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We investigate two versions of multiple objective m1rnmum spanning tree 
problems defined on a network with vectorial weights. First, we want to minimize 
the maximum of Q linear objective functions taken over the set of all spanning 
trees (max linear spanning tree problem ML-ST). Secondly, we look for efficient 
spanning trees (multi criteria spanning tree problem MC-ST). 

Problem ML-ST is shown to be NP-complete. An exact algorithm which is based 
on ranking is presented. The procedure can also be used as an approximation 
scheme. For solving the bicriterion MC-ST, which in the worst case may have an 
exponential number of efficient trees, a two-phase procedure is presented. Based 
on the computation of extremal efficient spanning trees we use neighbourhood 
search to determine a sequence of solutions with the property that the distance 
between two consecutive solutions is less than a given accuracy. 
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1. lntroduction 

The minimum spanning tree problem is one of the simplest, and one of the most 

central models in the field of combinatorial optimization. A minimum spanning tree 

connects nodes of a network at minimum total cost and has applications in the 

planning of efficient distribution systems such as pipelines, transmission lines or 

in the design of leased-line telephone networks and other telecommunication 

problems. In the context of network reliability, the weight of a minimum spanning 

tree represents the minimum probability that the tree will fail at one or more 

edges. Gomory and Hu (1961) used minimum spanning tree evaluations as 

subproblems for solving multiterminal flow problems. Held and Karp ( 1970) used 

1-trees for solving traveling salesman problems. 

Three basic algorithms for solving the minimum spanning tree problem have been 

developed. These are the routines of Kruskal (1956), Prim (1957) and Sollin (not 

published) all of which are based on the greedy approach. The running time of 

the algorithms are O(m + n · log n) plus the time needed to sort m edge weights, 

O(m + n · log n) , and O(m · log n) , respectively. Glover et al. (1992) investigated 

several variants of non-greedy approaches. Computational testing proved them to 

be quite successful in reoptimization, where they dominated greedy approaches 

on all topologies and node degrees. 

The appearance of multiple criteria is generally accepted in real-world problem 

solving. While multi-criteria linear programming with continuo•Js variables is 

studied extensively, not so much is known for the integer case. In more detail, 

there is a deficit in practical procedures for multi-criteria integer and network 

optimization problems. We consider here the computation of minimum spanning 

trees in the context of vector weighted graphs. 

Let T be the set of all spanning trees T = (V,E(T)) of a given graph G = {V,E). 

With each edge e E E is associated a vector of integer weights w( e) = 
(w1(e), ... ,wa(e)) . Correspondingly, the vector of weights w(T) of a tree T E T is 

defined as 
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w(T) = (w1(T), ... ,w0 (T)) with 

for q = 1, ... ,0. 

We will say that a tree T ET dominates T'E T if w(T) ~ w(T') but w(T) * w(T') . 

Here and in the following, the ordering relation between vectors is the 

component-wise ordering. An efficient spanning tree is a tree which is not 

dominated by another one. The set of efficient spanning trees is abbreviated by 

Tett· 

We consider two problems: 

Max-linear spanning tree problem (ML-ST) 

min {f(T) : T E T} where f(T) - max {w1(T) , ... ,w0 (T)} 

Multi-criteria spanning tree problem (MC-ST) 

min*{(w1(T), .. . ,w0 (T)) : TE T} 

where min* abbreviates the search for efficient spanning trees T. 

Two problems related to ML-ST are bottleneck and balanced spanning tree 

problems. A spanning tree T is a bottleneck spanning tree if its maximum edge 

cost is minimum among all spanning trees. T is called a balanced spanning tree if 

the difference between its maximum and minimum edge cost is as small as 

possible among all spanning trees. Bottleneck and balanced spanning trees can 

be determined in O(m log n) and O(m2) time, respectively (see e.g. Ahuja et al. 

[1992)) . 

Max-linear versions of other combinatorial optimization problems occur in the 

modelling of printed circuit boards assembly (Drezner and Nof [1984), Lebrecht 

[1991 ]). 

Most practical applications that require the use of the minimum spanning tree 

model can be extended naturally to become potential applications of MC-ST. We 

mention the design of physical systems with different objectives such as 

throughput; reliablility or design costs. Furthermore, there are many indirect 

applications such as optimal message passing, the all pairs minimax path 
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problem or cluster analysis where the (multi-criteria) minimum-tree problem 

accurs as a subproblem. 

The rest of the paper is organized as follows. In the second section, the complexity and 

algorithms for solving ML-ST are presented. In Section 3, the relation between max­

linear and multi-criteria minimum spanning trees is d iscussed. Some theoretical results 

of MC-ST and corresponding solution algorithms are studied in the last sections. 

2. Max-Linear Spanning Trees - Complexity and Algorithms 

Before proposing a solution algorithm for ML-ST we investigate its complexity 

status. 

Theorem 2.1. 

The max-linear spanning tree problem ML-ST is NP-complete. 

Proof: 

We consider the unconstrained max-linear combinatorial optimization problem 

ML-CO introduced and shown to be NP-complete in Chung et al. [1990]: 

. Input: 

Question: 

Q cost vectors c 1, „., c0 E Z" where 

cq= (cq 1, . . . ,cqn) for all q = 1, .. . ,Q and an integer 8 . 

ls there a vector x E {0, 1 }n such that 

g(x) := max {c1Tx, ... ,c0 Tx} s B? 

We polynomially transform ML-CO to ML-ST by defining a graph G = (V,E) with 

( 1) V = {1,2,„ .,n,n+1} and 

(2) E = E1 u E2 where 

E1 - { (i ,i+1) ; i = 1,„ .,n} 

E2 - { ( 1, i) ; i = 2, ... ,n+1} 

Additionally, weights wq(e) are introduced as 
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if e=(i,i +1) EE1 

otherwise 

forall e E E and q = 1, ... , Q . 

Let T* be an optimal solution of the ML-ST problem defined by (1) - (3). For any 

TE T define x = x(T) E {O, 1 }n with Xj = 1 iff (i,i+1) E T. Then (3) implies 

(4) g(x) = max {c 1Tx,„„ c0 Tx} 

= max {w1(T)„ .. ,w0 (T)} = f (T) . 

We claim that x* = x(T*) is an optimal solution of the original problem ML-CO. To 

prove this, suppose there is a solution y E {0, 1 }n with g(y) < g(x). The set 

E1 (y) := {(i ,i+1) : Yi = 1; i = 1, „„n} 

can be extended by 

E2 (y) := {(1,i+1) : Yi = O; i = 1, „.,n} 

forming a spanning tree T(y) of G. Using (4) results in f(T(y)) = g(y) < g (x*) = 
f (T*), but this contradicts the assumed optimality of T*. Finally, we remark that 

ML-ST is in NP because there exists a polynomial algorithm verifying f(T) ~ B 

for given Tand B. 

D 

In the following we propose an exact solution procedure for ML-ST which is based 

on ranking solutions of a single criterion spanning tree problem. 

Let A. = ()„1,„. )„0 ) be a vector of nonnegative real numbers with A.1 +„ .+ A.a = 1 

and let 

be a convex combination of the weights on each edge e E E. Correspondingly, 
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w(A.,T) = L 
eeE(T) 

is a convex combination of the weights wq(T) of the tree T - the combined weight 

of T (with respect to A.). 

Lemma 2.2. 

For all T E T and for all vectors A. = (1„1, ... ,A.0 ) of nonnegative real numbers 

satisfying A.1 + ... + A.0 = 1 we get w(A.,T) ::; f(T) . 

Proof: 

w(A.,T) = L w(l..,e) 
eEE( T ) 

< (t,l, J max ( w1 (T), ... ,w0 (T)} = f(T). 

0 

Lemma 2.3. 

Let T1 = T1(A.) be a minimum spanning tree with respect to combined 

weight w(A.,T). 

Then w(A.,T1 ) ::; f(T\ where T* denotes an optimal solution of ML-ST. 

Proof: 

Lemma 2.2 and the minimality of T1 with respect to w(A.) imply 

0 

Next, we consider T1, ... ,Tk, the k best spanning trees with respect to combined 

weight, i.e., 

w(A.,T1) ::; w{A.,T2) ::; ... ::; w(A.,Tk) ::; w(A.,T) 

for all spanning trees T different from T1, ... ,Tk. Ranking of spanning trees can be 
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done by applying a procedure of GABOW (1977) . lmprovements cf this 

procedure were develcped by KATOH et al (1981 ). We used a binary search 

prccedure cf HAMACHER & QUEYRANNE (1985). lts ccmplexity is 
O(C(m)+(k-1)B(m)) , where C(m) and B(m) is the complexity tc ccmpute the best 

solution and the (restricted) second best scluticn, respectively. 

A.s long as w(A.,Tk) < min {f(Ti) : i = 1, ... ,k} , the validity cf 

w(A., Tk) ~ w(A., T) ~ f(T) for all spanning trees T different from T1, ... , Tk 

implies that w(J..,Tk) is a lower bound for the optimal objective value f(T*) of ML­

ST. Note that this lower bound gets larger with increasing k. But if this inequality 

is violated, an optimum solution for ML-ST is found among the trees T1, ... ,Tk. 

Theorem 2.4. 

Let k be a positive integer such that 

(5) w(J..,Tk-1) < min{f(Ti): i=1, ... ,k-1} and 

(6) w(A.,Tk) ~ min { f(Ti) : i=1 , ... ,k}. 

Then 
* . T E arg min { f(T') : i=1 , ... ,k} is an optimal solution for ML-ST 1 

D 

Proof: 

By definiticn of the k best scluticns cf the minimum spar:ming tree problem with 

respect tc the ccmbined weights and using Lemma 2.2. we get 

f(T*) = min {f(Ti) : i = 1, ... ,k} 

~ w(A.,Tk) (by assumpticn (6)) 

~ w(A.,T) (by definition cf k best scluticns) 

~ f(T) (by Lemma 2.2.). 

fcr all spanning trees T which are different from T1, ... , Tk. Since T* is the best cf 

the spanning trees T1, ... ,Tk, it sclves ML-ST. 

D 

The abcve thecrem is the foundation of an exact algorithm for the max-linear 

prcblem: 

1 arg min denotes here and in the following the set of all trees in which the minimum is attained. 
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Procedure ML-ST 

(S1) Choose 'A = ('A1, ... ,'A0 ) such that Aq is nonnegative (q=1, ... ,Q) and 'A1 + ... + 

'Aa = 1. 

(S2) Compute the combined weights 

w('A,e) := 'A1w1(e) + ... + 'A0 w0 (e) for alle E E. 

(S3) Apply a ranking algorithm to find the k best spanning trees with respect to 

weights w{'A,e) until w{A.,Tk) ~ min { f(Ti) : i=1 , ... ,k}. 

(S4) Define T* due to T* E arg min {f(Ti) : i=1 , ... ,k}. 

We can stop the procedure when k best spanning trees have been computed, 

even if the optimality criterion of Theorem 2.4. is not satisfied. In this situation 

w(A.,Tk) is a lower bound and min { f(Ti) : i=1 , ... ,k} is an upper bound for f(T*) . 

Hence the relative accuracy of the current best solution 

is bounded by 

T' E argmin {f(Ti) : i=1 , ... ,k} 

f(T')- f(T*) 

f(T*) 

f(T')-w{A.,Tk) 

f(T*) 

f(T')-w{A.,Tk) 

w(Ä., Tk) 

We can therefore use the preceding procedure as approximation scheme by 

specifying the relative accuracy c and stopping if c ::;; 8. 

A crucial part of the procedure is the choice of Ä. = ('A1, . . . ,'A0 ) . Consider for 

example the complete graph K3 with vector weights (w1 (e),w2(e)) = (1,2) for all 

edges e in K3. lf we choose A.=(1 ,0) , then all trees T of K3 have weight w{Ä.,T)=2. 

On the other hand f(T) = w2(T) = 4 for all T E T, such that the stopping criterion of 

Step S3 is never satisfied. However, we can always guarantee that the algorithm 

will stop by using the following choice for Ä.: 
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Let T be an arbitrary spanning tree and let f(T) = wq(T) for some q E {1 , ... ,Q}. 

Then A. = eq. where eq is the q-th unit vector, will always produce a tree Tk 

satisfying w(A.,Tk) ;::: min { f(Ti) : i=1 , ... ,k}. 

Numerical experience for 0=2 indicated that good results were obtained for 

A. = (t , 1 - t) , where 

t := arg min {hmax(p,T) - hmin(p,T) : p E finite subset of (0, 1)} 

with 

hmax (p,T) - max {p · w1 (T) + (1 - p) w2 (T) : T E T} 

hmin (p,T) - min {p · w1 (T) + (1 - p) w2 (T) : T E T }. 

The resulting heuristic is due to Nickel [1992] . Another heuristic choice of A. is one 

which provides the largest lower bound w(A.,T1 ). This rule was impleme.nted by 

Lebrecht [1991 ]. 

3. Relation between Max-Linear and Multi-Criteria Minimum Spanning Trees 

In what follows we investigate some relationships between the set of solutions of 

ML-ST and MC-ST. Let fmax be the optimal objective function value of ML-ST and 

define 

(7) Tmax - {TE T : f(T) = fmaxl· 

A solution T E T max is said to be locally non-dominated with respect to T max if 

there is no r E T max such that w(T') ~ w(T) and w(T') -:t:. w(T). 

Lemma 3.1. 

All locally non-dominated solutions T E T max are efficient spanning trees. 

Proof: 

Suppose, there is r E t with w{T') ~ w(T) and w(T') -:t:. w(T). Then f(T') ~ 

f(T) = fmax· Consequently, r E T max and hence r locally dominates T 

(contradiction) . 
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D 

The following results eire immediate consequences of Lemma 3.1 

Corollary 1: 

lf T is the unique Solution of ML-ST then T E reff 

Corollary 2: 

Among all solutions of MC-ST there is a spanning tree solving ML-ST. 

4. Multicriteria Minimum Spanning Trees - Some Theoretical Results 

We consider the integer programming formulation of the minimum spanning tree 

problem: 

(8) min 2: subject to 
( i ,j)eE 

2: Xij = n - 1 
(i ,j) eE 

(8.1) 

(8.2) 2: xii ~ 1s1 - 1 for all Sc V 
(l,j)eE(S) 

(8 .3) xii ~ 0 and integer 

(8.2) with IS1=2 and (8.3) imply that xii are (0, 1 )-variables indicating whether we 

select edge {i,j) as part of the chosen spanning tree. (8.1) implies that exactly n-1 

edges are taken, and (8.2.) ensures that the set of chosen edges contains no 

cycle. The polyhedron defined by the linear programming relaxation of (8.1 . ) -

(8.3.) is denoted by LP (MST} and is known to have integer extreme points (see 

e.g. Ahuja et al. [1992]) . 
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In the following , we consider the multi-criteria, non-integer linear problem related 

to LP (MST) with objective L.mctions analogous to the one of MC-ST: 

The discussion above implies that the integer efficient solutions of this continuous 

problem correspond to spanning trees, which are called extremal efficient 

spanning trees. The next result shows that this class of efficient spanning trees is 

easy to compute . 

Theorem 4.1. 

An extremal efficient spanning tree is a solution of the parametric problem 

Q 

(9) min w(l •. ,T) := L A.qwq(T) subject to 
q =1 

(9.1.) T E T 

( 9. 2.) 1 A. 1 + ... + A.0 = 1 

(9.3.) A.q > 0 for q = 1, ... ,Q. 

Proof: 

Geoffrion (1968) proved that a feasible solution x E P of a multi-criteria linear 

program min* { ( c1 T x, ... , c0 T x) : x E P } is an efficient solution if and only if there 

is a vector A. fulfilling (9.2.), (9.3.) such that x is a solution of the linear program 

Q 

min L (A.qcq)T x . lf applied to polyhedron LP(MST), the integer feasible 
q = 1 

solutions are the spanning trees of the given graph, such we obtain all extremal 

efficient spanning trees . (Notice that the difference between "proper efficient" 

solutions and "efficient" solutions in Geoffrion's paper is irrelevant in this context, 

since the number of solutions in (9) is finite .) 

0 

A special case of extremal spanning trees is obtained by considering the 

lexicographical ordering "~" defined by 
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For any permutation rr = (rr(1) , ... ,rr(Q)) we call Tx a lexicographical minimum 

spanning tree (with respect to n) iff (wx( 1)(Tx), ... ,wx(a)(Tx)) is lexicographical 

minimum among all vectors (wx(1J(T) , ... ,wx(Q)(T)) of spanning trees TE T. 

Corollary: Lexicographical minimum spanning trees are extremal efficient 

Proof: 

We1 assume without loss of generality that n = (1 , ... ,0). Let M ~ max { wq(T) : 

q=1 , ... ,Q, T E T} and define E := 1 I 2M. We will apply Theorem 4.1 and show 
that T x is a Solution of (9) if we define A. by 

(10.1) 

(10.2) 

A1 := 1- E (1-E) , 

A.q : = f: q-1 ( 1 -f;) 

and 

for q=2, .. . ,Q 

We will show that w(A. ,T x) ~ w(l..,T) for any tree T E T with w(T) ~ w(T x) · lf 

wq(T x) ~ wq(T) for all q = 1, .. . ,Q, then the claim obviously holds, since all A.q are 

positive. Consider therefore the case, where 
i := min { q : wq(T) < wq(T x) , 1 ~q~Q } 

exists. Then the definition of A. in (10) implies 
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wp„, T ) - wp„, T) 
1t 

- 1 1 1 0 · 
= e' (-1 + e +- --e _, ) 

2 2 

; - 1 ( 1 1 0 - i ) = e - ---e +e < 0, 
2 2 

. 1 
smce e ~ -

2 

Consequently, w(A.,T rr) < w(A.,T) and T rr is extremal efficient. 

0 

lt should be noted that lexicographical minimum spanning trees are particularly 

easy to find by using in Kruskal [1956) the lexicographic ordering of the vectors 

w( e) instead of the ordering of real numbers. 

In general , however, there are efficient spanning trees T E Tett which can not be 

derived from the solution of an appropriate problem (9). This is illustrated by the 

following instance of MC-ST. 

Example 1: 

Consider the complete graph K4 with two criteria defined by 

e = 1,2 e = 1,4 e = 1,3 e = 2,3 e = 3,4 e = 2,4 

32 16 8 4 2 1 

1 20 30 40 41 42 
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This results in 16 spanning trees all of which are efficient. The location of the 

corresponding objective function vectors is shown in Figure 1. Note that only 

three of the 16 trees are extremal. These are the trees T1 = { e1, e2, e3}, T1 o = { 

e2,e3,e6 } and T16 = {e3,e5,e6 } . 

Figure 1 

• • 

Objective function vectors of the trees of Example 1. All trees are 
efficient, but only 3 are extremal efficient. The efficient frontier of the 
corresponding continous multi-criterion linear program passing through 
the three points is shown as bold line. 

V"J ( T) 

) 

Example 1 can be generalized to show that MC-ST may have an exponential 

number of efficient solutions. 

Theorem 4.2: 

The number # = 1 Teff 1 of efficient spanning trees is in the warst case 

exponential in the number n = IVI of nodes. 
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Proof: 

Consider G = Kn with edge set E := {1 , ... , m } where m := n(n-1 )/2. For 

k=1, ... ,m we define weights w1(k) and w2(k) by 

w1(k) := 2k-1 , and 

W2{k) := 2m - 2k-1 

Consequently, w1(k) + w2(k) = 2m for all kEE and w1(T) + w2(T) = (n-1) 2m for 

all TE T. By the uniqueness of the number representation in the binary system, 

T 1;t:T2 for any two trees T 1. T 2 implies w1(T1) ;t:W1(T2). 

Assume that all trees are ordered with respect to strictly increasing weights 

w1 (T). Then w1 (T) + w2(T) = (n-1) 2m implies that the ordering is stictly 

decreasing with respect to weights w2(T), i.e. all trees are pairwise non­

comparable and are therefore efficient. Since the number of trees is 1 TJ = nn-2 the 

claim follows. 

D 

A further indication of the difficulty of MC-ST is the characterization of efficient 

trees by a parametric integer program. This can be shown already for the case of 

two criteria. Using 

(11.1) 

(11 .2) 

(11 .3) 

(11.4) 

11 := min { w1(T) : T E T }, 

12 : = min { w2(T) : T E T } 

u1:= min {w1(T) : TE T and w2(T)=l2 } 

ui= min {w2(T) : T E T and w1(T)=l1 } . 

efficient solutions can be characterized by solving an integer program with 

lexicographic objective function. This is shown in the next result. 

Theorem 4.3: 

T' E T ett if and only if 

i) T' E arg lexmin {(w1(T) ,w2(T)) : T E T and w2(T) ::;; b2 } for some 

b2 E (l2 1 U2) 

or 

ii) T' E arg lexmin {(w1(T),w2(T)) : T E T and w1(T) ~ b1 } for some 

H.W. Hamacher and G. Ruhe: On Spanning Tree Problems with Multiple Objectives March 1993 

Page 16 



Proof: 

Since (i) and (ii) are symmetric we only prove (i). 

For T' E Tett define b2 := w2(T'). By definition of 12 in (11 .2) we get b2 ~ 12 . 

Moreover b2 ~ u2, since otherwise T' is dominated by T* with w1(T*) = 11 and 

w2(T*) = u2 < b2. Hence T' satisfies T' E Tand w2(T) ~ b2 for b2 E [12,u2]. 

Now suppose T' ~ arg lexmin {w1(T) : T E Tand w2(T) ~ b2 }. Then we choose 

T" E arg lexmin {(w1(T),w2(T)) : TE Tand w2(T) ~ b2 } and get 

W1{T") ~ W1{T') and W2{T") ~ b2 = W2{T'), 

where one of the inequalities is strict. This contradicts the efficiency of T' : 
1 • 

Conversely, let T E arg lexmin {(w1 (T),w2(T)) : T E Tand w2(T) ~ b2 }. Suppose 

T' is dominated by T". Then w2(T") ~ w2(T') ~ b2. 

lf w1(T") < w1(T'), T' cannot be a lexmin tree. 

lf w1(T") = w1(T'), the domination of T' by T" implies w2(T") < w2(T'), again 

contradicting the fact that T' is a lexmin tree. Consequently, T' E T ett . 

D 

In particular the two lexicographical minimum spanning trees T1 and T2 of the 

bicriterion problem are obtained by setting b2=u2 in (i) and b1 =u1 in (ii). The 

resulting objective function vectors are (w1(T1) w2(T1)) = (1 1,u2) and (w2(T2) 

w1(T2)) = (12,u1). These lexicographic minimum
1 

spanning trees are obtained b~ 
using in Kruskal [1956] the lexicographic ordering of the vectors (w1(e), w2(e)) 

and (w2(e), w1(e)), respectively, instead of the ordering of integer numbers. But 

notice that this approach is only valid for the case. where b1=u1 or b2=u2. In all 

other cases we have to solve an integer program where the constraints are the 

spanning tree constraints plus an additional linear constraint. 

Moreover the result of Theorem 4.3 shows that the objective function vectors of 

all efficient trees T satisfy (w1(T),w2(T)) E [1 1,u1] x [12,u2]. The approximation 

algorithm of the next section will iteratively reduce this area of potential locations 

of efficient points in the objective space. 

H.W. Hamacher and G. Ruhe: On Spanning Tree Problems with Multiple Objectives March 1993 

Page 17 



5. Bicriteria Minimum Spanning Trees - Algorithms 

In Section 4 we have seen that an instance of MC-ST may have an exponential 

number of efficient trees. Moreover the computation of minimum spanning trees 

subject to an additional (additive) constraint as used in Theorem 4.3 is known to 

be NP-complete (CAMERINI et al. [1984]). We therefore present an 

approximation approach for solving MC-ST. 

The idea of our approach is to determine a subset of efficient trees satisfying the 

following conditions: 

(i) lt represents the set of all efficient solutions by the fact that the (Euclidean) 

distance between two consecutive trees is bounded by a given number 

E > Ü. 

(ii) We start the construction of the subset by using extremal efficient trees as 

long as they exist. After that, new trees are added which satisfy a local 

efficiency crite.rion. 

(iii) The addition of each new tree to the subset is done by a fast algorithm 

which· is polynomially bounded in 1 VI . 

To be more specific, we call an ordered set of spanning trees {T1,T2, ... ,Tk} well­

distributed if for given E > 0 

(12) ~ (Ti,Ti+1) :-::: E for all i = 1, .. . ,k-1, 

where 

(13) 

is the Euclidean distance of Ti and Ti+1 in the objective space. 

In the following we will construct a well-distributed set of spanning trees in two 

stages: In the first stage we will compute extremal efficielit spanning trees based 

on the following Lemma 5.1 lf the set of all these trees is not well-distributed we 

add trees by applying a local search procedure. 
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Lemma 5.1 

Let Ti , Ti be two extremal efficient spanning trees and let 

a = 1 W2(Ti) - w2(Ti) 1 

ß = l w1(Ti)-w1(Ti)I . 

Then the solution of 

(14) min {a · w1(T) + ß · w2(T) TE T } 

is again an extremal efficient tree. 

Proof: 

With a· = al(a + ß) and ß' = ß/(a + ß) the proposition follows from Theorem 4.1 , 

since the constant 1/(a + ß) does not change the minimizers of (14) 

0 

Stage 1 of our algorithm for solving MC-ST consists of an iterative application of 

the above lemma. As starting point we use the solutions T1 and T2 of the two 

lexicographical minimum spanning tree problems (see remark after Theorem 4.3). 
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Procedure MC-ST 

Stage 1: Computation of extremal efficient spanning trees 

(S1) Compute T1 E arg lexmin {(w1(T}, w2(T)) : T E T } a11d 

T2 E arg lexmin {(w2 (T), w1(T)) : T E T }. 

(S2) Define T* := {T1, T2} , k := 2; and 1° := 0 . 

(S3) Let T* := {T1, ... ,Tk} with w1(T1) < w1(T2) < ... < w1(Tk) 

!f ~(T i, Ti+1) ~ E for all i = 1, ... ,k- 1 then stop: T* is a well distributed 

set. 

Else define 11 := { i : ~ (Ti, Ti+1) > E } \ 10 

(S4) !f 11 = 0 then goto Stage 2 

(S5) 

(S6) 

eise select 

Define 

compute 

if w(Tk) E 

eise T * 

Gote (S3) 

i E arg max { ~ (Ti,Ti+1) : j E {1, ... ,k-1}} 

a := w2(Ti) - w2(Ti+1) and ß := w1(Ti+1) - w1(Ti) 

Tk E arg min {a -w1(T) + ß -w2(T) : T E T} 

{w(Ti), w(Ti+1)} then 1° := 10 u {i} 

- T * u { Tk} ; k : = k + 1 

and 

lf #1 is the number of extremal efficient spanning trees we can show the 

following result: 

Theorem 5.2 

Proof: 

Stage 1 of Procedure MC-ST needs 0(#1 (m + n log n)) steps to 

determine extremal efficient spanning trees for all breakpoints in the 

objective space or to compute a well-distributed set T* for given & > 0. 

We first remark that the complexity to solve the lexicographical problems in (S 1) 

is the same as the complexity of the minimum spanning tree problem (MST) in 

(S5) because we can replace the 'min '-operation by 'lexmin ' in the greedy 

algorithm. The procedure needs 2-k - 3 calls of MST to determine k extremal 

efficient spanning trees k = 2, .. . ,#1. To see that all breakpoints are investigated 

we assume the contrary,i .e., that there is a breakpoint w(Tk) corresponding to an 

extremal efficient spanning tree which is not found by the algorithm. Then 
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consider the breakpoints w(Ti) and w(Ti+1) which define the smallest rectangie 

[w1(Ti),w1(Ti+1 )] x[w2(Ti+1 ),w2(Ti)] 

containing w(Tk) . However, the solution of (14) with 

a = 1 W2(Ti) - W2(Ti+ 1} 1 

ß = lw1(Ti)-w1(Ti•1)l. 

results in an extremal efficient tree Tj . Since Tk is strictly smaller than Ti and Ti+1 

with respect to objective function aw1(T)+ßw2(T), Tj ~ {Ti,Ti•1}. Therefore either 

w(Tj) = w(Tk) (contradicting the choice of Tk) or Tj induces a smaller rectangle 

containing w(Tk) (contradicting the choice of Ti and Ti+1 ). 

For solving the minimal spanning tree problem with scalar weights Prim's 

algorithm with complexity 0 (m + n log n) can be used resulting in 

0 (#1(m + n log n)) steps. lf at any intermediate stage of the algorithm ~(Ti,Ti•1) :5 

e for all i = 1,„.,k-1 then a weil distributed set is computed and the procedure 

terminates. 

D 

In a series of numerical experiments we compared #1 the number of extremal 

efficient spanning trees with # = 1 T ett I, the numb~r of all efficient spanning 

trees. The results obtained for randomly generated graphs are shown in Table 1. 
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Example n= m= #1 # 

lv l IEI 

1 10 20 5 10 

2 10 20 6 12 

3 10 30 10 26 

4 10 30 11 35 

5 10 40 8 33 

6 15 30 8 26 

7 15 60 14 94 

8 20 40 13 33 

Table 1. Comparison of 

#1 - number of extremal efficient spanning trees and 

# - number of all efficient spanning trees 

for eight randomly generated test examples. 

For the computation of # we used ideas of Corley's [1985] algorithm. The 

algorithm is of the Prim-Type and performs an iterative composition of spanning 

trees. In each iteration a new edge is added along a cut defined by the set of 

vertices already contained in a subtree. The main difference to the scalar case is 

that at each step all efficient extensions are considered, yielding a series of 

subtrees of increasing cardinality with respect to the set of vertices. The following 

result is of importance in this approach. 

Lemma 5.3: 

lf T E T is an efficient spanning tree then the following results hold: 

(i) For all edges e E E(T) let (X9 ,V\Xe) be the (unique) cut defined by 

eliminating e from T. Then no f E (Xe,VU<e) satisfies 

w(f) $ w(e) and w(f) -:t:. w(e) . 

(ii) For all edges f E E\E(T) let P[f] be the (unique) path in T 

defined by connecting the two end nodes of f in T. Then no e E P[f] 

satisfies 

w(f) $ w(e) and w(f) ':/= w(e). 
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Proof: 

In both cases, assume the contrary. Then consider r with E(T') := E(T) \ {e} 

u {f} which is a spanning tree again. But w(f) < w(e) implies w(T') < w(T) 

contradicting the efficiency of T. 

0 

Corley [1985] used the converse of Lemma 5.3 in his solution procedure to solve 

MC-ST. Unfortunately, the following example shows that conditions (i) and (ii) of 

Lemma 4.5. are necessary, but not sufficient for efficiern:y of a given minimum 

spanning tree. 

Example 2: 

For G = K4 define weights by 

e = 1,2 e = 1,4 e = 1,3 e = 2,3 e = 3,4 e =2,4 

32 16 8 4 2 1 

1 2 3 4 5 6 

Consider the tree T given by E(T) = { e1 , e3. es } . Since the weight vectors of all 

pairs of edges are non-comparable, conditions (i) and (ii) are satisfied. However 

T it Tett because w(T) > w(T') for r with E(T') = { e2,e3,e4 } 

In our experiments we used a modified version of Corley's algorithm which 

excludes in each iteration subtrees which are non-efficient. Nevertheless, it 

generates an exponentially growing number of candidate sets which is 

prohibitively large even for small problems with 1V1 = 30 nodes. This is one more 

motivation for the search of approximative solution sets. 

lf Stage 1 of Procedure MC-ST stops with the set of all extremal efficient 

solutions, but this set is not well-distributed (Step S4), we need to find additional 

efficient trees. Figure 2 shows that we can restrict ourselves to investigate a set 
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of triangles which are generated by the objective function vectors w(T) = 
(w1 (T),w2(T)) of the extremal efficient trees. This is true, since all objective 

function vectors are above the efficient frontier and the ones which are not in the · 

triangles are dominated by the extremal efficient trees. 

In Stage 2 we iteratively reduce the area of potential locations of efficient value 

points, until we have computed a well-distributed set. 

Figure 2 

( T) 

After finding the objective value vectors cf the extremal efficient trees 

only the triangles above the efficient frontier (thick polygen) cf the 

corresponding continous problem may contain objective function points 

(w1 (T),w2(T)) cf additonal efficient trees. 

For this purpose the second stage of the solution algorithm performs 

neighbourhood search. The neighbourhood Nh(T) of a tree T is defined as 

(15) Nh (T) := {T' ET : E(T') = E (T) \ {e} u {f} for e E E(T), f E E\E(T)} 

Neighbourhood search is applied whenever two consecutive solutions . Ti,Ti+1 of 

the current solution set do not fulfil ~ (Ti,Ti+1) s e. The aim is to find a new tree Tk 
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E Nh(Ti) u Nh(Ti+1) such that 

(16) w1(Tk) < maxw1 - max {w1(Ti) ,w1(Ti•1)) 

w2(Tk) < maxw2 - max {w2(Ti),w2(Ti•1)} 

and 

(17) AU) := [maxw1 - w1(Tj)] [maxw2 - w2(Ti)] 

is maximized by k among all indices j such that Ti is satisfying (16). 

The choice of k is illustrated in Figure 3. From (17) it follows that there is no k' 

with the property that w(Tk.) < w(Tk) and w(Tk') ~ w(Tk), i.e., the solution Tk is 

locally efficient with respect to the defined neighbourhood. 

Figure 3: 

1 1 

The new solution element Tk is characterized by cutting off a maximum 

area A(k) from the area containing additional efficient points. The 

alternative tree Tj cuts off a smaller area. 
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Procedure MC-ST 

Stage 2: Neighbourhood search 

(S1) Assume a set T* = {T1, ... ,Tq} with 

W1 (T1) < ... < W1 (Tq). 

!f .1 (Ti,Ti+1)::; E for all i=1, ... ,q-1 then stop: T* is a well-distributed set. 

(82) Else select i E arg max {.1 (Ti.Ti+1) : j E {1, .. . ,q-1}} 

area := O; 

maxw1 := w1(Ti+1); maxw2 - w2(Ti) 

(S3) for all j with Ti E Nh(Ti) u Nh(Ti+1) do 

fU) := [maxw1 - w1(Ti)] [maxw2 - w2(Ti)] 

if w1(Tj) < maxw1 and w2(Ti) < maxw2 and fU) > area 

then k : = j, area = fU) 

(S4) !f area = 0 then define E := .1 (Ti,Ti+1) and stop: 

T* is a well-distributed set. 

eise T* := T* u {Tk} 

q := q+1 and goto (S1 ). 

We denote by #2 the number of (locally) efficient solutions calculated in Stage 2 

of MC-ST. 

Theorem 5.4 

Procedure MC-ST needs 0(#1(m + n log n) + #2-m-n) steps to determine a 

well distributed set T* of accuracy E. 

Proof: 

In addition to the complexity of Stage 1, the procedure investigates 

0( 1 Nh(Ti) u Nh (Ti+1) 1) = O(n . m) trees in the iteration caused by .1 (Ti,Ti+1) > e. 

Because the number of operations performed per tree is constant, the complexity 

of the second stage is 0(#2 -m -n). The algorithm terminates with a well distributed 

set of the accuracy E. 

D 
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