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On spherical submanifolds
with finite type spherical Gauss map
Abstract: Chen and Lue (2007) initiated the study of spherical submanifolds with finite type spherical Gauss

map. In this paper, we firstly prove that a submanifold Mn of the unit sphere Sm−1 has non-mass-symmetric

1-type spherical Gauss map if and only ifMn is an open part of a small n-sphere of a totally geodesic (n + 1)-
sphere Sn+1 ⊂ Sm−1. Thenwe show that a non-totally umbilical hypersurfaceM of Sn+1 with nonzero constant
mean curvature in Sn+1 has mass-symmetric 2-type spherical Gauss map if and only if the scalar curvature

curvature ofM is constant. Finally, we classify constant mean curvature surfaces in S3 with mass-symmetric

2-type spherical Gauss map.
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1 Introduction

LetMn denote a Riemannian n-manifold with Laplacian operator ∆. A smoothmap φ : Mn Ú→ EN ofMn into

the Euclidean N-space is said to be of finite type if it admits a finite spectral decomposition:

φ = c + ∑kt=1 φt , (1)

where c is a constant vector in EN , each φt is a non-constant EN -valued maps satisfying ∆φt = λptφt with

λpt ∈ ℝ and λp1 < λp2 < ⋅ ⋅ ⋅ < λpk . Otherwise, φ is said to be of infinite type. When the spectral resolution (1)

contains exactly k non-constant terms, the map φ is called of k-type (see [3; 4] for details).

Let SN−1(x0, c0) ⊂ EN denote a hypersphere of EN with curvature c0 > 0, where x0 ∈ EN is the center of

the sphere. If x0 is the origin of EN and c0 = 1, we denote the unit hypersphere SN−1(0, 1) by SN−1.
A spherical finite type map φ : Mn Ú→ SN−1 ⊂ EN of a Riemannian manifold M into SN−1 is calledmass-

symmetric if the vector c in its spectral resolution is the center of SN−1 (which is the origin of EN). Otherwise,
φ is called non-mass-symmetric.

Let x : Mn Ú→ Em be an isometric immersion from a Riemannian n-manifold Mn into a Euclidean m-

space Em. Let G(n,m) denote the Grassmannian manifold consisting of linear n-subspaces of Em. The clas-
sical Gauss map νc : Mn Ú→ G(n,m) associated with x is the map which carries each point p ∈ M to the

linear subspace of Em obtained by parallel displacement of the tangent space TpM to the origin of Em. Since
G(n,m) can be canonically imbedded in the vector space ⋀n Em = EN with N = (mn), obtained by the exte-

rior products of n-vectors in Em, the classical Gauss map gives rise to a well-defined map from Mn into the

Euclidean N-space EN .
In [7], Chen and Piccinni initiated the study of Euclidean submanifolds with finite type classical Gauss

map. Since then many geometers have studied such submanifolds, see [2; 1; 5; 8; 9].

For a spherical submanifold Mn in Sm−1, Obata [10] studied the generalized Gauss map which assigns

to each p ∈ M the totally geodesic n-sphere of Sm−1 determined by the tangent space TpM
n. Since a totally
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geodesic n-sphere Sn of Sm−1 determines a unique linear (n + 1)-space containing the totally geodesic Sn in
Em, Obata’smap can be extended to amap ν̂ ofMn into the Grassmannian G(n+1,m) in a naturalway, known
as the spherical Gauss map. The composition ν̃ of ν̂ followed by the natural inclusion of G(n + 1,m) in E( mn+1)
is also called the spherical Gauss map.

Let x : Mn Ú→ Sm−1 be an isometric immersion of an orientable Riemannian n-manifold into the unit

sphere Sm−1. We identify each point p with x(p) and tangent vector v ∈ TpM with its image dxp(v) under the
differential dxp. For each point p ∈ Mn, let e1, . . . , en be an oriented orthonormal basis of TpM

n. Since the

n +1 vectors x, e1, . . . , en determine a linear (n +1)-subspace inEm, the intersection of this linear subspace
with Sm−1 is a totally geodesic n-sphere determined by TpM

n as in [10]. Thus the spherical Gauss map ν̃ :

Mn Ú→ E( mn+1) associated with x is given by (see [6] for details)

ν̃ = x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ en : Mn Ú→ G(n + 1,m) ⊂ S( mn+1)−1 ⊂ E( mn+1). (2)

In [6], Chen and Lue studied spherical submanifolds with finite type spherical Gauss map. As they explained

the geometric behavior of classical and spherical Gauss map are different. For example, the classical Gauss

map of every compact Euclidean submanifold is mass-symmetric; but the spherical Gauss map of a spherical

compact submanifold is not mass-symmetric in general. Moreover, by [7] the classical Gauss map of the sur-

face S1(a) × S1(b) ⊂ S3(1) ⊂ E4, a2 + b2 = 1, is of 1-type; however we show in this paper that the spherical

Gauss map of the surface S1(a) × S1(b) ⊂ S3(1)with a ̸= b and a2 + b2 = 1 is mass-symmetric and of 2-type.

In [6], Chen and Lue classified spherical submanifolds with 1-type spherical Gauss map. They also clas-

sified minimal surfaces in S4 with mass-symmetric 2-type spherical Gauss map, and minimal surfaces in S5
with non-mass-symmetric 2-type spherical Gauss map. They stated that every isoparametric hypersurface of

Sn+1 has 1-type spherical Gauss map. However, the results given for non-mass-symmetric 1-type spherical

Gauss map (Theorem 4.3 in [6]) is not true. In this paper, we prove that an n-dimensional submanifold M of

Sm−1 has non-mass-symmetric 1-type spherical Gaussmap if and only ifM is an open part of a small n-sphere

of a totally geodesic (n+1)-sphere Sn+1 ⊂ Sm−1. We also prove that a non-totally umbilical hypersurfaceM of

Sn+1 with nonzero constant mean curvature in Sn+1 has mass-symmetric 2-type spherical Gauss map if and

only if the scalar curvature ofM is constant. Moreover we show that the spherical Gauss map of a non-totally

umbilical surfaceM of S3 with nonzero constant mean curvature is mass-symmetric and of 2-type if and only

if M is an open part of the surface S1(a) × S1(b) ⊂ S3(1) with a ̸= b and a2 + b2 = 1.

2 Preliminaries

Let M be an n-dimensional isometrically immersed submanifold in a Riemannian m-manifold M̃. Let ∇̃ be
the Levi–Civita connection of M̃ and ∇ the induced connection onM. We choose a local field of orthonormal

frame e1, . . . , en , en+1, . . . , em such that, restricted toM, the vectors e1, . . . , en are tangent toM and hence

en+1, . . . , em are normal to M. We use the following convention on the range of indices:

1 ≤ A, B, C, . . . ≤ m, 1 ≤ i, j, k, . . . ≤ n, n + 1 ≤ r, s, t, . . . ≤ m.

With respect to the chosen frame field of M, let {ω1, . . . , ωm} be the field of dual frame and let {ωAB} with
ωAB + ωBA = 0 be the connection forms. Then we have the formulas of Gauss and Weingarten, respectively,

as

∇̃ek ei =
n

∑
j=1

ωij(ek)ej +
m

∑
r=n+1

hriker and ∇̃ek er = −Ar(ek) +
m

∑
s=n+1

ωrs(ek)es ,

where the hrij’s are the coefficients of the second fundamental form h,Ar is theWeingartenmap indirection er,

andωrs are the normal connection forms. Also, the normal connection is defined by Dei er = ∑ms=n+1 ωrs(ei)es.
Themean curvature vector H and the squared length ‖h‖2 of the second fundamental form h are defined,

respectively, by

H = 1
n

m

∑
r=n+1

trArer and ‖h‖2 =
m

∑
r=n+1

tr(Ar)2.
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The Codazzi equation of M is given by

hrij,k = hrjk,i , hrjk,i = ei(hrjk) −
n

∑
ℓ=1
(hrjℓωkℓ(ei) + hrkℓωjℓ(ei)) +

m

∑
s=n+1

hsjkωsr(ei). (3)

Also, from the Ricci equation of M we have

RD(ej , ek; er , es) = ⟨[Aer , Aes ](ej), ek⟩ =
n

∑
i=1
(hrkihsij − hrjihsik), (4)

where RD is the normal curvature tensor.

If the ambient space M̃ is the Euclidean m-space Em, then the scalar curvature S of M is given by

S = n2|H|2 − ‖h‖2, (5)

where |H|2 is the squared length of the mean curvature vector H of M in Em. In particular, if M is immersed

in the unit sphere Sm−1 ⊂ Em, then (5) gives

S = n(n − 1) + n2|Ĥ|2 − ‖ĥ‖2, (6)

where Ĥ and ĥ are the mean curvature vector and the second fundamental form of M in Sm−1, respectively.
For M in Sm−1 ⊂ Em we also have

H = Ĥ − x, h(X, Y) = ĥ(X, Y) − ⟨X, Y⟩x. (7)

A hypersurface M in Sn+1 is said to be isoparametric if it has constant principal curvatures.

3 Finite type spherical Gauss map

In [6], the Laplacian of the spherical Gauss map ν̃ is given by

∆ν̃ = ‖ĥ‖2 ν̃ + nĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ en − n
n

∑
k=1

x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ Dek Ĥ⏟⏟⏟⏟⏟⏟⏟⏟⏟
k−th
∧ ⋅ ⋅ ⋅ ∧ en

+ ∑
j,k;s<r

Rr
sjkx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en , (8)

where Rr
sjk = RD(ej , ek; er , es). The following two theorems were stated for the submanifolds in Sm−1 with

1-type spherical Gauss map.

Theorem 3.1 ([6]). A submanifold of Sm−1 has mass-symmetric 1-type spherical Gauss map if and only if it is a
minimal submanifold of Sm−1 with constant scalar curvature and flat normal connection.
Theorem 3.2 ([6]). An n-dimensional submanifold of Sm−1 has non-mass-symmetric 1-type spherical Gauss

map if and only if it has constant scalar curvature and it is immersed in a totally geodesic (n + 1)-sphere
Sn+1 ⊂ Sm−1 as a hypersurface with nonzero constant mean curvature.

By Theorem 3.2, every non-minimal isoparametric hypersurface in Sn+1 must have non-mass-symmetric

1-type Gauss map. However, we prove that every non-minimal and non-totally umbilical isoparametric hy-

persurface in Sn+1 has mass-symmetric 2-type spherical Gauss map (see Corollary 3.7). In the proof of The-

orem 3.2, Equation (4.2) in [6, p. 414] is incorrect because of two missing terms in that equation. We prove

the next theorem for submanifolds in Sm−1 with non-mass-symmetric 1-type spherical Gauss map. Also, the

statement of Corollary 4.1 in [6] must be as follows:

Corollary 3.3. Every isoparametric minimal hypersurface of Sn+1 has mass-symmetric 1-type spherical Gauss
map.
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For later use we prove the following lemma.

Lemma 3.4. For a hypersurface M of Sn+1 ⊂ En+2 we have

∆(en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en) = nα̂ν̃ + nen+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en , (9)

where α̂ is the mean curvature of M in Sn+1.
Proof. Let e1, . . . , en+1, en+2 be a local orthonormal frame field on M in En+2 such that e1, e2, . . . , en are

tangent to M and en+1, en+2 = x are normal to M, where x is the position vector of M. Since en+2 = x is

parallel in the normal bundle of M in En+2 and the codimension of M in En+2 is two, en+1 is parallel too. Let
us put ν̄ = en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en. Now we will compute ∆ν̄. By differentiating ν̄ we get

ei ν̄ = −en+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ei−1 ∧ x ∧ ei+1 ∧ ⋅ ⋅ ⋅ ∧ en . (10)

Since ∇ei ei = ∑nj=1 ωij(ei)ej and Den+1 = 0, we have

(∇ei ei)ν̄ = −
n

∑
j=1

ωij(ei)en+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ej−1 ∧ x ∧ ej+1 ∧ ⋅ ⋅ ⋅ ∧ en . (11)

Differentiating ei(ν̄) in (10) we obtain that

eiei ν̄ = − ν̄ − hn+1ii ν̃ −
n

∑
j,ℓ=1

ωjℓ(ei)en+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ eℓ⏟⏟⏟⏟⏟⏟⏟
j−th
∧ ⋅ ⋅ ⋅ ∧ x⏟⏟⏟⏟⏟⏟⏟

i−th
∧ ⋅ ⋅ ⋅ ∧ en

= − ν̄ − hn+1ii ν̃ +
n

∑
j=1

ωji(ei)en+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ x⏟⏟⏟⏟⏟⏟⏟
j−th
∧ ⋅ ⋅ ⋅ ∧ en . (12)

Considering nα̂ = ∑ni=1 hn+1ii we have

∆ν̄ =
n

∑
i=1
(∇ei ei − eiei)ν̄ = nα̂ν̃ + nν̄ −

n

∑
i,j=1
(ωij(ei) + ωji(ei))en+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ x⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en (13)

which gives (9) as ωij + ωji = 0. ✷

Theorem 3.5. An n-dimensional submanifold M of Sm−1 has non-mass-symmetric 1-type spherical Gauss map
if and only if M is an open part of a small n-sphere of a totally geodesic (n + 1)-sphere Sn+1 ⊂ Sm−1.
Proof. Let x : M → Sm−1 be an isometric immersion of a Riemannian n-manifoldM into Sm−1. If the spherical
Gauss map ν̃ of x is non-mass-symmetric 1-type, then we have ∆ν̃ = λp(ν̃ − c) for some vector c and some real

number λp. Thus we have

(∆ν̃)i = λp(ν̃)i , (14)

where ( ⋅ )i = ei( ⋅ ). By differentiating ν̃ in (2) we find

ei ν̃ =∑
r,k

hrikx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en . (15)

On the other hand, by a direct long computation, we obtain from (8) that

ei(∆ν̃) = (‖ĥ‖2)i ν̃ + ‖ĥ‖2
m−1
∑

r=n+1

n

∑
k=1

hrikx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en + 2nDei Ĥ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ en

+ n
n

∑
k=1

m−1
∑

r=n+1
hrikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ en

− n
n

∑
k=1

δikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ x ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en
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− n
n

∑
j,k,l=1
j ̸=k

ωjl(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ el⏟⏟⏟⏟⏟⏟⏟
j−th
∧ ⋅ ⋅ ⋅ ∧ Dek Ĥ⏟⏟⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ en

− n
n

∑
j,k=1
j ̸=k

m−1
∑

r=n+1
hrijx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ Dek Ĥ⏟⏟⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ en

+ n
n

∑
k=1
⟨ADek

Ĥ(ei), ek⟩x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ en

− n
n

∑
k=1

x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ DeiDek Ĥ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
k−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n

∑
j,k=1
j ̸=k

{ei(Rr
sjk)x + Rr

sjkei} ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟
k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n

∑
j,k,l
j,k,l ̸=

Rr
sjk{

n

∑
h=1

ωlh(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ eh⏟⏟⏟⏟⏟⏟⏟
l−th
∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

t=n+1
htilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟

l−th
∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en}

−
m−1
∑

r,s=n+1

n

∑
j,k,l=1
j ̸=k

Rr
sjkh

s
ilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ el⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s,t=n+1

n

∑
j,k=1
j ̸=k

Rr
sjkωst(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en . (16)

Case (a): Ĥ = 0. In this case, equation (16) reduces to

ei(∆ν̃) = (‖ĥ‖2)i ν̃ + ‖ĥ‖2
m−1
∑

r=n+1

n

∑
k=1

hrikx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
k−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n

∑
j,k=1
j ̸=k

{ei(Rr
sjk)x + Rr

sjkei} ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟
k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n

∑
j,k,l
j,k,l ̸=

Rr
sjk{

n

∑
h=1

ωlh(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ eh⏟⏟⏟⏟⏟⏟⏟
l−th
∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

t=n+1
htilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟

l−th
∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en}

−
m−1
∑

r,s=n+1

n

∑
j,k,l=1
j ̸=k

Rr
sjkh

s
ilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ el⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s,t=n+1

n

∑
j,k=1
j ̸=k

Rr
sjkωst(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en . (17)

Comparing (14), (15) and (17) we get ‖ĥ‖2i = Rr
sjk = 0. Thus M has constant scalar curvature and flat normal

connection. Theorem 3.1 implies that ν̃ is mass-symmetric 1-type. This is a contradiction.

Case (b): Ĥ ̸= 0. Since the term Dei Ĥ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ en appears only in ei(∆ν̃) of (16), but not in ei(ν̃), we know
from (14), (15) and (16) that DĤ = 0. Thus, M has parallel nonzero mean curvature vector in Sm−1. So, it has
nonzero constant mean curvature. Therefore, equation (16) reduces to

ei(∆ν̃) = (‖ĥ‖2)i ν̃ + ‖ĥ‖2
m−1
∑

r=n+1

n

∑
k=1

hrikx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
k−th
∧ ⋅ ⋅ ⋅ ∧ en
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+ n
n

∑
k=1

m−1
∑

r=n+1
hrikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en

− n
n

∑
k=1

δikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ x ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n

∑
j,k=1
j ̸=k

{ei(Rr
sjk)x + Rr

sjkei} ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟
k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n

∑
j,k,l
j,k,l ̸=

Rr
sjk{

n

∑
h=1

ωlh(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ eh⏟⏟⏟⏟⏟⏟⏟
l−th
∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

t=n+1
htilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟

l−th
∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en}

−
m−1
∑

r,s=n+1

n

∑
j,k,l=1
j ̸=k

Rr
sjkh

s
ilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ el⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s,t=n+1

n

∑
j,k=1
j ̸=k

Rr
sjkωst(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en . (18)

From (14), (15) and (18) we know that ‖ĥ‖ and scalar curvature are constant. Also, we have

‖ĥ‖2
m−1
∑

r=n+1

n

∑
k=1

hrikx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en − n
n

∑
k=1

δikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ x ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en

−
m−1
∑

r,s=n+1

n

∑
j,k,l=1
j ̸=k

Rr
sjkh

s
ilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ el⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

= λ
m−1
∑

r=n+1

n

∑
k=1

hrikx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en (19)

and

n
n

∑
k=1

m−1
∑

r=n+1
hrikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en +

m−1
∑

r,s=n+1
s<r

n

∑
j,k=1
j ̸=k

Rr
sjkei ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

= 0. (20)

Put Ĥ = α̂en+1. It follows from (20) that Rr
sjk = 0 for r, s ≥ n + 2 and j, k = 1, . . . , n. Also, we find Rn+1

sjk = 0
from DH = 0. Thus, the normal connection of Mn in Sm−1 is flat. Therefore, (20) yields

nα̂
n

∑
k=1

m−1
∑

r=n+1
hriken+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en = 0. (21)

We see from (21) that the first normal space Im h is spanned by en+1. Therefore, by the reduction theorem

of Erbarcher, we conclude that Mn is contained in a totally geodesic sphere Sn+1 ⊂ Sm−1. Also, considering
hrjk = 0 for r = n + 2, . . . ,m − 1 and j, k = 1, . . . , n, and RD = 0, we have from (19) that

nα̂δik + (‖ĥ‖2 − λ)hn+1ik = 0 (22)

for i, k = 1, . . . , n. If λ = ‖ĥ‖2, then (22) gives α̂ = 0 which is a contradiction. So λ ̸= ‖ĥ‖2 and by taking

the sum of (22) for i = k and i from 1 up to n we get nα̂(n + ‖ĥ‖2 − λ) = 0 which gives λ = n + ‖ĥ‖2, and
thus hn+1ii = α̂ ̸= 0 for i = 1, . . . , n from (22). Therefore, M is a non-totally geodesic and totally umbilical

hypersurface of Sn+1, and consequently M is an open part of a small n-sphere of Sn+1 which comes from the

equation of Gauss.
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Conversely, let M be an open part of a small n-sphere of a totally geodesic (n + 1)-sphere Sn+1 ⊂ Sm−1.
Without loss of generality, we assume thatM is immersed in Sn+1 ⊂ En+2, that is,M is an open part of a small

sphere Sn(x0, c0) of Sn+1 ⊂ En+2 with the center x0 ∈ En+2 and curvature c0. Since M is a hypersurface of

Sn+1, the normal bundle of M in En+2 is flat.
Let e1, . . . , en+1, en+2 be a local orthonormal frame field on M in En+2 such that e1, . . . , en are tangent

to M and en+1, en+2 = x are normal to M. It is easy to show that the mean curvature α̂ of the small sphere

Sn(x0, c0) is α̂ = |x0|/√1 − |x0|2, and c0 = 1+ α̂2 from the equation of Gauss. Also, the mean curvature vector

Ĥ = α̂en+1 is parallel in En+2. Hence, from (8) we have

∆ν̃ = nα̂2 ν̃ + nα̂en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en . (23)

Now, if we put

c = 1

1 + α̂2 (ν̃ − α̂en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en), ν̃p =
α̂

1 + α̂2 (α̂ν̃ + en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en),

we then have ν̃ = c+ ν̃p. As α̂ is constant it is easily seen that ei(c) = 0, i = 1, . . . , n, i.e., c is a constant vector.
Using (9) and (23), we obtain from a direct computation that ∆ν̃p = n(α̂2+1)ν̃p. Therefore, the spherical Gauss
map ν̃ is non-mass-symmetric 1-type. ✷

Theorem 3.6. Let M be a non-totally umbilical hypersurface in Sn+1 with nonzero constant mean curvature in
Sn+1. Then the spherical Gauss map ν̃ is mass-symmetric and of 2-type if and only if M has constant scalar

curvature.

Proof. Let M be a non-totally umbilical hypersurface in Sn+1 ⊂ En+2 with nonzero constant mean curvature

α̂ in Sn+1. Suppose that M has constant scalar curvature S. We show that the spherical Gauss map ν̃ is mass-

symmetric and of 2-type.

Let x be the position vector ofM inEn+2. Let e1, . . . , en+1, en+2 = x be a local orthonormal frame field on

M in En+2 such that e1, . . . , en are tangent toM and en+1, en+2 normal toM which are parallel in the normal

bundle of M in En+2. Since M is a hypersurface of Sn+1 ⊂ En+2, the normal bundle of M in En+2 is flat. We

choose e1, . . . , en such that Aen+1 (ei) = hn+1ii ei, i = 1, . . . , n. As hn+1ij = 0 for i ̸= j, it is easily seen that

n(‖ĥ‖2 − nα̂2) = ∑
i<j
(hn+1ii − hn+1jj )2 ≥ 0, (24)

and equality holds if and only if Mn is totally umbilical. If we put D0 = (‖ĥ‖2 − n)2 + 4n2α̂2 > 0, then

‖ĥ‖2 + n − √D0 =
(‖ĥ‖2 + n)2 − D0

‖ĥ‖2 + n + √D0

= 4n(‖ĥ‖
2 − nα̂2)

‖ĥ‖2 + n + √D0

> 0 (25)

asM is non-totally umbilical. Since the mean curvature α̂ and the scalar curvature S are constants, equation

(6) implies that ‖ĥ‖2 is constant. Hence D0 is constant.

Now, as the normal bundle is flat, i.e., RD = 0 and Ĥ = α̂en+1 is parallel, equation (8) becomes

∆ν̃ = ‖ĥ‖2 ν̃ + nα̂en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en . (26)

If we put

ν̃p = −(
‖ĥ‖2 − n − √D0

2√D0

)ν̃ − nα̂

√D0

en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en ,

ν̃q = (
‖ĥ‖2 − n + √D0

2√D0

)ν̃ + nα̂

√D0

en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en ,

then we have ν̃ = ν̃p + ν̃q, and by using (9) and (26) a direct computation shows that

∆ν̃p = λq ν̃p and ∆ν̃q = λq ν̃q ,
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where λp = 1
2
(‖ĥ‖2 + n − √D0) > 0 because of (25) and λq = 1

2
(‖ĥ‖2 + n + √D0) > 0 which are constants.

Therefore, the spherical Gauss map ν̃ is mass-symmetric and of 2-type.

Conversely, suppose that the spherical Gauss map ν̃ is mass-symmetric and of 2-type. Then ν̃ admits a

spectral decomposition of the form

ν̃ = ν̃p + ν̃q , ∆ν̃p = λq ν̃p , ∆ν̃q = λq ν̃q (27)

with λp < λq, where ν̃p and ν̃q are non-constant maps. Then, we find from (27) that

∆2 ν̃ = (λp + λq)∆ν̃ − λpλq ν̃. (28)

Since the normal bundle is flat and Ĥ = α̂en+1 is parallel, we have (26). By using (9) and (26), we obtain that

∆2 ν̃ = (n+‖ĥ‖2)∆ν̃+ (∆‖ĥ‖2 + n2α̂2 − n‖ĥ‖2)ν̃−2
n

∑
i=1

hn+1ii ei(‖ĥ‖2)x∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ei−1 ∧ en+1 ∧ ei+1 ∧ ⋅ ⋅ ⋅ ∧ en . (29)

Comparing (28) and (29), the coefficient of ∆ν̃ implies that n + ‖ĥ‖2 = λp + λq, thus ‖ĥ‖2 is constant. Therefore
the scalar curvature of M is constant by (6). ✷

As isoparametric hypersurfaces in Sn+1 have constant scalar curvature, we state the following corollary.
Corollary 3.7. Every non-totally umbilical isoparametric hypersurface M in Sn+1 with nonzero mean curvature
α̂ in Sn+1 has mass-symmetric 2-type spherical Gauss map.

For example, the product submanifold Sk(a) × Sn−k(b) ⊂ Sn+1 with a2 + b2 = 1 and a ̸= b is a non-totally
umbilical isoparametric hypersurface of Sn+1 which has mass-symmetric and 2-type spherical Gauss map.

Theorem 3.8. Anon-totally umbilical surfaceM ofS3 with nonzero constantmean curvature inS3 has themass-
symmetric 2-type spherical Gauss map ν̃ if and only if M is an open part of S1(a) × S1(b) ⊂ S3, where a ̸= b and
a2 + b2 = 1.
Proof. First we assume that M is an open part of S1(a) × S1(b) in S3(1) ⊂ E4 which is defined by

x(u, v) = (a cos u
a
, a sin

u

a
, b cos

v

b
, b sin

v

b
),

where a ̸= b and a2 + b2 = 1. It is well known that M is a non-totally umbilical isoparametric surface. Also,

it is not minimal as a ̸= b. By Corollary 3.7, M has the mass-symmetric 2-type spherical Gauss map.

For later use we need the connection forms of M. We choose

e1 =
∂

∂u
, e2 =

∂

∂v
, e3 = (b cos

u

a
, b sin

u

a
, −a cos v

b
, −a sin v

b
), e4 = x

which form an orthonormal frame field on M. By a direct computation we have

ω1 = du, ω2 = dv, ω12 = ω34 = 0, ω13 = −µ0ω1, ω23 =
1

µ0
ω2, ω14 = −ω1, ω24 = −ω2, (30)

where µ0 = b/a.
Conversely, suppose thatM is a non-totally umbilical surface ofS3with nonzero constantmean curvature

α̂, and the spherical Gauss map ν̃ is mass-symmetric and of 2-type. Then, by Theorem 3.6, M has constant

scalar curvature S, that is, from (6) the scalar curvature S of M is S = 2 + 4α̂2 − ‖ĥ‖2 which is constant. If we
choose an orthonormal tangent frame on M such that A3(ei) = h3iiei, i = 1, 2, then the constancy of S and α̂

imply that the principal curvatures h3
11

and h3
22

of A3 are constants.

Now, considering the Codazzi equation (3) we have (h3ii − h3jj)ωij(ej) = 0, i ̸= j that gives ωij(ej) = 0,
j = 1, 2, as M is non-totally umbilical. So, M is flat, and from the equation of Gauss we have h3

11
h3
22
= −1. If

we put µ0 = −h311, then h3
22
= 1/µ0.

Since M is flat, we can choose a local coordinate (u, v) on M with ω1 = du, ω2 = dv. So, we have

ω12 = ω34 = 0, ω13 = −µ0ω1, ω23 =
1

µ0
ω2, ω14 = −ω1, ω24 = −ω2. (31)

Thus the connection formsωAB ofM coincide with the connection forms of S1(a)×S1(b), a ̸= b, given in (30).
As a result of the fundamental theorem of submanifolds, M is locally isometric to S1(a) × S1(b). ✷
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