
Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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ON SOME VECTOR VALUED GENERALIZED

DIFFERENCE MODULAR SEQUENCE SPACES

Vatan Karakaya and Hemen Dutta

Abstract

In this paper we generalize the modular sequence space ` {Mk} by intro-
ducing the sequence space `

{
Mk, p, q, s, ∆n

(vm)

}
. We give various properties

relevant to algebraic and topological structures of this space and derived some
other spaces .

1 Introduction

By w (X) , we shall denote the space of all X -valued sequences spaces, where (X, q)
is a seminormed space, seminormed by q. For X = C, the space of complex numbers,
these represent the corresponding scalar valued sequence spaces. The zero sequence
is denoted by θ = (θ, θ, θ, ...) where θ is the zero element of X.

The notion of difference sequence space was introduced by Kizmaz [5], who
studied the difference sequence spaces `∞ (∆), c (∆) and c0 (∆). The notion was
further generalized by Et and Colak [3] by introducing the spaces `∞ (∆n), c (∆n)
and c0 (∆n).

Let r, s be non-negative integers and v = vk be a sequence of non-zero scalars
Also let Z = {`∞, c, c0}. Dutta [2] define the following sequence spaces

Z
(
∆s

(vr)

)
=

{
x = (xk) ∈ w :

(
∆s

(vr)xk

)
∈ Z

}
,

where
(
∆s

(vr)xk

)
=

(
∆s−1

(vr)xk −∆s−1
(vr)xk−r

)
and ∆0

(vr)xk = vkxk for all k ∈ N ,
which is equivalent to the following binomial representation :

∆s
(vr) =

s∑

i=0

(−1)i

(
s

i

)
vk−rixk−ri.
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In this expansion we take vk = 0 and xk = 0 for non-positive values of k ∈ N .
Dutta [2] shown that these spaces can be made BK-spaces under the norm

‖x‖ = sup
k

∣∣∣∆s
(vr)xk

∣∣∣ .

An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous , non-
decreasing and convex with M (0) = 0, M (x) > 0, for x > 0 and M (x) → ∞, as
x →∞. If convexity of Orlicz function M is replaced by

M (x + y) ≤ M (x) + M (y) ,

then this function is called a modulus function introduced by Nakano [9].
Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to construct se-

quence space

`M =

{
x ∈ w :

∞∑

k=1

M

( |xk|
ρ

)
< ∞, for some ρ > 0

}
.

The space `M becomes a Banach space , with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑

k=1

M

( |xk|
ρ

)
≤ 1

}

which is called an Orlicz space .The space `M is closely related to the space `p

which is an Orlicz sequence space with M (x) = xp for 1 ≤ p < ∞. Another
generalization of Orlicz sequence spaces due to Woo [13]. Let {Mk} be a sequence
of Orlicz functions . Define the vector space ` {Mk} by

` {Mk} =

{
x ∈ w :

∞∑

k=1

Mk

( |xk|
ρ

)
≤ ∞, for some ρ > 0

}

and this space has a norm defined by

‖x‖ = inf

{
ρ > 0 :

∞∑

k=1

Mk

( |xk|
ρ

)
≤ 1

}

Then ` {Mk} becomes a Banach space and is called a modular sequence space. The
space ` {Mk} also generalizes the concept of modulared sequence space introduced
by Nakano [10], who considered the space ` {Mk} when Mk (x) = xαk , where 1 ≤
αk < ∞ for k ≥ 1.

An Orlicz function M is said to satisfy the ∆2-condition for all values of u,
if there exists a constant K > 0 such that M (2u) ≤ kM (u) (u ≥ 0). The ∆2-
condition is equivalent to the satisfaction of inequality M (lu) ≤ kluM (u) for all
values of u and for l > 1 (see;[7]). The ∆2-condition implies M (lu) ≤ Kllog2 KM (u)
for all values u > 0, l > 1.
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Karakaya [6], Bektaş and Altin [1], Parasar and Choudhary [11], Mursaleen ,
Khan and Qamaruddin [8], Tripathy and Dutta [12] and many others have studied
sequence spaces using Orlicz functions.

In [14], it is shown that a BK-spaces is a Banach space of complex sequences
x = (xk) in which the co-ordinate maps are continuous , that is, |xn

k − xk| → 0,
whenever ‖xn − x‖ → 0 as n →∞, where xn = (xn

k ) for all n ∈ N and x = (xk).
Let A denotes the set of all complex sequences which have only a finite number of

non-zero coordinates, λ denotes a BK−space of sequences x = (xk) which contains
A. An element x = (xk) of λ will be called sectionally convergent if

xn =
n∑

k=1

xkek → x as n →∞ ,

where ek = (δki) , where δkk = 1, δki = 0, for k 6= i.
The space λ will be called AK-space if and only if each of its elements is sec-

tionally convergent .Let M = (Mk) be a sequence of Orlicz functions, X be a semi-
normed space with seminorm q, p = (pk) be a sequence of positive real numbers
and v = (vk) be a fixed sequence of non-zero scalars. Then for non-negative real
numbers s, m and n, we define

`
{

Mk, p, q, s,∆n
(vm)

}
=

{
x ∈ w (X) :

∞∑

k=1

k−s

[
Mk

(
q

(∆n
(vm)

ρ

))]pk
}

< ∞ for some ρ > 0.

Considering X = C , q (x) = |x|, pk = l, vk = 1 for all k ∈ N , s = 0 and n = 0 , we
get the modular space ` {Mk} introduced and studied by Woo [13].

2 Main Results

In this section, we give the theorems that chracterize the structure of the class of
sequences `

{
Mk, p, q, s, ∆n

(vm)

}
and some other spaces which can be derived from

this space.

Theorem 1. Let p = (pk) be bounded sequence of positive reals, then `
{

Mk, p, q, s, ∆n
(vm)

}

is a linear space over the field C.

Proof. Let x, y ∈ `
{

Mk, p, q, s, ∆n
(vm)

}
and α, β ∈ C. Then there exist some ρ1 > 0

and ρ2 > 0 such that

∞∑

k=1

k−s

[
Mk

(
q

(∆n
(vm)xk

ρ1

))]pk

< ∞

and ∞∑

k=1

k−s

[
Mk

(
q

(∆n
(vm)xk

ρ2

))]pk

< ∞ .
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We consider ρ3 = max (2 |α| ρ1, 2 |β| ρ2). Since each Mk is non-decreasing and
convex, and since q is a seminorm ,

∞∑

k=1

k−s

[
Mk

(
q

(
∆n

(vm) (αxk + βyk)

ρ3

))]pk

≤
∞∑

k=1

k−s

[
Mk

(
q

(
∆n

(vm) (αxk)

ρ3

)
+ q

(
∆n

(vm) (βyk)

ρ3

))]pk

≤
∞∑

k=1

k−s

[
Mk

(
q

(
∆n

(vm)xk

ρ1

)
+ q

(
∆n

(vm)yk

ρ2

))]pk

≤ D

∞∑

k=1

k−s

[
Mk

(
q

(
∆n

(vm)xk

ρ1

))]pk

+D

∞∑

k=1

k−s

[
Mk

(
q

(
∆n

(vm)yk

ρ2

))]pk

< ∞

where, D = max
{
1, 2H−1

}
and H = supk pk.Hence this completes the proof.

Theorem 2. `
{

Mk, p, q, s, ∆n
(vm)

}
is a paranormed space (need not total paranorm)

space with paranorm g, defined as follows .

g (x) = inf

{
ρ

pn
H :

∞∑

k=1

k−sMk

(
q

(∆n
(vm)xk

ρ

))
≤ 1 , n = 1, 2, ...

}
,

where H = supk pk.

Proof. Clearly g (x) = g (−x). Since Mk (0) = 0, for all k ∈ N, we get inf
{
ρ

pn
H

}
= 0

for x = θ. Now let x, y ∈ `
{

Mk, p, q, s,∆n
(vm)

}
and let us choose ρ1 > 0 and ρ2 > 0

such that ∞∑

k=1

k−sMk

(
q

(∆n
(vm)xk

ρ1

))
≤ 1

and ∞∑

k=1

k−sMk

(
q

(∆n
(vm)yk

ρ2

))
≤ 1

Let ρ = ρ1 + ρ2. Then we have

∞∑

k=1

k−sMk

(
q

(
∆n

(vm) (xk + yk)

ρ

))
≤

(
ρ1

ρ1 + ρ2

) ∞∑

k=1

k−sMk

(
q

(∆n
(vm)xk

ρ1

))

+
(

ρ1

ρ1 + ρ2

) ∞∑

k=1

k−sMk

(
q

(∆n
(vm)yk

ρ2

))

≤ 1
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Hence g (x + y) ≤ g (x) + g (y).
Finally, let λ be a given non-zero scalar , then the continuity of the scalar

multiplication follows from the following equality

g (λx) = inf

{
ρ

pn
H :

∞∑

k=1

k−sMk

(
q

(
∆n

(vm) (λxk)

ρ

))
≤ 1, n = 1, 2, . . .

}

= inf

{
(|λ| s) pn

H :
∞∑

k=1

k−sMk

(
q

(
∆n

(vm) (λxk)

s

))
≤ 1, n = 1, 2, . . .

}
,

where s = ρ
|s| .This completes the proof.

The proof of the following Theorem is easy, so it is omitted .

Theorem 3. Let M =(Mk) and T = (Tk) be sequences of Orlicz functions .For
any two sequences p = (pk) and t = (tk) of bounded positive real numbers and for
any two seminorms q1 and q2 we have

( i ) If q1 is stronger than q2, then `
{

Mk, p, q1, s, ∆n
(vm)

}
⊂ `

{
Mk, p, q2, s, ∆n

(vm)

}
,

( i i ) `
{

Mk, p, q1, s, ∆n
(vm)

}
∩`

{
Mk, p, q2, s, ∆n

(vm)

}
⊂ `

{
Mk, p, q1 + q2, s, ∆n

(vm)

}
,

( i i i) `
{

Mk, p, q, s, ∆n
(vm)

}
∩`

{
Tk, p, q, s, ∆n

(vm)

}
⊂ `

{
Mk + Tk, p, q, s, ∆n

(vm)

}
,

(i v ) `
{

Mk, p, q1, s, ∆n
(vm)

}
∩ `

{
Mk, t, q2,s,∆n

(vm)

}
6= φ,

( v) If s1 ≤ s2, then `
{

Mk, p, q, s1, ∆n
(vm)

}
⊂ `

{
Mk, p, q, s2, ∆n

(vm)

}
,

( v i ) The inclusions `
{

Mk, p, q, s, ∆n−1
(vm)

}
⊂ `

{
Mk, p, q, s,∆n

(vm)

}
are strict.

In general, `
{

Mk, p, q, s, ∆n
(vm)

}
⊂ `

{
Mk, p, q, s,∆n

(vm)

}
for i = 1, 2, 3, ..., n−1

and the inclusion is strict.

Theorem 4. Let M =(Mk) and T =(Tk) be sequences of Orlicz functions which
satisfy ∆2-condition and s > 1, then

`
{

Mk, p, q, s,∆n
(vm)

}
⊆ `

{
Tk ◦Mk, p, q, s, ∆n

(vm)

}
.

Proof. Let x ∈ `
{

Mk, p, q, s,∆n
(vm)

}
and ε > 0. We choose 0 < δ < 1 such that

M (u) < ε for 0 ≤ u ≤ δ. We write yk = Mk

(
q
(

∆n
(vm)xk

ρ

))
and consider

∞∑

k=1

k−s [Tk (yk)]pk =
∑
1

k−s [Tk (yk)]pk +
∑
2

k−s [Tk (yk)]pk

where the first summation is over yk ≤ δ and the second over yk > δ . Since s > 1,
we have ∑

1

k−s [Tk (yk)]pk < max
(
1, εH

) ∞∑

k=1

k−s < ∞.
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For yk > δ, we use the fact that

yk <
yk

δ
≤ 1 +

(yk

δ

)
.

Since each Tk is non-decreasing and convex , it follows that, for each k ∈ N,

Tk (yk) < Tk

(
1 +

yk

δ

)
<

1
2
Tk (2) +

1
2
Tk

(
2
yk

δ

)
.

Since each Tk is satsfy ∆2-condition, we have

Tk (yk) <
1
2
K

yk

δ
Tk (2) +

1
2
K

yk

δ
Tk (2) = Kykδ−1Tk (2) .

Hence

∑
2

k−s [Tk (yk)]pk ≤ max
(
1,

(
Kδ−1M (2)

)H
) ∞∑

k=1

k−s (yk)pk < ∞.

Thus
∞∑

k=1

k−s [Tk (yk)]pk =
∑
1

k−s [Tk (yk)]pk +
∑
2

k−s [Tk (yk)]pk

≤ max
(
1, εH

) ∞∑

k=1

k−s + max
(
1,

(
Kδ−1M (2)

)H
) ∞∑

k=1

k−s (yk)pk

< ∞ .

Hence x ∈ `
{

Tk ◦Mk, p, q, s,∆n
(vm)

}
.This completes the proof .

Taking Mk (x) = x, for all k in N , in the Theorem 4, we get the next Corollary.

Corollary 5. Let M =(Mk) be any sequence of Orlicz functions which satisfy ∆2-
condition and s > 1, then

`
{

p, q, s, ∆n
(vm)

}
⊆ `

{
Mk, p, q, s,∆n

(vm)

}
.

We will write f ≈ g for non-negative functions f and g whenever C1f ≤ g ≤ C2f
for some Cj > 0, j = 1, 2.

Theorem 6. Let M = (Mk) and T = (Tk) be a sequence of Orlicz functions. If
Mk ≈ Tk for each k ∈ N , then `

{
Mk, p, q, s,∆n

(vm)

}
= `

{
Tk, p, q, s, ∆n

(vm)

}
.

Proof. Proof is obvious.

Theorem 7. Let M =(Mk) be a sequence of Orlicz functions. If lim
t→0

Mk(t)
t > 0 and

lim
t→0

Mk(t)
t < ∞ for each k ∈ N , then

`
{

Mk, p, q, s,∆n
(vm)

}
= `

{
p, q, s, ∆n

(vm)

}
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Proof. If the given conditions are satisfied, we have Mk (t) ≈ t for each k and the
proof follows from Theorem 5.

If we take s = 0, the sequence space `
{

Mk, p, q, s, ∆n
(vm)

}
reduce to the following

sequence space:

`
{

Mk, p, q, ∆n
(vm)

}
=

{
x ∈ w (X) :

∞∑

k=1

[
Mk

(
q

(∆n
(vm)xk

ρ

))]pk

< ∞, for some ρ > 0

}
.

Theorem 8. Let p = (pk) be bounded sequence of positive reals and (X, q) be
a complete seminormed space , then `

{
Mk, p, q,∆n

(vm)

}
is a complete paranormed

space paranormed by h , defined by

h (x) = inf

{
ρ

pn
H :

∞∑

k=1

Mk

(
q

(∆n
(vm)xk

ρ

))
≤ 1, n = 1, 2, . . .

}
,

where H = supk pk.

Proof. Let
(
xi

)
be a Cauchy sequence in `

{
Mk, p, q, ∆n

(vm)

}
. Let δ > 0 be fixed

and r > 0 be such that for a given 0 < ε < 1, ε
rδ > 0, and rδ ≥ 1. Then there exists

a positive integer n0 such that

h
(
xi − xj

)
<

ε

rδ

for all i, j ≥ n0

h
(
xi − xj

)
= inf

{
ρ

pn
H :

∞∑

k=1

Mk

(
q

(
∆n

(vm)x
i
k −∆n

(vm)x
j
k

ρ

))
≤ 1

}
<

ε

rδ

for all i, , j ≥ n0. Hence we have

∞∑

k=1

Mk

(
q

(
∆n

(vm)x
i
k −∆n

(vm)x
j
k

h(xi − xj)

))
≤ 1

for all i, j ≥ n0. It follows that

Mk

(
q

(
∆n

(vm)x
i
k −∆n

(vm)x
j
k

h (xi − xj)

))
≤ 1

for all i, j ≥ n0 and k ∈ N . For r > 0 with Mk

(
rδ
2

) ≥ 1, we have

Mk

(
q

(
∆n

(vm)x
i
k −∆n

(vm)x
j
k

h (xi − xj)

))
≤ Mk

(
rδ

2

)
,
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for all i, j ≥ n0 and k ∈ N . Since Mk is non-decreasing for each k ∈ N , we have

q
(
∆n

(vm)x
i
k −∆n

(vm)x
j
k

)
≤ rδ

2
.

ε

rδ
=

ε

2
.

Hence
(
∆n

(vm)x
i
k

)
is a Cauchy sequence in (X, q) for each k ∈ N . But (X, q) is

complete and so
(
∆n

(vm)x
i
k

)
is convergent in (X, q) for each k ∈ N .

Let lim
i→∞

∆n
(vm)x

i
k = yk for all k ≥ 1 . Let k = 1, then we have

lim
i→∞

∆n
(vm)x

i
1 = lim

i→∞

n∑
v=0

(−1)v

(
n

v

)
v1−mvxi

1−mv = lim
i→∞

v1x
i
1 = y1 (1)

Similary we have ,

lim
i→∞

∆n
(vm)x

i
k = lim

i→∞
vkxi

k = yk , for k = 1, . . . , nm (2)

Thus from (2.1) and (2.2),we have lim
i→∞

xi
1+nm exists. Let lim

i→∞
xi

1+nm = x1+nm

.Proceeding in this way inductively, we have lim
i→∞

xi
k = xk for each k ∈ N . Now we

have for all i, j ≥ n0,

inf

{
ρ

pn
H :

∞∑

k=1

Mk

(
q

(
∆n

(vm)x
i
k −∆n

(vm)x
j
k

ρ

))
≤ 1

}
< ε.

Then we have

lim
j→∞

{
inf

{
ρ

pn
H :

∞∑

k=1

Mk

(
q

(
∆n

(vm)x
i
k −∆n

(vm)x
j
k

ρ

))
≤ 1

}}
< ε

for all i ≥ n0. Using the continuity of Orlicz functions , we have

inf



ρ

pn
H :

∞∑

k=1

Mk


q




∆n
(vm)x

i
k −∆n

(vm) lim
j→∞

xj
k

ρ





 ≤ 1



 < ε

for all i ≥ n0. This implies

inf

{
ρ

pn
H :

∞∑

k=1

Mk

(
q

(
∆n

(vm)x
i
k −∆n

(vm)xk

ρ

))
≤ 1

}
< ε

for all i ≥ n0. It follows that
(
xi − x

) ∈ `
{

Mk, p, q, ∆n
(vm)

}
. Since

(
xi

) ∈
`
{

Mk, p, q, ∆n
(vm)

}
and `

{
Mk, p, q, ∆n

(vm)

}
is a linear space , so we have x =

xi − (
xi − x

) ∈ `
{

Mk, p, q, ∆n
(vm)

}
.This completes the proof
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If we take s = 0 and pk = l, the sequence space `
{

Mk, p, q, s,∆n
(vm)

}
reduce to

the following sequence space :

`
{

Mk, q, ∆n
(vm)

}
=

{
x ∈ w (X) :

∞∑

k=1

Mk

(
q

(∆n
(vm)xk

ρ

))
< ∞ , for some ρ > 0

}
.

Theorem 9. Let (X, q) be a complete normed space , then `
{

Mk, q,∆n
(vm)

}
is a

Banach space normed by ‖.‖, defined by

‖x‖ = inf

{
ρ :

∞∑

k=1

Mk

(
q

(∆n
(vm)xk

ρ

))
≤ 1

}
.

Proof. We prove that ‖.‖ is a norm on `
{

Mk, q,∆n
(vm)

}
. The completeness part

can be proved using similar arguments as applied to prove above Theorem .
If x = θ, then it is obvious that ‖x‖ = 0. Conversely assume ‖x‖ = 0. Then

using the definition of norm, we have

inf

{
ρ :

∞∑

k=1

Mk

(
q

(∆n
(vm)xk

ρ

))
≤ 1

}
= 0.

This implies that for a given ε > 0, there exists some ρε (0 < ρε < ε) such that

∞∑

k=1

Mk

(
q

(∆n
(vm)xk

ρε

))
≤ 1.

Thus

Mk

(
q

(∆n
(vm)xk

ε

))
≤ Mk

(
q

(∆n
(vm)

ρε

))
≤ 1,∀k ∈ N.

Suppose that ∆n
(vm)xni 6= 0 for some i. Let ε → 0, then |∆n

(vm)xni |
ε → ∞. It

follows that Mk

( |∆n
(vm)xni |

ε

)
→ ∞ as ε → 0 for some ni ∈ N . This is a con-

tradiction Therefore ∆n
(vm)xk = 0 for all k ∈ N . Let k = 1, then ∆n

(vm)x1 =
n∑

i=0

(−1)i (
n
v

)
v1−mix1−mi = 0 and so v1x1 = 0 , by putting v1−mi = 0 and x1−mi = 0

for i = 1, 2, ..., n.
Hence x1 = 0, since (λk) is a sequence of non-zero scalars. Similarly taking k =

2, ..., mn, we have x2 = · · · = xmn = 0. Next let k = mn + 1, then ∆n
(vm)xmn+1 =

n∑
i=0

(−1)i (
n
v

)
v1+mn−mix1+mn−mi = 0. Since x1 = x2 = · · · = xmn = 0 ,we must

have vmn+1xmn+1 = 0 and thus xmn+1 = 0. Proceeding in this way we can conclude
that xk = 0 for all k ≥ 1. Hence x = θ. Again proof of the properties ‖x + y‖ ≤
‖x‖+ ‖y‖ and for any scalar α, ‖αx‖ = |α| ‖x‖ are similar to that Theorem 2 .It is
easy to see that

∥∥xi
∥∥ → 0 implies that xi

k → 0 for each i ≥ 1.



24 Vatan Karakaya and Hemen Dutta

Proposition 10. `
{

Mk, q,∆n
(vm)

}
is a BK−space.

Now we study the AK−characteristic of the space `
{

Mk, q, s, ∆n
(vm)

}
. Before

that we give a new definition and prove some results those will be required.

Definition 1. For any sequence of Orlicz functions M =(Mk),

h
{

Mk, q, ∆n
(vm)

}
=

{
x ∈ w (X) :

∞∑

k=1

Mk

(
q

(∆n
(vm)xk

ρ

))
< ∞ , for every ρ > 0

}
.

Clearly h
{

Mk, q,∆n
(vm)

}
is a subspace of `

{
Mk, q, ∆n

(vm)

}
. The topology of

h
{

Mk, q, ∆n
(vm)

}
is the one it inherits from ‖.‖.

Proposition 11. Let M =(Mk) be a sequence of Orlicz functions which satisfy
∆2−condition . Then

`
{

Mk, q, ∆n
(vm)

}
= h

{
Mk, q, ∆n

(vm)

}
.

Proof. It is enough to prove that `
{

Mk, q, ∆n
(vm)

}
⊆ h

{
Mk, q, ∆n

(vm)

}
. Let x ∈

h
{

Mk, q, ∆n
(vm)

}
, then for some ρ > 0,

∞∑

k=1

Mk

(
q

(∆n
(vm)xk

ρ

))
< ∞

Therefore

Mk

(
q

(∆n
(vm)xk

ρ

))
< ∞ for every k ≥ 1 .

Choose an arbitrary η > 0. If ρ ≤ η, then Mk

(
q
(

∆n
(vm)xk

η

))
< ∞ for every k ≥ 1

and so ∞∑

k=1

Mk

(
q

(∆n
(vm)xk

η

))
< ∞

Let now η < ρ and put l = ρ
η > 1. Since M satisfied the ∆2−condition , there

exists a constant K such that

Mk

(
q

(∆n
(vm)xk

η

))
≤ K

(
ρ

η

)log2 K

Mk

(
q

(∆n
(vm)xk

ρ

))

for every k ≥ 1. Now we can find U > 0 with s > 1 such that

Mk

(
q

(∆n
(vm)xk

ρ

))
< Uk−s
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for the fixed ρ > 0 and for every k ≥ 1 .Then it follows that for every η > 0, we
have

∞∑

k=1

Mk

(
q

(∆n
(vm)xk

η

))
< K

(
ρ

η

)log2 K

M

∞∑

k=1

k−s < ∞ .

This completes the proof .

Proposition 12. Let (X, q) be a complete normed space , then h
{

Mk, q, ∆n
(vm)

}

is an AK−space.

Proof. Let x ∈ h
{

Mk, q,∆n
(vm)

}
. Then for each ε, 0 < ε < 1, we can find an so

such that
∑

k≥s0

Mk

(
q

(∆n
(vm)xk

ε

))
≤ 1.

Hence for s ≥ s0,

∥∥∥x− x[s]
∥∥∥ = inf



ρ > 0 :

∑

k≥s+1

Mk

(
q

(∆n
(vm)xk

ε

))
≤ 1





≤ inf



ρ > 0 :

∑

k≥s

Mk

(
q

(∆n
(vm)xk

ρ

))
≤ 1



 < ε.

Thus we can conclude that h
{

Mk, q, ∆n
(vm)

}
is an AK space.

Combining Proposition 1 and Proposition 2, we have the following Theorem .

Theorem 13. Let M =(Mk) be a sequence of Orlicz functions which satisfy ∆2-
condition, then `

{
Mk, q,∆n

(vm)

}
is an AK−space.

Proposition 14. h
{

Mk, q, ∆n
(vm)

}
is a closed subspace of `

{
Mk, q, ∆n

(vm)

}
.

Proof. Let {xs} be a sequence in h
{

Mk, q, ∆n
(vm)

}
such that ‖xs − x‖ → 0, where

x ∈ h
{

Mk, q,∆n
(vm)

}
. To complete the proof we need to show that x ∈ h

{
Mk, q, ∆n

(vm)

}
,

i.e. ,
∑

k≥1

Mk

(
q

(∆n
(vm)xk

ρ

))
< ∞ for every ρ > 0.

For ρ > 0, there corresponds an l such that
∥∥xl − x

∥∥ ≤ ρ
2 . Then using convexity of
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each Mk ,

∑

k≥1

Mk

(
q

(∆n
(vm)xk

ρ

))
=

∑

k≥1

Mk


q


2

∣∣∣∆n
(vm)x

l
k

∣∣∣− 2
(∣∣∣∆n

(vm)x
l
k

∣∣∣−
∣∣∣∆n

(vm)xk

∣∣∣
)

2ρ







≤ 1
2

∑

k≥1

Mk


q


2

∣∣∣∆n
(vm)x

l
k

∣∣∣
ρ







+
1
2

∑

k≥1

Mk


q


2

∣∣∣∆n
(vm)

(
xl

k − xk

)∣∣∣
ρ







≤ 1
2

∑

k≥1

Mk


q


2

∣∣∣∆n
(vm)x

l
k

∣∣∣
ρ







+
1
2

∑

k≥1

Mk


q


2

∣∣∣∆n
(vm)

(
xl

i − xi

)∣∣∣
‖xl − x‖







Now from Theorem 8, using the definition of norm ‖.‖, we have

∑

k≥1

Mk


q


2

∣∣∣∆n
(vm)

(
xl

i − xi

)∣∣∣
‖xl − x‖





 ≤ 1

It follows that

∑

k≥1

Mk

(
q

(∆n
(vm)xk

ρ

))
< ∞ for every ρ > 0

Thus x ∈ h
{

Mk, q, ∆n
(vm)

}

Hence we have the following Corollary

Corollary 15. h
{

Mk, q, ∆n
(vm)

}
is a BK- space .
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