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On Sparse and Symmetric Matrix Updating

Subject to a Linear Equation

By Ph. L. Toint*

Abstract.   A procedure for symmetric matrix updating subject to a linear equation and

retaining any sparsity present in the original matrix is derived.   The main feature of

this procedure is the reduction of the problem to the solution of an n dimensional

sparse system of linear equations.   The matrix of this system is shown to be symmet-

ric and positive definite.   The method depends on the Frobenius matrix norm.   Com-

ments are made on the difficulties of extending the technique so that it uses more

general norms, the main points being shown by a numerical example.

1.   Introduction.   Square matrix updating has become a very active field of

research in linear algebra in the last few years, and its techniques are especially useful

in algorithms for solving nonlinear systems of equations (see Broyden [1]) and in

quasi-Newton methods for unconstrained optimization (see Davidon [2], Fletcher and

Powell [3], Powell [7], Huang [6], for example).   One common feature of these up-

dating procedures is that the updated matrix satisfies a linear equation which, in the

optimization field for example, has been called "quasi-Newton equation" or "DFP

condition".   Unfortunately, when the updated matrix is symmetric, these methods

usually revise all the elements of the matrix; and therefore, the size of the problem

that can be treated is often limited by the amount of computer storage that is avail-

able.

Different techniques have appeared for solving linear algebra problems of large

dimension when their structure is sparse.   For example, very good algorithms are now

available to solve large and sparse systems of linear equations (see Reid [8] ); and re-

cently, Schubert presented in [9] a modification of Broyden's [1] method for solv-

ing nonlinear systems of equations which takes the sparsity of the problem into ac-

count.  This method is of real interest but has the drawback that the resulting matrix

is not symmetric, even when starting with a symmetric one.  Therefore, its use is re-

stricted to problems where the symmetry of the updated matrix is not important.

Most of the standard matrix updating techniques can be obtained by calculating

the smallest correction matrix in an appropriate norm that causes the new matrix to

satisfy some linear constraints; and this problem approach has some advantages in

both theory and practice (see [4] ).   However, except for Schubert's method which

Received March 2, 1977.

AMS (MOS) subject classifications (1970).   Primary 65F30; Secondary 15A24.

Key words and phrases.   Matrix updating, quasi-Newton methods, unconstrained optimiza-

tion.

*This work was done during a visit of the author in the Department of Applied Mathemat-

ics and Theoretical Physics, University of Cambridge, Cambridge (GB).

Copyright © 1977, American Mathematical Society

954

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON SPARSE AND SYMMETRIC MATRIX UPDATING 955

seems to be very successful, the linear constraints do not include sparsity conditions.

We would like to keep the usual norms and find updating formulas for symmetric

matrices that preserve known sparsity conditions.   It is straightforward to pose this

problem in a way that requires the solution of a large system of linear equations.

However, we show that when the matrix norm is the Frobenius norm, we have only to

solve a system that has as many variables as the dimension of the matrix to be up-

dated, the matrix of this system being symmetric and positive definite and retaining

the sparsity that is present in the original problem.  Therefore, our results provide the

possibility of solving very large nonlinear optimization calculations when the second

derivative matrix has a known sparsity structure and is to be approximated by a sym-

metric matrix.

Section 2 of this paper presents a more detailed formulation of the problem and

a practical updating algorithm.  Section 3 is concerned with the formal derivation of

the procedure while Section 4 discusses properties of the involved linear system.  Addi-

tional remarks are given in Section 5.

2.   Problem Formulation and Updating Procedure.   Assume that A is an n x n

sparse symmetric matrix of real numbers. Assume, moreover, that the sparsity condi-

tions do not apply to the diagonal elements of A and that they are consistent with the

symmetry of A.   This paper is concerned with the problem of finding a matrix

(1) A* =A + E,

which is also symmetric (A*T = A*), which satisfies the condition

(2) A*x=y

for two given nonzero vectors x and y of R", and where the known sparsity structure

that is obtained in A is preserved in A*.  We let the sparsity conditions be

(3) Av=A% = 0      ft/) 6/,

where / is a set of pairs of integers.  We assume that the diagonal is not constrained

by any sparsity conditions.  We let J be the set of pairs of integers not belonging to

/.   Thus, ft i) GJ for all i.   This assumption is made because this is the usual case,

and it simplifies greatly the answer to the question whether a suitable A * can be

found.  Since the conditions on A* are generally not sufficient to determine it unique-

ly, we fix the remaining degrees of freedom by asking that the matrix A* will be as

close as possible to A with respect to the Frobenius norm, i.e. we minimize the ex-

pression

(4) U-A*iF = \t  t (4v-AJ¡f\.
( i= 1 /= 1 )

Therefore, to find the correction defined in Eq. (1) is to solve the problem

(5) ^llilljj.    is minimum

subject to the linear constraints

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



956 PH. L. TOINT

(6) Ex = y - Ax,

il) Eq = 0,      ft j) G I,

(8) E = ET.

We now describe the recommended updating procedure.  Its steps are justified

in Section 3.

Define first, for / = 1, . . . , n, the vectors jc(i) by the following formula

» «U*" ft/,ey'
(o,   a,j)Gi.

Suppose for the moment that none of the vectors xii) are identically zero.  Next build

the matrix Q in the following way:

(10) Qif = xififXify + b(0ll25,y    for /= 1 ,...,«;/= 1,..., A2,

where 5f- is the Kronecker delta.  We see that Q satisfies the sparsity conditions.   It

is also symmetric, and it is proved in Section 4 that it is positive definite.  We calcu-

late the vector X by solving the linear system

(11) QX=y-Ax.

The required correction may now be obtained from the simple formula

(0, ii,J)Gl,

(12) Eti=\
[ \¡Xj + X^,.,       (;, /) G /,

and then A* is defined by Eq. (1).

In the case where some of the vectors xii) are zero, we reduce the size of the

problem.   Specifically, if K is the set of values of i such that xii) = 0, we set the ith

row and column of E to zero, i G K; and we use the formula (12) only for the values

of i and / that are not in K.   The corresponding values of X are found from the linear

equations that are obtained by deleting from the system (11) the z'th row and column

of Q, i G K, and the ith component of the right-hand side, i G K.

3.  Justification of the Procedure.  This section is devoted to the formal deriva-

tion of Eqs. (10), (11) and (12).  It is convenient to let r be the vector

(13) r=y-Ax.

By using (7) and (9), condition (6) may now be written as

(14) ¿ V^/ = r¿   fori=l,...,«.
1=i

We take symmetry into account by letting E have the form

(15) E = HP + BT),

where B is now a matrix which does not need to be symmetric anymore.  The whole
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problem is now restated in terms of B as follows:   find a matrix B such that

(16) h\B + BT\\2F    is minimum

subject to the conditions

(17) ¿ iBtj + BjiMOj = 2rt   for i - 1, . . . , n.
/-i

Observe that condition (7) may be dropped because of the fact that (16), i.e. (5), will

force to zero all the elements which do not appear explicitly in the constraints.

As in Greenstadt [5], let us write the Lagrangian function of the optimization

problem (16)—(17):

i     n       n

1=1 /=1

(18)

*(*>*) = 8 £  Z (P-tj + Bji + lBijP-ji)
° /=i /=i

-¿ h\t(ßv + Ä/.M0/-2/v"|.

Differentiation with respect to ¿?(.- shows that we must satisfy the equation

(19) i^p) = HBif + Bfi) - X,.x(0,- - V(/),- = 0
0   ij

for i = 1, . . . , n and / = 1,. . . , n.

Observe now that we may use (15) to rewrite (19) as

(20) Eif = XjXiOj + tyc(/).   for i, / = 1.n,

and we may forget about the B matrix and use (14) in place of (17).  This B matrix

was just an artifact to differentiate the Lagrangian function of the problem in the space

of symmetric matrices.  Introducing now (20) in (14) yields

(21) ¿   [XpciOj + tyif),]*®) = 'i    for i = 1,... , n,

which is

(22) X,. ¿   [xii)f]2 + Z y(/V(0/ = r,.   for / = 1,. .. , n.
/=i 1=i

We have found a linear system of equations in X of the form

(23) ÔX = r,

where the (/', /)th element of the matrix Q is defined by

(24) Qti = xiOjXiJ^ + Z   MO*]2«,,,
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which is equivalent to the system (10)—(11). Since it is proved in the next section that

Q is positive definite, the vector X is well defined.   It follows from Eq. (20) that E is

given by

(25) Etj = iQT ' r)fcii)f + iQ- ' r)^/),

for 1= 1,... ,fl and/ = 1, . . . , n.  This is exactly (12).  We note that the symmetry

and sparsity conditions are satisfied.

4. Properties of the Linear System QX = r. In order to solve the system (23),

we need to be assured that it is nonsingular. The following theorem, by stating posi-

tive definiteness, ensures that there is a solution.

Theorem 1. If none of the vectors xii) ii = 1, . . . , n) are zero, then the ma-

trix Q is positive definite, i.e.

(26) Vze/?";z^0,      zTQz > 0.

In order to prove (26), choose an arbitrary z G R" which is not the zero vector.

Then, by (24),

zTQz=Z  Z ziQiñ=Z  Z z?c(»jX(J)izj+Z   Z   MOJM
1=1 ;=1 1=1 j=l 1=1   fc=l

(27) =   Z    [zixixjzj + z2x2]=\   Z    [xft + Xfr]2
(i,/)e/ z (/,/)£/

= 2 i zjx2 + \      £      (V, + iff > 0.

Suppose zTQz = 0.   Since z is not the zero vector, there exists a component of z, zk

say, that is nonzero, and the conditions

(28) zkxk = 0,

(29) zkxj + Zjxk = 0,     ft j) GJ,j± k,

must be satisfied.   It follows that xk is zero and hence that x- = 0, {k, j) G J.   But

these conditions are equivalent to the statement that jc(A:) is zero, which is a contra-

diction.   Therefore the theorem is true.

Corollary.   The system (23) is singular if and only if at least one of the vec-

tors xii) ii = 1,.. ., ri) is zero.

Proof.   The "only if" statement has been proved already.  To prove the reverse

statement we suppose that xik) = 0, and we let z be the kûi coordinate vector in ex-

pression (27).  One finds that zTQz is zero, which completes the proof of the corol-

lary.

We now justify the procedure that is given at the end of Section 2 for the case

where some xii) are zero.  Observe first that, if xik), say, is zero, then the left-hand

side of (14) is zero when / = k.   If rk happens to be nonzero, then the constraints of

the problem are incompatible.  This may occur because of incorrect sparsity
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requirements or because of rounding errors.  Errors of this type cannot be corrected

by the present calculation.  Observe also that, because xk = 0, the remaining compo-

nents of r, namely r¡ (/' =£ k), are independent of the kth column of E.   Hence it is

not helpful to admit nonzero elements into the kth row and column of E.   We, there-

fore, satisfy condition (5) by setting this row and column to zero.  This procedure may

be repeated for each k such that xik) is zero, and the resulting reduced problem is

nonsingular by Theorem 1.

Observe finally that, by (24), the matrix Q is also symmetric and has the same

sparsity as the matrix A.   Hence, algorithms for solving sparse symmetric and positive

definite systems of linear equations may be used to solve (23).  These algorithms are

well developed and efficient (see [8], for example).  The positive definiteness of Q

allows the pivots of the procedure for solving the equations to be chosen from the

diagonal.

5.   Additional Remarks.   The most useful feature of the proposed procedure is

that the main part of the work is only to solve a linear system of n equations in n un-

knowns, with a positive definite matrix and all the sparsity that is present in the origi-

nal problem.  Therefore, very large systems may be treated.

It is also interesting to observe that the correction (12), sets the nonzero elements

of E to those of a rank two matrix.  It is likely that corrections of this type will pro-

vide several useful methods.  Obviously, it would be even more valuable, as in [5] and

[4], to take up the freedom in E by minimizing the expression

(30) ll£ll2„ = ¿  ¿ iW*EW*)l
i=i /=i

with W any symmetric positive definite matrix instead of the Frobenius norm (5).

However, the fact that the elements B{-, ii, j) G I, are zero at the solution of the qua-

dratic programming problem given by (16) and (17) is a consequence of the fact that

the Frobenius norm is used.  The linear constraints on E are the same as before, namely

(31) Z EijX(¡)j = ri    for/=l,...,/i,
/=i

(32) E = ET,

and

(33) Eif = 0   for ft/)6/,

but now we have to introduce Lagrange multipliers for the sparsity conditions (33).

By the same procedure as above, one can obtain, in correspondence with (20),

(34) [wew\ (j = XpdOf + y(/).,    ft /) e /,

[WEW]ij = yti + yji, (/,/)€/,

where y(j are the Lagrange parameters corresponding to (33).  Therefore, the substitu-

tion that gave Eq. (21) is no longer very useful.   Observe that (34) shows that the
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elements [MTW],-, ft j) GJ, are the elements ft /) of a rank two matrix, but that

this property is not in general obtained for E, except in the case when there are no

sparsity conditions.  A numerical example will illustrate this point.   Let n = 5 and

define

»-j

4 0 0 0-2

0 3 0 0 0

0 0 3 0 0

0 0 0 3 0
-20004

x = and    r =

2

7

0

14

2

Ask also that Ex4 = EX5 = E2S =0. The correction E must then be a quindiagonal

matrix. In this case we find that the solution of the quadratic problem (31)—(33), is

the correction:

6 15 4 0 0

15 0 20 0 0

4    4 20 -8 40 4
0 0 40 0 30

0 0 4 30 6

which is not a rank two matrix since the upper left 3x3 determinant is equal to

1800/125.   However, in agreement with (34), it may easily be verified that the quin-

diagonal part of

WEW
30

20

30

4
-30

30 4

0 30

30 -12

0 60
-16    -15

-30

0

60

0

60

16

15

4

60

20

is a rank two matrix.

However, one easy generalization of the Frobenius norm is to use norms of the

form

inn hh

(35) ll£l Z   Z tijE2
1=1 /=!

where the i( are arbitrary positive weighting factors. This form is obtained if the

matrix W in expression (30) is diagonal. The formulae (10) and (12) become the

equations

(36)

(37)

0./ = t..    + Z -T~d«'
U k = l ik

Ei: =n = j: mo, + y(/0,-]
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for i, j — 1, . . . , n, where X is still the solution of the system QX = r.   We note that

the sparsity and positive definiteness of Q are preserved.   One use of the weights f(.-

is to allow differences in the scale of the variables.

Finally, if some of the diagonal elements of A and A* are forced to be zero,

then Theorem 1 is no longer true.   However, because Eq. (27) still holds, the matrix

Q is positive definite or positive semidefinite.  It is now more difficult to recognize

the semidefinite case at an early state.   Fortunately, in the main application of this

work, namely the estimation of second derivative matrices in unconstrained minimiza-

tion calculations, we expect the diagonal elements of A to be nonzero.  The applica-

tions to quasi-Newton methods in unconstrained optimization are fairly obvious.  The

proposed procedure provides a generalization of the method of Powell [7] to the

sparse case.   It is hoped that numerical experience will show a good behavior of this

new algorithm on large sparse problems (problems occurring from the numerical solu-

tion of PDEs for example).  Thus, the use of this sparse symmetric updating may

provide the means of solving practical problems of very large dimensionality.

6.  Conclusion.   A symmetric and sparsity conserving matrix updating subject to

a linear equation is proposed.  The main feature of it is the reduction of the problem

to the solution of an n dimensional sparse system of linear equations.  Properties of the

method are discussed and seem very encouraging.  Interesting applications to quasi-

Newton optimization methods may be expected in the near future.
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