ON SOME VECTOR VALUED GENERALIZED DIFFERENCE MODULAR SEQUENCE SPACES

Vatan Karakaya and Hemen Dutta

Abstract

In this paper we generalize the modular sequence space $\ell\left\{M_{k}\right\}$ by introducing the sequence space $\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$. We give various properties relevant to algebraic and topological structures of this space and derived some other spaces .

1 Introduction

By $w(X)$, we shall denote the space of all X-valued sequences spaces, where (X, q) is a seminormed space, seminormed by q. For $X=C$, the space of complex numbers, these represent the corresponding scalar valued sequence spaces. The zero sequence is denoted by $\bar{\theta}=(\theta, \theta, \theta, \ldots)$ where θ is the zero element of X.

The notion of difference sequence space was introduced by Kizmaz [5], who studied the difference sequence spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$. The notion was further generalized by Et and Colak [3] by introducing the spaces $\ell_{\infty}\left(\Delta^{n}\right), c\left(\Delta^{n}\right)$ and $c_{0}\left(\Delta^{n}\right)$.

Let r, s be non-negative integers and $v=v_{k}$ be a sequence of non-zero scalars Also let $Z=\left\{\ell_{\infty}, c, c_{0}\right\}$. Dutta [2] define the following sequence spaces

$$
Z\left(\Delta_{(v r)}^{s}\right)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta_{(v r)}^{s} x_{k}\right) \in Z\right\}
$$

where $\left(\Delta_{(v r)}^{s} x_{k}\right)=\left(\Delta_{(v r)}^{s-1} x_{k}-\Delta_{(v r)}^{s-1} x_{k-r}\right)$ and $\Delta_{(v r)}^{0} x_{k}=v_{k} x_{k}$ for all $k \in N$, which is equivalent to the following binomial representation :

$$
\Delta_{(v r)}^{s}=\sum_{i=0}^{s}(-1)^{i}\binom{s}{i} v_{k-r i} x_{k-r i}
$$

[^0]In this expansion we take $v_{k}=0$ and $x_{k}=0$ for non-positive values of $k \in N$. Dutta [2] shown that these spaces can be made $B K$-spaces under the norm

$$
\|x\|=\sup _{k}\left|\Delta_{(v r)}^{s} x_{k}\right|
$$

An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$, which is continuous, nondecreasing and convex with $M(0)=0, M(x)>0$, for $x>0$ and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$. If convexity of Orlicz function M is replaced by

$$
M(x+y) \leq M(x)+M(y)
$$

then this function is called a modulus function introduced by Nakano [9].
Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to construct sequence space

$$
\ell_{M}=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\}
$$

The space ℓ_{M} becomes a Banach space, with the norm

$$
\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

which is called an Orlicz space. The space ℓ_{M} is closely related to the space ℓ_{p} which is an Orlicz sequence space with $M(x)=x^{p}$ for $1 \leq p<\infty$. Another generalization of Orlicz sequence spaces due to Woo [13]. Let $\left\{M_{k}\right\}$ be a sequence of Orlicz functions. Define the vector space $\ell\left\{M_{k}\right\}$ by

$$
\ell\left\{M_{k}\right\}=\left\{x \in w: \sum_{k=1}^{\infty} M_{k}\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq \infty, \text { for some } \rho>0\right\}
$$

and this space has a norm defined by

$$
\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M_{k}\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

Then $\ell\left\{M_{k}\right\}$ becomes a Banach space and is called a modular sequence space. The space $\ell\left\{M_{k}\right\}$ also generalizes the concept of modulared sequence space introduced by Nakano [10], who considered the space $\ell\left\{M_{k}\right\}$ when $M_{k}(x)=x^{\alpha_{k}}$, where $1 \leq$ $\alpha_{k}<\infty$ for $k \geq 1$.

An Orlicz function M is said to satisfy the Δ_{2}-condition for all values of u, if there exists a constant $K>0$ such that $M(2 u) \leq k M(u)(u \geq 0)$. The $\Delta_{2^{-}}$ condition is equivalent to the satisfaction of inequality $M(l u) \leq k l u M(u)$ for all values of u and for $l>1$ (see; $[7]$). The Δ_{2}-condition implies $M(l u) \leq K l^{\log _{2} K} M(u)$ for all values $u>0, l>1$.

Karakaya [6], Bektaş and Altin [1], Parasar and Choudhary [11], Mursaleen , Khan and Qamaruddin [8], Tripathy and Dutta [12] and many others have studied sequence spaces using Orlicz functions.

In [14], it is shown that a $B K$-spaces is a Banach space of complex sequences $x=\left(x_{k}\right)$ in which the co-ordinate maps are continuous, that is, $\left|x_{k}^{n}-x_{k}\right| \rightarrow 0$, whenever $\left\|x^{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$, where $x^{n}=\left(x_{k}^{n}\right)$ for all $n \in N$ and $x=\left(x_{k}\right)$.

Let A denotes the set of all complex sequences which have only a finite number of non-zero coordinates, λ denotes a $B K$-space of sequences $x=\left(x_{k}\right)$ which contains A. An element $x=\left(x_{k}\right)$ of λ will be called sectionally convergent if

$$
x^{n}=\sum_{k=1}^{n} x_{k} e_{k} \rightarrow x \text { as } n \rightarrow \infty
$$

where $e_{k}=\left(\delta_{k i}\right)$, where $\delta_{k k}=1, \delta_{k i}=0$, for $k \neq i$.
The space λ will be called $A K$-space if and only if each of its elements is sectionally convergent .Let $\mathbf{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, X be a seminormed space with seminorm $q, p=\left(p_{k}\right)$ be a sequence of positive real numbers and $v=\left(v_{k}\right)$ be a fixed sequence of non-zero scalars. Then for non-negative real numbers s, m and n, we define
$\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}=\left\{x \in w(X): \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n}}{\rho}\right)\right)\right]^{p_{k}}\right\}<\infty$ for some $\rho>0$.
Considering $X=C, q(x)=|x|, p_{k}=l, v_{k}=1$ for all $k \in N, s=0$ and $n=0$, we get the modular space $\ell\left\{M_{k}\right\}$ introduced and studied by Woo [13].

2 Main Results

In this section, we give the theorems that chracterize the structure of the class of sequences $\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$ and some other spaces which can be derived from this space.
Theorem 1. Let $p=\left(p_{k}\right)$ be bounded sequence of positive reals, then $\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$ is a linear space over the field C.

Proof. Let $x, y \in \ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$ and $\alpha, \beta \in C$. Then there exist some $\rho_{1}>0$ and $\rho_{2}>0$ such that

$$
\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho_{1}}\right)\right)\right]^{p_{k}}<\infty
$$

and

$$
\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho_{2}}\right)\right)\right]^{p_{k}}<\infty
$$

We consider $\rho_{3}=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$. Since each M_{k} is non-decreasing and convex, and since q is a seminorm,

$$
\begin{aligned}
& \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n}\left(\alpha x_{k}+\beta y_{k}\right)}{\rho_{3}}\right)\right)\right]^{p_{k}} \\
\leq & \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n}\left(\alpha x_{k}\right)}{\rho_{3}}\right)+q\left(\frac{\Delta_{(v m)}^{n}\left(\beta y_{k}\right)}{\rho_{3}}\right)\right)\right]^{p_{k}} \\
\leq & \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho_{1}}\right)+q\left(\frac{\Delta_{(v m)}^{n} y_{k}}{\rho_{2}}\right)\right)\right]^{p_{k}} \\
\leq & D \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho_{1}}\right)\right)\right]^{p_{k}} \\
& +D \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} y_{k}}{\rho_{2}}\right)\right)\right]^{p_{k}} \\
< & \infty
\end{aligned}
$$

where, $D=\max \left\{1,2^{H-1}\right\}$ and $H=\sup _{k} p_{k}$. Hence this completes the proof.
Theorem 2. $\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$ is a paranormed space (need not total paranorm) space with paranorm g, defined as follows.

$$
g(x)=\inf \left\{\rho^{\frac{p_{n}}{H}}: \sum_{k=1}^{\infty} k^{-s} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right) \leq 1, n=1,2, \ldots\right\}
$$

where $H=\sup _{k} p_{k}$.
Proof. Clearly $g(x)=g(-x)$. Since $M_{k}(0)=0$, for all $k \in N$, we get inf $\left\{\rho^{\frac{p_{n}}{H}}\right\}=0$ for $x=\theta$. Now let $x, y \in \ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$ and let us choose $\rho_{1}>0$ and $\rho_{2}>0$ such that

$$
\sum_{k=1}^{\infty} k^{-s} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho_{1}}\right)\right) \leq 1
$$

and

$$
\sum_{k=1}^{\infty} k^{-s} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} y_{k}}{\rho_{2}}\right)\right) \leq 1
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then we have

$$
\begin{aligned}
\sum_{k=1}^{\infty} k^{-s} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n}\left(x_{k}+y_{k}\right)}{\rho}\right)\right) \leq & \left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right) \sum_{k=1}^{\infty} k^{-s} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho_{1}}\right)\right) \\
& +\left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right) \sum_{k=1}^{\infty} k^{-s} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} y_{k}}{\rho_{2}}\right)\right) \\
\leq & 1
\end{aligned}
$$

Hence $g(x+y) \leq g(x)+g(y)$.
Finally, let λ be a given non-zero scalar, then the continuity of the scalar multiplication follows from the following equality

$$
\begin{aligned}
g(\lambda x) & =\inf \left\{\rho^{\frac{p_{n}}{H}}: \sum_{k=1}^{\infty} k^{-s} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n}\left(\lambda x_{k}\right)}{\rho}\right)\right) \leq 1, n=1,2, \ldots\right\} \\
& =\inf \left\{(|\lambda| s)^{\frac{p_{n}}{H}}: \sum_{k=1}^{\infty} k^{-s} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n}\left(\lambda x_{k}\right)}{s}\right)\right) \leq 1, n=1,2, \ldots\right\},
\end{aligned}
$$

where $s=\frac{\rho}{|s|}$.This completes the proof.
The proof of the following Theorem is easy, so it is omitted.
Theorem 3. Let $\mathbf{M}=\left(M_{k}\right)$ and $\mathbf{T}=\left(T_{k}\right)$ be sequences of Orlicz functions.For any two sequences $p=\left(p_{k}\right)$ and $t=\left(t_{k}\right)$ of bounded positive real numbers and for any two seminorms q_{1} and q_{2} we have
(i) If q_{1} is stronger than q_{2}, then $\ell\left\{M_{k}, p, q_{1}, s, \Delta_{(v m)}^{n}\right\} \subset \ell\left\{M_{k}, p, q_{2}, s, \Delta_{(v m)}^{n}\right\}$,
(ii) $\ell\left\{M_{k}, p, q_{1}, s, \Delta_{(v m)}^{n}\right\} \cap \ell\left\{M_{k}, p, q_{2}, s, \Delta_{(v m)}^{n}\right\} \subset \ell\left\{M_{k}, p, q_{1}+q_{2}, s, \Delta_{(v m)}^{n}\right\}$,
(iii) $\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\} \cap \ell\left\{T_{k}, p, q, s, \Delta_{(v m)}^{n}\right\} \subset \ell\left\{M_{k}+T_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$,
(iv) $\ell\left\{M_{k}, p, q_{1}, s, \Delta_{(v m)}^{n}\right\} \cap \ell\left\{M_{k}, t, q_{2}, s, \Delta_{(v m)}^{n}\right\} \neq \phi$,
(v) If $s_{1} \leq s_{2}$, then $\ell\left\{M_{k}, p, q, s_{1}, \Delta_{(v m)}^{n}\right\} \subset \ell\left\{M_{k}, p, q, s_{2}, \Delta_{(v m)}^{n}\right\}$,
(vi) The inclusions $\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n-1}\right\} \subset \ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$ are strict.

In general, $\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\} \subset \ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$ for $i=1,2,3, \ldots, n-1$ and the inclusion is strict.

Theorem 4. Let $\mathbf{M}=\left(M_{k}\right)$ and $\mathbf{T}=\left(T_{k}\right)$ be sequences of Orlicz functions which satisfy Δ_{2}-condition and $s>1$, then

$$
\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\} \subseteq \ell\left\{T_{k} \circ M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}
$$

Proof. Let $x \in \ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$ and $\varepsilon>0$. We choose $0<\delta<1$ such that $M(u)<\epsilon$ for $0 \leq u \leq \delta$. We write $y_{k}=M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right)$ and consider

$$
\sum_{k=1}^{\infty} k^{-s}\left[T_{k}\left(y_{k}\right)\right]^{p_{k}}=\sum_{1} k^{-s}\left[T_{k}\left(y_{k}\right)\right]^{p_{k}}+\sum_{2} k^{-s}\left[T_{k}\left(y_{k}\right)\right]^{p_{k}}
$$

where the first summation is over $y_{k} \leq \delta$ and the second over $y_{k}>\delta$. Since $s>1$, we have

$$
\sum_{1} k^{-s}\left[T_{k}\left(y_{k}\right)\right]^{p_{k}}<\max \left(1, \epsilon^{H}\right) \sum_{k=1}^{\infty} k^{-s}<\infty
$$

For $y_{k}>\delta$, we use the fact that

$$
y_{k}<\frac{y_{k}}{\delta} \leq 1+\left(\frac{y_{k}}{\delta}\right)
$$

Since each T_{k} is non-decreasing and convex, it follows that, for each $k \in N$,

$$
T_{k}\left(y_{k}\right)<T_{k}\left(1+\frac{y_{k}}{\delta}\right)<\frac{1}{2} T_{k}(2)+\frac{1}{2} T_{k}\left(2 \frac{y_{k}}{\delta}\right) .
$$

Since each T_{k} is satsfy Δ_{2}-condition, we have

$$
T_{k}\left(y_{k}\right)<\frac{1}{2} K \frac{y_{k}}{\delta} T_{k}(2)+\frac{1}{2} K \frac{y_{k}}{\delta} T_{k}(2)=K y_{k} \delta^{-1} T_{k}(2)
$$

Hence

$$
\sum_{2} k^{-s}\left[T_{k}\left(y_{k}\right)\right]^{p_{k}} \leq \max \left(1,\left(K \delta^{-1} M(2)\right)^{H}\right) \sum_{k=1}^{\infty} k^{-s}\left(y_{k}\right)^{p_{k}}<\infty
$$

Thus

$$
\begin{aligned}
\sum_{k=1}^{\infty} k^{-s}\left[T_{k}\left(y_{k}\right)\right]^{p_{k}} & =\sum_{1} k^{-s}\left[T_{k}\left(y_{k}\right)\right]^{p_{k}}+\sum_{2} k^{-s}\left[T_{k}\left(y_{k}\right)\right]^{p_{k}} \\
& \leq \max \left(1, \epsilon^{H}\right) \sum_{k=1}^{\infty} k^{-s}+\max \left(1,\left(K \delta^{-1} M(2)\right)^{H}\right) \sum_{k=1}^{\infty} k^{-s}\left(y_{k}\right)^{p_{k}} \\
& <\infty
\end{aligned}
$$

Hence $x \in \ell\left\{T_{k} \circ M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$. This completes the proof.
Taking $M_{k}(x)=x$, for all k in N, in the Theorem 4, we get the next Corollary.
Corollary 5. Let $\mathbf{M}=\left(M_{k}\right)$ be any sequence of Orlicz functions which satisfy Δ_{2} condition and $s>1$, then

$$
\ell\left\{p, q, s, \Delta_{(v m)}^{n}\right\} \subseteq \ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}
$$

We will write $f \approx g$ for non-negative functions f and g whenever $C_{1} f \leq g \leq C_{2} f$ for some $C_{j}>0, j=1,2$.
Theorem 6. Let $\mathbf{M}=\left(M_{k}\right)$ and $\mathbf{T}=\left(T_{k}\right)$ be a sequence of Orlicz functions. If $M_{k} \approx T_{k}$ for each $k \in N$, then $\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}=\ell\left\{T_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$.
Proof. Proof is obvious.
Theorem 7. Let $\mathbf{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions. If $\lim _{t \rightarrow 0} \frac{M_{k}(t)}{t}>0$ and $\lim _{t \rightarrow 0} \frac{M_{k}(t)}{t}<\infty$ for each $k \in N$, then

$$
\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}=\ell\left\{p, q, s, \Delta_{(v m)}^{n}\right\}
$$

Proof. If the given conditions are satisfied, we have $M_{k}(t) \approx t$ for each k and the proof follows from Theorem 5.

If we take $s=0$, the sequence space $\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$ reduce to the following sequence space:
$\ell\left\{M_{k}, p, q, \Delta_{(v m)}^{n}\right\}=\left\{x \in w(X): \sum_{k=1}^{\infty}\left[M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right)\right]^{p_{k}}<\infty\right.$, for some $\left.\rho>0\right\}$.
Theorem 8. Let $p=\left(p_{k}\right)$ be bounded sequence of positive reals and (X, q) be a complete seminormed space, then $\ell\left\{M_{k}, p, q, \Delta_{(v m)}^{n}\right\}$ is a complete paranormed space paranormed by h, defined by

$$
h(x)=\inf \left\{\rho^{\frac{p_{n}}{H}}: \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right) \leq 1, n=1,2, \ldots\right\}
$$

where $H=\sup _{k} p_{k}$.
Proof. Let $\left(x^{i}\right)$ be a Cauchy sequence in $\ell\left\{M_{k}, p, q, \Delta_{(v m)}^{n}\right\}$. Let $\delta>0$ be fixed and $r>0$ be such that for a given $0<\epsilon<1, \frac{\epsilon}{r \delta}>0$, and $r \delta \geq 1$. Then there exists a positive integer n_{0} such that

$$
h\left(x^{i}-x^{j}\right)<\frac{\epsilon}{r \delta}
$$

for all $i, j \geq n_{0}$

$$
h\left(x^{i}-x^{j}\right)=\inf \left\{\rho^{\frac{p_{n}}{H}}: \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}^{i}-\Delta_{(v m)}^{n} x_{k}^{j}}{\rho}\right)\right) \leq 1\right\}<\frac{\epsilon}{r \delta}
$$

for all $i,, j \geq n_{0}$. Hence we have

$$
\sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}^{i}-\Delta_{(v m)}^{n} x_{k}^{j}}{h\left(x^{i}-x^{j}\right)}\right)\right) \leq 1
$$

for all $i, j \geq n_{0}$. It follows that

$$
M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}^{i}-\Delta_{(v m)}^{n} x_{k}^{j}}{h\left(x^{i}-x^{j}\right)}\right)\right) \leq 1
$$

for all $i, j \geq n_{0}$ and $k \in N$. For $r>0$ with $M_{k}\left(\frac{r \delta}{2}\right) \geq 1$, we have

$$
M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}^{i}-\Delta_{(v m)}^{n} x_{k}^{j}}{h\left(x^{i}-x^{j}\right)}\right)\right) \leq M_{k}\left(\frac{r \delta}{2}\right),
$$

for all $i, j \geq n_{0}$ and $k \in N$. Since M_{k} is non-decreasing for each $k \in N$, we have

$$
q\left(\Delta_{(v m)}^{n} x_{k}^{i}-\Delta_{(v m)}^{n} x_{k}^{j}\right) \leq \frac{r \delta}{2} \cdot \frac{\epsilon}{r \delta}=\frac{\epsilon}{2}
$$

Hence $\left(\Delta_{(v m)}^{n} x_{k}^{i}\right)$ is a Cauchy sequence in (X, q) for each $k \in N$. But (X, q) is complete and so $\left(\Delta_{(v m)}^{n} x_{k}^{i}\right)$ is convergent in (X, q) for each $k \in N$.

Let $\lim _{i \rightarrow \infty} \Delta_{(v m)}^{n} x_{k}^{i}=y_{k}$ for all $k \geq 1$. Let $k=1$, then we have

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \Delta_{(v m)}^{n} x_{1}^{i}=\lim _{i \rightarrow \infty} \sum_{v=0}^{n}(-1)^{v}\binom{n}{v} v_{1-m v} x_{1-m v}^{i}=\lim _{i \rightarrow \infty} v_{1} x_{1}^{i}=y_{1} \tag{1}
\end{equation*}
$$

Similary we have,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \Delta_{(v m)}^{n} x_{k}^{i}=\lim _{i \rightarrow \infty} v_{k} x_{k}^{i}=y_{k}, \text { for } k=1, \ldots, n m \tag{2}
\end{equation*}
$$

Thus from (2.1) and (2.2), we have $\lim _{i \rightarrow \infty} x_{1+n m}^{i}$ exists. Let $\lim _{i \rightarrow \infty} x_{1+n m}^{i}=x_{1+n m}$.Proceeding in this way inductively, we have $\lim _{i \rightarrow \infty} x_{k}^{i}=x_{k}$ for each $k \in N$. Now we have for all $i, j \geq n_{0}$,

$$
\inf \left\{\rho^{\frac{p_{n}}{H}}: \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}^{i}-\Delta_{(v m)}^{n} x_{k}^{j}}{\rho}\right)\right) \leq 1\right\}<\epsilon
$$

Then we have

$$
\lim _{j \rightarrow \infty}\left\{\inf \left\{\rho^{\frac{p_{n}}{H}}: \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}^{i}-\Delta_{(v m)}^{n} x_{k}^{j}}{\rho}\right)\right) \leq 1\right\}\right\}<\epsilon
$$

for all $i \geq n_{0}$. Using the continuity of Orlicz functions, we have

$$
\inf \left\{\rho^{\frac{p_{n}}{H}}: \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}^{i}-\Delta_{(v m)}^{n} \lim _{j \rightarrow \infty} x_{k}^{j}}{\rho}\right)\right) \leq 1\right\}<\epsilon
$$

for all $i \geq n_{0}$. This implies

$$
\inf \left\{\rho^{\frac{p_{n}}{H}}: \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}^{i}-\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right) \leq 1\right\}<\epsilon
$$

for all $i \geq n_{0}$. It follows that $\left(x^{i}-x\right) \in \ell\left\{M_{k}, p, q, \Delta_{(v m)}^{n}\right\}$. Since $\left(x^{i}\right) \in$ $\ell\left\{M_{k}, p, q, \Delta_{(v m)}^{n}\right\}$ and $\ell\left\{M_{k}, p, q, \Delta_{(v m)}^{n}\right\}$ is a linear space , so we have $x=$ $x^{i}-\left(x^{i}-x\right) \in \ell\left\{M_{k}, p, q, \Delta_{(v m)}^{n}\right\}$. This completes the proof

If we take $s=0$ and $p_{k}=l$, the sequence space $\ell\left\{M_{k}, p, q, s, \Delta_{(v m)}^{n}\right\}$ reduce to the following sequence space :
$\ell\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}=\left\{x \in w(X): \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right)<\infty\right.$, for some $\left.\rho>0\right\}$.
Theorem 9. Let (X, q) be a complete normed space, then $\ell\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$ is a Banach space normed by $\|\cdot\|$, defined by

$$
\|x\|=\inf \left\{\rho: \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right) \leq 1\right\}
$$

Proof. We prove that $\|\cdot\|$ is a norm on $\ell\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$. The completeness part can be proved using similar arguments as applied to prove above Theorem .

If $x=\theta$, then it is obvious that $\|x\|=0$. Conversely assume $\|x\|=0$. Then using the definition of norm, we have

$$
\inf \left\{\rho: \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right) \leq 1\right\}=0
$$

This implies that for a given $\epsilon>0$, there exists some $\rho_{\epsilon}\left(0<\rho_{\epsilon}<\epsilon\right)$ such that

$$
\sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho_{\epsilon}}\right)\right) \leq 1
$$

Thus

$$
M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\epsilon}\right)\right) \leq M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n}}{\rho_{\epsilon}}\right)\right) \leq 1, \forall k \in N
$$

Suppose that $\Delta_{(v m)}^{n} x_{n_{i}} \neq 0$ for some i. Let $\epsilon \rightarrow 0$, then $\frac{\left|\Delta_{(v m)}^{n} x_{n_{i}}\right|}{\epsilon} \rightarrow \infty$. It follows that $M_{k}\left(\frac{\left|\Delta_{(v m)}^{n} x_{n_{i}}\right|}{\epsilon}\right) \rightarrow \infty$ as $\epsilon \rightarrow 0$ for some $n_{i} \in N$. This is a contradiction Therefore $\Delta_{(v m)}^{n} x_{k}=0$ for all $k \in N$. Let $k=1$, then $\Delta_{(v m)}^{n} x_{1}=$ $\sum_{i=0}^{n}(-1)^{i}\binom{n}{v} v_{1-m i} x_{1-m i}=0$ and so $v_{1} x_{1}=0$, by putting $v_{1-m i}=0$ and $x_{1-m i}=0$ for $i=1,2, \ldots, n$.

Hence $x_{1}=0$, since $\left(\lambda_{k}\right)$ is a sequence of non-zero scalars. Similarly taking $k=$ $2, \ldots, m n$, we have $x_{2}=\cdots=x_{m n}=0$. Next let $k=m n+1$, then $\Delta_{(v m)}^{n} x_{m n+1}=$ $\sum_{i=0}^{n}(-1)^{i}\binom{n}{v} v_{1+m n-m i} x_{1+m n-m i}=0$. Since $x_{1}=x_{2}=\cdots=x_{m n}=0$,we must have $v_{m n+1} x_{m n+1}=0$ and thus $x_{m n+1}=0$. Proceeding in this way we can conclude that $x_{k}=0$ for all $k \geq 1$. Hence $x=\theta$. Again proof of the properties $\|x+y\| \leq$ $\|x\|+\|y\|$ and for any scalar $\alpha,\|\alpha x\|=|\alpha|\|x\|$ are similar to that Theorem 2 .It is easy to see that $\left\|x^{i}\right\| \rightarrow 0$ implies that $x_{k}^{i} \rightarrow 0$ for each $i \geq 1$.

Proposition 10. $\ell\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$ is a $B K-$ space.
Now we study the $A K$-characteristic of the space $\ell\left\{M_{k}, q, s, \Delta_{(v m)}^{n}\right\}$. Before that we give a new definition and prove some results those will be required.
Definition 1. For any sequence of Orlicz functions $\mathbf{M}=\left(M_{k}\right)$,
$h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}=\left\{x \in w(X): \sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right)<\infty\right.$, for every $\left.\rho>0\right\}$.
Clearly $h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$ is a subspace of $\ell\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$. The topology of $h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$ is the one it inherits from $\|$.$\| .$
Proposition 11. Let $\mathbf{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions which satisfy Δ_{2}-condition . Then

$$
\ell\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}=h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}
$$

Proof. It is enough to prove that $\ell\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\} \subseteq h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$. Let $x \in$ $h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$, then for some $\rho>0$,

$$
\sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right)<\infty
$$

Therefore

$$
M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right)<\infty \text { for every } k \geq 1
$$

Choose an arbitrary $\eta>0$. If $\rho \leq \eta$, then $M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\eta}\right)\right)<\infty$ for every $k \geq 1$ and so

$$
\sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\eta}\right)\right)<\infty
$$

Let now $\eta<\rho$ and put $l=\frac{\rho}{\eta}>1$. Since M satisfied the Δ_{2}-condition, there exists a constant K such that

$$
M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\eta}\right)\right) \leq K\left(\frac{\rho}{\eta}\right)^{\log _{2} K} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right)
$$

for every $k \geq 1$. Now we can find $U>0$ with $s>1$ such that

$$
M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right)<U k^{-s}
$$

for the fixed $\rho>0$ and for every $k \geq 1$. Then it follows that for every $\eta>0$, we have

$$
\sum_{k=1}^{\infty} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\eta}\right)\right)<K\left(\frac{\rho}{\eta}\right)^{\log _{2} K} M \sum_{k=1}^{\infty} k^{-s}<\infty .
$$

This completes the proof.
Proposition 12. Let (X, q) be a complete normed space, then $h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$ is an $A K$-space.

Proof. Let $x \in h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$. Then for each $\epsilon, 0<\epsilon<1$, we can find an s_{o} such that

$$
\sum_{k \geq s_{0}} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\epsilon}\right)\right) \leq 1
$$

Hence for $s \geq s_{0}$,

$$
\begin{aligned}
\left\|x-x^{[s]}\right\| & =\inf \left\{\rho>0: \sum_{k \geq s+1} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\epsilon}\right)\right) \leq 1\right\} \\
& \leq \inf \left\{\rho>0: \sum_{k \geq s} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right) \leq 1\right\}<\epsilon
\end{aligned}
$$

Thus we can conclude that $h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$ is an $A K$ space.
Combining Proposition 1 and Proposition 2, we have the following Theorem .
Theorem 13. Let $\mathbf{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions which satisfy Δ_{2} condition, then $\ell\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$ is an $A K$-space.

Proposition 14. $h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$ is a closed subspace of $\ell\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$.
Proof. Let $\left\{x^{s}\right\}$ be a sequence in $h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$ such that $\left\|x^{s}-x\right\| \rightarrow 0$, where $x \in h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$. To complete the proof we need to show that $x \in h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$, i.e. ,

$$
\sum_{k \geq 1} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right)<\infty \text { for every } \rho>0
$$

For $\rho>0$, there corresponds an l such that $\left\|x^{l}-x\right\| \leq \frac{\rho}{2}$. Then using convexity of
each M_{k},

$$
\begin{aligned}
\sum_{k \geq 1} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right)= & \sum_{k \geq 1} M_{k}\left(q\left(\frac{2\left|\Delta_{(v m)}^{n} x_{k}^{l}\right|-2\left(\left|\Delta_{(v m)}^{n} x_{k}^{l}\right|-\left|\Delta_{(v m)}^{n} x_{k}\right|\right)}{2 \rho}\right)\right) \\
\leq & \frac{1}{2} \sum_{k \geq 1} M_{k}\left(q\left(\frac{2\left|\Delta_{(v m)}^{n} x_{k}^{l}\right|}{\rho}\right)\right) \\
& +\frac{1}{2} \sum_{k \geq 1} M_{k}\left(q\left(\frac{2\left|\Delta_{(v m)}^{n}\left(x_{k}^{l}-x_{k}\right)\right|}{\rho}\right)\right) \\
\leq & \frac{1}{2} \sum_{k \geq 1} M_{k}\left(q\left(\frac{2\left|\Delta_{(v m)}^{n} x_{k}^{l}\right|}{\rho}\right)\right) \\
& +\frac{1}{2} \sum_{k \geq 1} M_{k}\left(q\left(\frac{2\left|\Delta_{(v m)}^{n}\left(x_{i}^{l}-x_{i}\right)\right|}{\left\|x^{l}-x\right\|}\right)\right)
\end{aligned}
$$

Now from Theorem 8, using the definition of norm $\|$.$\| , we have$

$$
\sum_{k \geq 1} M_{k}\left(q\left(\frac{2\left|\Delta_{(v m)}^{n}\left(x_{i}^{l}-x_{i}\right)\right|}{\left\|x^{l}-x\right\|}\right)\right) \leq 1
$$

It follows that

$$
\sum_{k \geq 1} M_{k}\left(q\left(\frac{\Delta_{(v m)}^{n} x_{k}}{\rho}\right)\right)<\infty \text { for every } \rho>0
$$

Thus $x \in h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$
Hence we have the following Corollary
Corollary 15. $h\left\{M_{k}, q, \Delta_{(v m)}^{n}\right\}$ is a BK-space .

References

[1] A. Ç. Bektaş, Y. Altin, The sequence space $\ell_{M}(p, q, s)$ on seminormed spaces, Indian J. Pure Appl. Math., 34(2003), 4, 529-534.
[2] H. Dutta, Characterization of certain matrix classes involving generalized difference summability spaces, Applied Sciences (APPS), (2009),11, 60-67.
[3] M. Et, R. Çolak, On generalized difference sequence spaces, Soochow J. Math., 21(1995), 4,377-386.
[4] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., (1971),10, 379-390
[5] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., (1981),24, 169176.
[6] V. Karakaya, Some new sequence spaces defined by a sequence of Orlicz functions, Taiwanese J.Math. 9 (2005), 4, 617-627.
[7] M. A. Krasnoselskii, Y. B. Rutitsky, Convex Functions and Orlicz Spaces, Groningen, Netherlands, 1961
[8] Mursaleen, A. Khan, Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math. 32 (1999), no. 1, 145-150.
[9] H. Nakano, Concave modulars, J. Math. Soc. Japan, (1953),5, 29-49.
[10] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27, (1951). 508-512.
[11] S. D. Parasar, B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math, 25 (1994), 4, 419-428.
[12] B. C. Tripathy, H. Dutta, Some difference paranormed sequence spaces defined by Orlicz functions,Fasc. Math. No. 42 (2009), 121-131.
[13] J. Y. T. Woo, On modular sequence spaces, Studia Math., 48 (1973), 271-289
[14] K. Zeller, Theorie der Limitierungsverfahren, Berlin, 1958.

Department of Mathematical Engineering, Yıldız Techical University, Davutpasa Campus,Esenler, Istanbul- Turkey
E-mail: vkkaya@yildiz.edu.tr; vkkaya@yahoo.com
Department of mathematics, A.D.P. College, Nagaon-782002, Assam, India
E-mail: hemen_dutta@rediffmail.com

[^0]: 2010 Mathematics Subject Classifications. 40A05, 46A45, 46E30
 Key words and Phrases. Sequence spaces, diffrence operator, Orlicz function, paranorm, completeness, $A K-B K$ spaces.

 Received: October 24, 2010
 Communicated by Dragan S. Djordjević

