ be a fixed sequence of non-zero scalars. Then for non-negative real numbers s, m and n, we define

$$\ell\left\{M_k, p, q, s, \Delta_{(vm)}^n\right\} = \left\{x \in w\left(X\right) : \sum_{k=1}^{\infty} k^{-s} \left[M_k\left(q\left(\frac{\Delta_{(vm)}^n}{\rho}\right)\right)\right]^{p_k}\right\} < \infty \text{ for some } \rho > 0.$$

Considering X = C, q(x) = |x|, $p_k = l$, $v_k = 1$ for all $k \in N$, s = 0 and n = 0, we get the modular space $\ell \{M_k\}$ introduced and studied by Woo [13].

2 Main Results

In this section, we give the theorems that chracterize the structure of the class of sequences $\ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\}$ and some other spaces which can be derived from this space.

Theorem 1. Let $p = (p_k)$ be bounded sequence of positive reals, then $\ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\}$ is a linear space over the field C.

Proof. Let $x, y \in \ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\}$ and $\alpha, \beta \in C$. Then there exist some $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\sum_{k=1}^{\infty} k^{-s} \left[M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\rho_1} \right) \right) \right]^{p_k} < \infty$$

and

$$\sum_{k=1}^{\infty} k^{-s} \left[M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\rho_2} \right) \right) \right]^{p_k} < \infty \; .$$

We consider $\rho_3 = \max(2 |\alpha| \rho_1, 2 |\beta| \rho_2)$. Since each M_k is non-decreasing and convex, and since q is a seminorm,

$$\sum_{k=1}^{\infty} k^{-s} \left[M_k \left(q \left(\frac{\Delta_{(vm)}^n (\alpha x_k + \beta y_k)}{\rho_3} \right) \right) \right]^{p_k} \\ \leq \sum_{k=1}^{\infty} k^{-s} \left[M_k \left(q \left(\frac{\Delta_{(vm)}^n (\alpha x_k)}{\rho_3} \right) + q \left(\frac{\Delta_{(vm)}^n (\beta y_k)}{\rho_3} \right) \right) \right]^{p_k} \\ \leq \sum_{k=1}^{\infty} k^{-s} \left[M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\rho_1} \right) + q \left(\frac{\Delta_{(vm)}^n y_k}{\rho_2} \right) \right) \right]^{p_k} \\ \leq D \sum_{k=1}^{\infty} k^{-s} \left[M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\rho_1} \right) \right) \right]^{p_k} \\ + D \sum_{k=1}^{\infty} k^{-s} \left[M_k \left(q \left(\frac{\Delta_{(vm)}^n y_k}{\rho_2} \right) \right) \right]^{p_k} \\ < \infty$$

where, $D = \max\{1, 2^{H-1}\}$ and $H = \sup_k p_k$. Hence this completes the proof.

Theorem 2. $\ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\}$ is a paranormed space (need not total paranorm) space with paranorm g, defined as follows.

$$g(x) = \inf\left\{\rho^{\frac{p_n}{H}} : \sum_{k=1}^{\infty} k^{-s} M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k}{\rho}\right)\right) \le 1 \ , \ n = 1, 2, \dots\right\},\$$

where $H = \sup_k p_k$.

Proof. Clearly g(x) = g(-x). Since $M_k(0) = 0$, for all $k \in N$, we get $\inf \left\{ \rho^{\frac{p_n}{H}} \right\} = 0$ for $x = \theta$. Now let $x, y \in \ell \left\{ M_k, p, q, s, \Delta^n_{(vm)} \right\}$ and let us choose $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\sum_{k=1}^{\infty} k^{-s} M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\rho_1} \right) \right) \le 1$$

and

$$\sum_{k=1}^{\infty} k^{-s} M_k \left(q \left(\frac{\Delta_{(vm)}^n y_k}{\rho_2} \right) \right) \le 1$$

Let $\rho = \rho_1 + \rho_2$. Then we have

$$\begin{split} \sum_{k=1}^{\infty} k^{-s} M_k \left(q \left(\frac{\Delta_{(vm)}^n \left(x_k + y_k \right)}{\rho} \right) \right) &\leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sum_{k=1}^{\infty} k^{-s} M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\rho_1} \right) \right) \\ &+ \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sum_{k=1}^{\infty} k^{-s} M_k \left(q \left(\frac{\Delta_{(vm)}^n y_k}{\rho_2} \right) \right) \\ &\leq 1 \end{split}$$

Hence $g(x+y) \leq g(x) + g(y)$.

Finally, let λ be a given non-zero scalar , then the continuity of the scalar multiplication follows from the following equality

$$g(\lambda x) = \inf \left\{ \rho^{\frac{p_n}{H}} : \sum_{k=1}^{\infty} k^{-s} M_k \left(q\left(\frac{\Delta_{(vm)}^n (\lambda x_k)}{\rho}\right) \right) \le 1, n = 1, 2, \dots \right\}$$
$$= \inf \left\{ \left(|\lambda| \, s \right)^{\frac{p_n}{H}} : \sum_{k=1}^{\infty} k^{-s} M_k \left(q\left(\frac{\Delta_{(vm)}^n (\lambda x_k)}{s}\right) \right) \le 1, n = 1, 2, \dots \right\},$$

where $s = \frac{\rho}{|s|}$. This completes the proof.

The proof of the following Theorem is easy, so it is omitted .

Theorem 3. Let $\mathbf{M} = (M_k)$ and $\mathbf{T} = (T_k)$ be sequences of Orlicz functions .For any two sequences $p = (p_k)$ and $t = (t_k)$ of bounded positive real numbers and for any two seminorms q_1 and q_2 we have

$$\begin{array}{l} (i) \ If \ q_1 \ is \ stronger \ than \ q_2, \ then \ \ell \left\{ M_k, p, q_1, s, \Delta_{(vm)}^n \right\} \subset \ell \left\{ M_k, p, q_2, s, \Delta_{(vm)}^n \right\}, \\ (ii) \ \ell \left\{ M_k, p, q_1, s, \Delta_{(vm)}^n \right\} \cap \ell \left\{ M_k, p, q_2, s, \Delta_{(vm)}^n \right\} \subset \ell \left\{ M_k, p, q_1 + q_2, s, \Delta_{(vm)}^n \right\}, \\ (ii) \ \ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\} \cap \ell \left\{ T_k, p, q, s, \Delta_{(vm)}^n \right\} \subset \ell \left\{ M_k + T_k, p, q, s, \Delta_{(vm)}^n \right\}, \\ (iv) \ \ell \left\{ M_k, p, q_1, s, \Delta_{(vm)}^n \right\} \cap \ell \left\{ M_k, t, q_2, s, \Delta_{(vm)}^n \right\} \neq \phi, \\ (v) \ If \ s_1 \le s_2, \ then \ \ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\} \subset \ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\}, \\ (vi) \ The \ inclusions \ \ell \left\{ M_k, p, q, s, \Delta_{(vm)}^{n-1} \right\} \subset \ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\} \ are \ strict. \\ In \ general, \ \ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\} \subset \ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\} \ for \ i = 1, 2, 3, ..., n-1 \end{array}$$

and the inclusion is strict.

Theorem 4. Let $\mathbf{M} = (M_k)$ and $\mathbf{T} = (T_k)$ be sequences of Orlicz functions which satisfy Δ_2 -condition and s > 1, then

$$\ell\left\{M_k, p, q, s, \Delta_{(vm)}^n\right\} \subseteq \ell\left\{T_k \circ M_k, p, q, s, \Delta_{(vm)}^n\right\}.$$

Proof. Let $x \in \ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\}$ and $\varepsilon > 0$. We choose $0 < \delta < 1$ such that $M(u) < \epsilon$ for $0 \le u \le \delta$. We write $y_k = M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\rho} \right) \right)$ and consider

$$\sum_{k=1}^{\infty} k^{-s} \left[T_k \left(y_k \right) \right]^{p_k} = \sum_{k=1}^{\infty} k^{-s} \left[T_k \left(y_k \right) \right]^{p_k} + \sum_{k=1}^{\infty} k^{-s} \left[T_k \left(y_k \right) \right]^{p_k}$$

where the first summation is over $y_k \leq \delta$ and the second over $y_k > \delta$. Since s > 1, we have

$$\sum_{1} k^{-s} \left[T_k \left(y_k \right) \right]^{p_k} < \max \left(1, \epsilon^H \right) \sum_{k=1}^{\infty} k^{-s} < \infty.$$

Vatan Karakaya and Hemen Dutta

For $y_k > \delta$, we use the fact that

$$y_k < \frac{y_k}{\delta} \le 1 + \left(\frac{y_k}{\delta}\right)$$

Since each T_k is non-decreasing and convex, it follows that, for each $k \in N$,

$$T_{k}(y_{k}) < T_{k}\left(1 + \frac{y_{k}}{\delta}\right) < \frac{1}{2}T_{k}(2) + \frac{1}{2}T_{k}\left(2\frac{y_{k}}{\delta}\right).$$

Since each T_k is satsfy Δ_2 -condition, we have

$$T_{k}(y_{k}) < \frac{1}{2} K \frac{y_{k}}{\delta} T_{k}(2) + \frac{1}{2} K \frac{y_{k}}{\delta} T_{k}(2) = K y_{k} \delta^{-1} T_{k}(2).$$

Hence

$$\sum_{2} k^{-s} \left[T_k(y_k) \right]^{p_k} \le \max\left(1, \left(K \delta^{-1} M(2) \right)^H \right) \sum_{k=1}^{\infty} k^{-s} \left(y_k \right)^{p_k} < \infty.$$

Thus

$$\sum_{k=1}^{\infty} k^{-s} [T_k (y_k)]^{p_k} = \sum_{1} k^{-s} [T_k (y_k)]^{p_k} + \sum_{2} k^{-s} [T_k (y_k)]^{p_k}$$

$$\leq \max (1, \epsilon^H) \sum_{k=1}^{\infty} k^{-s} + \max \left(1, (K\delta^{-1}M(2))^H \right) \sum_{k=1}^{\infty} k^{-s} (y_k)^{p_k}$$

$$< \infty.$$

Hence $x\in \ell\left\{T_k\circ M_k, p, q, s, \Delta_{(vm)}^n\right\}$. This completes the proof . \blacksquare

Taking $M_k(x) = x$, for all k in N, in the Theorem 4, we get the next Corollary.

Corollary 5. Let $\mathbf{M} = (M_k)$ be any sequence of Orlicz functions which satisfy Δ_2 condition and s > 1, then

$$\ell\left\{p,q,s,\Delta_{(vm)}^{n}\right\} \subseteq \ell\left\{M_{k},p,q,s,\Delta_{(vm)}^{n}\right\}.$$

We will write $f \approx g$ for non-negative functions f and g whenever $C_1 f \leq g \leq C_2 f$ for some $C_j > 0$, j = 1, 2.

Theorem 6. Let $\mathbf{M} = (M_k)$ and $\mathbf{T} = (T_k)$ be a sequence of Orlicz functions. If $M_k \approx T_k$ for each $k \in N$, then $\ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\} = \ell \left\{ T_k, p, q, s, \Delta_{(vm)}^n \right\}$.

Proof. Proof is obvious.

Theorem 7. Let $\mathbf{M} = (M_k)$ be a sequence of Orlicz functions. If $\lim_{t \to 0} \frac{M_k(t)}{t} > 0$ and $\lim_{t \to 0} \frac{M_k(t)}{t} < \infty$ for each $k \in N$, then

$$\ell\left\{M_k, p, q, s, \Delta_{(vm)}^n\right\} = \ell\left\{p, q, s, \Delta_{(vm)}^n\right\}$$

Proof. If the given conditions are satisfied, we have $M_k(t) \approx t$ for each k and the proof follows from Theorem 5.

If we take s = 0, the sequence space $\ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\}$ reduce to the following sequence space:

$$\ell\left\{M_{k}, p, q, \Delta_{(vm)}^{n}\right\} = \left\{x \in w\left(X\right) : \sum_{k=1}^{\infty} \left[M_{k}\left(q\left(\frac{\Delta_{(vm)}^{n}x_{k}}{\rho}\right)\right)\right]^{p_{k}} < \infty, \text{ for some } \rho > 0\right\}$$

Theorem 8. Let $p = (p_k)$ be bounded sequence of positive reals and (X,q) be a complete seminormed space, then $\ell \left\{ M_k, p, q, \Delta_{(vm)}^n \right\}$ is a complete paranormed space paranormed by h, defined by

$$h(x) = \inf\left\{\rho^{\frac{p_n}{H}} : \sum_{k=1}^{\infty} M_k\left(q\left(\frac{\Delta^n_{(vm)}x_k}{\rho}\right)\right) \le 1, n = 1, 2, \ldots\right\},\$$

where $H = \sup_k p_k$.

Proof. Let (x^i) be a Cauchy sequence in $\ell \left\{ M_k, p, q, \Delta_{(vm)}^n \right\}$. Let $\delta > 0$ be fixed and r > 0 be such that for a given $0 < \epsilon < 1$, $\frac{\epsilon}{r\delta} > 0$, and $r\delta \ge 1$. Then there exists a positive integer n_0 such that

$$h\left(x^{i}-x^{j}\right) < \frac{\epsilon}{r\delta}$$

for all $i, j \ge n_0$

$$h\left(x^{i}-x^{j}\right) = \inf\left\{\rho^{\frac{p_{n}}{H}}: \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(vm)}^{n}x_{k}^{i}-\Delta_{(vm)}^{n}x_{k}^{j}}{\rho}\right)\right) \le 1\right\} < \frac{\epsilon}{r\delta}$$

for all $i, j \ge n_0$. Hence we have

$$\sum_{k=1}^{\infty} M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k^i - \Delta_{(vm)}^n x_k^j}{h(x^i - x^j)} \right) \right) \le 1$$

for all $i, j \ge n_0$. It follows that

$$M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k^i - \Delta_{(vm)}^n x_k^j}{h\left(x^i - x^j\right)}\right)\right) \le 1$$

for all $i, j \ge n_0$ and $k \in N$. For r > 0 with $M_k\left(\frac{r\delta}{2}\right) \ge 1$, we have

$$M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k^i - \Delta_{(vm)}^n x_k^j}{h\left(x^i - x^j\right)}\right)\right) \le M_k\left(\frac{r\delta}{2}\right),$$

for all $i, j \ge n_0$ and $k \in N$. Since M_k is non-decreasing for each $k \in N$, we have

$$q\left(\Delta_{(vm)}^n x_k^i - \Delta_{(vm)}^n x_k^j\right) \le \frac{r\delta}{2} \cdot \frac{\epsilon}{r\delta} = \frac{\epsilon}{2}.$$

Hence $\left(\Delta_{(vm)}^{n} x_{k}^{i}\right)$ is a Cauchy sequence in (X,q) for each $k \in N$. But (X,q) is complete and so $\left(\Delta_{(vm)}^{n} x_{k}^{i}\right)$ is convergent in (X,q) for each $k \in N$.

Let $\lim_{i \to \infty} \Delta^n_{(vm)} x^i_k = y_k$ for all $k \ge 1$. Let k = 1, then we have

$$\lim_{i \to \infty} \Delta^{n}_{(vm)} x_{1}^{i} = \lim_{i \to \infty} \sum_{v=0}^{n} (-1)^{v} \binom{n}{v} v_{1-mv} x_{1-mv}^{i} = \lim_{i \to \infty} v_{1} x_{1}^{i} = y_{1}$$
(1)

Similary we have,

$$\lim_{i \to \infty} \Delta^n_{(vm)} x^i_k = \lim_{i \to \infty} v_k x^i_k = y_k \quad \text{, for } k = 1, \dots, nm \tag{2}$$

Thus from (2.1) and (2.2), we have $\lim_{i\to\infty} x_{1+nm}^i$ exists. Let $\lim_{i\to\infty} x_{1+nm}^i = x_{1+nm}$. Proceeding in this way inductively, we have $\lim_{i\to\infty} x_k^i = x_k$ for each $k \in N$. Now we have for all $i, j \ge n_0$,

$$\inf\left\{\rho^{\frac{p_n}{H}}: \sum_{k=1}^{\infty} M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k^i - \Delta_{(vm)}^n x_k^j}{\rho}\right)\right) \le 1\right\} < \epsilon.$$

Then we have

$$\lim_{j \to \infty} \left\{ \inf \left\{ \rho^{\frac{p_n}{H}} : \sum_{k=1}^{\infty} M_k \left(q \left(\frac{\Delta^n_{(vm)} x^i_k - \Delta^n_{(vm)} x^j_k}{\rho} \right) \right) \le 1 \right\} \right\} < \epsilon$$

for all $i \ge n_0$. Using the continuity of Orlicz functions , we have

$$\inf\left\{\rho^{\frac{p_n}{H}}:\sum_{k=1}^{\infty}M_k\left(q\left(\frac{\Delta^n_{(vm)}x_k^i-\Delta^n_{(vm)}\lim_{j\to\infty}x_k^j}{\rho}\right)\right)\leq 1\right\}<\epsilon$$

for all $i \ge n_0$. This implies

$$\inf\left\{\rho^{\frac{p_n}{H}}: \sum_{k=1}^{\infty} M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k^i - \Delta_{(vm)}^n x_k}{\rho}\right)\right) \le 1\right\} < \epsilon$$

for all $i \geq n_0$. It follows that $(x^i - x) \in \ell \left\{ M_k, p, q, \Delta_{(vm)}^n \right\}$. Since $(x^i) \in \ell \left\{ M_k, p, q, \Delta_{(vm)}^n \right\}$ and $\ell \left\{ M_k, p, q, \Delta_{(vm)}^n \right\}$ is a linear space , so we have $x = x^i - (x^i - x) \in \ell \left\{ M_k, p, q, \Delta_{(vm)}^n \right\}$. This completes the proof \blacksquare

On Some Vector Valued Generalized Difference Modular Sequence Spaces

If we take s = 0 and $p_k = l$, the sequence space $\ell \left\{ M_k, p, q, s, \Delta_{(vm)}^n \right\}$ reduce to the following sequence space :

$$\ell\left\{M_{k}, q, \Delta_{(vm)}^{n}\right\} = \left\{x \in w\left(X\right) : \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(vm)}^{n} x_{k}}{\rho}\right)\right) < \infty \text{, for some } \rho > 0\right\}.$$

Theorem 9. Let (X,q) be a complete normed space, then $\ell \left\{ M_k, q, \Delta_{(vm)}^n \right\}$ is a Banach space normed by $\|.\|$, defined by

$$\|x\| = \inf\left\{\rho : \sum_{k=1}^{\infty} M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k}{\rho}\right)\right) \le 1\right\}.$$

Proof. We prove that $\|.\|$ is a norm on $\ell \left\{ M_k, q, \Delta_{(vm)}^n \right\}$. The completeness part can be proved using similar arguments as applied to prove above Theorem .

If $x = \theta$, then it is obvious that ||x|| = 0. Conversely assume ||x|| = 0. Then using the definition of norm, we have

$$\inf\left\{\rho:\sum_{k=1}^{\infty}M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k}{\rho}\right)\right) \le 1\right\} = 0.$$

This implies that for a given $\epsilon > 0$, there exists some $\rho_{\epsilon} (0 < \rho_{\epsilon} < \epsilon)$ such that

$$\sum_{k=1}^{\infty} M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\rho_{\epsilon}} \right) \right) \le 1.$$

Thus

$$M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k}{\epsilon}\right)\right) \le M_k\left(q\left(\frac{\Delta_{(vm)}^n}{\rho_\epsilon}\right)\right) \le 1, \forall k \in N.$$

Suppose that $\Delta_{(vm)}^n x_{n_i} \neq 0$ for some *i*. Let $\epsilon \to 0$, then $\frac{|\Delta_{(vm)}^n x_{n_i}|}{\epsilon} \to \infty$. It follows that $M_k \left(\frac{|\Delta_{(vm)}^n x_{n_i}|}{\epsilon} \right) \to \infty$ as $\epsilon \to 0$ for some $n_i \in N$. This is a contradiction Therefore $\Delta_{(vm)}^n x_k = 0$ for all $k \in N$. Let k = 1, then $\Delta_{(vm)}^n x_1 = \sum_{i=0}^n (-1)^i {n \choose v} v_{1-m_i} x_{1-m_i} = 0$ and so $v_1 x_1 = 0$, by putting $v_{1-m_i} = 0$ and $x_{1-m_i} = 0$ for i = 1, 2, ..., n.

Hence $x_1 = 0$, since (λ_k) is a sequence of non-zero scalars. Similarly taking k = 2, ..., mn, we have $x_2 = \cdots = x_{mn} = 0$. Next let k = mn + 1, then $\Delta_{(vm)}^n x_{mn+1} = \sum_{i=0}^n (-1)^i {n \choose v} v_{1+mn-mi} x_{1+mn-mi} = 0$. Since $x_1 = x_2 = \cdots = x_{mn} = 0$, we must have $v_{mn+1}x_{mn+1} = 0$ and thus $x_{mn+1} = 0$. Proceeding in this way we can conclude that $x_k = 0$ for all $k \ge 1$. Hence $x = \theta$. Again proof of the properties $||x + y|| \le ||x|| + ||y||$ and for any scalar α , $||\alpha x|| = |\alpha| ||x||$ are similar to that Theorem 2. It is easy to see that $||x^i|| \to 0$ implies that $x_k^i \to 0$ for each $i \ge 1$.

Proposition 10. $\ell \left\{ M_k, q, \Delta_{(vm)}^n \right\}$ is a *BK*-space.

Now we study the AK-characteristic of the space $\ell \left\{ M_k, q, s, \Delta_{(vm)}^n \right\}$. Before that we give a new definition and prove some results those will be required.

Definition 1. For any sequence of Orlicz functions $\mathbf{M} = (M_k)$,

$$h\left\{M_{k}, q, \Delta_{(vm)}^{n}\right\} = \left\{x \in w\left(X\right) : \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(vm)}^{n}x_{k}}{\rho}\right)\right) < \infty \text{, for every } \rho > 0\right\}$$

Clearly $h\left\{M_k, q, \Delta_{(vm)}^n\right\}$ is a subspace of $\ell\left\{M_k, q, \Delta_{(vm)}^n\right\}$. The topology of $h\left\{M_k, q, \Delta_{(vm)}^n\right\}$ is the one it inherits from $\|.\|$.

Proposition 11. Let $\mathbf{M} = (M_k)$ be a sequence of Orlicz functions which satisfy Δ_2 -condition. Then

$$\ell\left\{M_k, q, \Delta_{(vm)}^n\right\} = h\left\{M_k, q, \Delta_{(vm)}^n\right\}.$$

Proof. It is enough to prove that $\ell \left\{ M_k, q, \Delta_{(vm)}^n \right\} \subseteq h \left\{ M_k, q, \Delta_{(vm)}^n \right\}$. Let $x \in h \left\{ M_k, q, \Delta_{(vm)}^n \right\}$, then for some $\rho > 0$,

$$\sum_{k=1}^{\infty} M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\rho} \right) \right) < \infty$$

Therefore

$$M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k}{\rho}\right)\right) < \infty \text{ for every } k \ge 1$$

Choose an arbitrary $\eta > 0$. If $\rho \leq \eta$, then $M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k}{\eta}\right)\right) < \infty$ for every $k \geq 1$ and so

$$\sum_{k=1}^{\infty} M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\eta} \right) \right) < \infty$$

Let now $\eta < \rho$ and put $l = \frac{\rho}{\eta} > 1$. Since M satisfied the Δ_2 -condition, there exists a constant K such that

$$M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k}{\eta}\right)\right) \le K\left(\frac{\rho}{\eta}\right)^{\log_2 K} M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k}{\rho}\right)\right)$$

for every $k \ge 1$. Now we can find U > 0 with s > 1 such that

$$M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k}{\rho}\right)\right) < Uk^{-s}$$

On Some Vector Valued Generalized Difference Modular Sequence Spaces

for the fixed $\rho>0$ and for every $k\geq 1$. Then it follows that for every $\eta>0,$ we have

$$\sum_{k=1}^{\infty} M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\eta} \right) \right) < K \left(\frac{\rho}{\eta} \right)^{\log_2 K} M \sum_{k=1}^{\infty} k^{-s} < \infty$$

This completes the proof . \blacksquare

Proposition 12. Let (X,q) be a complete normed space, then $h\left\{M_k, q, \Delta_{(vm)}^n\right\}$ is an AK-space.

Proof. Let $x \in h\left\{M_k, q, \Delta_{(vm)}^n\right\}$. Then for each ϵ , $0 < \epsilon < 1$, we can find an s_o such that

$$\sum_{k \ge s_0} M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\epsilon} \right) \right) \le 1.$$

Hence for $s \geq s_0$,

$$\begin{aligned} \left\| x - x^{[s]} \right\| &= \inf \left\{ \rho > 0 : \sum_{k \ge s+1} M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\epsilon} \right) \right) \le 1 \right\} \\ &\le \inf \left\{ \rho > 0 : \sum_{k \ge s} M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\rho} \right) \right) \le 1 \right\} < \epsilon. \end{aligned}$$

Thus we can conclude that $h\left\{M_k, q, \Delta_{(vm)}^n\right\}$ is an AK space.

Combining Proposition 1 and Proposition 2, we have the following Theorem .

Theorem 13. Let $\mathbf{M} = (M_k)$ be a sequence of Orlicz functions which satisfy Δ_2 condition, then $\ell \left\{ M_k, q, \Delta_{(vm)}^n \right\}$ is an AK-space.

Proposition 14. $h\left\{M_k, q, \Delta_{(vm)}^n\right\}$ is a closed subspace of $\ell\left\{M_k, q, \Delta_{(vm)}^n\right\}$.

Proof. Let $\{x^s\}$ be a sequence in $h\left\{M_k, q, \Delta_{(vm)}^n\right\}$ such that $||x^s - x|| \to 0$, where $x \in h\left\{M_k, q, \Delta_{(vm)}^n\right\}$. To complete the proof we need to show that $x \in h\left\{M_k, q, \Delta_{(vm)}^n\right\}$, *i.e.*,

$$\sum_{k\geq 1} M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k}{\rho}\right)\right) < \infty \text{ for every } \rho > 0.$$

For $\rho > 0$, there corresponds an l such that $||x^l - x|| \leq \frac{\rho}{2}$. Then using convexity of

each M_k ,

$$\begin{split} \sum_{k\geq 1} M_k \left(q \left(\frac{\Delta_{(vm)}^n x_k}{\rho} \right) \right) &= \sum_{k\geq 1} M_k \left(q \left(\frac{2 \left| \Delta_{(vm)}^n x_k^l \right| - 2 \left(\left| \Delta_{(vm)}^n x_k^l \right| - \left| \Delta_{(vm)}^n x_k^l \right| \right)}{2\rho} \right) \right) \\ &\leq \frac{1}{2} \sum_{k\geq 1} M_k \left(q \left(\frac{2 \left| \Delta_{(vm)}^n x_k^l \right|}{\rho} \right) \right) \\ &+ \frac{1}{2} \sum_{k\geq 1} M_k \left(q \left(\frac{2 \left| \Delta_{(vm)}^n (x_k^l - x_k) \right|}{\rho} \right) \right) \\ &\leq \frac{1}{2} \sum_{k\geq 1} M_k \left(q \left(\frac{2 \left| \Delta_{(vm)}^n x_k^l \right|}{\rho} \right) \right) \\ &+ \frac{1}{2} \sum_{k\geq 1} M_k \left(q \left(\frac{2 \left| \Delta_{(vm)}^n (x_k^l - x_i) \right|}{\rho} \right) \right) \end{split}$$

Now from Theorem 8, using the definition of norm $\|.\|,$ we have

$$\sum_{k\geq 1} M_k \left(q \left(\frac{2 \left| \Delta_{(vm)}^n \left(x_i^l - x_i \right) \right|}{\|x^l - x\|} \right) \right) \leq 1$$

It follows that

$$\sum_{k\geq 1} M_k\left(q\left(\frac{\Delta_{(vm)}^n x_k}{\rho}\right)\right) < \infty \text{ for every } \rho > 0$$

Thus $x \in h\left\{M_k, q, \Delta_{(vm)}^n\right\}$

Hence we have the following Corollary

Corollary 15. $h\left\{M_k, q, \Delta_{(vm)}^n\right\}$ is a BK- space .

References

- [1] A. Ç. Bektaş, Y. Altin, The sequence space $\ell_M(p,q,s)$ on seminormed spaces, Indian J. Pure Appl. Math., 34(2003), 4, 529-534.
- [2] H. Dutta, Characterization of certain matrix classes involving generalized difference summability spaces, Applied Sciences (APPS), (2009),11, 60-67.
- [3] M. Et, R. Çolak, On generalized difference sequence spaces, Soochow J. Math., 21(1995), 4,377-386.

26

- [4] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., (1971),10, 379-390
- [5] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., (1981),24, 169-176.
- [6] V. Karakaya, Some new sequence spaces defined by a sequence of Orlicz functions, Taiwanese J.Math.9 (2005), 4, 617-627.
- [7] M. A. Krasnoselskii, Y. B. Rutitsky, Convex Functions and Orlicz Spaces, Groningen, Netherlands, 1961
- [8] Mursaleen, A. Khan, Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math. 32 (1999), no. 1, 145–150.
- [9] H. Nakano, Concave modulars, J. Math. Soc. Japan, (1953), 5, 29-49.
- [10] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27, (1951). 508–512.
- [11] S. D. Parasar, B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math, 25 (1994), 4, 419-428.
- [12] B. C. Tripathy, H. Dutta, Some difference paranormed sequence spaces defined by Orlicz functions, Fasc. Math. No. 42 (2009), 121–131.
- [13] J. Y. T. Woo, On modular sequence spaces, Studia Math., 48 (1973), 271-289
- [14] K. Zeller, Theorie der Limitierungsverfahren, Berlin, 1958.

Department of Mathematical Engineering , Yıldız Techical University , Davutpasa Campus,Esenler, Istanbul- Turkey

E-mail: vkkaya@yildiz.edu.tr;vkkaya@yahoo.com

Department of mathematics , A.D.P. College , Nagaon-782002 , Assam, IndiaE-mail:hemen_dutta@rediffmail.com