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Abstract. Local image features or interest points provide compact and abstract representations of patterns in an

image. In this paper, we extend the notion of spatial interest points into the spatio-temporal domain and show how

the resulting features often reflect interesting events that can be used for a compact representation of video data as

well as for interpretation of spatio-temporal events.

To detect spatio-temporal events, we build on the idea of the Harris and Förstner interest point operators and detect

local structures in space-time where the image values have significant local variations in both space and time. We

estimate the spatio-temporal extents of the detected events by maximizing a normalized spatio-temporal Laplacian

operator over spatial and temporal scales. To represent the detected events, we then compute local, spatio-temporal,

scale-invariant N -jets and classify each event with respect to its jet descriptor. For the problem of human motion

analysis, we illustrate how a video representation in terms of local space-time features allows for detection of

walking people in scenes with occlusions and dynamic cluttered backgrounds.
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1. Introduction

Analyzing and interpreting video is a growing topic in

computer vision and its applications. Video data con-

tains information about changes in the environment and

is highly important for many visual tasks including nav-

igation, surveillance and video indexing.

Traditional approaches for motion analysis mainly

involve the computation of optic flow (Barron et al.,

1994) or feature tracking (Smith and Brady, 1995;

Blake and Isard, 1998). Although very effective for

many tasks, both of these techniques have limitations.

Optic flow approaches mostly capture first-order mo-

tion and may fail when the motion has sudden changes.

Interesting solutions to this problem have been pro-

posed (Niyogi, 1995; Fleet et al., 1998; Hoey and Little,

2000). Feature trackers often assume a constant ap-

pearance of image patches over time and may hence

fail when the appearance changes, for example, in sit-

uations when two objects in the image merge or split.

Model-based solutions for this problem have been pre-

sented by (Black and Jepson, 1998).

Image structures in video are not restricted to con-

stant velocity and/or constant appearance over time. On

the contrary, many interesting events in video are char-

acterized by strong variations in the data along both

the spatial and the temporal dimensions. For example,

consider a scene with a person entering a room, ap-

plauding hand gestures, a car crash or a water splash;

see also the illustrations in Fig. 1.

More generally, points with non-constant motion

correspond to accelerating local image structures

that may correspond to accelerating objects in the

world. Hence, such points can be expected to contain

information about the forces acting in the physical en-

vironment and changing its structure.
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Figure 1. Result of detecting the strongest spatio-temporal interest points in a football sequence with a player heading the ball (a) and in a

hand clapping sequence (b). From the temporal slices of space-time volumes shown here, it is evident that the detected events correspond to

neighborhoods with high spatio-temporal variation in the image data or “space-time corners”.

In the spatial domain, points with a significant lo-

cal variation of image intensities have been exten-

sively investigated in the past (Förstner and Gülch,

1987; Harris and Stephens, 1988; Lindeberg, 1998;

Schmid et al., 2000). Such image points are frequently

referred to as “interest points” and are attractive due

to their high information contents and relative sta-

bility with respect to perspective transformations of

the data. Highly successful applications of interest

points have been presented for image indexing (Schmid

and Mohr, 1997), stereo matching (Tuytelaars and

Van Gool, 2000; Mikolajczyk and Schmid, 2002; Tell

and Carlsson, 2002), optic flow estimation and track-

ing (Smith and Brady, 1995; Bretzner and Lindeberg,

1998), and object recognition (Lowe, 1999; Hall et al.,

2000; Fergus et al., 2003; Wallraven et al., 2003).

In this paper, we extend the notion of interest points

into the spatio-temporal domain and show that the re-

sulting local space-time features often correspond to

interesting events in video data (see Fig. 1). In par-

ticular, we aim at a direct scheme for event detection

and interpretation that does not require feature track-

ing, segmentation nor computation of optic flow. In the

considered sample application we show that the pro-

posed type of features can be used for sparse coding of

video information that in turn can be used for interpret-

ing video scenes such as human motion in situations

with complex and non-stationary background.

To detect spatio-temporal interest points, we build on

the idea of the Harris and Förstner interest point oper-

ators (Harris and Stephens, 1988; Förstner and Gülch,

1987) and describe the detection method in Section 2.

As events often have characteristic extents in both

space and time (Koenderink, 1988; Lindeberg and

Fagerström, 1996; Florack, 1997; Lindeberg, 1997;

Chomat et al., 2000b; Zelnik-Manor and Irani, 2001),

we investigate the behavior of interest points in spatio-

temporal scale-space and adapt both the spatial and the

temporal scales of the detected features in Section 3.

In Section 4, we show how the neighborhoods of inter-

est points can be described in terms of spatio-temporal

derivatives and then be used to distinguish different

events in video. In Section 5, we consider a video repre-

sentation in terms of classified spatio-temporal interest

points and demonstrate how this representation can be

efficient for the task of video registration. In particular,

we present an approach for detecting walking people

in complex scenes with occlusions and dynamic back-

ground. Finally, Section 6 concludes the paper with the

summary and discussion.

2. Spatio-Temporal Interest Point Detection

2.1. Interest Points in the Spatial Domain

In the spatial domain, we can model an image f sp :

R
2 �→ R by its linear scale-space representation

(Witkin, 1983; Koenderink and van Doorn, 1992;

Lindeberg, 1994; Florack, 1997) Lsp: R
2 × R+ �→ R

Lsp
(

x, y; σ 2
l

)

= gsp
(

x, y; σ 2
l

)

∗ f sp(x, y), (1)
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defined by the convolution of f sp with Gaussian ker-

nels of variance σ 2
l

gsp
(

x, y; σ 2
l

)

=
1

2πσ 2
l

exp
(

− (x2 + y2)
/

2σ 2
l

)

. (2)

The idea of the Harris interest point detector is to find

spatial locations where f sp has significant changes in

both directions. For a given scale of observation σ 2
l ,

such points can be found using a second moment matrix

integrated over a Gaussian window with variance σ 2
i

(Förstner and Gülch, 1987; Bigün et al., 1991; Gårding

and Lindeberg, 1996):

µsp
(

·; σ 2
l , σ 2

i

)

= gsp
(

·; σ 2
i

)

∗
((

∇L
(

·; σ 2
l

))(

∇L
(

·; σ 2
l

))T )

= gsp
(

·; σ 2
i

)

∗

(

(

L
sp
x

)2
L

sp
x L

sp
y

L
sp
x L

sp
y

(

L
sp
y

)2

)

(3)

where ‘∗’ denotes the convolution operator, and L
sp
x

and L
sp
y are Gaussian derivatives computed at local

scale σ 2
l according to L

sp
x = ∂x (gsp(·; σ 2

l ) ∗ f sp(·))

and L
sp
y = ∂y(gsp(·; σ 2

l ) ∗ f sp(·)). The second mo-

ment descriptor can be thought of as the covariance

matrix of a two-dimensional distribution of image ori-

entations in the local neighborhood of a point. Hence,

the eigenvalues λ1, λ2, (λ1 ≤ λ2) of µsp constitute

descriptors of variations in f sp along the two image

directions. Specifically, two significantly large values

of λ1, λ2 indicate the presence of an interest point.

To detect such points, Harris and Stephens (1988)

proposed to detect positive maxima of the corner

function

H sp = det(µsp) − k trace2(µsp)

= λ1λ2 − k(λ1 + λ2)2. (4)

At the positions of the interest points, the ratio of the

eigenvalues α = λ2/λ1 has to be high. From (4) it fol-

lows that for positive local maxima of H sp, the ratio α

has to satisfy k ≤ α/(1+α)2. Hence, if we set k = 0.25,

the positive maxima of H will only correspond to ide-

ally isotropic interest points with α = 1, i.e. λ1 = λ2.

Lower values of k allow us to detect interest points with

more elongated shape, corresponding to higher values

of α. A commonly used value of k in the literature is

k = 0.04 corresponding to the detection of points with

α < 23.

The result of detecting Harris interest points in an

outdoor image sequence of a walking person is pre-

sented at the bottom row of Fig. 8.

2.2. Interest Points in the Spatio-Temporal Domain

In this section, we develop an operator that responds

to events in temporal image sequences at specific lo-

cations and with specific extents in space-time. The

idea is to extend the notion of interest points in the

spatial domain by requiring the image values in local

spatio-temporal volumes to have large variations along

both the spatial and the temporal directions. Points with

such properties will correspond to spatial interest points

with distinct locations in time corresponding to lo-

cal spatio-temporal neighborhoods with non-constant

motion.

To model a spatio-temporal image sequence, we use

a function f : R
2 × R → R and construct its linear

scale-space representation L: R
2 × R × R

2
+ �→ R by

convolution of f with an anisotropic Gaussian kernel1

with independent spatial variance σ 2
l and temporal vari-

ance τ 2
l

L
(

·; σ 2
l , τ 2

l

)

= g
(

·; σ 2
l , τ 2

l

)

∗ f (·), (5)

where the spatio-temporal separable Gaussian kernel

is defined as

g
(

x, y, t ; σ 2
l , τ 2

l

)

=
1

√

(2π )3σ 4
l τ 2

l

× exp
(

− (x2 + y2)
/

2σ 2
l − t2

/

2τ 2
l

)

. (6)

Using a separate scale parameter for the temporal do-

main is essential, since the spatial and the temporal ex-

tents of events are in general independent. Moreover,

as will be illustrated in Section 2.3, events detected us-

ing our interest point operator depend on both the spa-

tial and the temporal scales of observation and, hence,

require separate treatment of the corresponding scale

parameters σ 2
l and τ 2

l .

Similar to the spatial domain, we consider a spatio-

temporal second-moment matrix, which is a 3-by-3 ma-

trix composed of first order spatial and temporal deriva-

tives averaged using a Gaussian weighting function
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g(·; σ 2
i , τ 2

i )

µ = g
(

·; σ 2
i , τ 2

i

)

∗







L2
x L x L y L x L t

L x L y L2
y L y L t

L x L t L y L t L2
t






, (7)

where we here relate the integration scales σ 2
i and τ 2

i to

the local scales σ 2
l and τ 2

l according to σ 2
i = sσ 2

l and

τ 2
i = sτ 2

l . The first-order derivatives are defined as

L x

(

·; σ 2
l , τ 2

l

)

= ∂x (g ∗ f ),

L y

(

·; σ 2
l , τ 2

l

)

= ∂y(g ∗ f ),

L t

(

·; σ 2
l , τ 2

l

)

= ∂t (g ∗ f ).

To detect interest points, we search for regions in f

having significant eigenvalues λ1, λ2, λ3 of µ. Among

different approaches to find such regions, we propose

here to extend the Harris corner function (4) defined

for the spatial domain into the spatio-temporal domain

by combining the determinant and the trace of µ as

follows:

H = det(µ) − k trace3(µ)

= λ1λ2λ3 − k(λ1 + λ2 + λ3)3. (8)

To show how positive local maxima of H correspond to

points with high values of λ1, λ2, λ3 (λ1 ≤ λ2 ≤ λ3),

we define the ratios α = λ2/λ1 and β = λ3/λ1 and

re-write H as

H = λ3
1(αβ − k(1 + α + β)3).

From the requirement H ≥ 0, we get k ≤ αβ/(1+α+

β)3 and it follows that k assumes its maximum possi-

ble value k = 1/27 when α = β = 1. For sufficiently

large values of k, positive local maxima of H corre-

spond to points with high variation of the image values

along both the spatial and the temporal directions. In

particular, if we set the maximum value of α, β to 23 as

in the spatial domain, the value of k to be used in H (8)

will then be k ≈ 0.005. Thus, spatio-temporal interest

points of f can be found by detecting local positive

spatio-temporal maxima in H .

2.3. Experimental Results for Synthetic Data

In this section, we illustrate the detection of spatio-

temporal interest points on synthetic image sequences.

For clarity of presentation, we show the spatio-

temporal data as 3-D space-time plots, where the orig-

inal signal is represented by a threshold surface, while

the detected interest points are illustrated by ellipsoids

with positions corresponding to the space-time location

of the interest point and the length of the semi-axes pro-

portional to the local scale parameters σl and τl used in

the computation of H .

Figure 2(a) shows a sequence with a moving corner.

The interest point is detected at the moment in time

when the motion of the corner changes direction. This

type of event occurs frequently in natural sequences,

such as sequences of articulated motion. Note that ac-

cording to the definition of spatio-temporal interest

points, image structures with constant motion do not

give rise to responses of the detector. Other typical

types of events that can be detected by the proposed

method are splits and unifications of image structures.

In Fig. 2(b), the interest point is detected at the mo-

ment and the position corresponding to the collision of

a ball and a wall. Similarly, interest points are detected

at the moment of collision and bouncing of two balls

as shown in Fig. 2(c)–(d). Note, that different types of

events are detected depending on the scale of observa-

tion.

To further emphasize the importance of the spatial

and the temporal scales of observation, let us consider

an oscillating signal with different spatial and tem-

poral frequencies defined by f (x, y, t) = sgn(y −

sin(x4) sin(t4)), where sgn(u) = 1 for u > 0 and

sgn(u) = −1 for u < 0 (see Fig. 3). As can be

seen from the illustration, the result of detecting the

strongest interest points highly depends on the choice

of the scale parameters σ 2
l and τ 2

l . We can observe that

space-time structures with long temporal extents are

detected for large values of τ 2
l while short events are

preferred by the detector with small values of τ 2
l . Sim-

ilarly, the spatial extent of the events is related to the

value of the spatial scale parameter σ 2
l .

From the presented examples, we can conclude

that a correct selection of temporal and spatial scales

is crucial when capturing events with different spa-

tial and temporal extents. Moreover, estimating the

spatio-temporal extents of events is important for

their further interpretation. In the next section, we

will present a mechanism for simultaneous esti-

mation of spatio-temporal scales. This mechanism

will then be combined with the interest point de-

tector resulting in scale-adapted interest points in

Section 3.2.
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Figure 2. Results of detecting spatio-temporal interest points on synthetic image sequences. (a) A moving corner; (b) A merge of a ball and

a wall; (c) Collision of two balls with interest points detected at scales σ 2
l = 8 and τ 2

l = 8; (d) the same signal as in (c) but with the interest

points detected at coarser scales σ 2
l = 16 and τ 2

l = 16.

3. Spatio-Temporal Scale Adaptation

3.1. Scale Selection in Space-Time

During recent years, the problem of automatic scale

selection has been addressed in several different ways,

based on the maximization of normalized derivative

expressions over scale, or the behavior of entropy mea-

sures or error measures over scales (see Lindeberg and

Bretzner (2003) for a review). To estimate the spatio-

temporal extent of an event in space-time, we follow

works on local scale selection proposed in the spatial

domain by Lindeberg (1998) as well as in the temporal

domain (Lindeberg, 1997). The idea is to define a dif-

ferential operator that assumes simultaneous extrema

over spatial and temporal scales that are characteristic

for an event with a particular spatio-temporal location.

For the purpose of analysis, we will first study a pro-

totype event represented by a spatio-temporal Gaussian

blob

f
(

x, y, t ; σ 2
0 , τ 2

0

)

=
1

√

(2π )3σ 4
l τ 2

l

× exp
(

−(x2 + y2)
/

2σ 2
0 − t2

/

2τ 2
0

)

with spatial variance σ 2
0 and temporal variance τ 2

0

(see Fig. 4(a)). Using the semi-group property of the

Gaussian kernel, it follows that the scale-space repre-

sentation of f is

L(·; σ 2, τ 2) = g(·; σ 2, τ 2) ∗ f
(

·; σ 2
0 , τ 2

0

)

= g
(

·; σ 2
0 + σ 2, τ 2

0 + τ 2
)

.
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Figure 3. Results of detecting interest point at different spatial and temporal scales for a synthetic sequence with impulses having varying

extents in space and time. The extents of the detected events roughly corresponds to the scale parameters σ 2
l and τ 2

l used for computing H (8).

To recover the spatio-temporal extent (σ0, τ0) of f , we

consider second-order derivatives of L normalized by

the scale parameters as follows

L xx,norm = σ 2aτ 2b L xx ,

L yy,norm = σ 2aτ 2b L yy,

L t t,norm = σ 2cτ 2d L t t . (9)

All of these entities assume local extrema over space

and time at the center of the blob f . Moreover, depend-

ing on the parameters a, b and c, d , they also assume

local extrema over scales at certain spatial and temporal

scales, σ̃ 2 and τ̃ 2.

The idea of scale selection we follow here is to de-

termine the parameters a, b, c, d such that L xx,norm ,

L yy,norm and L t t,norm assume extrema at scales σ̃ 2 = σ 2
0

and τ̃ 2 = τ 2
0 . To find such extrema, we differentiate the

expressions in (9) with respect to the spatial and the

temporal scale parameters. For the spatial derivatives

we obtain the following expressions at the center of the

blob

∂

∂σ 2
[L xx,norm(0, 0, 0; σ 2, τ 2)]

= −
aσ 2 − 2σ 2 + aσ 2

0
√

(2π )3
(

σ 2
0 + σ 2

)6(
τ 2

0 + τ 2
)

σ 2(a−1)τ 2b

(10)
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Figure 4. (a) A Spatio-temporal Gaussian blob with spatial variance σ 2
0 = 4 and temporal variance τ 2

0 = 16; (b)–(c) derivatives of ∇2
norm L

with respect to scales. The zero-crossings of (∇2
norm L)′

σ 2 and (∇2
norm L)′

τ2 indicate extrema of ∇2
norm L at scales corresponding to the spatial and

the temporal extents of the blob.

∂

∂τ 2
[L xx,norm(0, 0, 0; σ 2, τ 2)]

= −
2bτ 2

0 + 2bτ 2 − τ 2

√

25π3
(

σ 2
0 + σ 2

)4(
τ 2

0 + τ 2
)3

τ 2(b−1)σ 2a .

(11)

By setting these expressions to zero, we obtain the fol-

lowing simple relations for a and b

aσ 2 − 2σ 2 + aσ 2
0 = 0, 2bτ 2

0 + 2bτ 2 − τ 2 = 0

which after substituting σ 2 = σ 2
0 and τ 2 = τ 2

0 lead

to a = 1 and b = 1/4. Similarly, differentiating the

second-order temporal derivative

∂

∂σ 2
[L t t,norm(0, 0, 0; σ 2, τ 2)]

= −
cσ 2 − σ 2 + cσ 2

0
√

(2π )3(σ 2
0 + σ 2)4(τ 2

0 + τ 2)3

σ 2(c−1)τ 2d

(12)

∂

∂τ 2
[L t t,norm(0, 0, 0; σ 2, τ 2)]

= −
2dτ 2

0 + 2dτ 2 − 3τ 2

√

25π3
(

σ 2
0 + σ 2

)2(
τ 2

0 + τ 2
)5

τ 2(d−1)σ 2c

(13)

leads to the expressions

cσ 2 − 2σ 2 + cσ 2
0 = 0, 2dτ 2

0 + 2dτ 2 − τ 2 = 0

which after substituting σ 2 = σ 2
0 and τ 2 = τ 2

0 result in

c = 1/2 and d = 3/4.

The normalization of derivatives in (9) guarantees

that all these partial derivative expressions assume local

space-time-scale extrema at the center of the blob f and

at scales corresponding to the spatial and the temporal

extents of f , i.e. σ = σ0 and τ = τ0. From the sum of

these partial derivatives, we then define a normalized

spatio-temporal Laplace operator according to

∇2
norm L = L xx,norm + L yy,norm + L t t,norm

= σ 2τ 1/2(L xx + L yy) + στ 3/2L t t . (14)
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Figures 4(b) and (c) show derivatives of this opera-

tor with respect to the scale parameters evaluated at the

center of a spatio-temporal blob with spatial variance

σ 2
0 = 4 and temporal variance τ 2

0 = 16. The zero-

crossings of the curves verify that ∇2
norm L assumes ex-

trema at the scales σ 2 = σ 2
0 and τ 2 = τ 2

0 . Hence, the

spatio-temporal extent of the Gaussian prototype can be

estimated by finding the extrema of ∇2
norm L over both

spatial and temporal scales. In the following section,

we will use this operator for estimating the extents of

other spatio-temporal structures, in analogy with pre-

vious work of using the normalized Laplacian operator

as a general tool for estimating the spatial extent of

image structures in the spatial domain.

3.2. Scale-Adapted Space-Time Interest Points

Local scale estimation using the normalized Laplace

operator has shown to be very useful in the spatial

domain (Lindeberg, 1998; Almansa and Lindeberg,

2000; Chomat et al., 2000a). In particular, Mikolajczyk

and Schmid (2001) combined the Harris interest point

operator with the normalized Laplace operator and de-

rived a scale-invariant Harris-Laplace interest point de-

tector. The idea is to find points in scale-space that are

both spatial maxima of the Harris function H sp (4) and

extrema over scale of the scale-normalized Laplace op-

erator in space.

Figure 5. Algorithm for scale adaption of spatio-temporal interest points.

Here, we extend this idea and detect interest points

that are simultaneous maxima of the spatio-temporal

corner function H (8) over space and time (x, y, t)

as well as extrema of the normalized spatio-temporal

Laplace operator ∇2
norm L (14) over scales (σ 2, τ 2). One

way of detecting such points is to compute space-time

maxima of H for each spatio-temporal scale level and

then to select points that maximize (∇2
norm L)2 at the

corresponding scale. This approach, however, requires

dense sampling over the scale parameters and is there-

fore computationally expensive.

An alternative we follow here, is to detect interest

points for a set of sparsely distributed scale values and

then to track these points in the spatio-temporal scale-

time-space towards the extrema of ∇2
norm L . We do this

by iteratively updating the scale and the position of the

interest points by (i) selecting the neighboring spatio-

temporal scale that maximizes (∇2
norm L)2 and (ii) re-

detecting the space-time location of the interest point at

a new scale. Thus, instead of performing a simultaneous

maximization of H and ∇2
norm L over five dimensions

(x, y, t, σ 2, τ 2), we implement the detection of local

maxima by splitting the space-time dimensions (x, y, t)

and scale dimensions (σ 2, τ 2) and iteratively optimiz-

ing over the subspaces until the convergence has been

reached.2 The corresponding algorithm is presented in

Fig. 5.

The result of scale-adaptation of interest points for

the spatio-temporal pattern in Fig. 3 is shown in Fig. 6.
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Figure 6. The result of scale-adaptation of spatio-temporal interest

points computed from a space-time pattern of the form f (x, y, t) =

sgn(y − sin(x4) ∗ sin(t4)). The interest points are illustrated as el-

lipsoids showing the selected spatio-temporal scales overlayed on a

surface plot of the intensity landscape.

As can be seen, the chosen scales of the adapted in-

terest points match the spatio-temporal extents of the

corresponding structures in the pattern.

It should be noted, however, that the presented algo-

rithm has been developed for processing pre-recorded

Figure 7. Results of detecting spatio-temporal interest points from the motion of the legs of a walking person. (a) 3-D plot with a thresholded

level surface of a leg pattern (here shown upside down to simplify interpretation) and the detected interest points illustrated by ellipsoids; (b)

spatio-temporal interest points overlayed on single frames in the original sequence.

video sequences. In real-time situations, when us-

ing causal scale-space representation based on re-

cursive temporal filters (Lindeberg and Fagerström,

1996; Lindeberg, 2002), only a fixed set of discrete

temporal scales is available at any moment. In that

case an approximate estimate of temporal scale can

still be found by choosing interest points that maxi-

mize (∇2
norm L)2 in a local neighborhood of the spatio-

temporal scale-space; see also (Lindeberg, 1997) for a

treatment of automatic scale selection for time-causal

scale-spaces.

3.3. Experiments

In this section, we investigate the performance of the

proposed scale-adapted spatio-temporal interest point

detector applied to real image sequences. In the first

example, we consider a sequence of a walking person

with non-constant image velocities due to the oscil-

lating motion of the legs. As can be seen in Fig. 7,

the spatio-temporal image pattern gives rise to stable

interest points. Note that the detected interest points

reflect well-localized events in both space and time,

corresponding to specific space-time structures of the

leg. From the space-time plot in Fig. 7(a), we can
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Figure 8. Top: Results of spatio-temporal interest point detection for a zoom-in sequence of a walking person. The spatial scale of the detected

points (corresponding to the size of circles) matches the increasing spatial extent of the image structures and verifies the invariance of the interest

points with respect to changes in spatial scale. Bottom: Pure spatial interest point detector (here, Harris-Laplace, Mikolajczyk and Schmid, 2001)

selects both moving and stationary points in the image sequence.

also observe how the selected spatial and temporal

scales of the detected features roughly match the spatio-

temporal extents of the corresponding image structures.

The top rows of Fig. 8 show interest points detected

in an outdoor sequence with a walking person and a

zooming camera. The changing values of the selected

spatial scales (illustrated by the size of the circles) il-

lustrate the invariance of the method with respect to

spatial scale changes of the image structures. Note that

besides events in the leg pattern, the detector finds spu-

rious points due to the non-constant motion of the coat

and the arms. Image structures with constant motion in

the background, however, do not result in the response

of the detector. The pure spatial interest operator3 on

the contrary gives strong responses in the static back-

ground as shown at the bottom row of Fig. 8.

The third example explicitly illustrates how the pro-

posed method is able to estimate the temporal extent

of detected events. Figure 9 shows a person making

hand-waving gestures with a high frequency on the left

and a low frequency on the right. The distinct interest

points are detected at the moments and at the spatial po-

sitions where the palm of a hand changes its direction

of motion. Whereas the spatial scale of the detected

interest points remains constant, the selected temporal

scale depends on the frequency of the wave pattern.

The high frequency pattern results in short events and

gives rise to interest points with small temporal extent

(see Fig. 9(a)). Correspondingly, hand motions with

low frequency result in interest points with long tem-

poral extent as shown in Fig. 9(b).

4. Classification of Events

The detected interest points have significant variations

of image values in a local spatio-temporal neighbor-

hood. To differentiate events from each other and from

noise, one approach is to compare local neighbor-

hoods and assign points with similar neighborhoods

to the same class of events. A similar approach has

proven to be highly successful in the spatial domain for

the task of image representation (Malik et al., 1999)
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Figure 9. Result of interest point detection for a sequence with waving hand gestures: (a) Interest points for hand movements with high

frequency; (b) Interest points for hand movements with low frequency.

indexing (Schmid and Mohr, 1997) and recogni-

tion (Hall et al., 2000; Weber et al., 2000; Leung and

Malik, 2001). In the spatio-temporal domain, local de-

scriptors have been previously used by Chomat et al.

(2000b) and others.

To describe a spatio-temporal neighborhood, we

consider normalized spatio-temporal Gaussian deriva-

tives defined as

L xm yn tk = σ m+nτ k(∂xm yn tk g) ∗ f, (15)

computed at the scales used for detecting the corre-

sponding interest points. The normalization with re-

spect to scale parameters guarantees the invariance of

the derivative responses with respect to image scalings

in both the spatial domain and the temporal domain.

Using derivatives, we define event descriptors from

the third order local jet4 (Koenderink and van Doorn,

1987) computed at spatio-temporal scales determined

from the detection scales of the corresponding interest

points

j = (L x , L y, L t , L xx , . . . , L t t t )
∣

∣

∣

σ 2=σ̃ 2
i ,τ 2=τ̃ 2

i

(16)

To compare two events, we compute the Mahalanobis

distance between their descriptors as

d2( j1, j2) = ( j1 − j2)�−1( j1 − j2)T , (17)

where � is a covariance matrix corresponding to the

typical distribution of interest points in training data.

To detect similar events in the data, we apply

k-means clustering (Duda et al., 2001) in the space of

point descriptors and detect groups of points with sim-

ilar spatio-temporal neighborhoods. Thus clustering of

spatio-temporal neighborhoods is similar to the idea

of textons (Malik et al., 1999) used to describe image

texture as well as to detect object parts for spatial recog-

nition (Weber et al., 2000). Given training sequences

with periodic motion, we can expect repeating events

to give rise to populated clusters. On the contrary, spo-

radic interest points can be expected to be sparsely dis-

tributed over the descriptor space giving rise to weakly

populated clusters. To test this idea we applied k-means

clustering with k = 15 to the sequence of a walking

person in the upper row of Fig. 11. We found out that

the four most densely populated clusters c1, . . . , c4 in-

deed corresponded to stable interest points of the gait

pattern. Local spatio-temporal neighborhoods of these

points are shown in Fig. 10, where we can confirm the

similarity of patterns inside the clusters and their dif-

ference between clusters.

To represent characteristic repetitive events in video,

we compute cluster means mi = 1
ni

∑ni

k=1 jk for each

significant cluster ci consisting of ni points. Then,

in order to classify an event on an unseen sequence,

we assign the detected point to the cluster ci that

minimizes the distance d(mi , j0) (17) between the jet

of the interest point j0 and the cluster mean mi . If

the distance is above a threshold, the point is clas-

sified as background. An application of this classifi-

cation scheme is demonstrated in the second row of

Fig. 11. As can be seen, most of the points corre-

sponding to the gait pattern are correctly classified,

while the other interest points are discarded. Observe

that the person in the second sequence of Fig. 11
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Figure 10. Local spatio-temporal neighborhoods of interest points corresponding to the first four most populated clusters obtained from a

sequence of walking person.

Figure 11. Interest points detected for sequences of walking persons. First row: the result of clustering spatio-temporal interest points in training

data. The labelled points correspond to the four most populated clusters; Second row: the result of classifying interest points with respect to the

clusters found in the first sequence.
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Figure 12. Matching of spatio-temporal data features with model features: (a) Features detected from the data sequence over a time interval

corresponding to three periods of the gait cycle; (b) Model features minimizing the distance to the features in (a); (c) Model features and data

features overlaid. The estimated silhouette overlayed on the current frame confirms the correctness of the method.

undergoes significant size changes in the image. Due

to the scale-invariance of the interest points as well as

their jet responses, the size transformations do not ef-

fect neither the result of event detection nor the result of

classification.

5. Application to Video Interpretation

In this section, we illustrate how a sparse representa-

tion of video sequences by classified spatio-temporal

interest points can be used for video interpretation. We

consider the problem of detecting walking people and

estimating their poses when viewed from the side in

outdoor scenes. Such a task is complicated, since the

variations in appearance of people together with the

variations in the background may lead to ambiguous

interpretations. Human motion is a strong cue that has

been used to resolve this ambiguity in a number of pre-

vious works. Some of the works rely on pure spatial

image features while using sophisticated body mod-

els and tracking schemes to constrain the interpreta-

tion (Baumberg and Hogg, 1996; Bregler and Malik,

1998; Sidenbladh et al., 2000). Other approaches use

spatio-temporal image cues such as optical flow (Black

et al., 1997) or motion templates (Baumberg and Hogg,

1996; Efros et al., 2003). The work of Niyogi and

Adelson (1994) concerns the structure of the spatio-

temporal gait pattern and is closer to ours.

The idea of the following approach is to represent

both the model and the data using local and discrimi-

native spatio-temporal features and to match the model

by matching its features to the correspondent fea-

tures of the data inside a spatio-temporal window (see

Fig. 12).

5.1. Walking Model

To obtain a model of a walking person, we consider

the upper sequence in Fig. 11 and manually select a

time interval (t0, t0 + T ) corresponding to the period

T of the gait pattern. Then, given n features f m
i =

(xm
i , ym

i , tm
i , σ m

i , τm
i , cm

i ), i = 1, . . . , n (m stands for

model) defined by the positions (xm
i , ym

i , tm
i ), scales

(σ m
i , τm

i ) and classes cm
i of interest points detected in

the selected time interval, i.e. tm
i ∈ (t0, t0 + T ), we

define the walking model by a set of periodically re-

peating features M = { fi + (0, 0, kT, 0, 0, 0, 0) | i =

1, . . . , n, k ∈ Z}. Furthermore, to account for varia-

tions of the position and the size of a person in the

image, we introduce a state for the model determined

by the vector X = (x, y, θ, s, ξ, vx , vy, vs). The com-

ponents of X describe the position of the person in the

image (x, y), his size s, the frequency of the gait ξ ,

the phase of the gait cycle θ at the current time mo-

ment as well as the temporal variations (vx , vy, vs) of

(x, y, s); vx and vy describe the velocity in the image

domain, while vs describes how fast size changes oc-

cur. Given the state X , the parameters of each model

feature f ∈ M transform according to

x̃m = x + sxm + ξvx (tm + θ ) + sξ xmvs(tm + θ )

ỹm = y + sym + ξvy(tm + θ ) + sξ ymvs(tm + θ )

t̃m = ξ (tm + θ )
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σ̃ m = sσ m + vssσ m(tm + θ ) (18)

τ̃m = ξτm

c̃m = cm

It follows that this type of scheme is able to handle

translations and uniform rescalings in the image do-

main as well as uniform rescalings in the temporal do-

main. Hence, it allows for matching of patterns with

different image velocities as well as with different fre-

quencies over time.

To estimate the boundary of the person, we extract

silhouettes S = {x s, ys, θ s | θ s = 1, . . . , T } on the

model sequence (see Fig. 11) one for each frame cor-

responding to the discrete value of the phase parameter

θ . The silhouette is used here only for visualization pur-

pose and allows us to approximate the boundary of the

person in the current frame using the model state X and

a set of points {(x s, ys, θ s) ∈ S | θ s = θ} transformed

according to x̃ s = sx s + x , ỹs = sys + y.

5.2. Model Matching

Given a model state X , a current time t0, a length

of the time window tw, and a set of data features

D = { f d = (xd , yd , td , σ d , τ d , cd ) | td ∈ (t0, t0 − tw)}

detected from the recent time window of the data se-

quence, the match between the model and the data is

defined by a weighted sum of distances h between the

model features f m
i and the data features f d

j

H(M̃(X ), D, t0) =

n
∑

i

h
(

f̃ m
i , f d

j

)

e−(t̃m
i −t0)2/ξ , (19)

where M̃(X ) is a set of n model features in the time

window (t0, t0 − tw) transformed according to (18),

i.e. M̃ = { f̃ m |tm ∈ (t0, t0 − tw)}, f d
j ∈ D is a data

feature minimizing the distance h for a given f m
i and

ξ is the variance of the exponential weighting function

that gives more importance to recent features.

The distance h between two features of the same

class is defined as a Euclidean distance between two

points in space-time, where the spatial and the temporal

dimensions are weighted with respect to a parameter ν

as well as by the extents of the features in space-time

h2( f m, f d ) = (1 − ν)
(xm − xd )2 + (ym − yd )2

(σ m)2

+ ν
(tm − td )2

(τm)2
. (20)

Here, the distance between features of different classes

is regarded as infinite. Alternatively, one could mea-

sure the feature distance by taking into account their

descriptors and distances from several of the nearest

cluster means.

To find the best match between the model and the

data, we search for the model state X̃ that minimizes

H in (19)

X̃ = argmin
X

H(M̃(X ), D, t0) (21)

using a standard Gauss-Newton optimization method.

The result of such an optimization for a sequence with

data features in Fig. 12(a) is illustrated in Fig. 12(b).

Here, the match between the model and the data fea-

tures was searched over a time window corresponding

to three periods of the gait pattern or approximately

2 seconds of video. As can be seen from Fig. 12(c),

the overlaps between the model features and the data

features confirm the match between the model and the

data. Moreover, the model silhouette transformed ac-

cording to X̃ matches with the contours of the person

in the current frame and confirms a reasonable estimate

of the model parameters.

5.3. Results

Figure 13 presents results of the described approach

applied to two outdoor sequences. The first sequence

illustrates the invariance of the method with respect

to size variations of the person in the image plane.

The second sequence shows the successful detection

and pose estimation of a person despite the presence

of a complex non-stationary background and occlu-

sions. Note that these results have been obtained by

re-initializing model parameters before optimization

at each frame. Hence, the approach is highly stable

and could be improved further by tracking the model

parameters X̃ over time.

The need for careful initialization and/or simple

background are frequent obstacles in previous ap-

proaches for human motion analysis. The success of

our method is due to the low ambiguity and simplicity

of the matching scheme originating from the distinct

and stable nature of the spatio-temporal features. In this

respect, we want to propose direct detection of spatio-

temporal events as an interesting alternative when rep-

resenting and interpreting video data.
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Figure 13. The result of matching a spatio-temporal walking model to sequences of outdoor scenes.

6. Summary

We have described an interest point detector that finds

local image features in space-time characterized by a

high variation of the image values in space and non-

constant motion over time. From the presented exam-

ples, it follows that many of the detected points in-

deed correspond to meaningful events. Moreover, we

propose local maximization of the normalized spatio-

temporal Laplacian operator as a general tool for scale

selection in space-time. Using this mechanism, we es-

timated characteristic spatio-temporal extents of de-

tected events and computed their scale-invariant spatio-

temporal descriptors.

Using scale-adapted descriptors in terms of N -jets

we then addressed the problem of event classifica-

tion and illustrated how classified spatio-temporal in-

terest points constitute distinct and stable descriptors

of events in video, which can be used for video rep-

resentation and interpretation. In particular, we have

shown how a video representation by spatio-temporal

interest points enables detection and pose estimation

of walking people in the presence of occlusions and

highly cluttered and dynamic background. Note that

this result was obtained using a standard optimiza-

tion method without careful manual initialization or

tracking.

In future work, we plan to extend application of in-

terest points to the field of motion-based recognition.

Moreover, as the current scheme of event detection

is not invariant under Galilean transformations, future

work should investigate the possibilities of including

such invariance and making the approach independent

of the relative camera motion (Laptev and Lindeberg,

2002). Another extension should consider the invari-

ance of spatio-temporal descriptors with respect to the

direction of motion, changes in image contrast and ro-

tations.
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Notes

1. For real-time applications, convolution with a Gaussian kernel

in the temporal domain violates causality constraints, since the

temporal image data is available only for the past. To solve this

problem, time-causal scale-space filters can be used to satisfy the

causality constraints (Koenderink, 1988; Lindeberg and Fager-

ström, 1996; Florack, 1997; Lindeberg, 2002). In this paper, we

assume that the data is available for a sufficiently long period

of time and that the image sequence can be convolved with a

Gaussian kernel over both space and time.

2. For the experiments presented in this paper, with image sequences

of spatial resolution 160 × 120 pixels and temporal sampling

frequency 25 Hz (totally up to 200 frames per sequence), we

initialized the detection of interest points using combinations of

spatial scales σ 2
l = [2, 4, 8] and temporal scales σ 2

l = [2, 4, 8],

while using s = 2 for the ratio between the integration and the

local scale when computing the second-moment matrix.

3. Here, we used the scale-adapted Harris interest point detector

(Mikolajczyk and Schmid, 2001) that detects maxima of H sp (4)

in space and extrema of normalized Laplacian operator over

scales (Lindeberg, 1998).

4. Note that our representation is currently not invariant with re-

spect to planar image rotations. Such invariance could be added



122 Laptev

by considering steerable derivatives or rotationally invariant op-

erators in space.
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