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1. Introduction 

Let G = (V, E) be a connected n-vertex graph with arbitrary positive edge weights. 

A subgraph G' = (V, E) is a t-spanner if, between any pair of vertices, the distance 

in G' is at most t times longer than the distance in G. The value of t is the stretch 
factor associated with G'. We consider the problem of determining t-spanners for 

graphs where the spanners are sparse and t is a constant independent of the size 

of the graph. Sparsity is measured according to two criteria. Let Weight(G) denote 

the sum of all edge weights of graph G, and let Size(G) denote the number of 

edges. A graph is sparse in size if it has few edges. Similarly, a graph is sparse in 

weight if its total edge weight is small. Our results separate graphs into classes 

where spanners with linearly many edges achieve constant stretch factors, and 

classes where a nonlinear number of edges are necessary. 

Problems of this type appear in numerous applications. Spanners appear to be 

the underlying graph structure in various constructions in distributed systems and 

communication networks [Aw], [PUI], [PUP]. They also appear in biology in 

the process of reconstructing phylogenetic trees from matrices, whose entries 

represent genetic distances among contemporary living species [BD]. Robotics 

researchers have studied spanners under the constraints of Euclidean geometry, 

where vertices of the graph are points in space, and edges are line segments joining 

pairs of points [C], [DFS], [DJ], [K], [KG], ILL]. 

In the above applications previous research has focused on graphs with specific 

constraints. In distributed computation the design of synchronizers [Aw], [PU1] 

and the design of succinct routing tables [PUP] implicitly generated spanners for 

graphs with unit edge weights. For example, in designing routing tables [PUP] the 

routes follow the edges of a sparse spanner. For any stretch factor O(t), the size 

of these spanners are O(nl÷~/t). These designs are based upon a clustering 
algorithm, which is more complex than the algorithm in this paper. Moreover, it 

is not easy to generalize the clustering algorithm to graphs with arbitrary edge 

weights. Recently the problem of designing succinct routing tables has been 

considered for graphs with arbitrary edge weights [ABLP], lAP]. For any 

t, the scheme in [ABLP] routes along paths with are at most O(t29 ') longer 

than the shortest paths, while the total memory required for the tables is 

O(tnl+~/~logn). In [AP] the routes are O(t 2) longer, while the memory 

required is O(n ~ ÷ ~/t logZ n log D), where D is the diameter of the graph. Spanners 

have been considered for special classes of graphs in [PS], however, these graphs 

have unit edge weights. 
In all the above research, sparseness has been achieved in the size of spanners, 

but not in the weight. In robotics, graphs with varying edge weights have been 

examined, but the weights are Euclidean distances and not arbitrary. Because of 

this restriction, it has been possible to construct linearly sized spanners, unlike 

the above examples. For instance, the Delaunay and other triangulations ap- 

proximate complete straight-edged graphs on the plane I'C], [DFS], [DJ], [LLJ, 

[KG]. A few papers have considered weight sparseness of spanners for these graphs 

I-D J], ILL]. For any t, there exist spanners for the complete graph on the plane 
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with stretch factor O(t), and weight within an O(1 + 1/t) multiple of the weight of 

the minimum spanning tree. Weight sparseness has also been considered in [AI'I, 

I-D], and [S] for the special case of 1-spanners under a general model where 

spanners may have auxiliary vertices. 

In this paper we approach the problem from a very broad perspective. Our 

graphs have no special embeddings, and we allow arbitrary positive edge weights. 

For any t, we show that every such graph has a spanner with an O(t) stretch factor, 

and 0( 1 + l/t) size. We also provide weight bounds for our spanners. The contribu- 

tions of this paper are: a very simple polynomial-time algorithm for constructing 

sparse spanners (sparse both in size and weight) of arbitrary weighted graphs, using 

these ideas for constructing spanners of planar graphs, some lower bound results, 

and some results on spanners in Euclidean spaces of arbitrary dimensions and 

norms. Since any spanner with appropriate sparseness and stretch factor can be 

used for constructing synchronizers [PUll,  our algorithm provides a simple 

alternative to the clustering algorithm previously used for constructing synchron- 

izers. Similarly, we hope that our results will simplify the construction of succinct 

routing tables for arbitrary weighted graphs. 

The next section describes how to construct sparse spanners for general as well 

as planar graphs with arbitrary edge weights. Sections 3 and 4 deal with several 

lower bound results. Section 5 discusses spanners for Euclidean graphs. We 

conclude with some open problems. 

2. Construction of Sparse Spanners 

Let G be an n-vertex, connected, weighted graph. Let us examine the minimum 

spanning tree, denoted as MST(G), as a possible candidate for a spanner. It is 

obviously the sparsest spanner under both criteria of sparseness, because it is the 

subgraph with the least total edge weight that still connects all vertices. However, 

its stretch factor can be as bad as f~(n). To see this, consider an n-vertex graph, 

with only n unit weight edges, arranged in a cycle. Clearly, the minimum spanning 

tree does not contain an edge, say [u, v], and the distance from u to v in the tree 

is n - 1. Thus the tree is an (n - 1 spanner. 

Instead, we would like to look for spanners whose stretch factors are constants, 

independent of n. We use the minimum spanning tree as a yardstick for measuring 

sparseness, and try to generate spanners whose sparseness comes close to it. Our 

results are encouraging, because we show that any graph has spanners with 

constant stretch factors, whose sparseness can be made arbitrarily close to that of 

MST"(G). They are summarized by Theorems 1 and 2. 

Theorem 1. Given an n-vertex graph G and a t > O, there is a polynomially 

constructible (2t + 1)-spanner G' such that, 

(1) Size(G') < nVnl/"], 

(2) Weight(G') < Weight(MST(G))(1 + n/2t). 
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Note that the stretch factor is independent of the number of vertices in the 

graph, and of the edge weights. Thus, even for a dense graph with t2(n 2) edges, 

sparse spanners exist which have good stretch factors. Furthermore, the sparseness 

can be made arbitrarily close to that of MST(G), at the expense of an increase in 

the stretch factor. Previous research [Aw], [PS] has produced spanners with the 

same size and stretch factors, but the graphs considered there were unweighted, 

and sparseness was measured by size only. Also, our algorithm is simpler than the 

clustering algorithm employed. These bounds should be compared with the 

following lower bounds, to be proved in Section 3: 

Theorem 4. For every pair o f  integers t > 0 and n >_ 3, there exists an n-vertex 

9raph G for which every (2t + 1)-spanner G' is such that, 

(1) Size(G') > ~n I +,,/3~2,+3), 

(2) Weioht(G') > ~ Weioht(MST(G))n 4/3~2z + 3~. 

Actually, a slightly weaker lower bound holds even for Steiner spanners, where 

auxiliary vertices are allowed to be added to the graph (see Section 4). 

The next theorem concerns planar graphs. 

Theorem 2. Given an n-vertex planar graph H and a t > 0, there is a polynomially 

constructible (2t + 1)-spanner G' such that, 

(1) Size(G') < (n - 1X1 + l/t), 

(2) Weight(G') < Weight(MST(G))( l l/t). 

Here we again observe that the stretch factor is independent of the number of 

vertices in the planar graph, and of the edge weights. Thus, arbitrarily sparse 

spanners exist which have good stretch factors. It is well known that the maximum 

size of a planar graph can be 3n - 6, so in effect we demonstrate that even the 

multiplicative constant in the size can be reduced. Theorem 2 is stronger in flavor 

than Theorem 1, because our lower bound results will show that both size and 

weight bounds are tight. We later give an interesting application of this in 

connection with Euclidean graphs. 

Before we prove our results, we introduce an algorithm for constructing 

spanners. It constructs a sparse subset of edges so that a required stretch factor 

is achieved. The algorithm, called SPANNER(G, r), takes as input a weighted graph 

G, and a positive parameter r. The weights need not be unique. It produces as 

output a subgraph G'. Note that this algorithm is essentially a generalization of 

Kruskal's algorithm for computing minimum spanning trees IT]. The algorithm 

has also been independently discovered by Bern [Be] in a different context, in 

connection with the problem of dilation of  metric spaces [RS]. While it is very 

simple and easy to implement in polynomial time, the subgraph it generates has 

many interesting properties. 
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Algorithm S P A N N E R ( G  = (V, E), r) 

begin 

Sort E by nondecreasing weight; 
G' := (v,  {}); 

for every edge e = [u, v] in E do 

begin 
Compute P(u, v), the shortest path from u to v in G': 

if (r. Weight(e) < Weight(P(u, v))) then 

add e to 6;'; 

end; 

Output G'; 

end; 

The following lemmas describe the properties of the output graph G'. 

Lemma 1. G' is an r-spanner o f  G. 

Proof Consider any edge [u, v] in G - G'. Since it was rejected by the algorithm, 

the following is true. At the instant it is examined by the algorithm, there is a 

path P(u, v) from u to v in the current graph of length < r" Weight([u, v]). Thus, 

in the final output each deleted edge [u, v] is associated with a short path P(u, v). 

Now consider any shortest path between vertices a and b in G. Let the length of 

this path be I. For every edge [u, v] along this path not in G', we replace 

the edge by the corresponding short path P(u, v). The resulting path between a 

and b is clearly in G', and has length _< l" r, which proves the lemma. []  

Lemma 2. Let C be any cycle in G'. Then Size(C) > r + 1. 

Proof Assume that a cycle C remained with size < r + I. Let [u, v] be the last 

edge in C to be examined by the algorithm. Clearly, it is one of the (possibly many) 

edges in the cycle with the largest weight. When [u, v] is being considered by the 

algorithm, the remaining portion of the cycle from u to v has already been included 

~n G'. This portion has at most r edges, and each edge has weight not greater than 

Weight([u, v]). Thus, at that instant there is a path from u to v~in G', whose length 

is << r. Weight([u, v]). In that case [u, v] should not have been added, which is a 
contradiction. []  

Lemma 3. Let C be any cycle in G', and let e be an)," edge in C Then 

Weioht(C - {e}) > r" Weight(e). 

Proof Assume that a cycle C remained which violates the above weight condition 

for some edge e in C. Clearly, it violates this condition for the last edge in C to 

be examined by the algorithm, say [u, v], because the weight of [u, v] is at least 

as large as the weight of e. As in the above lemma, [u, v] is one of the (possibly 

many) edges in the cycle with the largest weight. Thus, the remaining portion of 
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the cycle has length > r. Weight([u, v]). In this case [u, v] should not have been 

added, which is a contradiction. [] 

Lemma 4. M S , G )  is contained in G'. 

Proof. Before we prove this lemma, let us repeat that our algorithm is essentially 

a generalized minimum spanning tree algorithm. In fact, for an infinite r its 

behavior is exactly like Kruskal's minimum spanning tree algorithm IT]. 

Our proof is by induction on the order in which edges are examined. Let the 

sequence {} = G~, G~ . . . . .  G~ze~E~ = G' represent the growth of G', where G'i re- 

presents the partially constructed subgraph after the ith edge has been examined. 

At any stage the subgraph will be a collection of connected components, which 

will finally become one connected component. 

Now let us consider Kruskal's algorithm, which also examines edges by 

nondecreasing weight. Let the sequence {} = M o, MI  . . . . .  Mslze~ ) = MST~G) re- 

present the growth of the minimum spanning tree, where M~ represents the 

partially constructed tree after the ith edge has been examined. This edge is added 

only if it does not form a cycle in the partially constructed tree. Thus at any stage, 

the partially constructed tree will be a forest, which will finally become one 

connected tree. 

We now prove by induction the following, which is a stronger hypothesis than 

the lemma. For  all i, the number of connected components of M~ is the same as 

that of G' i, and each component of M~ is contained in a corresponding component 

of G'i. 

To prove this, let us imagine that both algorithms are being run simultaneously. 

The basis of the induction is easily proved, because at the start both the tree and 

the spanner have n components each, consisting of isolated vertices. For the 

induction step, assume that the hypothesis is true for some i. Let the (i + 1)st edge 

to be considered be e = [u, vl. Two cases arise. 

Case 1: u and v belong to the same component o f  My  Then e forms a cycle with 

M/, and hence it is not included in M~+ 1. Since u and v belong to the same 

component of M~, by the hypothesis they also belong to the same corresponding 

component of G'v If e is not included in G'i+ 1, nothing has happened, and the 

hypothesis remains true. If e is included in G'~÷ ~, it gets added to the same 

component of G'~, and the hypothesis remains true. 

Case 2: u and v belong to different components o f  M~. Then e does not form a cycle 

with M,, and hence it is included in HI+ 1. In this case two components of M~ 

merge to form one component of Mi+ ~. Since u and v belong to different 

components of Mi, by the hypothesis they also belong to different corresponding 

components of G',. In other words, the distance from u to v in G'~ is infinite. Thus 

e will clearly pass the test in the S P A N N E R  algorithm and be included in G'i ÷ 1- 

In this case the two components of G', merge to form one component of G'~ ÷ 1. Thus 

the hypothesis remains true, and the inductive proof in complete. 

Finally, since Ms~ae)  = MST(G) ,  and G's~,~tr. ~ = G', the lemma is proved. [] 
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In proving the two theorems, Lemma 2 is used in proving size sparseness, while 

Lemmas 3 and 4 are used in proving weight sparseness of the resulting subgraphs. 

We still need two more lemmas. Let the size of a face of a planar graph be the 

number of edges encountered while traversing around the boundary of the face. 

We are allowed to repeat an edge along the boundary, in case the face contains 

several biconnected components, connected by edges. Lemma 5 bounds the size 

of a planar graph, given a minimum face size. 

Lemma 5. I f  all the faces o f  an n-vertex connected planar graph G have sizes > r, 

then Size(G) < (n - 2X 1 + 2/(r - 2)). 

Proof Intuitively, the lemma shows that the minimum face size acts as a 

parameter for size sparseness of planar graphs. To prove this, let m be the size of 

the graph. Euler's formular for planar graphs states that n - r n  + f =  2, where f 

is the number of faces in the graph. Thus, f = m + 2 - n. If we traverse the 

boundary of each face and mark the edges encountered, every edge in the graph 

will eventually be marked twice. This is because edges that have different faces 

adjacent on both sides are counted twice, the traversal of each adjacent face 

contributing once. Edges with the same face on both sides are also counted twice 

during the traversal of the same face. Since the size of each face is > r, we have 

f . r  < 2m. Substituting for f from above, we get 

(m + 2 - n)r <_ 2m, 

m _ < ( n -  1) 1 +  

Thus the lemma is proved. We observe that the lemma has meaning only for 

r < 2n - 2, because this is the maximum possible face size of a connected planar 

graph. This happens when the graph is a tree. []  

Our next lemma is from extremal graph theory, and is easily derivable from 

Theorem 3.7, Chapter III, in [Bo]. Define the girth of a graph as the size (number 

of edges) of its smallest simple cycle. This lemma provides an upper bound on the 

size of a (not necessarily planar) graph with a given girth. 

Lemma 6. Let G be an n-vertex graph with girth > r. Then Size(G) < nFn z/~'- 2) 7. 

Thus the girth acts as a parameter for size sparseness of general graphs. At this 

stage we are ready to prove our two theorems. We first prove Theorem 2, then 

use some of the ideas involved to prove Theorem 1. 

Proof of  Theorem 2. We run the S P A N N E R  algorithm on a given n-vertex planar 

graph G and a t > 0, after setting r = 2t + 1. By Lemma 1, the resulting graph 

has a stretch factor at most 2t + 1. Also, by Lemma 2, the girth of the output is 
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>2t  + 2. Now if the spanner is a tree, its size isn - 1, and the size bound is trivally 

true. If the spanner is not a tree, then it has cycles. For a connected planar graph 

with cycles, every face has to contain a cycle. Hence the minimum face size is at 

least as large as the girth, that is, > 2t + 2. Thus, by Lemma 5, the size of the 

output graph is 

( 2 )  
Size(G' )<(n-2)  1 + ( 2 t + 2 ) _ 2  ' 

o r  

Size(G') < (n - 1 ) ( l  + ~). 

We now prove the weight bound, which requires a different approach (the proof 

is similar to the method in [LL]). By Lemma 4, the output subgraph has to contain 

MST(G). If the subgraph is MST(G), the weight bound is trivially true. If it has 

more edges than MST(G), we prove the weight bound as follows. Consider a planar 

drawing of the subgraph, with MST(G) embedded in the subgraph. If we walk 

around the tree (visiting each edge twice), our path will resemble a skinny polygon 

with perimeter 2" Weight(MST(G)). Our accounting strategy will be to grow this 

polygon outward by absorbing neighboring edges of the subgraph, until it becomes 

the outer face of the graph. At any stage, an edge is selected which, along with a 

portion of the polygon's current boundary, circumscribes a face which is adjacent 

and exterior to the polygon. 

Consider stage i. Let the length of the polygon be Wi. In this case 

W o = 2. Weight(MST(G)). Let Ti be the total length of all edges encountered so 

far that do not belong to the minimum spanning tree. Thus T O = 0. Let the edge 

selected to be absorbed be ei = [u, v'l, and let the remaining boundary of the 

adjacent face be P(u, v), which is in fact the current polygon's boundary from u to 

v. Now this face contains a cycle, such that I-u, v] is an edge of the cycle, with the 

remaining portion of the cycle residing within P(u, v). We can use Lemma 3, and 

conclude that Weight(P(u, v)) > (2t + 1). Weight(ei). Thus, we get two equations: 

(1) Wi+ a = Wi - Weioht(P(u, v)) + Weight(e~) < Wi - Weight(ei)(2t). 
(2) Ti+I = Ti + Weioht(ei). 

We now prove that, in the limit when i goes to infinity Ti converges to at most 

Weioht(MST(G))(t/t). To see this, imagine that initially W is a bucket with 

2" Weioht(MST(G)) units of water inside, and that T is an empty bucket. At every 

stage, if we decide to add an arbitrary k (=  Weight(ei) ) units of water to T, we 

are required to remove at least k. 2t units of water from W. The process stops 

when W is empty. It is easy to see that, irrespective of whatever quantity k is 

chosen at any stage, T will finally contain at most 2. Weight(MST(G))(1/2t) units 

of water. 

Since the limit is never quite reached in actual graphs, the weight of the 
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nonminimum spanning tree edges is less than Weioht(MST(G))(1/t). Thus 

Weight(G ') < Weight(MST(G))(1 + 1/t), and the theorem is proved. [] 

Proof of  Theorem 1. We are given an n-vertex graph G and a t > 0 as input. 

We set r = 2t + 1 and run the SPANNER algorithm. By Lemma 1, the resulting 

graph has stretch factor < 2t + 1. Also, by Lemma 2, the girth of the output is 

>2t + 2. Thus, by Lemma 6, the size of the output is <n[-nl/t-], which proves the 

size bound. 

We now prove the weight bound. By Lemma 4, MST(G) is contained in the 

subgraph. For each vertex v, consider the corresponding graph Gv, composed of 

MST(G) and the edges of G' incident to v but not in MST(GO. Let the latter set 

of edges be denoted as E v. We claim that these graphs are planar. To see this, we 

lay out Gv, for some v, on a plane as follows. First draw MST(G) on the plane, 

without crossing edges. Then walk around the tree, forming a skinny polygon. 

Order all vertices (other than v), as they first appear along the boundary of the 

polygon. Now lay out the edges from v to these vertices, in the above order, with 

the edges drawn outside the polygon. Clearly, we can complete the layout without 

crossing edges. 

For the planar graph G~, using methods similar to the proof of Theorem 2, we 

see that Weight(E~) < Weight(MST(G))(1/t). Since there are n vertices, it is easy to 

see that ~v~  Weight(E~) < Weight(MST(G))(n/t). However, in this summation, 

each nonminimum spanning tree edge of G' has been added twice. This is because 

any such edge [v, v] belongs to both Eu and Ev. So the weight of the nonminimum 

spanning tree edges is at most Weight(MST(G))(n/2t). Thus Weight(G')< 

Weight (MST(G)X1 + n/2t). 

This proves the weight bound, and the theorem. [] 

3. Lower Bounds 

In this section we show various lower bounds for spanners of graphs. 

Our first result concerns general graphs with arbitrary positive weights. Peleg 

and Sh~iffer gave the following bound. 

Theorem 3 I-PS]. For everypair of  integers t > 0 andn >_ 3, there exists an n-vertex 

graph for which every (2t + 1)-spanner has at least ¼n 1+ 1/~2t+ 3) edges. 

This result follows directly from the two lemmas below. 

Lemma 7 [PS]. The only t-spanner of a graph G with unit weight on the edges 

and with girth g >_ t + 2 is G itself. 

Lemma 8 [ESI. For every pair of  integers r, n > 3, there exists an n-vertex graph 

with girth g > r and with at least ¼n 1+ 1/, edges. 

Recently, the result of Erd6s and Sachs [ES] has been improved by Margulis 
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[ M ]  and Lubo tzky  et al. [LPS] .  Although they use very similar constructions, 

the result stated in [ M ]  is more  general and provides the required improvement.  

We now briefly describe the graphs  constructed in [M].  

Let p be an odd prime. Let m > 2x/~  be an even integer relatively pr ime to p. 

The graph G p'm obta ined f rom p and m is a (p + 1)-regular graph on n < m3/8 

vertices. The  girth of  G p'm is g > r = 4 logp(m/2) [M] .  Thus, G ~'m is an n-vertex 

graph with more  than ½n I +4/3, edges. 

Using these graphs,  we improve  the bound given in L e m m a  8: 

L e m m a  9. For every pair o f  integers r, n >_ 3, there exists an n-vertex graph G 

with girth g > r and with more than ~n ~ +4/3, edges. 

Proof. If  r = 3 we can take the complete  graph  on n vertices as G. 

I f  r = 4 we can take the complete  bipart i te  graph with part i t ion of sizes 

Ln/2j  and Fn/27 as G. 

F r o m  now on we consider r > 5. 

Case 1: n < (3 "/4 + 2) 3. Then 

_~n 1 +4/3, < ~n(3,/4 + 2)4/, < ~n" 5 < n - 1. 

Thus, we can take a tree on n vertices as G. 

Case 2: n > (3'/4 + 2) 3. By Bertrand 's  postulate  there exists a prime p such 
that  ~n  1/3 - 2) 4/ '  ~ p < (n 1/3 - 2) 4/'. Since ~(n 1/3 - -  2) 4/" > 1((3r/4 q- 2) - 2) 4/r > 5 

p is an odd prime. 

Let m be the least even integer such that  m >__ 2p r/4 and m is relatively prime 

to p. Clearly, m < 2p "/4 + 4. 

Consider  the graph  C, -p '-  as described before. This graph is a (p + 1)-regular 

g raph  on n' < m 3 / 8  vertices and it has girth g > logp(m/2). 

Let G be the g raph  consisting of the union of  Ln/n'J disjoint copies ofG p''~ and 

n m o d  n' new isolated vertices. Since n' > m3/8 we have that  

(2p "/4 + 4) 3 (2(n 1/a -- 2) + 4) 3 
n' <_ <_ = n .  

8 8 

This implies that  n m o d  n' < n/2. 

Thus,  we obtain  that  

(n - (n m o d  n'))(p + 1) n 
Size(G) > > - (p + 1) 

- 2 4 

n (n I/a -- 2) 4/' + 2 n n 4/3" 
~ __ ~n  I +4/3r, 

- 4  2 4 2  
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which proves the bound on the size. It remains to show that G has girth as 

promised. 

The girth g of G is equal to the girth of G ~'". Thus 

g >_ 4 logp >__ 4 logp >_ r. []  

If we put unit weights on the edges of these graphs, then the weight of the 

minimum spanning tree becomes n - 1. Thus, the following is immediate from 

Lemmas 7 and 9. 

Theorem 4. For every pair of  integers t > 0 and n >_ 3, there exists an n-vertex 

graph G for which every (2t + l)-spanner G' is such that 

(1) Size(G') > ~n I +4/3~2,+3~ 

(2) Weight(G') > ~ Weight(MST(G))n 4/3~z'+ a) 

This theorem shows that the size result of Theorem 1 is tight up to a constant 

factor in the exponent of n, while, for the weight, the gap between lower and upper 

bounds is larger. 

Our next result concerns planar graphs with arbitrary positive weights. 

Theorem 5. For every integer t > 1, there are infinitely many values o f  n, for which 

there exist n-vertex planar graphs G with unit edge weights, such that every 

(2t + 1)-spanner G' satisfies 

(1) Size(G')= f~(n(1 + I/t)), 

(2) Weight(G') = ~(Weight(MST(G))(1 + I/t)). 

Proofi Let n take the values k(t + 1) + 2 for every k >_ 2. For  every admissible 

pair of t and n, we construct an n-vertex planar graph G as follows. Lay out two 

special vertices, u and v, on the plane. Connect them via k chains of t + 1 vertices 

each. Let all edges have unit weights. 

Clearly, the graph is planar. Furthermore, the girth is 2t + 4. Now consider 

any proper subgraph of G, say G'. Let [a, b] be an edge in G - G'. Because the 

girth is >_ 2t + 4, any alternate path from a to b in G' has length at least 2t + 3. 

This means that there can be no proper spanner of G with a stretch factor 2t + 1. 

To achieve this stretch factor or less, we have to include the whole graph. 

We now prove the size bound of G. 

By construction, G consists of (n - 2)/(t + 1) edge-disjoint chains. Since each 

chain contains t + 2 edges, the total number of edges in G is (t + 2X(n - 2)/(t + 1)). 

Thus the size of the graph is f~(n(1 + It)). The weight bound is trivially true, 

since unit edge weights imply that the weight of the minimum spanning tree 

is n - 1. This theorem shows that the size and weight results of Theorem 2 are 
tight. []  
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4. Steiner Spanners: A Lower Bound 

In what follows we prove lower bound results for various generalizations of 

spanners. Consider graphs with arbitrary positive weights. Let Distance(u, v, G) be 

the distance from vertex u to vertex v in graph G. Let G~ =(V1,E1)and  

G2 = (V2, E2) be two graphs with VI a subset of V 2. G 2 is called a Steiner 

t-spanner of GI if, for all u, v ~ V t, Distance(u, v, G~) < Distance(u, v, G2) < 

t .  Distance(u, v, GO. Thus, a Steiner spanner is not simply a subgraph of G~, rather 

it may contain auxiliary vertices and edges. An important point that is the Steiner 

spanner is not allowed to "cheat," that is, paths in G2 are never shorter than those 

in the original graph GI, though they may use auxiliary vertices and edges. 

For special graphs Steiner spanners can be substantially smaller than simple 

spanners. For example, consider the complete n-vertex graph with unit edge 

weights. Clearly, every simple 1-spanner requires all edges, but the star graph with 

one auxiliary vertex attached to all n original vertices via n additional edges of 

weight ½ is a Steiner 1-spanner with only n edges. However, the following lower 

bound result shows that such constructions are not always possible for all graphs. 

In fact, there exist graphs such that Steiner spanners cannot be much smaller than 

simple spanners. 

Theorem 6. For every pair o f  integers t >_ 1 and n > 3, there exists an n- 

vertex graph G with unit edge weights for  which every Steiner t-spanner requires 

f~( l l log  n)" n I +,~/3¢t+ 2t) edges. 

Before we prove the theorem, we need some definitions and lemmas. Let t > 1 

and let m be a positive integer. Let g be a function that maps each unweighted 

n-vertex graph to a string of m bits. We say g is an (n, t, m)-compressor if the 

following is true. For all pairs of graphs G 1 , G 2, if g(G 0 = g(G2), then, for all pairs 

of vertices u, v, Distance(u, v, GO < t" Distance(u, v, G2). Informally, the compressor 

is just like a hash function. It partitions all graphs into groups, such that in each 

group the graphs have approximately the same distances between any given pair 

of vertices. Clearly, as t increases, it should be possible to construct compressors 

with fewer groups. The following lemma provides a lower bound on the number 

of groups, given any t. 

Lemma 10. For every pair o f  integers t >_ 1 and n > 3, (n, t, m)-compressors exist 

only for  m > ~ " n 1+ 4/30 + 2~ 

Proof. By Lemma 9, for every pair of integers t > 1 and n > 3, there exists an 

n-vertex graph with girth > t + 2 and at least ~" n I÷4/3ct÷2~ edges. Let G = (V, E) 

be such a graph, and let G 1, G 2 be two different subgraphs of G. By the girth 

condition of G, both subgraphs have to belong to different groups of the 

compressor. Thus the total number of groups is _>2 IEI, thus m > [El. [3 

Two further observations are useful in proving the theorem. First, existence of 

spanners (even Steiner spanners) for all graphs implies the existence of a corn- 
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pressor. For example, consider a collection of t-spanners, one for each n-vertex 

graph. Let the set of spanners (without repetitions) be {G'I . . . . .  G~,}. Then, setting 

g(G) to be the binary representation of the integer i if G'i is a spanner of G, yields an 

(n, t, [-log k])-compressor. 

Second, we encode an unweighted graph as a bit string in the following way. 

Every n-vertex graph with m edges can be encoded by 2"Flog n ] . m  bits, by 

representing every edge as a pair of [-log n] bit strings, each in turn representing 

a vertex. 

Proof o f  Theorem 6. We first prove the theorem for unweighted spanners, then 

prove it for weighted spanners. To prove the first part, consider any collection of 

t-spanners, one for each n-vertex graph. Since we are interested in sparse Steiner 

spanners of n-vertex graphs, even with auxiliary vertices these spanners should 

have no more than n + 2. n(n - 1)/2 = n 2 vertices. Let m be the size of the largest 

spanner in this set. Each spanner can be encoded in < 4 " F l o g n ] ' m  bits. 

Thus by our previous observation, these spanners imply the existence of an 

(n, t, 4. Flog n] .  m)-compressor, but, by Lemma 10, 4. Flog n]- m > ~' n 1 +4/3(t+2} 

Solving for m proves the theorem. 

To prove the second part, again consider a collection of t-spanners, one for 

each n-vertex graph with unit edge weights. As before these spanners cannot have 

more than n 2 vertices. However, since the edges have weights, we have to devise 

a different encoding scheme. Informally the idea is to encode the weights them- 

selves as bit strings. The problem arises because weights may require an arbitrary 

number of bits. However, we show that by ignoring very large weights, and 

rounding off the remainder in a certain way, we can get suitably encodable 

spanners with slightly larger stretch factors. 

Consider any t-spanner G' in the set. First notice that any edge with weight 

larger than n -  1 can be removed without affecting the stretch factor. Let G" 

be another spanner derived from G' in the following way. For  each edge e 

replace its weight by Weight"(e)= [-n 3. Weight(e)-]/n 3. Notice that Weight"(e)< 

Weight(e) + 1In 3. 

We now claim that G" is a (t + 1/n)-spanner. This is easy to see because any path 

in G" has at most n 2 - 1 edges, and each weight in G" is at most 1/n 3 greater than 

the corresponding weight in G'. 

G" is more convenient to code than G'. Let m be the size of the largest G" in 

the set. Each edge weight is a rational, where the numerator is an integer between 

1 and n 4 - n 3 and the denominator is n 3. Thus each weight can be encoded by 

less than Flog n 4-] < 4[logn-1 bits. Thus G" can be encoded by at most 

8. [-log hi. m bits. So these spanners imply the existence of an (n, t, 8- Flog hi- m)- 
compressor. Applying Lemma 10 and solving for m, the theorem follows. []  

Note that we have no lower bounds on the weight sparseness of Steiner 

spanners. We now generalize spanners in another direction. Let t > 1. G' = (V, E) 

is a t-approximator of G = (V, E) if, for all u, v e  1I, 1/t. Distance(u, v, G') < 

Distance(u, v, G') < t" Distance(u, v, G). The following theorem provides a lower 

bound on the size of approximators. 
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Theorem 7. For every pair of  integers t >_ 1 and n > 3, there exists an n-vertex 

graph G with unit edge weights such that every t-approximator has 

f~(1/log n). n I +4/a~,+ 2~ edges. 

The proof is very similar to Theorem 6 and we omit the straightforward 

elaboration. Basically a set of approximators implies the existence of a com- 

pressor, and an approximator with m edges can be encoded in O(log n" m) bits. 

We finish this section by proving a lower bound for complete graphs with 

weights that are proper. The latter mean that the weight of any edge is never more 

than the length of any path between its end vertices. 

Theorem 8. For every pair of  integers t >_ 1 and n > 3, there exists an n-vertex 

complete graph K with proper edge weights, such that every (2t - 1)-spanner requires 
D(1/t" n I +4/3{2,+ 1~) edges. 

Proof. Let G = ( V , E )  by an n-vertex graph with at least ~ .n  1+4t3{2t÷1~ edges 

and girth >_ 2t + 1. Define a complete graph K over the same vertex set where 

the weight of [u, v] = Distance(u, v, GO. Clearly, all weights are proper. 

Let G' = (V, E') be a ( 2 t -  1)-spanner of K. Every edge [u', v'] in E' with 

weight < t corresponds to a unique path u' = u o, ul, • . . ,  Uweigh t ( iu ' ,u ' ] )  = v '  in G, 

due to the girth of G. An edge [u, v] in E is called saturated byn [u', v'] in E ~, if 

it is contained in this path. If [u, v] in E would not be saturated by some edge of 

G', then Distance(u, v, G')>_ 2t by the girth condition. This contradicts the fact 

that G' is a (2t - 1)-spanner of K. Thus .every edge of G is saturated. Every edge 

of G' with weight < t  can saturate at most t edges in G. Thus Size(G')> 

1/t. Size(G) and the theorem follows. [] 

All the above lower bound results emphasize robustness, that is, they hold even 

after allowing more general spanners, or more restrictive graphs. In the next section 

we discuss spanners of Euclidean graphs. 

5. Spanners in Euclidean Graphs 

In Euclidean graphs the weights assigned to the edges are not arbitrary, hence the 

lower bounds of Section 3 do not apply. It has been possible to construct spanners 

for such graphs with a linear number of edges. 

Our first result is on Euclidean graphs on the plane. The vertices of such a 

graph are a set of V of n points on the plane. The edges are line segments joining 

pairs of vertices and each edge weight is the Euclidean distance between the 

vertices. These graphs may be either planar or nonplanar. We let K(V) be the 

complete Euclidean graph (which is clearly nonplanar). We pose the question: are 

there sparse planar spanners of K(V)? This problem has been extensively studied 

in the past. In [C], [DFS] it was shown that Delaunay triangulations in the I1' II1 
and 1[" 112 norms are spanners with constant stretch factors. Using a general 

framework, Das and Joseph [DJ] showed that other planar graphs such as greedy 
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triangulations and minimum weight triangulations also have constrant stretch 

factors (with different constant values). In [KG]  the stretch factor for Delaunay 

triangulations in the 11" II 2 norm was improved to 2.42 (current best). In [DJ] and 

ILL] it was shown that there exist extremely short Euclidean planar graphs (that 

is, almost as short as the minimum spanning tree) that have constant stretch 

factors. The algorithm in ILL] produces arbitrarily short graphs based upon a 

parameter, though it is not obvious how small the sizes of these graphs are. Using 

Theorem 2 we can produce planar spanners that are both short, as well as small, 

in size. 

Let t > 0, and consider the Delaunay triangulation over V in the tl" II2 norm. 

It is known that this triangulation contains MST(K(V)). We now apply the 

SPANNER algorithm on the triangulation with r = 2t + 1. Because spanners are 

transitive, it is easy to see that the output (denoted as G') satisfies the following 

property, 

Theorem 9. G' is a (2.42)'(2t + t)-spanner of  K(V), such that 

(1) Size(G') <_ (n - 1X1 + It), 

(2) Weight(G)< Weight(MST(K(V))XI + l/t). 

In higher dimensions planarity of spanners is not an issue. Our next result is on 

constructing linear-sized spanners for complete graphs of point sets V in (R ~, II • If), 

for all dimensions d > 2, and all norms il '  II. Fix some angle ~ > 0. The key idea 

is to cover R d by finitely many open cones C1 . . . . .  C~(~), all with the same focus 

at the origin O, such that, for all points u, v in the same cone, the angle between 

u and v at O is less than & Such a covering exists for every d and every 6 by the 

theorem of Heine-Borel [CS]. Similar ideas for constructing spanners for fixed 

norms have been considered in [K].  

We construct the spanner G' as follows. For every v e V, consider the covering 

of R d by the cones C~ + v . . . . .  C~(~) + v, where C + v represents a shifting of the 

cone C to a new origin v, in the spirit of Minkowski. For every cone Ci + v, let 

u be the vertex in the cone such that [fu - vfl is minimized. We add [u, v] to G', 

and u is known as the ith neighbor of v. 

Clearly, the size of G' is <s(6).n, and is therefore linear. It remains to show 

that its stretch factor is small. Consider u, v ~ V. A short path between them is 

constructed in the following way. Let u be inside the cone C~ + v. Go from v to 

its ith neighbor, and proceed from there in the same way via u. We show that this 

path is not too long with respect to [lu - vii. 

Lemma 11. For every e < 1/(1 + 2,J2), there is an angle fi(e) > 0 such that 

Distance(u, v, G') < 
l lu  - v i i  

(1 -- ~(1 + 2V/'2)) 
for all u, v & V. 

The estimation of the angle 6(e) is very technical and we prove it after stating 

the final theorem of the paper, which follows immediately from Lemma 11. 



96 I. Althffer, G. Das, D. Dobkin, D. Joseph, and J. Soares 

Theorem 10. For every  t > 1, d imension d, and  norm II'tl of R a, there ex is t s  a 

constant  c(t, d, 11" 1t) such that  every  f in i t e  se t  V in R d has a t -spanner with at  most  

c • n edges. 

In  the rest of  this section we estimate the angle 6(e) and thus prove Lemma 11. 

The following lemmas will be useful in the proof. 

L e m m a  12. L e t  a, fi, ~ > 0, ~ + fl + 7 = n, 7 <- fl, and  a <_<_ 2n/3. Then 

sin fl - sin ~t 
- - -  > 1 -~t .  

sin ? 

Proof .  Fix ct > 0 and define 

g ( r )  = 
s i n ( n - a - j - s i n ~  

sin ? 

We have to show that g09 >-- 2~t for all ), in (0, (r~ - a0/2]. By the rule of HSpital, 

lirn ° g ( j  = lim 
- c o s ( z  - ~ - ~,) 

cos 
- c o s ( n  0t) cos a 1 - 2 s in:  a . . . .  - >  1 - ~ t .  

2 

Fo r  the other  extreme in the interval we get 

g ( n ~ )  _ sin(n - c t)/2) - sin ~t ~ - ( ~ -  ~ t ~  sin 
= 1  

sin((n - a)/2) 

= 1  
sin ct 

cos a/2 
- - =  1 - 2 s i n ~ >  l - 0 t .  

We complete the proof  by showing that  the derivative g ' ( j  has no zero in the 

open interval (0, (n - a)/2). Clearly, 

- c o s ( n  - ct - y) sin y - [sin(n - a - j - sin a]  cos 

g'(y) = sinZy 

An application of  the addit ion formula for the sinus yields 

- sin(re - a) + sin a cos 7 

g ' ( J  = sin 2 

The numera tor  equals - s i n  a + sin ~tcos~, and is smaller than 0 for all 

O < ~, < (n --  ~)/2. [] 
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[ ,emma 13. In the Euclidean norm I['112, every triangle with side lengths c < b 

and angle ~ < 2n/3 satisfies (b - a)/c > 1 - ~. 

Proof Apply the sinus theorem a/sin ~t = b/sin fl = c/sin y to L e m m a  12. [ ]  

In the rest of the section we use the following notation.  The angle between any 

two points u and v with respect to the origin in R d will be written as L(u,  v). Also 

sin /__(u, v) will be written in short  as sin(u, v). 

Lemma 14. Consider the norm It'lt2 and any other norm [l" l[ in R a, such that 

[lull < qtlut[2 for  all u in R d, where q > 0 is an appropriate constant. Then 

Ilul[ < v)l Ilvll 
x/~qlsin(u, 

[lull2 1~-2 - 
Jbr all u, v other than the oriffin. 

Proof. The triangle i n e q u a l i t i e s  a r e  Ilull - Ilvll ~ Ilu - vii and }lull - ilvll 

ltu + vii, W i t h o u t  loss  o f  generality assume tluII2 = [Ivl12 = 1 a n d  llull >--Ilvlt. L e t  

( ' , - )  denote the s tandard  scalar product.  

Case 1: (u, v)  _> 0. By the first triangle inequality we get 

[]U[[ t1/.)l [ 2 
Ilullz ivY2 ~ Ilu - vii 2 ~ qZllu - vii 2 : qZ(u - v, u - v) 

= q2((U, U) + (V, V) -- 2(U, V) = 2q2(1 -- (U, V)). 

On the other hand, 

Isin(u, v)J 2 -- 1 - c o s 2 ( u ,  v ) =  1 - (u, v)  z - - (1  - (u, v)) l  + (u, v)) 

_> 1 - -  ( u ,  v ) .  

Case 2: (u, v )  < 0. This case is solved analogously by applying the o ther  triangle 
inequality. [ ]  

Lemma 15. Let  ItuLl2<llu][ <q[ lu[12for  some q > l and all u in R a. Let O <  

e < 1/(1 + 2x /2  ). Then 

Hull - liu - vii 
> 1 - (1 + 2x/~)e 

Ilvll 

for all u, v other than the origin with ItulI2 >- 11vii2 and / (u, v) < e/q. 

Proof. By L e m m a  13 we have 

[ l u t l 2  - I lu  - v l l :  
> l - -  

Ilvll2 q 
(1) 



98 I. Alth6fer, G. Das, D. Dobkin, D. Joseph, and J. Soares 

Consider the expression (llull - Ilv - uD/llvll, By Lemma 14 and multiplying the 

numera tor  and denominator  by Ilull2/llull we get 

[lull - Ilu - vii 

Ilvll 

Ilull - IIo -ull2Ellull/llull2 + x/~qlsin(u, v - u)l] > 

tlvll2Ellutl/llul[z + x/2qlsin(u, v)l] 

t[ul[2 - t t v  - ul[2[1 + (l[ull2/tlu[t)x/2qlsin(u, v - u)l] 

> 

tlvH2[1 + (llull2/l[ul[)x/2q[sin(u, v) l ]  

[lull2 - fly - u l l z [1  + x/- :2qls in(u,  v - u ) l ]  

tlvll2[1 + x/2qlsin(u, v)l] 

1 

1 + x/2qlsin(u, v)l 

t l u l l z  - l lv  - u l12  
× - 

t l v -  ull 2x/2q I sin(u, v - u ) ! ]  

l l v l l~  J 
(2) 

By the sinus theorem we have sin(u, v -  u ) =  ( l l v l l 2 / l [ v -  ul12) sin(u, v). Together 

with (1) this shows that (2) is greater than 

1 + x//2q sin(t/q) 1 q d 2 q  sin _> I + x/~q(e,/q) 1 - - e  -- x /~q  

1 -- (1 + x/~)e 

1 + x / ~ e  

> 1 - (1 + 2x/2)e. [] 

Proo f  o f  L e m m a  11. Let the norm under  consideration be I1" I l such  that Ilu[I2 --- 

Ilull < qllul[2 for some q > 1 and all u in R d. Select the angle 6(e) to be e/q. Recall 

the manner  in which a path from v to u is constructed in the graph G'. Let the 

vertices along this path be v = z 0 . . . . .  zp = u, The following are true for all i: 

e 
A(z~_ - zi, zi+, - z,)_ < - 

q 

By Lemma 15 we get 

and [lzp - z~lt2 > Ilzi+l - zil[z. 

llzi+, - z i l t  < 
1 -- (1 + 2x/~)e 

[ t l z p  - z~II - Itz~ - z i ÷ , l t ] -  

Thus, 

p - I  

F. Ilz,÷ ~ - z, Jl < 

i=0 

1 p - 1  

1 - ( 1  + 2 x / ~ ) ~  , ° o  y "  [ l l z ,  - z ,  ji - IIz, - z , + , t l ]  
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1 

1 - (1 + 2x/2)e 

1 

- (1 + 2x/2)~ 1 

[llz~, - ZolI - z,, - z,,tl] 

llzp - Zoti. [] 

A direct application of Lemma 13 shows that in the case of the 11'1t2 norm we 

get I/(1 - e) spanners with s(6(e)), n edges. In R 2, s(6(e)) is known to be L2u/e_] + 1. 

6. Open Problems 

We conclude with some open problems. 

(1) In Theorem 1 the bound in the weight does not agree with the lower bound 

as nicely as in the other results. Can it be improved? We feel that our strategy of 

dividing the graph into planar components cannot be extended to yield the optimal 

answer. 

(2) Even in the other results, there are gaps between upper and lower bounds. 

For instance, in Theorem 1 the upper bound for the size is O(n t+ l/t), while the 

lower bound is f~(n t +4/(6t+9)). Only for t = 1 are the known bounds, ®(n3/2), of 

the same order. The lower bound was proved in [L-I, and the upper bound is 

mentioned in [PUP] .  

(3) For dimensions higher than 2, Euclidean spanners with linear sizes exist. 

Do Euclidean spanners exist with weights within a constant multiple of the weight 

of the minimum spanning tree? 

(4) What spanners do random graphs have? The Euclidean random case has 

been examined in [SV]. 

(5) Consider R a, some fixed norm, and t > 1. What are the worst (or at least 

bad) point configurations V with respect to the number of edges in optimal 

t-spanners? 

(6) Do spanners have other applications? 
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