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1 Introduction

Geometric Goppa codes, also called algebraic-geometric codes, have larger di-
mension if one takes special divisors. Over an algebraically closed field one has
the Brill-Noether bound for the existence of special divisors, but this bound
is no longer valid over a finite field [12]. Abundant codes were introduced to
improve the miminum distance of algebraic-geometric codes by the notion of
the gonality of a curve [12]. This notion was extended to the gonality sequence
and applied to generalized Hamming weights of AG codes [14, 10]. In Section 2
we compute the gonality sequence of a non-singular plane curve with at least
one rational point using a theorem of M. Noether.

The zeta function of a curve over a finite field can be viewed as the gener-
ating function counting the number of effective divisors. We introduce a two
variable zeta function Z(t, u) as a generating function counting divisor classes of
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a given degree and dimension. It is straightforward to prove that this two vari-
able zeta function is a rational function with (1− t)(1− ut) in the denominator
and a two variable polynomial in the numerator, which has integer coefficients,
has degree 2g in t and degree g in u, where g is the genus of the curve. By
the correct choice of the definition it satisfies a functional equation. It is not
clear what the analog of the ”Riemann hypothesis” should be, nor whether it
has a cohomological interpretation. Substituting q for u in the two variable zeta
funtion gives the one variable zeta function, where q is the number of elements
of the finite field. In general the two variable zeta function is not determined
by the ordinary zeta function, but it does for the class of hyperelliptic curves.

In this paper we raise more questions than giving answers. But we think
that it is of importance in the study of codes and curves, since many questions
can be settled if more is known about special divisors as we mentioned at the
begining.

2 Special divisors

Definition 2.1. The dimension l(G) of a divisor G of degree m on a curve of
genus g is at least m+1−g, by the Theorem of Riemann. An effective divisor is
called special in case l(G) > m+ 1− g, and i(G) = l(G)−m−1 + g is called the
index of speciality, furthermore i(G) = l(K −G) for every canonical divisor K,
by the Theorem of Riemann-Roch. The gonality [12] of a curve over a field F is
the smallest degree of a non-constant morphism from the curve to the projective
line and which is defined over F; in other words, it is the smallest degree of a
divsor G such that l(G) > 1. More generally, the gonality sequence (γk|k ∈ N)
of a curve is defined by [14]:

γk = min {deg(G) | l(G) ≥ k}.

Thus γ1 = 0 and γ2 is the gonality of the curve.

In order to compute the gonality sequence of plane curves we need the fol-
lowing theorem.

Theorem 2.2 Let X be a non-singular plane curve of degree d and genus g
over a perfect field F. Let G be a divisor of degree m and dimension k which is
defined over F. Then:
(i) If m > d(d− 3), then k = m+ 1− g.
(ii) If 0 ≤ m ≤ d(d−3), then write m = jd− i with 0 ≤ j < d−3 and 0 ≤ i < d,
one has:

k ≤


1
2j(j + 1) if i > j

1
2 (j + 1)(j + 2)− i if 0 ≤ i ≤ j.



Two variable zeta function 3

Proof. See [11, 4, 7]. 2

Remark 2.3. Theorem 2.2 was claimed by M. Noether [11] with an incomplete
proof and later proved by Ciliberto [4] over the complex numbers and in greater
generality for integral Gorenstein plane curves over any algebraically closed field
by Hartshorne [7]. The theorem holds over perfect fields, so in particular over
finite fields, because for perfect fields F the dimension of a divisor G which is
defined over F does not change if we consider the dimension of G over the alge-
braic closure of F, see [5, 13]. Noether’s Theorem gives the maximal dimension
of a divisor of a given degree m on a non-singular plane curve of degree d in
terms of m and d. In the following corollary we consider the inverse function,
we give the minimal degree of a divisor of a given dimension on a plane curve.
Thus the gonality sequence is completely determined for plane curves.

Corollary 2.4 Let X be a non-singular plane curve of degree d and genus g
over a perfect field with at least one rational point. Write k = 1

2 (j+1)(j+2)− i
with 0 ≤ i ≤ j. Then:

γk =

 jd− i if 1 ≤ k ≤ g

k + g − 1 if k > g

Proof. If k > g, then all divisors of dimension k have degree k + g − 1, so
γk = k + g − 1. The genus g of a non-singular plane curve of degree d is equal
to 1

2 (d− 1)(d− 2).

Now we consider the case 1 ≤ k ≤ g. We can write k in a unique way as
k = 1

2 (j + 1)(j + 2)− i with 0 ≤ i ≤ j ≤ d− 3. Suppose there exists a divisor G
of degree m and dimension k which is at least 1 and at most g. We can write
m = j′d− i′ with 0 ≤ j′ ≤ d− 3 and 0 ≤ i′ < d.

Consider the total ordering on pairs (a, b) of integers as follows: (a, b) ≤
(a′, b′) is and only if a < a′ or a = a′ and b ≥ b′. Remark that the func-
tion ϕ, defined by ϕ(a, b) = 1

2 (a + 1)(a + 2) − b, is strictly increasing on the
set {(a, b)|0 ≤ b ≤ a ≤ d − 3} with respect to the total order. Furthermore
the function ψ, defined by ψ(a, b) = ad − b, is stricly increasing on the set
{(a, b)|0 ≤ a, 0 ≤ b < d} with respect to the total order.

If i′ ≤ j′, then

1
2

(j + 1)(j + 2)− i = k ≤ 1
2

(j′ + 1)(j′ + 2)− i′,

by Noether’s Theorem. So j < j′ or j = j′ and i ≥ i′, by the above remark on
the function ϕ. Thus jd− i ≤ j′d− i′ = m, by the remark on the function ψ.
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If i′ > j′, then

1
2
j(j + 1) <

1
2

(j + 1)(j + 2)− i = k ≤ 1
2
j′(j′ + 1),

by Noether’s Theorem. So j < j′ and therefore jd− i < j′d− i′ = m.

Thus γk ≥ jd − i. Now we prove that in fact γk is equal to jd − i. By
assumption there exists a rational point P . We may assume, after a projective
change of coordinates, that P = (0 : 1 : 0). Let x and y be the rational
functions on the curve defined by x = X/Z and y = Y/Z, where X,Y and Z are
the homogeneous coordinates of the projective plane. Let H be the intersection
divisor of the curve with the line defined by the equation Z = 0. Then

{xayb | a, b ∈ N0, a+ b ≤ j }

is a set of linear independent elements of the vector space L(jH) in case j < d.
So the dimension of the divisor jH is at least 1

2 (j+ 1)(j+ 2). Hence the dimen-
sion of the divisor jH− iP is at least 1

2 (j+ 1)(j+ 2)− i. The degree of jH− iP
is jd− i. Therefore γk ≤ jd− i.

Thus γk = jd− i. 2

3 Two variable zeta function

The zeta function Z(X ,Fq; t) of a curve X over the finite field Fq can be viewed
as the generating function counting the effective divisors on X which are defined
over Fq, that is to say

Z(X ,Fq; t) =
∞∑

n=0

ant
n,

where an is the number of effective divisors on X of degree n. We have seen
in Section 1 that special divisors play an increasing role in algebraic-geometric
codes. If one tries to introduce a two variable zeta function as the generating
function of effective divisors of given degree and dimension by:

∞∑
n=0

∞∑
k=1

an,kt
nvk,

where an,k is the number of effective divisors on X of degree n and dimension
k, then it is easy to show that it is a rational function, but it is difficult to prove
other properties for this two variable zeta function, in particular there seems to
be no straightforward generalization of the functional equation. Two divisors
are called equivalent if their difference is a principal divisor, that is to say the
divisor of a rational function. We can define the degree and the dimension of a
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divisor class as the degree and the dimension of one of the divisors in its class,
since these numbers are the same for two equivalent divisors. The number of all
effective divisors in a given divisor class D is equal to (ql(D) − 1)/(q − 1). The
number of divisor classes of a given degree is constant and is called the class
number and denoted by h. The original zeta function, which we denote by Z(t),
can be rewritten as follows:

Z(t) =
∑
D

ql(D) − 1
q − 1

tdeg(D),

where D runs over all divisor classes of non-negative degree. The zeta function
is a rational function

Z(t) =
P (t)

(1− t)(1− qt)
,

where P (t) is a polynomial in the variable t with integer coefficients of degree
2g. Moreover Z(t) satifies the following functional equation:

Z(t) = qg−1t2g−2Z(
1
qt

).

One can write

P (t) =
2g∑

i=0

pit
i,

such that pi is an integer such that p0 = 1, p2g = qg and p2g−i = qg−ipi for all
0 ≤ i ≤ 2g. Furtermore P (1) = h.

If one looks at the proof of the functional equation for curves of the ordinary
zeta function in for instance [9, 13], then one sees that treating q as a variable
gives a new zeta function which is rational and satisfies the functional equation.

Definition 3.1. Let X be a non-singular absolutely irreducible curve over the
finite field Fq. Define the two variable zeta function Z(X ,Fq; t, u) as follows:

Z(X ,Fq; t, u) =
∞∑

n=0

∞∑
k=1

bn,k
uk − 1
u− 1

tn,

where bn,k is the number of divisor classes of X of degree n and dimension k. If
there is no risk of confusion we denote Z(X ,Fq; t, u) by Z(t, u).

Remark 3.2. (1) By the above remark we have that Z(X ,Fq; t) = Z(X ,Fq; t, q)
and

an,k =
qk − 1
q − 1

bn,k.



Two variable zeta function 6

(2) The dimension l(D) of a divisor class D is equal to n + 1 − g in case
deg(D) = n > 2g − 2. Thus bn,n+1−g = h and bn,k = 0 for all k ≥ 1 and
k 6= n+ 1− g.

(3) Let K be the canonical class, then deg(K −D) = (2g − 2)− deg(D) and
l(K−D) = l(D) + g− 1− deg(D). The operation which sends D to K−D is an
involution on the set of all divisor classes of degree between 0 and 2g− 2. Thus
bn,k = b2g−2−n,k−n−1+g.

Remark 3.3. It follows directly from the definition that the gonality sequence
can be obtained from Z(t, u) as follows:

γk = min{n | wn,k > 0}, where wn,k =
∑
k′≥k

bn,k′ .

We will give an example which shows that the original zeta function does not
give the gonality sequence.

Example 3.4. The two variable zeta function of the projective line is equal to

1
(1− t)(1− ut)

,

since all divisors of degree m are equivalent and have dimension m+ 1.
The two variable zeta function of an elliptic curve over a finite field with N
rational points over this field is equal to

Z(t, u) =
1 + (N − 1− u)t+ ut2

(1− t)(1− ut)
,

since the class number is equal to N and all divisors of degree m > 0 have
dimension m.

Proposition 3.5 If X is a non-singular, absolutely irreducible curve over the
finite field Fq of genus g, then its two variable zeta function is a rational function

Z(t, u) =
P (t, u)

(1− t)(1− ut)
,

where P (t, u) is a polynomial in the variables t and u with integer coefficients
of degree 2g in t and degree g in u. Moreover Z(t, u) satifies the following
functional equation:

Z(t, u) = ug−1t2g−2Z(
1
tu
, u).

One can write

P (t, u) =
2g∑

i=0

Pi(u)ti,
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such that Pi(u) is a polynomial in the variable u with integer coefficients, P0(u) =
1, P2g(u) = ug, deg(Pi(u)) ≤ 1+ 1

2 i and P2g−i(u) = ug−iPi(u) for all 0 ≤ i ≤ 2g.
Furtermore P (1, u) = h.

Proof. Example 3.4 shows that the proposition is correct in case g = 0. So
we may assume that g > 0, that is to say 2g − 2 ≥ 0. The proof is verbatim
the same as for the ordinary zeta function for curves over the finite field Fq,
where one treats q as a variable and denotes it by u, see [9, 13], except for the
bound on the degree of Pi(u). We will sketch the proof of the rationality and
the functional equation. Define

F (t, u) =
∑

deg(D)>2g−2

ul(D)tdeg(D) −
∑
D
tdeg(D)

G(t, u) =
∑

0≤deg(D)≤2g−2

ul(D)tdeg(D).

Then
(u− 1)Z(t, u) = F (t, u) +G(t, u).

Remark 3.2.2 implies that we can rewrite F (t, u) as follows:

F (t, u) = hu1−g
∑

n>2g−2

(ut)n − h
∞∑

n=0

tn =

hugt2g−1

1− ut
− h

1− t
.

From this and a straightforward calculation follows that F (t, u) satisfies the
functional equation.

The operation which sends D to K − D is an involution on the set of all
divisor classes of degree between 0 and 2g − 2, by Remark 3.2.3. Thus

ug−1t2g−2G(
1
tu
, u) =

ug−1t2g−2
∑
D
ul(D)(ut)−deg(D) =

∑
D
ul(D)+g−1−deg(D)t2g−2−deg(D) =

∑
D
ul(K−D)tdeg(K−D) =

∑
D′

ul(D′)tdeg(D′) = G(t, u).

The summation over D and D′ is taken over all divisor classes of degree between
0 and 2g − 2.
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Therefore F (t, u) and G(t, u) both satisfy the functional equation, so Z(t, u)
satisfies the functional equation.

It is immediate from the definition of F (t, u) and G(t, u) that F (t, 1) +
G(t, 1) = 0, moreover G(t, u) is a polynomial of degree 2g−2, and from the above
expression of F (t, u) as a rational function it follows that F (t, u) +G(t, u) is a
rational function with denominator (1− t)(1− ut) and numerator a polynomial
Q(t, u) of degree 2g which is divisible by u−1. Therefore Q(t, u) = (u−1)P (t, u).

The functional equation for Z(t, u) is equivalent with the property P2g−i(u) =
ug−iPi(u) for all 0 ≤ i ≤ 2g. If we write G(t, u) =

∑2g−2
i=0 Gi(u)ti, then

G0(u) = (h− 1) + u, since 0 is the only divisor class of degree 0 and dimension
1, all the other divisor classes of deree 0 have dimension 0. So P0(u) = 1 and
P2g(u) = u2g. The fact that deg(Pi(u)) ≤ 1+ 1

2 i follows from Clifford’s Theorem
[13].

We have that

P (t, u) =
(1− t)(1− tu)

u− 1
(F (t, u) +G(t, u)) =

h(1− t)ugt2g−1 − h(1− ut)
u− 1

+
(1− t)(1− tu)

u− 1
G(t, u)

and G(t, u) is a polynomial in t and u. Substituting 1 for t gives P (1, u) = h. 2

Remark 3.6. (1) It is not clear what the analog of the Riemann hypothesis
for the two variable zeta function should look like. Duursma [6] considers the
L-series L(t, χ) of the Hilbert class field of the curve, with χ a character on the
class group of the curve. These satisfy the analog of the Riemann hypothesis,
and they determine the two variable zeta function Z(t, u). The trivial character
gives the original zeta function Z(t) of the curve. Weight enumerators of AG
codes on a given curve can be computed from the L-series. Computations have
been carried out in extenso for the Klein quartic.

(2) The one variable zeta function over Fq determines the one variable zeta
function over any extension of Fq. Is this also true for the two variable zeta
function ?

(3) If we have a ramified cover of Y over X , then the one variable zeta
function of Y is divisible by the one of X , by [8]. Is there a similar result for the
two variable zeta function ? The following example shows that the divisibility
property is not valid for the two variable zeta function.

Example 3.7. Consider the curves X and Y over F2 defined by

X : y2 + y = x3 + 1,
Y : y4 + y = x3 + 1.
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Then Y is an Artin-Schreier cover of X by the map (y, x) 7→ (y2 + y, x). But
Z(X ,F2; t, u) has numerator 1 + (2−u)t+ut2 and Z(Y,F2; t, u) has numerator

1 + (2− u)t+ (8− 2u)t2 + (10− 5u)t3 + (8− 2u)ut4 + (2− u)u2t5 + u3t6.

4 The two variable zeta function of hyperelliptic
curves

An absolutely irreducible non-singular curve X is called hyperelliptic if its genus
is at least 2 and there exists a morphism ϕ of degree 2 to the projective line,
that is to say the gonality of the curve is 2. This morphism is unique and the
inverse images of the rational points on the projective line define q+ 1 effective
divisors of degree 2, which are called the hyperelliptic divisors of the curve. In
the following lemma we assume for simplicity that there exists a rational point
P∞ such that ϕ ramifies at this place.

Lemma 4.1 Every divisor D on a hyperelliptic curve of genus g is equivalent
with a divisor T + sP∞, where T is an effective divisor of degree t which does
not contain a hyperelliptic divisor and does not have P∞ in its support, and

l(D) =
{
b s

2c+ 1 if 2t+ s ≤ 2g − 2,
t+ s+ 1− g if 2t+ s > 2g − 2.

If moreover deg(T ) ≤ g, then l(T ) = 1 and T is unique.

Proof. See [1, 2, 3] 2

The following reformulation does not assume the existence of a rational point
P∞ such that ϕ ramifies at this place.

Lemma 4.2 Let H be a hyperelliptic divisor on a hyperelliptic curve X of genus
g. Every divisor D on X is equivalent with a divisor T + rH, where T is an
effective divisor of degree t which does not contain a hyperelliptic divisor, and

l(D) =
{
r + 1 if t+ r ≤ g − 1,
t+ 2r + 1− g if t+ r > g − 1.

If moreover deg(T ) ≤ g, then l(T ) = 1 and T is unique.

2

Proposition 4.3 The two variable zeta function of a hyperelliptic curve of
genus g is determined by the one variable zeta function in the following way:

bn,k =

 an−2k+2 − (q + 1)an−2k + qan−2k−2 if 0 ≤ n ≤ 2g − 2, k ≥ 1,
h if n > 2g − 2, k = n+ 1− g,
0 otherwise.
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Proof. (i) Suppose 0 ≤ n ≤ g. Let D be a divisor of degree n and dimension k.
Then D is equivalent with a divisor T +(k−1)H, where T is an effective divisor
of degree n − 2k + 2 and dimension 1 which does not contain a hyperelliptic
divisor and T is unique, by Lemma 4.2. Thus an,k = (qk − 1)/(q− 1)an−2k+2,1.
We have seen in Remark 3.2.1 that an,k = (qk − 1)/(q − 1)bn,k. So bn,k =
an−2k+2,1 which is equal to bn−2k+2,1. Now we prove with induction on n that
bn,1 = an − (q+ 1)an−2 + qan−4 for 0 ≤ n ≤ 2g− 2. If n = 0, then b0,1 = a0, so
the formula for bn,1 is correct in case n = 0. Assume that the formula is correct
for all n′ < n. Then

an =
∑
k≥1

an,k =
∑
k≥1

qk − 1
q − 1

bn−2k+2,1.

From the induction hypothesis follows that

an = bn,1 +
∑
k≥2

{an−2k+2 − (q + 1)an−2k + qan−2k−2}

= bn,1 + (q + 1)an−2 − qan−4.

Thus the formula for bn,1 holds. Therefore

bn,k = bn−2k+2,1 = an−2k+2 − (q + 1)an−2k + qan−2k−2.

(ii) If g < n ≤ 2g − 2, then bn,k = b2g−2−n,k−n−1+g, by Remark 3.2.3, which is
again equal to an−2k+2 − (q + 1)an−2k + qan−2k−2 by the previous case.
(iii) If n > 2g − 2, then bn,k is equal to h if k = n + 1 − g and zero otherwise,
by Remark 3.2.2. 2

Example 4.4. We have seen that for hyperelliptic curves the two variable zeta
function is determined by the one varible zeta function. This property is not
longer valid for arbitrary curves. Consider the following two maximal curves
over Fq where q = 72 of genus 3:

X1 : x4 + y4 + 1 = 0,
X2 : y2 = x7 − x.

The first is an example of a Fermat curve xn + yn + 1 = 0, and it is maximal,
since in this case n divides

√
q + 1. The second is maximal because it has

the Hermitian curve y8 = x7 − x as a fourfold cover, by [8]. Both have the
same one variable zeta function with numerator (1 − 7t)6. The first curve is a
plane curve of degree 4 and has gonality 3 by Corollary 2.4, the second curve is
hyperelliptic and has gonality 2. The gonality is determined by the two variable
zeta function. Thus this example shows that the one variable zeta function does
not give enough information to compute the gonality nor the two variable zeta
function.
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Update and acknowledgement

1. (July 1, 1997) In Remark 3.2 the misprint bn,n+1−k is changed into bn,n+1−g

after a remark of Gerhard Schiffels.

2. (February 26, 1998) Example 3.7 has been corrected after a remark by
Manasé Bezara that the original curves with equations y2 = x3 + 1 and
y4 = x3 + 1 have both genus zero in characteristic two.

3. (January 6, 1999) The proof of γk ≥ jd − i in Corollary 2.4 has been
corrected after a remark by Fernando Torres.

4. (March 28, 2000) Remark 3.3 has been corrected after Gerhard Schiffels.
Note that if the curve has a rational point, then bn,k > 0 if and only if
wn,k > 0.

5. (November 21, 2008) Naumann [15] showed that the polynomial P (t, u) is
irreducible and pointed out that in Proposition 3.5 and its proof the first
1 in deg(Pi(u)) ≤ 1 + 1

2 i was missing.
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