Seventh International Conference on Geometry, Integrability and Quantization June 2–10, 2005, Varna, Bulgaria Ivaïlo M. Mladenov and Manuel de León, Editors SOFTEX, Sofia 2006, pp 292–306

ON SPECIAL TYPES OF MINIMAL AND TOTALLY GEODESIC UNIT VECTOR FIELDS

ALEXANDER YAMPOLSKY

Geometry Department, Kharkov National University 61077 Kharkov, Ukraine

Abstract. We present a new equation with respect to a unit vector field on Riemannian manifold M^n such that its solution defines a totally geodesic submanifold in the unit tangent bundle with Sasakian metric and apply it to some classes of unit vector fields. We introduce a class of covariantly normal unit vector fields and prove that within this class the Hopf vector field is a unique global one with totally geodesic property. For the wider class of geodesic unit vector fields on a sphere we give a new necessary and sufficient condition to generate a totally geodesic submanifold in T_1S^n .

1. Introduction

This paper is organized as follows. In Section 2 we give definitions of harmonic and minimal unit vector fields, rough Hessian and harmonicity tensor for the unit vector field. In Section 3 we give definition of a totally geodesic unit vector field and prove a basic Lemma 2 which gives a necessary and sufficient condition for the unit vector field to be totaly geodesic. Theorem 2 contains a necessary and sufficient condition on strongly normal unit vector field to be minimal. In Section 4 we apply Lemma 2 to the case of a unit sphere (Lemma 4) and describe the geodesic unit vector fields on the sphere with totally geodesic property (Theorem 5). We also introduce a notion of covariantly normal unit vector field and prove that within this class the Hopf vector field is a unique one with a totally geodesic property (Theorem 3). This theorem is a revised and simplified version of Theorem 2.1 in [27]. Section 5 contains an observation that the Hopf vector field on a unit sphere provides an example of global imbedding of Sasakian space form into Sasakian manifold as a Sasakian space form with a specific φ -curvature (Theorem 6).