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Abs t rac t .  Image quantization and dithering are fundamental image 
processing problems in computer vision and graphics. Both steps are 
generally performed sequentially and, in most cases, independent of each 
other. Color quantization with a pixel-wise defined distortion measure 
and the dithering process with its local neighborhood typically optimize 
different quality criteria or, frequently, follow a heuristic approach with- 

out reference to any quality measure. 
In this paper we propose a new model to simultaneously quantize and 
dither color images. The method is based on a rigorous cost-function 
approach which optimizes a quality criterion derived from a simplified 
model of human perception. Optimizations are performed by an efficient 
multiscale procedure which substantially alleviates the computational 
burden. 
The quality criterion and the optimization algorithms are evaluated on 
a representative set of artificial and real-w0rld images thereby showing 
a significant image quality improvement over standard color reduction 
approaches. 

1 I n t r o d u c t i o n  

True color images typically contain up to 16 million different colors. One of the 

basic tasks of low level image processing consists of reducing the number  of col- 

ors with minimal visual distortion. Such a coarse graining of colors is impor tant  

for fast image manipulation on a reduced color palette, for computat ional  effi- 

ciency in subsequent image processing and computer  vision applications, and for 

image coding and transmission. F~rthermore, many  image display and printing 

devices provide only a limited number  of colors. The representation problem for 

colors aggravates when many  images are displayed simultaneously resulting in 

a palet te  size of 256 or even substantially less colors assigned to each image. 

Several techniques have been proposed for color reduction, most of which obey 

a two-s tep scheme: 

* A more detailed report is found in [16]. This work has been supported by the German 
Research Foundation (DFG) under grant #BU 914/3-1, by the German Israel Foun- 

dation for Science and Research Development (GIF) under grant #1-0403-001.06/95 
and by the Federal Ministry for Education, Science and Technology (BMBF ~01 M 
3021 A/4). 
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Fig. 1. Pointillism artwork: Paul Baum (1859-1928): Place ~ St. Anna, Hollande, 1905. 

1. Initially, a color set is selected by minimizing a proper pixel distortion error. 

Examples are the popular median-cut quantizer [1] and the application of a 

variety of clustering methods like LBG [2] or agglomerative clustering [3]. In 

fact, any suitable clustering approach could be used, see [4] for an overview. 

It is a characteristic fact for all clustering approaches, that  they neglect 

spatial, i. e. contextual, information. 
2. Several types of degradation appear in the quantized image due to  the limited 

number of colors. The most severe is the appearance of contouring artifacts in 

uniform regions. Dithering methods as a subsequent processing step provide 

a way to address this problem by exploiting a property of the human visual 

system.. Human beings perceive high frequency spatial variations in color 

without preferred direction as a uni/orm color, which can be understood as 

an averaging superposition. Impressionistic painters from the French school 

of pointillism have exploited this effect in a spectacular way as illustrated 

in Fig. 1. Therefore, additional illusionary colors can be created by spatial 

mixing. In a common dithering technique cMled error diffusion the quanti- 

zation error is spread to neighboring pixels, i.e. the distortion at neighboring 

pixels is biased in opposite direction. Several error diffusion filters have been 

proposed [5, 6]. 

Quantization and dithering are generally performed sequentially. Therefore, quan- 

tization and dithering usually optimize different quality criteria. While clustering 

distortion measures like the well-known K-means  cost function are exclusively 

pixel-based, dithering techniques rely on spatial information and distribute the 

distortion error among neighboring pixels. Joint quantization and dithering ap- 

proaches have been considered only occasionally on a heuristic ad-hoc basis [7]. 

In this paper we propose a rigorous cost-function based approach, which 

simultaneously performs quantization and dithering of color images in a joint 
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error minimizing algorithmic step, which we refer to as spatial quantization. The 

presented cost function extends the K-means  criterion to a spatially weighted 

distortion measure. It, thereby, incorporates dithering techniques into the quan- 

tization cost-function. The strengths of both, quantization and dithering, are 

combined in a rigorous fashion leading to a significant improvement in image 

display quality. 

From our point of view a successful optimization approach consists of two 

conceptually well-separated parts: 

1. A good quality criterion, which appropriately models the information pro- 

cessing task: For color reduction the global minima of the cost function 

should correspond to psychophysically pleasing image reproductions. 

2. An efficient optimization algorithm to minimize the proposed cost function. 

We develop two closely related optimization algorithms for the spatial clustering 

criterion, (i) an extension of the Iterative Conditional Mode  (ICM) algorithm, 

which is similar in spirit to K-means  clustering and (ii) a deterministic annealing 

variant along the lines of the maximum entropy quantization [8]. 

While ICM is fast, it is a purely local optimization procedure. Deterministic 

Annealing (DA) as a homotopy method inspired by statistical physics is closely 

related to simulated annealing and has been empirically shown to be fast, yet to 

possess global optimization properties in the sense, that  optimal or near optimal 

solutions are found and bad local minima are avoided. We extend the convergence 

proof for assignment problems given in [9] to the case of additional continuous 

parameters and derive efficient mean-field equations for spatial clustering. 

Both ICM and DA are significantly accelerated by applying multiscale op- 

timization techniques [10]. Multiscale optimization can be understood as the 

minimization of the original cost function over a properly reduced search space 

and has been shown to substantially accelerate the algorithms for other cluster- 

ing cost functions [11]. For spatial quantization the corresponding cost functions 

on coarse image grids are derived. 

In Sect. 2 we discuss color spaces and present the novel dithered color quan- 

tization cost function. Sect. 3 is dedicated to optimization methods. Multiscale 

expressions are derived and both DA and ICM are discussed in detail. Results 

are presented in Sect. 4 followed by a short conclusion. 

2 Combining  Quant izat ion and Error Diffusion 

2.1 P e r c e p t i o n  m o d e l  

The spatial frequency response of the human vision system performs poorly at 

high frequencies due to the finite resolution of the human eye and the physical 

limitations of display devices. Thus, additional imaginary colors can be generated 

by digital half-toning. To simplify the model of imaginary colors the chosen color 

space should represent perceived superposition of colors as linear superpositions. 

A color space with this property is called a uniform or linear color space. The 
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commonly used RGB color space and its linear derivates do not define linear color 

spaces. In contrast,  the CIE Lab color space [12] represents differences in color 

by the Euclidean metric in a psychophysically meaningful way, although it is well 

known to suffer from some minor defects [13]. To overcome this shortness, new 

non-Euclidean metrics were proposed. Despite these facts, in this paper  RGB 

and CIE Lab color spaces with the Euclidean metric are used for computat ional  

simplicity and to provide a general interface for other color spaces. 

Having defined a linear color space U, we propose to model human perception 

as a blurring operation, i.e. a convolution of the image with a Gaussian kernel to 

ensure locality. To obtain a formulation for a discrete image grid we introduce 

a neighborhood system Af/ defined as the spatial support  for a Gaussian kernel 

with s tandard deviation a centered at pixel i. We define the weights wij for 

neighborhood pixels as 

w i j ~ e x p ( ( i ~ j ) 2 ) ,  E w i j = l  . (1) 

jcAfi 

The perceived color ci E U at location i for a given image is modeled as 

ci(x) = E wijxj , (2) 
jcNi 

where xj E U denotes the pixel value at location j .  

2.2 Spatial Quantization Cost ~ n c t i o n  

To define the spatial quantization cost function we first introduce a set or palet te 

of colors, which are denoted by a vector of prototype variables Y = t 

y~ C U C lR 3, where U is again the linear color space defined above and the 

superscript t denotes the transpose of a vector. A quantization is then defined as 

an assignment of pixel colors xi to prototypical colors Yv, which is formalized by 

Boolean assignment variables Mi~ E (0, 1}. Mi~ = 1(0) denotes that  the image 

site xi is (is not) quantized to color y , .  All assignments are summarized in terms 

of a Boolean assignment matr ix  M E AJ, where 

.M = M C { 0 , 1 }  N x K :  M i ~ , = l ,  l < i < N  (3) 

As a cost function for faithful color reproduction we employ the pixel-wise dis- 

tance between the perceived image before and after quantization. For a linear 

color space the Euclidean norm is the natural  choice yielding costs 1 

7 t ( M , Y )  = E wijxj - E Mj~,wijy,, (4) 
i=.l .v=l 

1 The classical K-means cost function is obtained for wij = 5ij and can be understood 
as the special case of our model with a blur free perception model. 
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The task of spatial quantization is then defined as a search for a parameter  

set ( M , Y )  which minimizes (4) 2. In contrast to the K-means  cost func- 

tion, which is linear with respect to discrete and continuous parameter  set, 

(4) is quadratic. Standard quantization techniques are computationally efficient, 

whereas our color quantization approach achieves substantially better  modeling 

quality at higher computational costs. The reader should be aware at this point 

that  changes in the model of human perception only result in a different cost 

function, when the perception model is no longer linear w.r.t, the input image. 

Thus (4) covers a broad range of possible perception models. 

The cost function (4) can be rewritten as a quadratic form in the assignment 

variables and in the continuous variables Y. For this purpose, we introduce a 

new, enlarged neighborhood 

Af/= {k:  3j : j E N'i A j c N'k } (5) 

Abbreviate 

bij = E wikwjk, j E./~i, a i = - - 2  E bijxj (6) 

AkEJV'j 

and note that  bij is translation and rotation invariant and depends only on l i -  J l 

for our specific perception model (1). An equivalent expression for (4) is given 

by 

N K K N K 

i = 1  j C J ~ i  u----1 c~----1 i----1 u = l  

(7) 

which makes the quadratic nature of 7-/explicit. Constant terms without influ- 

ence on either the assignments or the prototypes have been discarded. 

3 O p t i m i z a t i o n  f o r  S p a t i a l  Q u a n t i z a t i o n  

3.1 Mult iscale  Opt imizat ion  

The statistics of natural images support the assumption that  colors are dis- 

tr ibuted homogeneously in images, i. e. pixels adjacent to each other contain 

with high probability similar colors. This fact can be exploited to significantly 

accelerate the optimization process by minimizing the criterion over a suitable 

nested sequence of subspaces in a coarse to fine manner. Each of these subspaces 

is spanned by a greatly reduced number of optimization variables. In contrast 

to most multi-resolution optimization schemes the identical cost function is op- 

timized at all grids, solely the variable configuration space is reduced. 

It is also possible to (partially) fix a set of prototypes, e.g. a set of available colors, 
and to optimize the assignments of pixels to colors alone. Therefore, this cost function 
provides also a new method for dithering an image given a fixed color table. 
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This strategy is formalized by the concept of multiscale optimization [10] 

and it leads in essence to cost functions redefined on a coarsened version of the 

original image. Formally, we denote by S O = $ the original set of sites and we 

assume that  a set of grid sites $1 = { 1 , . . . ,  N 1 } is given for each coarse grid level 

1. Throughout  this section coarse/fine grid entities are denoted by upper/lower 

case letters. Define a coarsening map Ct on the sets of indices: 

Cl : 3 t ~ 3 I+1, i ~+ I = Cl(i) , (8) 

where each fine grid point is linked to a single coarse grid point. Typically $0 = S 

corresponds to the set of pixel sites and Sl+l is obtained by sub-sampling S l by 

a factor of 2 in each direction, i. e. 4 sites are combined into a single coarse 

site by the two-dimensional index operation (I, J)  = ([i/2J,  [ j /2]) .  Since this 

operation is a many-to-one map the inverse C1-1 is a subset of the fine grid sites, 

Cz -1( I )  C Si. Multiscale optimization proceeds not by coarsening the image, but 

by coarsening the variable space. Each coarse grid is associated with a reduced 
set of Optimization variables M l E A4 l, 

= ( I ,) ,=1 ..... N, : MIt" � 9  (9) 
v : l , . . .  , K  

Thus K Boolean variables M/l~ are attached to each grid point I denoting 

whether the set of respective pixels is assigned to color y~. Coarsened cost func- 

tions at level l + 1 are defined recursively by proper restriction of the optimization 

space at level l: 

7 / t + l ( M  t+l �9 M t + l , Y ) : =  ~-/l(MZ �9 A74t: M[~ = M~+~i), ,Y ) , (10) 

where 

Ad t = { M  t � 9  M[~ = M}, for Cl(i) = Cl(j)} (11) 

denotes the subspace A~I I C /t4 t with identical assignments for sites with the 

same coarse grid point. Now introduce a coarse grid neighborhood by 

~ [ ~ + l = { J : 3 i E C l ' ( l ) , j E c [ - l ( j ) : j E f f ] }  (12) 

We recursively define 

bII+jl= E E b:j, alI+l-~ E o~:. ( 1 3 )  

iEC[- 1 (I)  j E C  l I ( j )  lEG~- 1 ( I) 

AjeJ(fl 

For the spatial quantization cost function (7) the following coarse grid cost func- 

tions are obtained applying definition (10): 

N l K K N l K 

7 / Z ( M I ' Y ) = E  E E E b ~ j M I I , M ~ y t y ~ + E E M Z I , ( a ~ ) t Y "  " 
I = 1  JE.hf~ u = l  ~ = 1  I = 1  u----i 

(14) 
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Note, that  7/z has the same functional form as 7/0 = 7/ and, therefore, an 

optimization algorithm developed for 7/ is applicable to any coarse grid cost 

function 7/! without change. 

3.2 Deterministic  Annealing 

A common way to optimize mixed combinatorial optimization problems such 

as 7 / ( M ,  Y) is by an alternating minimization scheme, i.e. to optimize with 

respect to the discrete parameters keeping the continuous parameters fixed and 

then to optimize the continuous parameters for a fixed discrete set. This twofold 

optimization is i terated until a predefined convergence criterion is fulfilled. 

For fixed Y the cost function 7 / (M,  Y) = 7 / ( M )  expresses a purely com- 

binatorial problem, which can be efficiently tackled by the class of annealing 

methods. The basic idea of annealing methods is to t reat  the unknown Boolean 

variables as random variables, to introduce a scale parameter T, often called the 

computational temperature,  and to calculate equilibrium Gibbs averages of as- 

signments Mi~. This estimate can be achieved either by Monte Carlo sampling or 

(at least approximately) by analytical methods. The temperature T is gradually 

lowered and for T ~ 0 a solution of the combinatorial optimization problem is 

obtained. In Deterministic Annealing (DA) approaches [8, 14] the stochasticity 

is incorporated in a probabilistic formulation of the optimization problem and a 

deterministic optimization is performed over a probabilistic state space Q(M) .  

The minimization is carried out over the space of factorial distributions 

Q = Q ( M ) : =  Mi .m i . ,  V M  E ./~ (15) 

i = 1  v = l  

to guarantee computational tractability and efficiency. For factorial distribu- 

tions random variables at different sites are independent, i.e. (MivMj~)V = 

(Mi~.)Q(Mjc~)Q is valid for i # j .  Furthermore, the distribution parameters mi .  

equal the variable expectations, mi.  = (Mi~)Q. The original cost function 7t 

over M is embedded in the family of smoothed cost functions over Q 

~T(Q) = (7/)Q -- TS(Q)  , (16) 

where S denotes the entropy. 5rT is called generalized free energy referring to 

its usage in statistical physics and it is convex over Q for sufficiently large T. 

Thus ~'T can be understood as a coarse version of 7/ while T takes the role of 

a scale parameter in optimization space. Denote by Qi~ the matrix obtained by 

replacing the i - th  row of Q = (mi,)  with the unit vector e~. The fundamental 

relationship [9] 

exp (-(7/)Q~./T)  (17) 
m i u -  EK 

~=1 exp ( - (7 / )Q~. /T)  

is valid for distributions Q minimizing (16). A transcendental system of equations 

is obtained for the mi .  from (17), which is solved by an asynchronous, iterative 
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and convergent fixed-point relaxation. DA can be understood as a continuation 

method [14], since the (unique) minimum at high temperature is tracked while 

gradually lowering ('annealing') T. The local ICM-algorithm is obtained in the 

T = 0 limit, where rni. E {0, 1} and rni, = Mi,  = 1, iff u = argmax~(7/)Q~.. 

We now turn to the derivation of mean-field equations for the general spatial 

clustering cost function. Both ICM and DA are implemented using an efficient 

bookkeeping scheme. The so-called meanfields (7/)Q,~ are given by 

<7/>Q'~ = Ytu (Pi + biiy,) (18) 

with the bookkeeping entities 

K 

p~ = 2 ~ b~j Z m~oyo + a~ . (19) 
j ~7~  ~=1 
j r  

For fixed Boolean variables M the optimization of 7 / (M,  Y) = 7/(Y) yields a 
simple matrix equation. Let S = (s,~) C IR K x IRK and R = (r t) C IRK X IR3, 

where 

N N 

s . ~  = E E b i y r n , . r n y ~ ,  r .  = E r n i . a i  , (20)  

i=1  jEJ~i  i=1 

then the generalized free energy (16) is equivalent to the quadratic form 

K K K 

7~(O) = <7/(Y)>q = Z Z s . . ~  + Z ~.Y- - (21) 
v----1 ~ = 1  v = l  

Therefore the optimal Y is given by 

Y = - ( 2 S ) - ' R  . (22) 

For fixed T the overall alternating minimization scheme can be proven to con- 

verge to a local minimum of (16). In the proof given in [15] for arbitrary as- 

signment problems the free energy (16) plays the role of a Lyapunov function. 

Extending this proof to mixed combinatorial problems it is straight forward to 

show that  (22) also decreases the free energy in each step, see [16] for details. 

For large T the inverse of S becomes singular and the system of linear equations 

is solved e.g. by a conjugate gradient method or the Moore-Penrose inverse to 
avoid numerical instabilities. 

3.3 Multiscale Annealing 

Algorithms like K-means  or LBG efficiently minimize 7 / b y  splitting techniques 
to obtain successive solutions for a growing number of clusters. For ICM we 

adopt an idea from K-means  clustering by splitting clusters with high distor- 

tion. One of the key advantages of the DA approach is the inherent splitting 
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strategy. Clusters degenerate at high temperature and they successively split at 

bifurcations or phase transitions when T is lowered [8]. Therefore, at a specific 

temperature  scale an easily measurable effective number KT of clusters is visible. 

Since the number of effective data points available drastically reduces at coarser 

resolution levels, splitting strategy and coarse-to-fine optimization should be 

interleaved. Thus for a given resolution level l we anneal until KT exceeds a 

certain maximal number of clusters Klm~x for some temperature T*. After pro- 

longation to level (l - 1) the DA optimization is continued at temperature T*. 

This scheme has been introduced as multiscale annealing in [11], where also the 

question of choosing the maximal number of clusters for a given resolution has 

been addressed in a statistical learning theory context. We adopt this approach 

by choosing Klmax ~ Nl/1og N l and by determining the proportionality factor 

on an empirical basis. The complete algorithm is summarized in Algorithm I. 

Algor i thm I 

INPUT wij, xi, I~ 

INITIALIZE mli~ "x randomly, temperature T ---- Tstart , I : Imax ; 

COMPUTE ai, bij according to (6), a~, b//j according to (13). 

WHILE (T > TFINAL) and (l _ 0) (multiscale annealing) 
REPEAT 

REPEAT 

generate a permutation 7r 6 SN 

F0R i - = l , . . .  ,N l 
l update a l l  m~(1) . according to (17) 

UNTIL converged 
UPDATE Y according to (22) 

UNTIL converged 
z z-1 SET l = l - 1  IF KT > KiT PROPAGATE m~u to miu , 

ELSE SET T = ~ ? . T ,  0 < ~ < 1  
SET M/l, = 6v,argmax~ mI~ (winner- takes-al l  rule)  
WHILE (l _> 0) (T = 0 ICM-optimi'zation) 

PROPAGATE Mi/v to M~ I, SET l: l--1 

REPEAT 

UPDATE M~u by ICM until converged 

UPDATE Y according to (22) 

UNTIL converged 

4 R e s u l t s  

The proposed spatial quantization algorithms are compared with several stan- 

dard color image quantization methods, which all employ both quantization and 

dithering. As median cut quantizer [1] in conjunction with the Floyd Steinberg 

(FS) dithering algorithm ppmquant found in the P P M tools by Jef Poskanzer is 

used. The octree quantization [17] implementation is based upon C code pub- 

lished in Dr. Dobbs Journal. As the most simple alternative we have applied a 
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Fig. 2. Image quantization on a smooth transition of grey levels (256 different grey 
values): (a) to (e) spatial quantization with neighborhood sizes from 3 x 3 to 11 x 11 
(from left to right), (f) Floyd-Steinberg (FS) dithering. 

Pool Tea Pot Mandrill Rose Golden Gate 

Sl)atial quantization [).29 (0.81) 0.39 (1.04) 1.54 (5.33) 0.97 (2.89) {).92 (2.74) 
728 115s 213s 19s 1748 

median cut + FS 1.36 (1.95) O.73 (1.27) 2.24 (4.36) 1.59 (2.95) 1.45 (2.66) 
2s 4s 5s l s  6s 

octree + FS 1.37 (2.36) 1.00 (1.86) 6.00 (8.76) 4.95 (6.67) 3.77 (5.13) 
;3s 5s 4s < I s  5s 

bit-cut + FS 9.79 (25.25) 18.98 (39.05) 27.1 (48.05) 22.02 (42.63)[28.45 (46.61) 
l s  l s  l s  < I s  Ils 

Table  1. Comparison of different color image quantization methods for quantization 

to 64 colors. First row: Quality measured in terms of (4) on a scale [0,100] (average de- 
viation). In brackets the quality measured by pixel-wise squared difference (K-means) 
is given. Second row: run-time in seconds (Pentium Pro 200MHz). ICM has been used 

for optimization in spatial qu.antization. Every quantization is performed in the RGB 
color space. The neighborhood size for our approach has been set to 5 x 5. 

simple bit-cutting for quantization followed again by a Floyd-Steinberg dither- 

ing procedure [6]. A representative set of images has been chosen for comparison 

and evaluation, which are depicted in Fig. 4. 

To examine the dithering properties of the novel cost function independently 

from the buil t- in quantization several runs on an artificial image with smooth 

transit ion of grey values as depicted in Fig. 2 have been carried out. To identify 

the role of the neighborhood size for the quality of our dithering approach is the 

main purpose of this experiment. The available two colors were fixed as black & 

white and only the assignments of pixels to the given color values were optimized. 

It  has to be noticed that  the (subjective) dithering quality grows with neigh- 

borhood size. Start ing with a neighborhood size of 5 x 5 a smooth transit ion 

between grey values is obtained, while the smaller neighborhood of 3 x 3 suffers 

from its limited variability to distribute black and white pixels and generates ar- 

tificial 'edge' structures. In contrast, the Floyd-Steinberg algorithm introduces 

significant visual distortions by edge effects and over-regular pat terns  and it 

is not capable to generate a smooth transition of grey values. In Fig. 5 the 

full spatial quantization approach is compared to median cut / Floyd-Steinberg 

with respect to quality for different number of colors. The "Pool" image was se- 

lected for its large range of colors. Especially the billiard balls exhibit a smooth 
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]Pool]Tea Pot]Mandrill]RoselGolden Gate] 

Multiscale optimization 0.62 0.83 2.38 1.71 1.64 

119 s 180 s 225 s 20 s 242 s 

Single scale optimization 1.02 0.95 2.75 1.87 1.82 
259s373s 666s 65s 429s 

Table  2. Comparison of multiscale and single scale methods. First row: Quality mea- 
sured in terms of (4). Second row: run-time in seconds measured on a Pentium Pro 
200MHz. The images were quantized to 16 colors with a neighborhood size of 7 • 7. 

transit ion from dark to bright pr imary colors. It  can be seen tha t  the proposed 

algorithm is able to distribute the small number of available colors in a more 

efficient way than  ppmquant .  Notice especially the lack of any yellow color in 

the image quantized by ppmquant .  This unsatisfactory behavior is caused by 

the large size of the green area in the original image. The median cut quantizer 

assigns too much resources, i. e. color prototypes,  to green color values. This 

behavior is basically caused by the fact that  median cut creates clusters with 

approximately equal size instead of rigorously optimizing a distortion measure. 

Depending on the number of desired colors only four to one prototypes are left 

for all other colors in the image. To represent the large range of leftover colors 

the center color was taken which is some greyish color 3. 

In Fig. 6 the "Mandrill" image quantized to 8 colors is depicted. I t  is possible 

to reduce the number of colors from 171877 with only minor perceptive defects, 

since many  illusionary colors are created by dithering. This result is illustrated by 

the magnification of the monkey's  eye in Fig. 6 (b) and (c), which demonstrates  

that  very different colors can be used to create a highly similar visual perception. 

Fig. 7 studies the role of the chosen color space, in which the spatial quan- 

tization is performed. Quantization in CIE Lab space improves the rendering 

of bright colors by reducing the number of darker colors. At low luminance the 

human vision system looses its ability to distinguish chromaticity. For the "Tea  

Pot" image, reduced to 16 colors, just  two (the RGB image reserves four) dark 

colors were needed to render the shadows, all other dark colors are imaginary. 

Instead more yellowish colors were allocated to reproduce all reflections and 

highlights correctly. 

The quality and performance results for all images are summarized in Tab. 1. 

In absence of a better,  psychophysically defined distortion measure the quality 

according to the K - m e a n s  criterion and the novel spatial quantization cost func- 

tion (4) are reported, although we are convinced that  (4) bet ter  reflects visual 

distortion. As expected, according to its own cost function spatial quantization 

outperforms all other methods significantly. But even according to the K - m e a n s  

criterion it produces bet ter  results, which can be explained by the fact tha t  the 

heuristic dithering procedures tend to increase the K - m e a n s  distortion costs 

drastically. 

The quality of spatial clustering is improved by bet ter  optimization tech- 

niques. In Fig. 3 quantization results of the image "Rose" to 4 colors are de- 

3 A more complete comparison with other color reduction schemes is found in [16]. 
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picted. The costs obtained according to (4) by the deterministic annealing (DA) 

algorithm are lower than the cost of the ICM solution. The resulting images 

clearly indicate that  better minimization techniques can result in an improved 

perception quality of the color reduced image. In the ICM solution some smaller 

details (especially in the lower right corner) vanish. For a more detailed discus- 

sion of the deterministic annealing approach for color quantization see [16]. 

Fig. 3 also indicates that  color reduction down to 4 colors still results in 

recognizable images, which might be of interest for generating iconized images 

in multimedia applications. Also, some widespread operating systems restrict 

icons to resolutions of 32 • 32 with a maximum of 12 colors. 

On the other hand it has to be stressed that  the computational complexity of 

spatial quantization increases significantly in comparison to the other methods, 

see again Tab. 1. It is therefore of particular importance to design efficient opti- 

mization algorithms such as the multiscale approach. As seen in Tab. 2 multiscale 

optimization accelerates the optimization by a factor 2-5. Fig. 8 illustrates the 

typical progress in multiscale optimization. According to (13) colors in coarse 

images are replaced by local averaging, thus coarse grid colors correspond to 

perceived colors. At the same time the neighborhood smoothing kernel sharpens 

according to (13). Therefore, spatial optimization on coarser grids has a ten- 

dency to suppress dithering of colors. Thus a bias towards local minima with 

homogeneous colors is introduced. On the other hand it is well-known that  mul- 

tiscale coarsening leads to an implicit smoothing of the energy landscape [10] 

and therefore avoids bad local minima. This effect is confirmed by the results in 

Tab. 2. 

Fig. 3. Original image "Rose" (left), spatial quantization with ICM using 4 colors 
(center), spatial quantization with DA using 4 colors (right). 

5 C o n c l u s i o n  

We have presented a novel approach to simultaneous color image quantization 

and dithering on the basis of a novel quality measure. This criterion incorporates 

error diffusion in the clustering cost function and it is motivated by a model of 

the human visual system. An efficient deterministic annealing algorithm has 

been developed and an extension to multiscale optimization has been derived to 

accelerate the algorithmic process. 

Using a rigorous cost function approach it is possible to evaluate the mod- 

eling quality independently of the optimization procedure. The algorithm has 

been shown to yield a significant improvement in quality compared to alterna- 

tive approaches on a large set of images. The results are especially impressive 
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for small color palettes, where standard quantization schemes completely fail. 

Moreover, it is possible to incorporate a (partially) predefined color palette in 

the optimization process. 

In the derivation of the cost function a simplified model of human perception 

has been used. More elaborated models with emphasis on color constancy and 

feature preservation will be discussed elsewhere. 
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Fig. 4. Original images used for the different experiments: (a) "Pool", (b) "Golden 
Gate", (c) "Mandrill", (d) "Tea Pot" and (e) grey wedge. 

Fig. 5. Image quantization with different numbers of colors (from left to right: 256, 
64, 32 and 16 colors): (a) spatial image quantization, (b) median cut quantization and 

Floyd-Steinberg (FS) dithering. 
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Fig. 6. Spatial quantization of the image "Mandrill": (a) Image with 8 colors, (b) detail 
of 8 color image and (c) same sub image from the original image with 171877 colors. 

Fig. 7. Spatial image quantization using 16 colors in different color spaces ("Tea Pot" 
image): (a) RGB color space and (b) CIE Lab color space. 

Fig. 8. Multi-scale optimization of the "Golden Gate". (a) to (d) intermediate coarse 
scale results ((a) 16 colors and (b) to (d) 32 colors), (e) resulting image (32 colors). 


