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Abstract. The two dimensional range minimum query problem is to
preprocess a static two dimensional m by n array A of size N = m · n,
such that subsequent queries, asking for the position of the minimum
element in a rectangular range within A, can be answered efficiently. We
study the trade-off between the space and query time of the problem.
We show that every algorithm enabled to access A during the query and
using O(N/c) bits additional space requires Ω(c) query time, for any c
where 1 ≤ c ≤ N . This lower bound holds for any dimension. In partic-
ular, for the one dimensional version of the problem, the lower bound is
tight up to a constant factor. In two dimensions, we complement the lower
bound with an indexing data structure of size O(N/c) bits additional
space which can be preprocessed in O(N) time and achieves O(c log2 c)
query time. For c = O(1), this is the first O(1) query time algorithm
using optimal O(N) bits additional space. For the case where queries
can not probe A, we give a data structure of size O(N · min{m, log n})
bits with O(1) query time, assuming m ≤ n. This leaves a gap to the
lower bound of Ω(N log m) bits for this version of the problem.

1 Introduction

In this paper, we study time-space trade-offs for the two dimensional range min-
imum query problem (2D-RMQ). This problem has applications in computer
graphics, image processing, computational Biology, and databases. The input
is a two dimensional m by n array A of N = m · n elements from a totally
ordered set. A query asks for the position of the minimum element in a query
range q = [i1 · · · i2] × [j1 · · · j2], where 1 ≤ i1 ≤ i2 ≤ m and 1 ≤ j1 ≤ j2 ≤ n,
i.e., RMQ(A, q) = argmin(i,j)∈qA[i, j]. We assume w.l.o.g. that m ≤ n and that
all the entries of A are distinct (identical entries of A are ordered lexicographi-
cally by their index).

⋆ Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.



Table 1. Results for the 1D-RMQ problem. The term |A| denotes the size of the input
array A in bits.

Reference
Using Using Access

Space (bits) Query Time
Cartesian tree LCA to A

[13, 14, 17, 8, 6] Yes Yes Yes O(n log n) + |A| O(1)

[2] No No Yes O(n log n) + |A| O(1)

[16] Yes Yes No 4n + o(n) O(1)

[12] Yes No Yes 2n + o(n) + |A| O(1)

[11] No Yes No 2n + o(n) O(1)

Theorem 1 - - Yes O(n/c) + |A| Ω(c)

Theorem 2 Yes Yes Yes O(n/c) + |A| O(c)

1.1 Previous Work

One Dimensional. The 1D-RMQ problem is the special case of the two di-
mensional version where N = n. It has been studied intensively and has nu-
merous applications (Fischer [11] mentions some of them). Several solutions
achieve O(1) query time using additional space O(n log n) bits, by transforming
RMQ queries into lowest common ancestor (LCA) queries [1] on the Carte-
sian tree [18] of A [13, 14, 17, 8, 6]. Alstrup et al. [2] solved the problem with the
same bounds but without using Cartesian trees. Fischer and Heun [12] presented
an O(1) query time solution using 2n + o(n) additional bits which uses a Carte-
sian tree but makes no use of the LCA structure, and gives a simple solution
for the static LCA problem3. Sadakane [16] gave an O(1) query time algorithm
using 4n+o(n) bits space which does not access A during the query. Fischer [11]
decreased the space to 2n+o(n) bits by introducing a new data structure named
2d-Min-Heap instead of using the Cartesian tree. Table 1 summarizes these re-
sults along with the results of this paper.

Two Dimensional. A näıve solution for the 2D-RMQ problem is to perform a
brute force search through all the entries of the query q in worst case Θ(N)
time. Preprocessing A can reduce the query time. A näıve preprocessing is
to store the answer to all the O(N2) possible queries in a lookup table of
size O(N2 log N) bits. The query time becomes O(1) with no probe into A.
All the published algorithms, on the d > 1 dimensional RMQ problem, per-
form probes into A during the query. The d-dimensional RMQ problem was first
studied by Gabow et al. [13]. They apply the range trees introduced by Bent-
ley [7] to achieve O(logd−1 N) query time using additional space O(N logd N)
bits and O(N logd−1 N) preprocessing time. Chazelle and Rosenberg [9] gave an
algorithm to compute the range sum in the semigroup model, which can be ap-
plied to solve the RMQ problem. Their construction achieves O(1) query time
using additional space O(N ·αk(n)2 ·log N) bits with O(N ·αk(n)2) preprocessing

3 Fischer and Heun [12] claim 2n − o(n) bits lower bound for the additional space,
however their proof is incorrect which, e.g., follows by Theorem 2.



Table 2. Results for the 2D-RMQ problem. The contributions of [13, 9, 4] and Theo-
rem 1 can be generalized to the multidimensional version of the problem.

Reference Query time Space (bits) Preprocessing time

[13] O(log N) O(N log2 N) + |A| O(N log N)

[9] O(1) O(Nαk(n)2 log N) + |A| O(Nαk(n)2)

[3] O(1) O(kN log N) + |A| O(N log[k+1] N)

[10] - Ω(N log m) -

[4] O(1) O(N log N) + |A| O(N)

Theorem 1 Ω(c) N/c + |A| -

Theorem 3 O(1) O(N) + |A| O(N)

Theorem 4 O(c log2 c) O(N/c) + |A| O(N)

Theorem 5 - Ω(N log m) -

Section 3 O(1) O(N · min{m, log n}) O(N)

time for any fixed value of k, where αk(n) is the kth function of the inverse Ack-
ermann hierarchy. The two dimensional version of the problem was considered by
Amir et al. [3]. They presented a class of algorithms using O(N log(k+1) N) pre-
processing time, O(kN log N) bits additional space and O(1) query time for any

constant k > 1, where log(k+1) N is the result of applying the log function k + 1
times on N . Recently Atallah and Yuan [4] gave the first linear time prepro-
cessing algorithm for d-dimensional arrays. Their algorithm answers any query
in constant time using O(N log N) bits additional space. Demaine et al. [10]
proved that the number of different 2D-RMQ n by n matrices is Ω((n

4 !)n/4),
where two 2D-RMQ matrices are considered different only if their range min-
ima are in different locations for some rectangular range. This implies a lower
bound Ω(n2 log n) for both the number of preprocessing comparisons and the
number of bits required for a data structure capturing the answer to all the
queries. This proves the impossibility of achieving a linear upper bound for the
2D-RMQ problem conjectured by Amir et al. [3]. Table 2 summarizes these
results along with the results of this paper.

1.2 Our Results

We consider the 2D-RMQ problem in the following two models: 1) indexing
model in which the query algorithm has access to the input array A in addition
to the data structure constructed by preprocessing A, called an index ; and 2)
encoding model in which the query algorithm has no access to A and can only
access the data structure constructed by preprocessing A, called an encoding.

In the indexing model, we initiate the study of the trade-off between the
query time and the additional space for the 2D-RMQ problem. We prove the
lower bound trade-off that Ω(c) query time is required if the additional space
is N/c bits, for any c where 1 ≤ c ≤ N . The proof is in a non-uniform cell probe
model [15] which is more powerful than the indexing model. We complement
the lower bound with an upper bound trade-off: using an index of size O(N/c)
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Fig. 1. Two arrays from Cn,c, each one has n/c blocks. In this example c = 18. The
query q2 has different answers for these arrays.

bits we can achieve O(c log2 c) query time. For the indexing model, this is the
first O(N)-bit index which answers queries in O(1) time.

In the encoding model, the only earlier result on the 2D-RMQ problem is
the information-theoretic lower bound of Demaine et al. [10] who showed a lower
bound of Ω(N log n) bits for n by n matrices. We generalize their result to m by n
(rectangular) matrices to show a lower bound of Ω(N log m) bits. We also present
an encoding structure of size O(N · min{m, log n}) bits with O(1) query time.
Note that the upper and lower bounds are not tight for non-constant m = no(1):
the lower bound states that the space requirement per element is Ω(log m) bits,
whereas the upper bound requires O(min{m, log n}) bits per element.

2 Indexing Model

2.1 Lower Bound

In the indexing model, we prove a lower bound for the query time of the 1D-RMQ
problem where the input is a one dimensional array of n elements, and then we
show that the bound also holds for the RMQ problem in any dimension. The
proof is in the non-uniform cell probe model [15]. In this model, computation is
free, and time is counted as the number of cells accessed (probed) by the query
algorithm. The algorithm is also allowed to be non-uniform, i.e., for different
values of input parameter n, we can have different algorithms.

For n and any value of c, where 1 ≤ c ≤ n, we define a set of arrays Cn,c and a
set of queries Q. We w.l.o.g. assume that c divides n. We will argue that for any
1D-RMQ algorithm which has access to an index of size n/c bits (in addition to
the input array A), there exists an array in Cn,c and a query in Q for which the
algorithm is required to perform Ω(c) probes into A.

Definition 1. Let n and c be two integers, where 1 ≤ c ≤ n. The set Cn,c

contains the arrays A[1 · · ·n] such that the elements of A are from the set {0, 1},
and in each block A[(i − 1)c + 1 · · · ic] for all 1 ≤ i ≤ n/c, there is exactly a single
zero element (see Figure 1).

The number of possible data structures of size n/c bits is 2n/c, and the
number of arrays in Cn,c is cn/c. By the pigeonhole principle, for any algorithm G



there exists a data structure DG which is shared by at least ( c
2 )n/c input arrays

in Cn,c. Let CDG
n,c ⊆ Cn,c be the set of these inputs.

Definition 2. Let qi = [(i − 1)c + 1 · · · ic]. The set Q = {qi | 1 ≤ i ≤ n/c}
contains n/c queries, each covering a distinct block of A.

For algorithm G and data structure DG , we define a binary decision tree
capturing the behavior of G on the inputs from CDG

n,c to answer a query q ∈ Q.

Definition 3. Let G be a deterministic algorithm. For each query q ∈ Q, we
define a binary decision tree Tq(DG). Each internal node of Tq(DG) represents a

probe into a cell of the input arrays from CDG
n,c . The left and right edges correspond

to the output of the probe: left for zero and right for one. Each leaf is labeled
with the answer to q.

For each algorithm G, we have defined n/c binary trees depicting the probes

of the algorithm into the inputs from CDG
n,c to answer the n/c queries in Q.

Note that the answers to all these n/c queries uniquely determine the input. We
compose all the n/c binary trees into a single binary tree TQ(DG) in which every
leaf determines a particular input. We first replace each leaf of Tq1

(DG) with the
whole Tq2

(DG), and then replace each leaf of the obtained tree with Tq3
(DG),

and so on. Every leaf of TQ(DG) is labeled with the answers to all the n/c
queries in Q which were replaced on the path from the root to the leaf. Every
two input arrays in CDG

n,c correspond to different leaves of TQ(DG). Otherwise
the answers to all the queries in Q are the same for both the inputs which is a
contradiction. Therefore, the number of leaves of TQ(DG) is at least ( c

2 )n/c, the

minimum number of inputs in CDG
n,c .

We next prune TQ(DG) as follows: First we remove all nodes not reachable

by any input from CDG
n,c . Then we repeatedly replace all nodes of degree one with

their single child. Since the inputs from CDG
n,c correspond to only reachable leaves,

in the pruned tree, the number of leaves becomes equal to the number of inputs
from CDG

n,c which is at least ( c
2 )n/c. In the unpruned tree, the result of a repeated

probe is known already and one child of the node corresponding to the probe
is unreachable. Therefore, on a root to leaf path in the pruned tree, there is no
repeated probe. Every path from the root to a leaf has at most n/c left edges
(zero probes), since the number of zero elements in each input from Cn,c is n/c.
The branches along each of these paths represents a binary sequence of length
at most d containing at most n/c zeros where d is the depth of the pruned tree.
By padding each of these sequences with further 0s and 1s, we can ensure that
each sequence has length exactly d + n/c and contains exactly n/c zeros. The

number of these binary sequences is at most
(

d+n/c
n/c

)

, which becomes an upper

bound for the number of leaves in the pruned tree.

Lemma 1. For all n and c, where 1 ≤ c ≤ n, the worst case number of probes
required to answer a query in Q over the inputs from Cn,c using a data structure
of size n/c bits is Ω(c).



Proof. Comparing the lower and upper bounds from the above discussion for
the number of leaves of TQ(DG), we have

( c

2

)n/c

≤

(

d + n
c

n
c

)

.

By Stirling’s formula, the following is obtained

log
( c

2

)n/c

≤
n

c
log

c

2
≤ log

(

d + n
c

n
c

)

≤
n

c
log

[ (d + n
c )e

n
c

]

,

which implies c/2 ≤ (d+n/c)e
n/c , and therefore d ≥ n( 1

2e − 1
c ). For any arbitrary

algorithm G, the depth d of TQ(DG) equals the sum of the depths of the n/c
binary trees composed into TQ(DG). By the pigeonhole principle, there exists an

input x ∈ CDG
n,c and an i, where 1 ≤ i ≤ n/c, such that the query qi on x requires

at least d/(n/c) = Ω(c) probes into the array A maintaining the input. ⊓⊔

Theorem 1. Any algorithm solving the RMQ problem for an input array of
size N (in any dimension), which uses N/c bits additional space, requires Ω(c)
query time, for any c, where 1 ≤ c ≤ N .

Proof. Lemma 1 gives the lower bound for the 1D-RMQ problem. The proof for
the 2D-RMQ is a simple extension of the proof of Lemma 1. Instead of Cn,c, a
set Cm,n,c1,c2

of matrices is utilized. Each matrix is composed of mn/c submatri-
ces [ic1 + 1 · · · (i + 1)c1]× [jc2 + 1 · · · (j + 1)c2] of size c1 by c2, for 1 ≤ i < m/c1

and 1 ≤ j < n/c2, where c = c1 · c2 (assuming w.l.o.g. that c1 divides m, and c2

divides n). Each submatrix has exactly one zero element, and all the others are
one. There are N/c queries in Q, each one asks for the minimum of each sub-
matrix. As in the proof of Lemma 1, we can argue that there exists a query
requiring Ω(c) probes by utilizing the methods of decision trees, composing and
pruning them, and bounding the number of leaves. The proof can be generalized
straightforwardly to higher dimensional version of the RMQ problem. ⊓⊔

Theorem 2. The 1D-RMQ problem for an input array of size n is solved in O(n)
preprocessing time and optimal O(c) query time using O(n/c) additional bits.

Proof. Partition the input array into n/c blocks of size c. Construct an 1D-RMQ
encoding structure for the list of n/c block minimums (minimum elements of the
blocks) in O(n/c) bits [16]. The query is decomposed into three subqueries. All
the blocks spanned by the query form the middle subquery, which can be an-
swered by querying the O(n/c)-bit data structure in O(1) time and then scanning
the block containing the answer in O(c) time. The remaining part of the query
which includes two subqueries contained in two blocks is answered in O(c) time
by scanning the blocks. ⊓⊔
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Fig. 2. Partitioning the input and building the binary tree structure. The node p is
the LCA of the leaves corresponding to bj+1 and bk−1. The columns c↑ and c↓, which
contain the answers to q↑2 and q↓2 respectively, are found using the Cartesian trees
stored in p. The minimum element in each of the columns c↑ and c↓ is found using the
Cartesian tree constructed for that column.

2.2 Linear Space Optimal Data Structure

Preliminaries A block is a rectangular range in a matrix. Let B be a block of
size m′ by n′. For the block B, the list MinColList[1 · · ·n′] contains the mini-
mum element of each column and MinRowList[1 · · ·m′] contains the minimum
element of each row. Let TopPrefix(B, ℓ) be the set of blocks B[m′/2 − iℓ +
1 · · ·m′/2] × [1 · · ·n′] and BottomPrefix(B, ℓ) be the set of blocks B[m′ − iℓ +
1 · · ·m′]× [1 · · ·n′], for 1 ≤ i ≤ m′/(2ℓ) (assuming w.l.o.g. that m′ is even and ℓ
divides m′/2). If the rows of B (instead of its columns as the above) are divided
by the blocks, then top and bottom denote left and right.

Data Structure and Querying We present an indexing data structure of
size O(N) bits achieving O(1) query time to solve the 2D-RMQ problem. The
input matrix of size m by n is partitioned into blocks B = {b1, . . . , bm/ log m}
of size log m by n. According to these blocks, the query q is divided into sub-
queries q1, q2 and q3 such that w.l.o.g. q1 is contained in bj and q3 is contained
in bk, and q2 spans over bj+1, . . . , bk−1 vertically, where 1 ≤ j, k ≤ m/ log m
(see Figure 2). A binary tree structure is utilized to answer q2. Since q1 and q3

are range minimum queries in the submatrices bj and bk respectively, they are
answered recursively. Lastly, the answers to q1, q2 and q3, which are indices into
three matrix elements, are used to find the index of the smallest element in q.

The binary tree structure has m/ log m leaves, one for each block in B, assum-
ing m/ log m is a power of 2. Each leaf maintains a Cartesian tree for MinColList
of its corresponding block. Each internal node having 2k leaf descendants matches
with a submatrix M composed of 2k consecutive blocks of B corresponding
to the leaf descendants, for 1 ≤ k ≤ m/(2 log m). Note that each of the sets
TopPrefix(M, log m) and BottomPrefix(M, log m) contains k blocks, and each
block corresponds with a MinColList. The internal node maintains 2k Cartesian
trees constructed for these 2k MinColLists.



Let M be the submatrix matched with the lowest common ancestor p of
the two leaves corresponding to bj+1 and bk−1. The subquery q2 is composed

of the top part q↑2 and the bottom part q↓2 , where q↑2 and q↓2 are two blocks
in TopPrefix(M, log m) and BottomPrefix(M, log m) respectively. Two of the

Cartesian trees, maintained in p, are constructed for MinColLists of q↑2 and q↓2 .
These two Cartesian trees are utilized to find two columns containing the an-
swer to q↑2 and q↓2 . The Cartesian trees constructed for these two columns are

utilized to find the answer to q↑2 and q↓2 . Then the answer to q2 is determined by

comparing the smallest element in q↑2 and q↓2 .
In the second level of the recursion, each block of B is partitioned into

blocks of size log m by log n. The recursion continues until the size of each block
is log log m by log log n (i.e. four levels). In the binary tree structures built for
all the four recursion levels, we construct the Cartesian trees for the appropri-
ate MinColLists and MinRowLists respectively. In the second and fourth levels
of recursion, where the binary tree structure gives two rows containing the min-
imum elements of q↑2 and q↓2 , the Cartesian trees constructed for the rows of the

matrix are used to answer q↑2 and q↓2 .
We solve the 2D-RMQ problem for a block of size log log m by log log n

using the table lookup method given by Atallah and Yuan [4]. Their method
preprocesses the block by making at most c′G comparisons, for a constant c′,
where G = log log m · log log n, such that any 2D-RMQ can be answered by
performing four probes into the block. Each block is represented by a block type
which is a binary sequence of length c′G, using the results of the comparisons.
The lookup table has 2c′G rows, one for each possible block type, and G2 columns,
one for each possible query within a block. Each cell of the table contains four
indices to address the four probes into the block. The block types of all the
blocks of size G in the matrix are stored in another table T . The query within a
block is answered by first recognizing the block type using T , and then checking
the lookup table to obtain the four indices. Comparing the results of these four
probes gives the answer to the query [4].

Theorem 3. The 2D-RMQ problem for an m by n matrix of size N = m · n is
solved in O(N) preprocessing time and O(1) query time using O(N) bits addi-
tional space.

Proof. The subquery q2 is answered in O(1) time by using a constant query
time LCA structure [5], querying the Cartesian trees in constant time [16], and
performing O(1) probes into the matrix. The number of recursion levels is four.
In the last level, the subqueries contained in blocks of size G are also answered
in O(1) time by using the lookup table and performing O(1) probes into the
matrix. Therefore the query is answered in O(1) time.

The depth of the binary tree, in the first recursion level, is O(log(m/ log m)).
Each level of the tree has O(m/ log m) Cartesian trees for MinColLists of size n
elements. Since a Cartesian tree of a list of n elements is stored in O(n) bits [16],
the binary tree can be stored in O(n · m/ log m · log(m/ log m)) = O(N) bits.
Since the number of recursion levels is O(1), the binary trees in all the recursion



levels are stored in O(N) bits. The space used by the m + n Cartesian trees
constructed for the columns and rows is O(N) bits. Since G ≤ c′′ log N for a
constant c′′, the size of the lookup table is O(2c′c′′ log NG2 log G) = o(N) bits
when c′′ < 1/c′. The size of table T is O(N/G · log(2c′G)) = O(N) bits. Hence
the total additional space is O(N) bits.

In the binary tree, in the first level of the recursion, each leaf maintains a
Cartesian tree constructed for a MinColList of size n elements. These m/ log m
lists are constructed in O(N) time by scanning the whole matrix. Each MinColList
in the internal nodes is constructed by comparing the elements of two MinColLists
built in the lower level in O(n) time. Therefore constructing these lists, for the
whole tree, takes O(n ·m/ log m · log(m/ log m)) = O(N) time. Since a Cartesian
tree can be constructed in linear time [16], the Cartesian trees in all the nodes
of the binary tree are constructed in O(N) time. The LCA structure is also con-
structed in linear time [5]. Therefore the binary tree is built in O(N) time. Since
the number of recursion levels is O(1), all the binary trees are built in O(N)
time. The lookup table and table T are also constructed in O(N) time [4]. ⊓⊔

2.3 Space Time Trade-off Data Structure

We present an indexing data structure of size O(N/c · log c) bits additional space
solving the 2D-RMQ problem in O(c log c) query time and O(N) preprocess-
ing time, where 1 ≤ c ≤ N . The input matrix is divided into N/c blocks of
size 2i by c/2i, for 0 ≤ i ≤ log c; assuming w.l.o.g. that c is a power of 2. Let Mi

be the matrix of size N/c containing the minimum elements of the blocks of
size 2i by c/2i. Let Di be the linear space data structure of Section 2.2 applied
to the matrix Mi in O(N/c) bits. Each Di handles a different ratio between the
number of rows and the number of columns of the blocks. Note that the matri-
ces Mi are constructed temporarily during the preprocessing and not maintained
in the data structure.

A query q is resolved by answering log c+1 subqueries. Let qi be the subquery
of q spanning the blocks of size 2i by c/2i for 0 ≤ i ≤ log c. The minimum
elements of the blocks spanned by qi assemble a query over Mi which has the
same answer as qi. Therefore, qi is answered by using Di. Note that whenever
the algorithm wants to perform a probe into a cell of Mi, a corresponding block
of size c of the input is searched for the minimum (since Mi is not maintained
in the data structure). The subqueries qi overlap each other. Altogether, they
compose q except for at most c log c elements in each of the four corners of q.
We search these corners for the minimum element. Eventually, we compare the
minimum elements of all the subqueries to find the answer to q (see Figure 3).

Theorem 4. The 2D-RMQ problem for a matrix of size N is solved in O(N)
preprocessing time and O(c log2 c) query time using O(N/c) bits additional space.

Proof. The number of linear space data structures Di is log c + 1. Each Di

requires O(N/c) bits. Therefore, the total additional space is O(log c ·N/c) bits.
The number of subqueries qi is log c + 1. Each qi is answered by using Di

in O(1) query time in addition to the O(1) probes into Mi. Since instead of each
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Fig. 3. Right: The grey area depicts the subqueries of q spanning the blocks of
size 2i by c/2i. Left: The dark area depicts a corner of q which is contained in a block
of size c by c and includes at most c log c elements.

probe into Mi, we perform O(c) probes into the input, the query time to an-
swer qi is O(c). The four corners are searched in O(c log c) time for the minimum
elemenm. In the end, the minimum elements of the subqueries are compared
in O(log c) time to answer q. Consequently, the total query time is O(c log c).

Each Di is constructed in O(N/c) time (Section 2.2) after building the ma-
trix Mi. To be able to make all Mi efficiently, we first construct an O(N)-bit space
data structure of Section 2.2 for the input matrix in O(N) time. Then, Mi is built
in O(N/c) time by querying a block of the input matrix in O(1) time for each ele-
ment of Mi. Therefore, the total preprocessing time is O(log c·N/c+N) = O(N).
Substituting the parameter c by c log c gives the claimed bounds. ⊓⊔

3 Encoding Model

Upper Bound The algorithm described in Section 2.2 can preprocess the m
by n input array A of size N = m · n into a data structure of size O(N) bits
in O(N) time. But the query algorithm in Section 2.2 is required to perform
some probes into the input. Since A is not accessible in the encoding model,
we store another 2D array maintaining the rank of all the N elements us-
ing O(N log n) bits. Whenever the algorithm wants to perform a probe into A,
it does it into the rank matrix. Therefore the problem can be solved in the en-
coding model using O(N log n) preprocessing time (to sort A) and O(1) query
time using O(N log n) bits space.

Another solution in the encoding model is the following. For each of the n
columns of A, we build a 1D-RMQ structure using O(m) bits space [16], in
total using O(mn) = O(N) bits space. Furthermore, for each possible pair
of rows (i1, i2), i1 ≤ i2, we construct an 1D-RMQ structure for MinColList
of A[i1 · · · i2] × [1 · · ·n] using O(n) bits space; in total using O(m2n) = O(Nm)
bits. The column j containing the answer to a query q = [i1 · · · i2] × [j1 · · · j2]
is found by querying for the range [j1 · · · j2] in the 1D-RMQ structure for the
rows given by the pair (i1, i2). The query q is answered by querying for the
range [i1 · · · i2] in the 1D-RMQ structure for column j. Since both 1D-RMQ
queries take O(1) time, the total query time is O(1).
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Fig. 4. The elements in the gray area are greater than the elements in the white area.
The dotted rectangle denotes the query q which has different answers for A1 and A2.

Selecting the most space efficient solution of the above two solutions gives
an encoding structure of size O(N · min{m, log n}) bits with O(1) query time.

Lower Bound We present a set of Ω((m!)n) different 2D arrays, i.e., for every
pair of the arrays there exists a 2D-RMQ with different answers. The elements of
the arrays are from the set {1, . . . ,mn}. Every array of the set has two parts A′ =
A[1 · · ·m/2] × [1 · · ·n′] and A′′ containing all the anti-diagonals of length m/2
within the block A[m/2 + 1 · · ·m]× [n′ + 1 · · ·n] where n′ = ⌊(n−m/2 + 1)/2⌋,
assuming w.l.o.g. that m is even (see Figure 4). These two parts contain the
smallest elements of the array, i.e., {1, . . . , mn′}. From this set, the odd numbers
are placed in A′ in increasing order from left to right and then top to bottom,
i.e. A′[i, j] = 2((i−1)n′+j)−1. The even numbers are placed in A′′ such that the
elements of each anti-diagonal are not sorted but are larger than the elements
of the anti-diagonals to the right. The total number of arrays constructed by
permuting the elements of each anti-diagonal of A′′ is (m

2 !)n′

.

For any two matrices A1 and A2 in the set, there exists an index [i2, j2]
in the anti-diagonals of A′′ such that A1[i2, j2] 6= A2[i2, j2]. Let [i1, j1] be the
index of an arbitrary odd number between A1[i2, j2] and A2[i2, j2]. Since the
query q = [i1 · · · i2] × [j1 · · · j2] has different answers for A1 and A2, it follows
that any two matrices in the set are different (see Figure 4).

Theorem 5. The minimum space to store an encoding data structure for the
2D-RMQ problem is Ω(mn log m) bits, assuming that m ≤ n.

Proof. Since the number of different arrays in the set is (m
2 !)n′

, the space for a

data structure encoding these arrays is Ω(log(m
2 !)n′

) = Ω(mn log m) bits. ⊓⊔
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