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Burcu Bektas and Ugur Dursun*

On spherical submanifolds
with finite type spherical Gauss map

Abstract: Chen and Lue (2007) initiated the study of spherical submanifolds with finite type spherical Gauss
mabp. In this paper, we firstly prove that a submanifold M" of the unit sphere $™~! has non-mass-symmetric
1-type spherical Gauss map if and only if M" is an open part of a small n-sphere of a totally geodesic (n + 1)-
sphere $"*1 ¢ $™~1, Then we show that a non-totally umbilical hypersurface M of $"*! with nonzero constant
mean curvature in $"*! has mass-symmetric 2-type spherical Gauss map if and only if the scalar curvature
curvature of M is constant. Finally, we classify constant mean curvature surfaces in $3 with mass-symmetric
2-type spherical Gauss map.
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1 Introduction

Let M" denote a Riemannian n-manifold with Laplacian operator A. A smooth map ¢ : M" — EN of M" into
the Euclidean N-space is said to be of finite type if it admits a finite spectral decomposition:

p=c+Yt, 00 §)

where c is a constant vector in EV, each ¢ is a non-constant EN-valued maps satisfying Ag; = Ap, ¢, with
Ap, € Rand Ap, < Ap, < --- < Ap,. Otherwise, ¢ is said to be of infinite type. When the spectral resolution (1)
contains exactly k non-constant terms, the map ¢ is called of k-type (see [3; 4] for details).

Let $¥-1(xo, co) c EV denote a hypersphere of EN with curvature ¢ > 0, where xo € E¥ is the center of
the sphere. If x is the origin of EN and c¢ = 1, we denote the unit hypersphere $¥-1(0, 1) by $¥-1.

A spherical finite type map ¢ : M* — $N~1 ¢ EV of a Riemannian manifold M into $¥~! is called mass-
symmetric if the vector c in its spectral resolution is the center of $¥~1 (which is the origin of EV). Otherwise,
¢ is called non-mass-symmetric.

Letx : M" — E™ be an isometric immersion from a Riemannian n-manifold M" into a Euclidean m-
space E™. Let G(n, m) denote the Grassmannian manifold consisting of linear n-subspaces of IE™. The clas-
sical Gauss map v¢ : M" — G(n, m) associated with x is the map which carries each point p € M to the
linear subspace of E™ obtained by parallel displacement of the tangent space T, M to the origin of E™. Since
G(n, m) can be canonically imbedded in the vector space \" E™ = EN with N = (), obtained by the exte-
rior products of n-vectors in E™, the classical Gauss map gives rise to a well-defined map from M" into the
Euclidean N-space EV.

In [7], Chen and Piccinni initiated the study of Euclidean submanifolds with finite type classical Gauss
map. Since then many geometers have studied such submanifolds, see [2; 1; 5; 8; 9].

For a spherical submanifold M" in $™!, Obata [10] studied the generalized Gauss map which assigns
to each p € M the totally geodesic n-sphere of $™~! determined by the tangent space T, M". Since a totally
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geodesic n-sphere $" of $™~! determines a unique linear (n + 1)-space containing the totally geodesic $" in
E™, Obata’s map can be extended to a map ¥ of M" into the Grassmannian G(n+1, m) in a natural way, known
as the spherical Gauss map. The composition v of ¥ followed by the natural inclusion of G(n + 1, m) in EG)
is also called the spherical Gauss map.

Let x : M" — $™"1 be an isometric immersion of an orientable Riemannian n-manifold into the unit
sphere $™~1. We identify each point p with x(p) and tangent vector v € T, M with its image dx,(v) under the
differential dx,. For each point p € M", let ey, ..., e, be an oriented orthonormal basis of T, M". Since the
n+1vectorsx, eq, ..., e, determine a linear (n + 1)-subspace in E™, the intersection of this linear subspace
with $"™-1 is a totally geodesic n-sphere determined by T,M" as in [10]. Thus the spherical Gauss map v :
M" —s EGi) associated with x is given by (see [6] for details)

V=XAeiA--Ae,: M" — G(n+1,m)c §Gi)-1 ¢ B, 2

In [6], Chen and Lue studied spherical submanifolds with finite type spherical Gauss map. As they explained
the geometric behavior of classical and spherical Gauss map are different. For example, the classical Gauss
map of every compact Euclidean submanifold is mass-symmetric; but the spherical Gauss map of a spherical
compact submanifold is not mass-symmetric in general. Moreover, by [7] the classical Gauss map of the sur-
face S'(a) x $1(b) c $3(1) c E*, a® + b? = 1, is of 1-type; however we show in this paper that the spherical
Gauss map of the surface S'(a) x $1(b) c $3(1) with a # b and a? + b? = 1 is mass-symmetric and of 2-type.

In [6], Chen and Lue classified spherical submanifolds with 1-type spherical Gauss map. They also clas-
sified minimal surfaces in $* with mass-symmetric 2-type spherical Gauss map, and minimal surfaces in $°
with non-mass-symmetric 2-type spherical Gauss map. They stated that every isoparametric hypersurface of
$™1 has 1-type spherical Gauss map. However, the results given for non-mass-symmetric 1-type spherical
Gauss map (Theorem 4.3 in [6]) is not true. In this paper, we prove that an n-dimensional submanifold M of
$™-1 has non-mass-symmetric 1-type spherical Gauss map if and only if M is an open part of a small n-sphere
of a totally geodesic (n + 1)-sphere $™*! ¢ §"™~1, We also prove that a non-totally umbilical hypersurface M of
$™+! with nonzero constant mean curvature in $"*! has mass-symmetric 2-type spherical Gauss map if and
only if the scalar curvature of M is constant. Moreover we show that the spherical Gauss map of a non-totally
umbilical surface M of $* with nonzero constant mean curvature is mass-symmetric and of 2-type if and only
if M is an open part of the surface $'(a) x $1(b) c $3(1) with a # b and a? + b? = 1.

2 Preliminaries

Let M be an n-dimensional isometrically immersed submanifold in a Riemannian m-manifold M. Let V be
the Levi—Civita connection of M and V the induced connection on M. We choose a local field of orthonormal

frame eq, ..., en, €ns1, - . . , € such that, restricted to M, the vectors eq, . . ., e, are tangent to M and hence
€n+1, - - - » €m are normal to M. We use the following convention on the range of indices:
1<A,B,C,...<m, 1<i,jk,...<n, n+1<rns,t,...<m.

With respect to the chosen frame field of M, let {w?, ..., @™} be the field of dual frame and let {w4p} with
wap + wpa = 0 be the connection forms. Then we have the formulas of Gauss and Weingarten, respectively,
as

n m m
Veei=) wijlerej+ Y hie, and  Vee =-Aler)+ ) wyslepes,
j=1 r=n+1 s=n+1

where the h]fj’s are the coefficients of the second fundamental form h, A, is the Weingarten map in direction e,
and w,s are the normal connection forms. Also, the normal connection is defined by D¢, e, = Z;":n +1 Wrs(eies.

The mean curvature vector H and the squared length | h||? of the second fundamental form h are defined,
respectively, by

1 ¢ 2 { 2
H== ) trAe, and [h|*= ) tr(4)%

r=n+1 r=n+1
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The Codazzi equation of M is given by

n m
=Wy My =eithi) = Y (Rywie(en) + hi,wje(en) + ) hywsi(er). €)

=1 s=n+1
Also, from the Ricci equation of M we have

n
RP(ej, exs er, e5) = ([Ae,» Ae,1(€)), ex) = Y (hj;h5; — hih), (4)

i=1

where R? is the normal curvature tensor.
If the ambient space M is the Euclidean m-space E™, then the scalar curvature S of M is given by

S = n’[HP> - |, ()

where |H|? is the squared length of the mean curvature vector H of M in E™. In particular, if M is immersed
in the unit sphere $™1 ¢ E™, then (5) gives

S=n(n-1)+n?H? - kI, (6)

where H and h are the mean curvature vector and the second fundamental form of M in $™-1, respectively.
For M in $"™1 ¢ E™ we also have

H=H-x, hX,Y)=hX,Y)-(X,)x. @)

A hypersurface M in $™*! is said to be isoparametric if it has constant principal curvatures.

3 Finite type spherical Gauss map
In [6], the Laplacian of the spherical Gauss map v is given by

n
AV =[PV +nHNe A---Nep-nY XAer A ADeHA---Ney
Dol

k=1 k—th
r
+ Z R XNe1 A=A e A=A e A---Aen, 8)
j,k;s<r k—th j—th

where R;].k = RP (ej, ex; er, es). The following two theorems were stated for the submanifolds in s™1 with
1-type spherical Gauss map.

Theorem 3.1 ([6]). A submanifold of S™ 1 has mass-symmetric 1-type spherical Gauss map if and only if it is a
minimal submanifold of $™! with constant scalar curvature and flat normal connection.

Theorem 3.2 ([6]). An n-dimensional submanifold of S™ ! has non-mass-symmetric 1-type spherical Gauss
map if and only if it has constant scalar curvature and it is immersed in a totally geodesic (n + 1)-sphere
s"*1 ¢ §™-1 gs a hypersurface with nonzero constant mean curvature.

By Theorem 3.2, every non-minimal isoparametric hypersurface in $™*! must have non-mass-symmetric
1-type Gauss map. However, we prove that every non-minimal and non-totally umbilical isoparametric hy-
persurface in $"*! has mass-symmetric 2-type spherical Gauss map (see Corollary 3.7). In the proof of The-
orem 3.2, Equation (4.2) in [6, p. 414] is incorrect because of two missing terms in that equation. We prove
the next theorem for submanifolds in $™~! with non-mass-symmetric 1-type spherical Gauss map. Also, the
statement of Corollary 4.1 in [6] must be as follows:

Corollary 3.3. Every isoparametric minimal hypersurface of S™*1 has mass-symmetric 1-type spherical Gauss
map.
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For later use we prove the following lemma.

Lemma 3.4. For a hypersurface M of $"™*1 ¢ E™? we have
Alensi ANe1ANesA---Nep) =nav+nep 1 AeitANerA---Aep, 9)

where @& is the mean curvature of M in $"*1.

Proof. Let eq, ..., ens1, €ns2 be a local orthonormal frame field on M in E™*2 such that eq, es, ..., e, are
tangent to M and e,.1, €42 = X are normal to M, where X is the position vector of M. Since e,,> = X is
parallel in the normal bundle of M in E"*? and the codimension of M in E™*? is two, e is parallel too. Let
us put v =eps1 A€y Aea A--- A ey. Now we will compute Av. By differentiating v we get

eiVv=—ep i ANe1A--Nei_1NXANeji 1 A Ney. (10)
Since V¢, e; = Z}‘zl wij(e;)ej and Dey.q = 0, we have
n
(Ve,€0)0 = — z wij(ej)ensi Ae1A---ANej_1 AXAej1 A+ Aey. (11)
j=1

Differentiating e;(v) in (10) we obtain that

n
eieiV=—-v-hi"'v- ) wjle)en1 Aer A=A € AN X A Nep

%«—‘
je=1 j—th i~th
n
- 1~
=-V-hi"0+ ) wji(eena A€ A A X N Aep. (12)
j=1 j-th
Considering na = Y, hii"* we have
n n
AV = Z(Veiei —eje;)V =nav+nv - Z (wij(e;) + wji(ei))ens1 Ae1 A+ A X _A---Aey (13)
i=1 ij=1 j—th
which gives (9) as w;j + wj; = 0. O

Theorem 3.5. An n-dimensional submanifold M of $™! has non-mass-symmetric 1-type spherical Gauss map
if and only if M is an open part of a small n-sphere of a totally geodesic (n + 1)-sphere $"*1 c §™1,

Proof. Letx : M — S$™ ! be an isometric immersion of a Riemannian n-manifold M into $"~1. If the spherical
Gauss map v of x is non-mass-symmetric 1-type, then we have AV = A, (¥ — c) for some vector ¢ and some real
number A,. Thus we have

(Av); = Ap(V);, (14)

where ( - ); = e;(-). By differentiating v in (2) we find

ei17=Zth,<XAe1A---Aek_1/\e,/\ek+1/\---/\en. (15)
r,k

On the other hand, by a direct long computation, we obtain from (8) that

m-1 n
ei(Av) = (1P + 11> Y Y hixAeiA--NexiAerAegiA--Nen+2nDeHAer A Aey
r=n+1 k=1
n m-1 R
+nY Y Ry HAeiA---A e A---Aey
k=1r=n+1 k—th

n
—nZ5ikH/\e1A---Aek_leAek+1A---Ae,,
k=1



DE GRUYTER Bektas and Dursun, Finite type spherical Gauss map

n
-n Y wj(e)xAerA---A e A--ADgHA--Nep

jk,1=1 i _
e j-th k—th

n —
r ~
-n Z Z hixAeiN---A e A---ADgHA---Ney
T j~th k-th
j#k
n
+n Z<ADekH(ei), exYXAel A Aep

k=1

n
~n Y XAeyA--ADe D HA---Ne

k=1 k—th
m-1 n
r r
+ Z Z {ei(stk)x+stkei}/\e1 A=A eg N---N\ e N---Nep
remL jkel k-th j—th
T J

+ Z Z RS}k{Zwlh(e)X/\el/\ Aep NN s NN er Ao Aen

rs=nel ikl th k-th j—th
s<ro ikl

t
+ z hilX/\el/\---/\ et NN es N---N\ ey /\---/\en}
t=n+1 1-th k—th j—th

m-1 n
- Z ZRthlX/\ell\ “A e AN e A--Aep
r,5= n+11kll k—th j—th

m-1 n
+ z Z R;jkwst(ei)x/\el/\---/\ et NN e, N---Aep.
1,8, t=n+1 i._l;:kl k—-th j—th
J

Case (a): H = 0. In this case, equation (16) reduces to

m-1 n
ei(AV) = (1) + 112 Y Y hixAneiA---A e A--Aey
r=n+1 k=1 k—th
m-1 n
+ ) Y HeiRy )X+ Rjeif Aer A---A e A---A e A---Aey
Sl k-th j-th

+ Z Z stk{Zwlh(e JXA€LA---A en A=A es AN e N---Aey

rs=n+l jk,l lfth k—th j—th
s<ro ikl
m-1
t
+ Y hiXAeyrA---A e Ao es Ao A e /\-'-/\en}
t=n+1 I-th k—th j—th

n
r S
Y > RGMGXAein---A el AN er A-Aen
ResmL I k-th i-th
J

m-— n
r
+ Z z stkwst(ei)x/\el/\---/\ e N---N e N---Aep.
1,8, t=n+1 1',_1;:’(1 k—th j—th
J

— 247

(16)

17)

Comparing (14), (15) and (17) we get ||f1||i2 = R;jk = 0. Thus M has constant scalar curvature and flat normal

connection. Theorem 3.1 implies that ¥ is mass-symmetric 1-type. This is a contradiction.

Case (b): H # 0. Since the term De,.H Aeyp A--- A e, appears only in e;(AV) of (16), but not in e;(V), we know
from (14), (15) and (16) that DH = 0. Thus, M has parallel nonzero mean curvature vector in $™~1. So, it has

nonzero constant mean curvature. Therefore, equation (16) reduces to

m-1 n
ei(A9) = (1AM + 1AI> Y Y hixAerA--A ey A-Aey
r=n+1 k=1 k—th
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n
+nz Z hiHNeiN---Nex1NeyAeg1 A+ Aey
k=1r=n+1

_nz:61'](}’1/\@1/\"'/\6k_1/\X/\€k+1/\.../\erl
k=1

m-1 n
+ Y ) {eilR] JOX+ Ry} At AN es AN er Ao Aey

rs=n+l jk=1 k—th j—th
s<r gk

+ Z Z Rs]k{Zwlh(e)erl/\ ‘A ep AN es AN e A--Aep

rs=nel ikl I-th k-th j—th
s<ro gkl
m-1
t
+ Z hyXNeyN---N e NN es Ao N € /\---/\en}
t=n+1 I-th k—th j—th
m-1 n
r S
- z Z Ry MyX A1 A=A el A=A e A---Aey
r,s=n+1 jkl=1 k—th j—th
j#k
m- n
+ Z Z jokwst(ei)XAelA---A et NN ey N---Nep. (18)
1,8, t=n+1 i,f;l k—th j—th
J

From (14), (15) and (18) we know that | k|| and scalar curvature are constant. Also, we have

n
ik Z thkX/\el/\ Aek_lAe,Aek+1A~--/\e,,—nz5ikH/\e1/\~--/\ek_1/\erk+1/\~--/\e,,

r=n+1 k=1 k=1
m-1 n
r S
Z z Ry hyXAer A=A el A=A e A---Aey
r,s=n+1 jkl=1 k—th j—th
j#k
n
=2 Z Zh{kX/\elA---Aek_lAe,Aek+1A---Aen (19)
r=n+1 k=1
and
n . m-1 n
ny Y RyHAeiA---NexiAerAeiA--Neg+ Y Y Rijeinein---A es A=A e A---Nep
k=1r=n+1 ns=n+l jk=1 k—th j-th
s<r j#k
=0. (20)
Put H = &ep,1. It follows from (20) that R;jk =0forr,s>n+2andj,k=1,...,n.Also, we find R;’;;(l =0

from DH = 0. Thus, the normal connection of M" in $™~1 is flat. Therefore, (20) yields
n m-
z Z R enii AerA--Aex1AerAegi A Aey =0. (21
k=1r=n

We see from (21) that the first normal space Im h is spanned by e, ;. Therefore, by the reduction theorem
of Erbarcher, we conclude that M" is contained in a totally geodesic sphere $™*1 ¢ §™1, Also, considering
h]Tk =0forr=n+2,...,m-1andj,k=1,...,n,and R? = 0, we have from (19) that

nadi + (1hI1> - VAL = 22)

fori,k = 1,...,n.If A = |h|?, then (22) gives &@ = O which is a contradiction. So A # ||h|? and by taking
the sum of (22) for i = k and i from 1 up to n we get n&(n + IhI? = A) = 0 which gives A = n + |hl12, and
thus hg.“ =a + Ofori =1,...,n from (22). Therefore, M is a non-totally geodesic and totally umbilical
hypersurface of $™*1, and consequently M is an open part of a small n-sphere of $™*! which comes from the
equation of Gauss.
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Conversely, let M be an open part of a small n-sphere of a totally geodesic (n + 1)-sphere $™*1 ¢ §™°1,
Without loss of generality, we assume that M is immersed in $™*1 ¢ E"*2, thatis, M is an open part of a small
sphere $"(xo, co) of $™*1 ¢ E™? with the center xo € E"?2 and curvature co. Since M is a hypersurface of
$™*1. the normal bundle of M in E"*?2 is flat.

Leteq, ..., ent1, €ns2 be alocal orthonormal frame field on M in E™*?2 such that ey, . . ., e, are tangent
to M and ey.1, €nt2 = X are normal to M. It is easy to show that the mean curvature & of the small sphere
$"(x0, Co) is & = |xo|/V1 — |x0]?, and cg = 1 + &2 from the equation of Gauss. Also, the mean curvature vector
H = &ey,1 is parallel in E"*2. Hence, from (8) we have

AV = n@?V + niepsi A1 A€ A Aen. (23)

Now, if we put

- - a ..
Cc= —(V—aeps1 Ne1AeyN---Ney), Vp= —(@V+epr1 ANerAesN---Nep),
1+ a2 1+a?
we then have V = c+¥,. As & is constant it is easily seen that e;(c) = 0,i =1, ..., n, i.e., c is a constant vector.
Using (9) and (23), we obtain from a direct computation that AV, = n(&?+1)v,. Therefore, the spherical Gauss
map v is non-mass-symmetric 1-type. a

Theorem 3.6. Let M be a non-totally umbilical hypersurface in S™' with nonzero constant mean curvature in
$S"*1, Then the spherical Gauss map V is mass-symmetric and of 2-type if and only if M has constant scalar
curvature.

Proof. Let M be a non-totally umbilical hypersurface in $™*1 ¢ E"*2 with nonzero constant mean curvature
@ in $™1. Suppose that M has constant scalar curvature S. We show that the spherical Gauss map v is mass-
symmetric and of 2-type.

Let x be the position vector of M in E"*2. Let e1, . . ., ens1, €ns2 = X be alocal orthonormal frame field on
Min E™2 such that eq, . .., e, are tangent to M and ey, 1, ens2 normal to M which are parallel in the normal
bundle of M in E™?2. Since M is a hypersurface of $"*1 ¢ E"*2, the normal bundle of M in E"*? is flat. We
choose ey, ..., epsuch that A.,,, (e;) = hli*'e;, i=1,...,n. As h;}” =0 fori # j, it is easily seen that

n(lhl* - na?) = Y (hi™ - R > 0, (24)

i<j

and equality holds if and only if M" is totally umbilical. If we put Do = (k|| — n)? + 4n%a&? > 0, then

. h|I2+n)?2-Dy 4n(|h|? - na?
IR 4 n - yBg - QAP+ =Do _ 4P -né®) o
IRI? +n+ Do I +n+ Do
as M is non-totally umbilical. Since the mean curvature a and the scalar curvature S are constants, equation

(6) implies that || ]2 is constant. Hence Dy is constant.
Now, as the normal bundle is flat, i.e., R? = 0 and H = &ey,1 is parallel, equation (8) becomes

(25)

AV = |h))?V + ndepy AepAes A Aen. (26)

If we put

i IAI2 -n-+Doy\. n&
b= -
2+/Do VDo
- "
o _(||h|| n+\/D_0>f/+ na
2+/Do Do

g =
then we have v = 7, + V4, and by using (9) and (26) a direct computation shows that

ents1 Ne1NexyN---Nep,

epnyi Ne1LNexyN---Ney,

Avp=Agv, and Avy = Agiy,
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where A, = 1(|J?> + n — v/Do) > 0 because of (25) and Aq = 1(llAI? + n + y/Do) > 0 which are constants.
Therefore, the spherical Gauss map v is mass-symmetric and of 2-type.
Conversely, suppose that the spherical Gauss map v is mass-symmetric and of 2-type. Then V admits a
spectral decomposition of the form
V=Up+Vq, AVp=A4V,, AVg=A4V4 27)
with A, < A4, where ¥, and 7,4 are non-constant maps. Then, we find from (27) that
220 = (A + AT — ApAgi. (28)
Since the normal bundle is flat and H = &ep,1 is parallel, we have (26). By using (9) and (26), we obtain that
n
A%V = (n+||h|12)AV + (A R)? + n?&® —n||h)?)v -2 Z R ei(IhI2)XAe1 A+ Aei1 Aensi Aeipi A+ Aen. (29)
i=1
Comparing (28) and (29), the coefficient of A implies that n + [|h||? = Ap +Aq, thus Ih|? is constant. Therefore
the scalar curvature of M is constant by (6). O

As isoparametric hypersurfaces in $"*! have constant scalar curvature, we state the following corollary.

Corollary 3.7. Every non-totally umbilical isoparametric hypersurface M in $™*! with nonzero mean curvature
& in $™*1 has mass-symmetric 2-type spherical Gauss map.

For example, the product submanifold $¥(a) x $"*(b) c $"*! with a? + b2 = 1 and a # b is a non-totally
umbilical isoparametric hypersurface of $"*! which has mass-symmetric and 2-type spherical Gauss map.

Theorem 3.8. A non-totally umbilical surface M of $3 with nonzero constant mean curvature in $3 has the mass-
symmetric 2-type spherical Gauss map v if and only if M is an open part of $* (a) x $*(b) ¢ $3, where a + b and
a’?+b?=1.

Proof. First we assume that M is an open part of $(a) x $1(b) in $3(1) c E* which is defined by

u . u v LV
x(u,v) = (a cos pL asin pe b cos 5’ b sin E)’
where a # b and a? + b? = 1. It is well known that M is a non-totally umbilical isoparametric surface. Also,
it is not minimal as a # b. By Corollary 3.7, M has the mass-symmetric 2-type spherical Gauss map.
For later use we need the connection forms of M. We choose
%, e, = %, e3 = (b cos g, b sin g, —a cos %, —asin %), e, =X
which form an orthonormal frame field on M. By a direct computation we have

e =

1
wyr=du, w;=dv, wi=w3=0, wi3=-powi, wr3= y—wz, Wis = -w1, Wy =-w, (30)
0

where uo = b/a.

Conversely, suppose that M is a non-totally umbilical surface of $* with nonzero constant mean curvature
a, and the spherical Gauss map v is mass-symmetric and of 2-type. Then, by Theorem 3.6, M has constant
scalar curvature S, that is, from (6) the scalar curvature S of Mis S = 2 + 4&?> — ||h||? which is constant. If we
choose an orthonormal tangent frame on M such that As(e;) = h?l.e,-, i =1, 2, then the constancy of S and &
imply that the principal curvatures h3, and h3, of A; are constants.

Now, considering the Codazzi equation (3) we have (h?l. - h?j)wij(ej) = 0,1 # j that gives w;j(ej) = O,
j = 1,2, as M is non-totally umbilical. So, M is flat, and from the equation of Gauss we have h3, h3, = -1.If
we put pio = —h3,, then h3, = 1/po.

Since M is flat, we can choose a local coordinate (u, v) on M with w, = du, w, = dv. So, we have

1
w12 =w34 =0, w13 =-UoW1, W3 = y—wz, W14 = —W1, Wy =-W. (31
0

Thus the connection forms w45 of M coincide with the connection forms of $1(a) x$1(b), a # b, given in (30).
As a result of the fundamental theorem of submanifolds, M is locally isometric to S$!(a) x S1(b). |
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