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Abstract

This paper is concerned with the Lane–Emden boundary value problems arising in

many real-life problems. Here, we discuss two numerical schemes based on Jacobi

and Bernoulli wavelets for the solution of the governing equation of

electrohydrodynamic flow in a circular cylindrical conduit, nonlinear heat conduction

model in the human head, and non-isothermal reaction–diffusion model equations in

a spherical catalyst and a spherical biocatalyst. These methods convert each problem

into a system of nonlinear algebraic equations, and on solving them by Newton’s

method, we get the approximate analytical solution. We also provide the error

bounds of our schemes. Furthermore, we also compare our results with the results in

the literature. Numerical experiments show the accuracy and reliability of the

proposed methods.
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1 Introduction

The solution of Emden–Fowler type equation is vital because of its numerous applications

in engineering and technical problems. There are several phenomena like astrophysics,

aerodynamics, stellar structure, chemistry, biochemistry, and many others (see [19, 38,

40, 41]) which can be modeled by the Lane–Emden equation of shape operator w given by

[18]

u′′(z) +
w

z
u′(z) + f (u, z) = 0, w > 0. (1.1)

A number of research papers are inclined toward the numerical solution of such type of

differential equations. The numerical methods for the solution of Lane–Emden equation

based onB-spline have been studied in [24, 30–32]. Homotopy analysismethods and itera-

tive schemes for fast convergence and accuracy of solutions of singular and doubly singular

BVPs have been developed in [21, 22, 26, 33]. Roul et al. have dealt with the solution of a

class of two-point nonlinear singular boundary value problems with Neumann and Robin
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boundary conditions by deploying a high order compact finite difference method [25].

A least square recursive approach together with convergence analysis for solving Lane–

Emden type initial value problems has been developed in [27], in which they simply reduce

the solution of the original initial value problem to the solution of an integral equation.

The B-spline method fails to provide a satisfactory approximation in the presence of sin-

gularity; on the other hand, the Adomian decomposition methods (ADM) fail to establish

a convergent series solution to strongly nonlinear BVPs. To overcome these shortcomings,

Roul came up with the combination of ADM and B-spline collocation methods for accu-

rate solution, see [23]. Madduri and Roul developed a fast converging iterative scheme for

the solution of a system of Lane–Emden equations converting them into equivalent Fred-

holm integral equations and treating them with homotopy analysis method [14]. In this

paper, we discuss and solve some mathematical models of the chemical and biochemical

phenomena using wavelet methods.

1.1 Model of electrohydrodynamic (EHD) flow in a circular cylindrical conduit

The effect of the electric andmagnetic field on fluid has been studied bymany researchers.

Phenomena involving the conversion of electrical andmagnetic energy into kinetic energy

are known as electrohydrodynamics (EHD) and magnetohydrodynamics (MHD). The ef-

fect of the electric field on fluids gives extra means of controlling flow conditions and has

various technical applications such as EHD thruster, EHD flow, heat transfer enhance-

ment, EHD drying and evaporation, and functional electrostatic bowler (EHD pump).

EHD pump has been designed for semiconductor cooling [5], electrospray mass spec-

trometry, and electrospray nanotechnology [45]. The MHD flow has a wide range of ap-

plications in the fields of chemistry and biology, for instance, the fabrication in cancer

tumor therapy resulting hypothermia, decreasing bleeding in the state of acute injuries,

magnetic resonance visualizing, and various other diagnostic experiments [3]. Magneto-

hybrid nanofluids flow via mixed convection past a radiative circular cylinder was studied

in [4]. The EHD flow of a fluid is modeled by a set of partial differential equations, which

can be reduced to an ordinary differential equation as in [16], and results in the following

Emden–Fowler type of equation:

u′′(z) +
1

z
u′(z) +H2

(

1 –
u

1 – αu

)

= 0, (1.2)

subject to the boundary conditions

u′(0) = 0, u(1) = 0, (1.3)

where u = – u
KE0α

, α = K
j0

∂p
∂z

– 1.

Here, the pressure gradient ∂p
∂z

is a constant that measures the nonlinearity and H =
√

j0a2

μK2E0
is the Hartmann number [16]. A schematic diagram of EHD flow is given in Fig. 1.

Equation (1.2) is a strong nonlinear differential equation having a singularity at z = 0.

Finding the exact solution to this problem is quite complicated, and therefore the devel-

opment and use of numerical techniques for the solution of this problemplay an important

role. Only few numerical methods are available for the solution of (1.2). For instance,Mas-

troberardino developed homotopy analysis method [15], Ghasemi et al. used least square
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Figure 1 Schematic diagram of EHD flow in a

circular cylindrical conduit

method [6], Mosayebidorcheh applied Taylor series [17], and Roul et al. gave a new iter-

ative algorithm [28] for the solution of strongly nonlinear singular boundary value prob-

lems.

1.2 Nonlinear heat conduction model in human head

Biomechanics is the area of science in which mechanics laws and formulae are used to

study the behavior of the human body. The heat flow in the human body is quivering and

vital field that helps to analyze the human heat stress at various temperatures. The human

head is the only organ in the human body that controls different parts and functions in

the body. The authors in [37] and [13] studied the effect of digital mobile phone emission

on the human brain and concluded that the cellular phone waves can cause several brain

problems, like exciting the brain cell, weakening the neural behavior, and possible disrup-

tion in the functionality of the nervous system. Ketley [11] points out the neuropsycho-

logical squeal of digital mobile phone exposure in humans. Similarly, the thermal effect of

wave and radiation from digital phones on the human nervous system and brain is studied

in [7, 12, 39, 44].

The following Emden-type equation is used to model the distribution of heat source in

the human head [2]:

u′′(z) +
2

z
u′(z) +

p(u)

γ
= 0, 0 < z < 1, (1.4)

subject to the boundary conditions

u′(0) = 0, –νu′(1) = μ(u – uk), (1.5)

where p(u) is the heat production rate per unit volume, u is the absolute temperature, z is

the radial distance from the center. Figure 2 shows the schematic diagram of human heat

conduction model.

Many researchers have shown their interest in solving this model numerically. For ex-

ample, Wessapan et al. [43] derived a numerical algorithm of specific absorption rate and

heat transfer in the human body to leakage electromagnetic field. Keangin et al. [9] gave

an analysis of heat transfer in liver tissue during microwave ablation using single and two

double slot antennae. Wessapan and Rattanadecho [42] used a three-dimensional human
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Figure 2 Schematic diagram of human heat conduction model

Figure 3 Human head exposed to mobile phone radiation [42]

head model for simulating the heat distribution by applying 3-D finite element mesh (see

Fig. 3).

1.3 Mathematical model of spherical catalyst equation

The following Lane–Emden equation is used to model the dimensionless concentration

of chemical species which occur in a spherical catalyst [19]:

u′′(z) +
2

z
u′(z) – ρ2u(z)e

(
σβ(1–u(z))
1+β(1–u(z))

)
= 0, (1.6)

subject to the boundary conditions

u′(0) = 0, u(1) = 1, (1.7)
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where ρ2, σ , and β denote the Thiele modulus, dimensionless activation energy, and di-

mensionless heat of reaction, respectively, and are given by

ρ2 =
κref R

2

D
, σ =

E

RgTs
, β =

(–
H)DCAs

KTs
, z =

R

r
, and u =

CA

CAs
[19].

The effectiveness factor of spherical pellet is defined as [34]

η =
3

ρ2
u′(z) at z = 1.

1.4 Mathematical model of spherical biocatalyst equation

The following Lane–Emden equation is used for modeling the spherical biocatalyst equa-

tion [34]:

u′′(z) +
2

z
u′(z) – ρ2 (1 + β)u(z)

1 + βu(z)
= 0, (1.8)

subject to the boundary conditions

u′(0) = 0, u(1) = 1, (1.9)

where ρ2, σ , and β denote the Thiele modulus, dimensionless activation energy, and di-

mensionless heat of reaction, respectively, and are given by

ρ2 =
–rAsR

2

DDAs
, β =

CAs

Km
, z =

R

r
, and u =

CA

CAs
[34].

The effectiveness factor of spherical pellet is defined as [34]

η =
3

ρ2
u′(z) at z = 1.

The schematic diagram of spherical biocatalyst is shown in Fig. 4.

Figure 4 Schematic diagram of spherical

biocatalyst
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Several numerical techniques have been adopted for solving non-isothermal reaction–

diffusion model equations. For instance, Singh [34] applied optimal homotopy analysis

method, and Jamal and Khuri [8] used Green’s function and fixed point iteration approach

for solving such type of equations. Rach et al. [19] reduced this model equation into an

equivalentVolterra integral equation and then solved it by coupling themodifiedAdomian

decomposition method and the Volterra integral technique.

Jacobi wavelet is the family of wavelets reduced into Legendre wavelet, Chebyshev

wavelet, and Gegenbauer wavelet for the specific value of κ and ω. There are a lot of re-

search papers available for the solution of ordinary and partial differential equations using

Jacobi and Bernoulli wavelets, for instance, see [1, 10, 20, 46]. In this study, we introduce

two methods based on Jacobi and Bernoulli wavelets for solving models of electrohydro-

dynamic flow in a circular cylindrical conduit, nonlinear heat conductionmodel in the hu-

man head, spherical catalyst equation, and spherical biocatalyst equation. These wavelets

transform these model equations into a system of nonlinear algebraic equations, and on

solving them, we get the unknownwavelet coefficients.With the help of these coefficients,

we get the approximate analytical solution that is valid over all the problem domain, not

only at grid points. The outline of this paper is as follows: The second section describes

the Jacobi wavelet, function approximation by Jacobi wavelet, and integration of Jacobi

wavelet. Similarly, the third section describes the Bernoulli wavelet, function approxima-

tion by Bernoulli wavelet, and integration of Bernoulli wavelet. In the fourth section, the

wavelet approximation method for all the above models is given. In the fifth section, we

state some theoretical proof for error bounds of our methods. In the sixth section, the

numerical experiments confirm that our methods converge fast.

2 Jacobi wavelet

2.1 Jacobi polynomials

Jacobi polynomials, which are often called hypergeometric polynomials, are denoted by

Jκ ,ω
m (z) and can be defined by the following explicit formula:

J
κ ,ω
m (z) =

Ŵ(κ +m + 1)

m!Ŵ(κ +ω +m + 1)

m
∑

i=0

(

m

i

)

Ŵ(κ +ω + i +m + 1)

Ŵ(κ + i + 1)

(

z – 1

2

)i

.

Some first few Jacobi polynomials are given by

J
κ ,ω
0 (z) = 1,

J
κ ,ω
1 (z) = κ + 1 + (κ +ω + 2)

z – 1

2
,

J
κ ,ω
2 (z) =

(κ + 1)(κ + 2)

2
+ (κ + 2)(κ +ω + 3)

z – 1

2

+
(κ +ω + 3)(κ +ω + 4)

2

(

z – 1

2

)2

, . . . .

These polynomials are orthogonal on [–1, 1] with respect to the weight (1 – z)κ (1 – z)ω

and satisfy the following properties:

J
κ ,ω
m (–1) = (–1)m

(

m +ω

m

)

,
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J
κ ,ω
m (–z) = (–1)mJω,κ

m (z),

J
κ ,κ
m (z) =

⎧

⎨

⎩

Ŵ(m+κ+1)Ŵ(m2 +1)

Ŵ(m2 +κ+1)Ŵ(m+1)
J

κ , –12
m
2

(2z2 – 1), ifm is even,

Ŵ(m+κ+2)Ŵ(m2 +1)

Ŵ(m2 +κ+1)Ŵ(m+2)
zJ

κ , 12
m
2
(2z2 – 1), ifm is odd.

∫ 1

–1

(1 – z)κ (1 + z)ωJκ ,ω
m (z)Jκ ,ω

n (z)dz =
2κ+ω+1

2m + κ +ω + 1

Ŵ(m + κ + 1)Ŵ(m +ω + 1)

Ŵ(m + κ +ω + 1)m!
δnm,

where δnm is Kronecker delta.

2m(m + κ +ω)(2m + κ +ω – 2)Jκ ,ωm (z)

= (2m + κ +ω – 1)
(

(2m + κ +ω)(2m + κ +ω – 2)z

+ κ2 –ω2
)

J
κ ,ω
m–1(z) – 2(m + α – 1)(m +ω – 1)(2m + κ +ω)Jκ ,ω

m–2(z).

2.2 Jacobi wavelet of shifted Jacobi polynomial

Jacobi wavelet of the shifted Jacobi polynomial defined on six arguments k, n, κ , ω,m, z is

denoted by J(k,n,κ ,ω,m, z) = Jκ ,ω
n,m(z), and can be defined on [0, 1) as follows [1]:

Jκ ,ω
n,m(z) =

⎧

⎨

⎩

2
k
2 μκ ,ω

m Jκ ,ω
m (2kz – 2n + 1), if z ∈ [ξ1, ξ2),

0, otherwise,
(2.1)

where ξ1 =
n–1
2k–1

, ξ2 =
n

2k–1
, and μκ ,ω

m =
√

(2m+κ+ω+1)Ŵ(2m+κ+ω+1)m!

2κ+ω+1Ŵ(m+κ+1)Ŵ(m+ω+1)
.

Equivalently, for any positive integer k, Jacobi wavelet can also be defined as follows:

J
κ ,ω
i (z) =

⎧

⎨

⎩

2
k
2 μκ ,ω

m Jκ ,ω
m (2kz – 2n + 1), if z ∈ [ξ1, ξ2),

0, otherwise,
(2.2)

where i is wavelet number determined by i = n + 2k–1m, where n = 0, 1, 2, . . . and m =

0, 1, 2, . . . ,M – 1, where m is degree of polynomial. M can be determined by M = N

2k–1
,

where k = 1, 2, . . . .

2.2.1 Function approximation by Jacobi wavelet

Let {Jκ ,ω
1,0 , . . . ,J

κ ,ω
1,M–1,J

κ ,ω
2,0 , . . . ,J

κ ,ω
2,M–1,J

κ ,ω

2k–1 ,0
, . . . ,Jκ ,ω

2k–1 ,M–1
} be a set of Jacobi wavelets.

Any function f (z) ∈ L2[0, 1) can be expressed in terms of Jacobi wavelet as follows [1]:

f (z) =

∞
∑

n=1

∞
∑

m=0

an,mJκ ,ω
n,m(z) =

∞
∑

i=1

aiJ
κ ,ω
i (z).

For approximation, we truncate this series for a natural number N , and we get

f (z) ≈

2k–1
∑

n=1

M–1
∑

m=0

an,mJκ ,ω
n,m(z) =

N
∑

i=1

aiJ
κ ,ω
i (z) (2.3)

= aTJ(z), (2.4)
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where a and J(z) are matrices of order N × 1 given by

a = [a1,0,a1,1, . . . ,a1,M–1,a2,0,a2,1, . . . ,a2,M–1, . . . ,a2k–1 ,0, . . . ,a2k–1 ,M–1]
T

= [a1,a2, . . . ,aN ]
T , (2.5)

J(z) =
[

J
κ ,ω
1,0 (z), . . . ,J

κ ,ω
1,M–1(z),J

κ ,ω
2,0 (z), . . . ,J

κ ,ω
2,M–1(z),J

κ ,ω

2k–1 ,0
(z), . . . ,Jκ ,ω

2k–1 ,M–1
(z)

]

=
[

J
κ ,ω
1 (z), . . . ,Jκ ,ω

N (z)
]

, (2.6)

where the coefficient ai can be determined by ai = 〈f (z),Jκ ,ω
i (z)〉 =

∫ 1

0
f (z)Jκ ,ω

i (z)dz.

2.2.2 Integration of Jacobi wavelet

Let J1
i (z), J

2
i (z), and J3

i (z) be the first, second, and third integration of Jacobi wavelet from

0 to z respectively. These integrations can be determined as follows:

J
κ ,ω
1,i (z) =

⎧

⎨

⎩

2
–k
2 μκ ,ω

m ( 1
(m+κ+ω)

){Jκ–1,ω–1
m+1 (ẑ) – Jκ–1,ω–1

m+1 (–1)}, ξ1 ≤ z < ξ2,

2
–k
2 μκ ,ω

m ( 1
(m+κ+ω)

){Jκ–1,ω–1
m+1 (1) – Jκ–1,ω–1

m+1 (–1)}, ξ2 ≤ z ≤ 1,
(2.7)

J
κ ,ω
2,i (z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2
–3k
2 μκ ,ω

m ( 1
(m+κ+ω)

){( 1
(m–2+κ+ω)

){Jκ–2,ω–2
m+2 (ẑ)

– Jκ–2,ω–2
m+2 (–1)} – (1 + ẑ)Jκ–1,ω–1

m+1 (–1)}, ξ1 ≤ z < ξ2,

2
–3k
2 μκ ,ω

m ( 1
(m+κ+ω)

){( 1
(m–2+κ+ω)

){Jκ–2,ω–2
m+2 (1)

– Jκ–2,ω–2
m+2 (–1)} – 2Jκ–1,ω–1

m+1 (–1)

+ (ẑ – 1){Jκ–1,ω–1
m+1 (1) – Jκ–1,ω–1

m+1 (–1)}}, ξ2 ≤ z ≤ 1,

(2.8)

where ẑ = 2kz – 2n + 1.

3 Bernoulli wavelet

3.1 Bernoulli polynomials

Bernoulli polynomials are denoted by ßm(z), where m is the degree of polynomials and

can be defined by the following explicit formula:

ßm(z) =

m
∑

i=0

(

m

i

)

ßm–iz
i,

where ßk ,k = 0, 1, 2, . . .m, are the Bernoulli numbers. Another explicit formula for these

polynomials is given by

ßm(z) =

m
∑

i=0

1

i + 1

i
∑

j=0

(–1)j
(

i

j

)

(z + j)m.

The first few Bernoulli polynomials are given by

ß0(z) = 1, ß1(z) = z –
1

2
, ß2(z) = z2 – z +

1

6
, ß3(z) = z3 –

3

2
z2 +

1

2
z.

Bernoulli polynomial satisfies the following properties:

ßm(1) = (–1)mßm(0),
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ß2m+1(0) = 0, ß2m–1

(

1

2

)

= 0,

ßm(1 – z) = (–1)mßm(z),

ßm(z + 1) – ßm(z) =mzm–1,

∫ 1

0

ßn(z)ßm(z)dz = (–1)n–1
n!m!

(m + n)!
ßm+n.

Bernoulli polynomials can be calculated by the following recursive formula: ß′
m(z) =

mßm–1(z).

3.2 Bernoulli wavelet

Bernoulli wavelet defined on four arguments k, n,m, z is denoted byB(k,n,m, z) = Bn,m(z)

and can be defined on [0,1) as follows [10]:

Bn,m(z) =

⎧

⎨

⎩

2
k–1
2 ßm(2

k–1z – n + 1), ξ1 ≤ z ≤ ξ2,

0, elsewhere,
(3.1)

where ξ1 =
n–1
2k–1

and ξ2 =
n

2k–1
and

ßm(z) =

⎧

⎪

⎨

⎪

⎩

1, m = 0,

1
√

(–1)m–1(m!)2

(2m)!
ß2m

ßm(z), m > 0, (3.2)

where ß2m is the Bernoulli number.

On the interval [0, 1), for any positive integer k, Bernoulli wavelet can also be defined as

follows:

Bi(z) =

⎧

⎨

⎩

2
k–1
2 ßm(2

k–1z – n + 1), ξ1 ≤ z ≤ ξ2,

0, elsewhere.
(3.3)

Here, i is wavelet number and can calculated by the relation i = n + 2k–1m, where n =

0, 1, 2, . . . and m = 0, 1, 2, . . . ,M – 1, m is degree of polynomials. For k = 1, 2, . . . , M can be

found by N = 2k–1M.

3.2.1 Function approximation by Bernoulli wavelet

Let {B1,0, . . . ,B1,M–1,B2,0, . . . ,B2,M–1,B2k–1 ,0, . . . ,B2k–1 ,M–1} be a set of Bernoulli wavelets.

Any function f (z) ∈ L2[0, 1) can be expressed in terms of Bernoulli wavelet as follows

[46]:

f (z) =

∞
∑

n=1

∞
∑

m=0

bn,mBn,m(z) =

∞
∑

i=1

biBi(z).

For approximation, we truncate this series for a natural number N , and we get

f (z) ≈

2k–1
∑

n=1

M–1
∑

m=0

bn,mBn,m(z) =

N
∑

i=1

biBi(z) (3.4)



Faheem et al. Advances in Difference Equations        ( 2020)  2020:526 Page 10 of 23

= bTB(z), (3.5)

where b and B(z) are matrices of order N × 1 given by

b = [b1,0,b1,1, . . . ,b1,M–1,b2,0,b2,1, . . . ,b2,M–1, . . . ,b2k–1 ,0, . . . ,b2k–1 ,M–1]
T

= [b1,b2, . . . ,bN ]
T , (3.6)

B(z) =
[

B1,0(z), . . . ,B1,M–1(z),B2,0(z), . . . ,B2,M–1(z),B2k–1 ,0(z), . . . ,B2k–1 ,M–1(z)
]

=
[

B1(z), . . . ,BN (z)
]

. (3.7)

The coefficient bi is calculated by bi = 〈f (z),Bi(z)〉 =
∫ 1

0
f (z)Bi(z)dz.

3.2.2 Integration of Bernoulli wavelet

Let B1,i(z) and B2,i(z) be the first and second integration of Bernoulli wavelet from 0 to z,

respectively. These integration can be determined as follows:

B1,i(z) =

⎧

⎨

⎩

2
–k+1
2 ζ ( 1

m+1
){ßm+1(ẑ) – ßm+1(0)}, ξ1 ≤ z < ξ2,

2
–k+1
2 ζ ( 1

m+1
){ßm+1(1) – ßm+1(0)}, ξ2 ≤ z ≤ 1,

(3.8)

B2,i(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
–3k+3

2 ζ ( 1
m+1

){( 1
m+2

){ßm+2(ẑ) – ßm+2(0)} – (ẑ)ßm+1(0)}, ξ1 ≤ z < ξ2,

2
–3k+3

2 ζ ( 1
m+1

){( 1
m+2

){ßm+2(1) – ßm+2(0)} – 2ßm+1(0)

+ (ẑ – 1){ßm+1(1) – ßm+1(0)}}, ξ2 ≤ z ≤ 1,

(3.9)

where ẑ = 2k–1z – n + 1 and ζ = 1
√

(–1)m–1(m!)2

(2m)!
ß2m

.

4 Methods for solution

In this section, we discuss the methods for the solution of the models described above.

The following notations have been introduced:

φ1,i(z) =

∫ z

0

φi(z)dz, (4.1)

φ2,i(z) =

∫ z

0

φ1,i(z)dz, (4.2)

�1,i =

∫ 1

0

φ1,i(z)dz, (4.3)

�2,i =

∫ 1

0

φ2,i(z)dz. (4.4)

4.1 Method for solution of model of electrohydrodynamic flow in a circular

cylindrical conduit

We can express the second derivative of (1.2) in terms of wavelet series as follows:

u′′(z) =

N
∑

i=1

ciφi(z). (4.5)
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Integrating (4.5) twice from 0 to z, we get

u′(z) =

N
∑

i=1

ciφ1,i(z) + u′(0), (4.6)

u(z) =

N
∑

i=1

ciφ2,i(z) + zu′(0) + u(0). (4.7)

Using boundary conditions (1.3) in (4.6)–(4.7), we get

u′(z) =

N
∑

i=1

ciφ1,i(z), (4.8)

u(z) =

N
∑

i=1

ciφ2,i(z) + u(0). (4.9)

Putting z = 1 in (4.9) and after simplifying, we get

u(0) = –

N
∑

i=1

ci�2,i. (4.10)

Therefore equation (4.9) becomes

u(z) =

N
∑

i=1

ci
(

φ2,i(z) –�2,i

)

. (4.11)

Putting the values of u(z), u′(z), and u′′(z) from equations (4.5), (4.8), (4.11) in equation

(1.2) and collocating at z = zl =
l–0.5
N

, where l = 1, 2, . . . ,N , yields the following system of

nonlinear equations:

N
∑

i=1

ciφi(zl) +
1

zl

N
∑

i=1

ciφ1,i(zl) + H
2

(

1 –

∑N
i=1 ci(φ2,i(zl) –�2,i)

1 – α
∑N

i=1 ci(φ2,i(zl) –�2,i)

)

= 0. (4.12)

On solving this system of nonlinear equations by Newton’s method, we get the unknown

wavelet coefficients ci ’s. After putting these ci ’s in equation (4.11), we get the approximate

solution.

4.2 Method for solution of nonlinear heat conduction model in the human head

We can approximate the second derivative of equation (1.4) in terms of wavelet series as

follows:

u′′(z) =

N
∑

i=1

ciφi(z). (4.13)

Integrating (4.13) twice from 0 to z, we get

u′(z) =

N
∑

i=1

ciφ1,i(z) + u′(0), (4.14)
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u(z) =

N
∑

i=1

ciφ2,i(z) + zu′(0) + u(0). (4.15)

Using boundary conditions (1.5) in (4.14)–(4.15), we get

u′(z) =

N
∑

i=1

ciφ1,i(z), (4.16)

u(z) =

N
∑

i=1

ciφ2,i(z) + u(0). (4.17)

Putting z = 1 in (4.16)–(4.17) and multiplying (4.16) by ν and (4.17) by μ and after solving

these equations for u(0), we get

u(0) = uκ –
1

μ

N
∑

i=1

ci(ν�1,i +μ�2,i). (4.18)

Therefore equation (4.17) becomes

u(z) =

N
∑

i=1

ci

(

φ2,i(z) –
1

μ
(ν�1,i +μ�2,i)

)

+ uκ . (4.19)

Putting the values of u′′(z), u′(z), and u(z) from equations (4.13), (4.16), (4.19) in equation

(1.4) and collocating at z = zl =
l–0.5
N

, where l = 1, 2, . . . ,N , yields the following system of

nonlinear equations:

N
∑

i=1

ciφi(zl) +
2

zl

N
∑

i=1

ciφ1,i(zl) +
p(

∑N
i=1 ci(φ2,i(zl) –

1
μ
(ν�1,i +μ�2,i)) + uκ )

γ
= 0. (4.20)

After solving this system of nonlinear equations byNewton’smethod, we get the unknown

wavelet coefficients. On putting these coefficients in equation (4.19), we get the approxi-

mate wavelet solutions of nonlinear heat conduction model in the human head.

4.3 Method for solution of spherical catalyst equation

We can approximate the second derivative of equation (1.6) in terms of wavelet series as

follows:

u′′(z) =

N
∑

i=1

ciφi(z). (4.21)

Integrating (4.21) twice from 0 to z, we get

u′(z) =

N
∑

i=1

ciφ1,i(z) + u′(0), (4.22)

u(z) =

N
∑

i=1

ciφ2,i(z) + zu′(0) + u(0). (4.23)
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Using boundary conditions (1.7) in (4.22)–(4.23), we get

u′(z) =

N
∑

i=1

ciφ1,i(z), (4.24)

u(z) =

N
∑

i=1

ciφ2,i(z) + u(0). (4.25)

Putting z = 1 in (4.25) and after simplification, we get

u(0) = 1 –

N
∑

i=1

ci�2,i. (4.26)

Therefore equation (4.25) becomes

u(z) =

N
∑

i=1

ci
(

φ2,i(z) –�2,i

)

+ 1. (4.27)

Putting the values of u′′(z), u′(z), and u(z) from equations (4.21,4.24,4.27) in equation (1.6)

and collocating at z = zl =
l–0.5
N

, where l = 1, 2, . . . ,N , yields the following system of nonlin-

ear equations:

N
∑

i=1

ciφi(zl) +
2

zl

N
∑

i=1

ciφ1,i(zl)

– ρ2

(

N
∑

i=1

ci
(

φ2,i(zl) –�2,i

)

+ 1

)

e
{

γβ(1–(
∑N

i=1 ci(φ2,i(zl )–�2,i)+1))

1+β(1–(
∑N

i=1 ci(φ2,i(zl )–�2,i)+1))
}

= 0. (4.28)

After solving this system of nonlinear equations byNewton’smethod, we get the unknown

wavelet coefficients ci’s. On putting these ci ’s in equation (4.27), we get the approximate

wavelet solutions of spherical catalyst equation.

4.4 Method for solution of spherical biocatalyst equation

The same procedure has been implemented as in case of spherical catalyst equation. Sub-

stituting the values of u′′(z), u′(z), and u(z) from equations (4.21), (4.24), (4.27) in equation

(1.8) and collocating at z = zl =
l–0.5
N

, where l = 1, 2, . . . ,N , yields the following system of

nonlinear equations:

N
∑

i=1

ciφi(zl) +
2

zl

N
∑

i=1

ciφ1,i(zl) – ρ2 (1 + β)(
∑N

i=1 ci(φ2,i(zl) –�2,i) + 1)

1 + β(
∑N

i=1 ci(φ2,i(zl) –�2,i) + 1)
= 0. (4.29)

Solving this system of nonlinear equations, we get the unknown wavelet coefficients ci ’s.

After putting the values of ci ’s in equation (4.27), we get the approximate wavelet solutions

of spherical biocatalyst equation.
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5 Error bounds

Lemma 5.1 Let u(z) ∈ CM[0, 1] with |uM(z)| ≤ λ, ∀z ∈ (0, 1);α > 0 and u(z) ≃
∑2k–1

n=1

∑M–1
m=0 an,mφn,m(z) =

∑N
i=0 aiφi(z), where φn,m(z) is Jacobi or Bernoulli wavelet. Then

|ai| ≤ αM2
–m(M+ 1

2 )λ.

Lemma 5.2 Let u(z) ∈ CM[0, 1] and u(z) ≃
∑2k–1

n=1

∑M–1
m=0 an,mφn,m(z) =

∑N
i=0 aiφi(z). Let

εm(z) be the error of approximation. Then |εm(z)| ≤ αM
2–mM

1–2–m
(M
2
– 1)λα�.

Proof εm(z) = u(z) – PVmu(z) =
∑∞

m=M

∑∞
n=2k–1+1 an,mφn,m(z), z ∈ R and |εm(z)| ≤

∑∞
m=M

∑∞
n=2k–1+1 |an,mφn,m(z)|, z ∈ R.

Using Lemma 5.1, we get

∣

∣εm(z)
∣

∣ ≤

∞
∑

m=M

∞
∑

n=2k–1+1

αM2–m(M+ 1
2 ) max

z∈Imn

∣

∣uM(z)
∣

∣2
m
2 αφ ,

where αφ = maxz∈Imn |φ(2mz – n)|.

∣

∣εm(z)
∣

∣ ≤

∞
∑

m=M

αM2
–mM(2M – 1)max

z∈Imn

∣

∣gM(z)
∣

∣αφG.

For very largem, |εm(z)| ≤ αM
2–mM

1–2–m
(2M – 1)λαφ , where λ = maxz∈Imn |gM(z)|. �

Theorem 5.3 Let u(z) be the exact solution of (1.2), (1.4), (1.6), and (1.8) and uN (z) be

the approximate solution, and let εm(z) be the error of approximation. Then |εm(z)| =

O(2–mM).

Proof Here, we calculate the error bounds for solution of (1.2). The same procedure can

be applied for equations (1.4), (1.6), and (1.8).

The error is given by

∣

∣εm(z)
∣

∣ =
∣

∣u(z) – uN (z)
∣

∣ =

∣

∣

∣

∣

∣

∞
∑

m=M

∞
∑

n=2k–1+1

an,m
(

φ2
n,m(z) –�1

n,m

)

∣

∣

∣

∣

∣

, (5.1)

where φ2
n,m(z) is the second integration of φn,m(z) from 0 to z and �1

n,m denotes the second

integration of φn,m(z) from 0 to 1. Therefore,

∣

∣εm(z)
∣

∣ ≤

∞
∑

m=M

∞
∑

n=2k–1+1

∣

∣an,m
(

φ2
n,m(z) –�1

n,m

)
∣

∣. (5.2)

Using Lemma 5.1, we get

∣

∣εm(z)
∣

∣ ≤

∞
∑

m=M

∞
∑

n=2k–1+1

αM2–m(M+ 1
2 )

∣

∣

(

φ2
n,m(z) –�1

n,m

)
∣

∣ (5.3)

=

∞
∑

m=M

∞
∑

n=2k–1+1

αM2–m(M+ 1
2 )2

m
2
∣

∣

(

φ2
(

2mz – n
)

–�1
n,m

)
∣

∣ (5.4)



Faheem et al. Advances in Difference Equations        ( 2020)  2020:526 Page 15 of 23

≤

∞
∑

m=M

αM2
–mM(2M – 1)λγφ , (5.5)

where γφ = maxz∈Imn |(φ2(2mz – n) –�1
n,m)|. Hence |εm(z)| =O(2–mM). �

It is clear that each of the Jacobi and Bernoulli wavelet methods has an exponential rate

of convergence/spectral accuracy.

6 Numerical simulation

In this section, we solve the examples of electrohydrodynamic model flow in a circular

cylindrical conduit, nonlinear heat conduction model in the human head, spherical cata-

lyst equation, and spherical biocatalyst equation. For the sake of comparison, the resultant

approximate analytical solution has been used to find the solution at any point in the in-

terval [0, 1]. We have chosen the initial guess as a zero vector of length N . We have used

optimality tolerance = 10–06 and function tolerance = 10–03 in stopping criteria for New-

ton’s method.

6.1 Numerical treatment of EHM equation

We applied Bernoulli wavelet series method (BWSM) and Jacobi wavelet series method

(JWSM) (κ = – 3
7
,ω = – 1

8
) for the solution of (1.2). First we study the effect of nonlinearity

(α) on the velocity profile at small value of the Hartmann number (H) and observe that as

we increase H , the velocity profile becomes flatter near to the center, see Fig. 5. For small

value of H , the velocity profile almost remains parabolic with change in α, see Fig. 6. We

also study the influence of different H with fixed α and see that a strong boundary layer

is build up in velocity for a large value of H , see Figs. 7 and 8. We see that BWSM result

for fixed valuesH2 = 2, 100 with different value of α = 0.1, 0.5, 1 and for fixed values of α =

0.1, 1 with different value ofH2 = 0.5, 2, 16, 36, 49, 64 agreeswith the result of SSNM (sixth-

order spline numerical method), see Figs. 10, 12, 3, and 4 of [29]. The numerical solution

by BWSM and JWSM for different values of H2 is given in Tables 1 and 2, respectively.

The absolute residual errors and CPU time for different values of J are shown in Table 3.

Figure 5 Graph of BWSM solution of EHD equation for J = 3, M = 8 and k = 1, H2 = 100



Faheem et al. Advances in Difference Equations        ( 2020)  2020:526 Page 16 of 23

Figure 6 Graph of JWSM solution of EHD equation for J = 3, M = 8 and k = 1, H2 = 2

Figure 7 Graph of BWSM solution of EHD equation for J = 3, M = 8 and k = 1, α = 0.1

Figure 8 Graph of JWSM solution of EHD equation for J = 3, M = 8 and k = 1, α = 1
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Table 1 BWSM solution of EHM equation for α = 0.1 with J = 3, M = 8, k = 1

z H
2 = 0.5 H

2 = 2 H
2 = 16 H

2 = 36 H
2 = 49

0 0.1141 0.3583 0.8498 0.9010 0.9062

0.0625 0.1137 0.3571 0.8487 0.9006 0.9060

0.1875 0.1102 0.3472 0.8394 0.8976 0.9044

0.3125 0.1033 0.3272 0.8186 0.8898 0.9001

0.4375 0.0928 0.2966 0.7816 0.8730 0.8898

0.5625 0.0788 0.2546 0.7196 0.8377 0.8652

0.6875 0.0611 0.2002 0.6182 0.7636 0.8060

0.8125 0.0396 0.1320 0.4537 0.6075 0.6635

0.9375 0.0142 0.0483 0.1881 0.2795 0.3207

1 0 0 0 0 0

Table 2 JWSM solution of EHD equation for α = 1 with J = 3, M = 8, k = 1

z H
2 = 0.5 H

2 = 2 H
2 = 16 H

2 = 36 H
2 = 49

0 0.1132 0.3255 0.4984 0.5003 0.5004

0.0625 0.1128 0.3244 0.4982 0.5000 0.5000

0.1875 0.1094 0.3163 0.4973 0.4999 0.4999

0.3125 0.1025 0.2995 0.4946 0.4997 0.4999

0.4375 0.0922 0.2733 0.4879 0.4988 0.4996

0.5625 0.0783 0.2366 0.4718 0.4951 0.4980

0.6875 0.0607 0.1877 0.4331 0.4805 0.4896

0.8125 0.0394 0.1248 0.3440 0.4230 0.4463

0.9375 0.0141 0.0460 0.1540 0.2204 0.2495

1 0 0 0 0 0

Table 3 Maximum absolute residual errors of EHD equation for α = 1 and H
2 = 0.5

J JWSM CPU time BWSM CPU time

3 5.5511e–15 0.38 seconds 4.2466e–14 0.9 seconds

4 5.1070e–15 0.49 seconds 9.9920e–16 2 seconds

6.2 Numerical treatment of nonlinear heat conduction model in the human head

Consider equation (1.4) along with boundary conditions (1.5) and p(u) = e–u, γ = 1, ν = 1,

μ = 2, and uk = 0 and get the following Emden–Fowler type equation:

u′′(z) +
2

z
u′(z) + e–u = 0, (6.1)

and the boundary conditions become

u′(0) = 0; u′(1) + 2u(1) = 0. (6.2)

We used Bernoulli and Jacobi wavelets for solving this problem. The calculation has been

done by taking κ = – 1
4
and ω = – 1

3
in Jacobi wavelet. A comparison of our results with

the results of Haar solution [35] and ADM [36] is given in Table 4. We show the absolute

residual errors and CPU time for different J in Table 5. Figures 9 and 10 show the BWSM

and JWSM solution at J = 3 for different values of γ , respectively.

6.3 Numerical treatment of spherical catalyst equation

Consider equation (1.6) with (1.7) by taking β = 1, ρ = 1. We have performed BWSM

and JWSM (κ = 1
5
,ω = – 1

6
) for the solution of (1.6). The influence of different values of
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Table 4 Numerical solution of nonlinear heat conduction model in the human head for γ = 1 with

J = 3, M = 8, k = 1

z BWSM JWSM Haar [35] ADM [36]

0 0.2700 0.2700 – –

0.1 0.2688 0.2688 0.26866 0.26862

0.2 0.2649 0.2649 0.26484 0.26480

0.3 0.2585 0.2585 0.25845 0.25841

0.4 0.2495 0.2495 0.24945 0.24943

0.5 0.2379 0.2379 0.23782 0.23781

0.6 0.2236 0.2236 0.22349 0.22349

0.7 0.2065 0.2065 0.20640 0.20641

0.8 0.1866 0.1866 0.18646 0.18648

0.9 0.1637 0.1637 0.16356 0.16359

Table 5 Maximum absolute residual errors of nonlinear heat conduction model for γ = 1

J JWSM CPU time BWSM CPU time

3 1.6263e–12 0.4 seconds 2.1283e–13 1.4 seconds

4 8.7896e–13 0.5 seconds 8.6597e–15 2 seconds

Figure 9 Graph of BWSM solution of nonlinear heat conduction model in human head equation for different

γ with J = 3, M = 8, and k = 1

Figure 10 Graph of JWSM solution of nonlinear heat conduction model in human head equation for

different γ with J = 3, M = 8, and k = 1
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Figure 11 Graph of BWSM solution of spherical catalyst equation for J = 3, M = 8 and k = 1, σ = 0.5, 1, 1.5

Figure 12 Graph of JWSM solution of spherical catalyst equation for J = 3, M = 8 and k = 1, σ = 0.5, 1, 1.5

Table 6 Numerical solution of spherical catalyst equation for β = 1, ρ = 1 with J = 3, M = 8, k = 1

z BWSM

(σ = 0.5)

BWSM

(σ = 1)

JWSM

(σ = 1.5)

OHAM [34]

(σ = 0.5)

OHAM [34]

(σ = 1.5)

0 0.8443 0.8368 0.8282 – –

0.1 0.8458 0.8384 0.8299 0.8457 0.8299

0.2 0.8503 0.8432 0.8351 0.8502 0.8351

0.3 0.8579 0.8512 0.8437 0.8578 0.8437

0.4 0.8685 0.8625 0.8558 0.8684 0.8557

0.5 0.8822 0.8771 0.8713 0.8822 0.8712

0.6 0.8991 0.8950 0.8902 0.8991 0.8902

0.7 0.9193 0.9162 0.9126 0.9193 0.9126

0.8 0.9428 0.9407 0.9384 0.9427 0.9383

0.9 0.9696 0.9687 0.9675 0.9696 0.9675

activation energy is shown in Figs. 11 and 12. The numerical solution of (1.6) for σ =

0.5, 1, 1.5 is given in Table 6. We compare our results with the results of OHAM [29] in

Table 7.
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Table 7 Maximum absolute residual errors of spherical catalyst equation for β = ρ = 1 with J = 2

σ OHAM [34] JWSM CPU time BWSM CPU time

0.5 5.66e–05 1.1768e–14 0.4 seconds 2.5158e–13 0.5 seconds

1 4.75e–05 1.0628e–12 0.5 seconds 2.9277e–12 0.5 seconds

1.5 4.28e–04 1.6083e–11 0.4 seconds 7.4860e–12 0.5 seconds

Figure 13 Graph of BWSM solution of spherical biocatalyst equation for J = 3, M = 8 and k = 1, β = 2

Figure 14 Graph of JWSM solution of spherical biocatalyst equation for J = 3, M = 8 and k = 1, β = 2

6.4 Numerical treatment of spherical biocatalyst equation

Consider equation (1.8) with (1.9) by fixing β = 2. We have performed BWSM and JWSM

(κ = –3
5
,ω = – 1

8
) for the solution of (1.8). The influence of different values of Thiele mod-

ulus is shown in Figs. 13 and 14. The numerical solution of (1.6) for ρ = 1, 1.5, 2 is given in

Table 8. We compare our results with the results of OHAM [34] in Table 9.

7 Conclusion

In this paper, we have studied EHD flow in a charged circular cylinder conduit, nonlin-

ear heat conduction model in the human head, non-isothermal reaction–diffusion model

equations in a spherical catalyst, and non-isothermal reaction–diffusion model equations
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Table 8 Numerical solution of spherical biocatalyst equation for β = 2 with J = 3, M = 8, k = 1

z BWSM

(ρ = 1)

BWSM

(ρ = 1.5)

JWSM

(ρ = 2)

OHAM [34]

(ρ = 1)

OHAM [34]

(ρ = 1.5)

0 0.8401 0.6615 0.4559 – –

0.1 0.8417 0.6647 0.4607 0.8417 0.6646

0.2 0.8464 0.6743 0.4751 0.8464 0.6743

0.3 0.8543 0.6905 0.4994 0.8542 0.6904

0.4 0.8653 0.7132 0.5342 0.8653 0.7132

0.5 0.8795 0.7428 0.5798 0.8795 0.7427

0.6 0.8970 0.7793 0.6372 0.8969 0.7793

0.7 0.9177 0.8230 0.7070 0.9177 0.8230

0.8 0.9418 0.8742 0.7902 0.9417 0.8741

0.9 0.9692 0.9331 0.8875 0.9691 0.9330

Table 9 Maximum absolute residual errors of spherical biocatalyst equation for β = 2 with J = 2

ρ OHAM [34] JWSM CPU time BWSM CPU time

1 1.21e–06 8.8425e–08 0.4 seconds 5.6621e–15 0.5 seconds

2 1.98e–06 7.8504e–08 0.6 seconds 6.2004e–10 0.6 seconds

3 6.02e–04 2.2560e–13 0.5 seconds 1.9376e–12 0.5 seconds

in a spherical biocatalyst which aremodeled by Lane–Emden type equations having strong

nonlinearity.We have solved thesemodels by two numerical methods based on Jacobi and

Bernoulli wavelets. These wavelet methods solved Lane–Emden type equations by con-

verting them into a system of nonlinear equations. In the study of EHD flow, we observed

that the effects of Hartmann number and nonlinearity have an important impact. Fur-

ther we also compare our results with the results of SSNM [29], Haar [35], ADM [36],

and OHAM [34]. The graphs show the efficiency of our methods. Moreover, the present

semi-analytical numerical methods have lower computational cost than ADM, Haar, and

OHAM, since in our methods there is no need for symbolic successive integration which

is computationally higher than numerical methods.
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