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ON SPLITTING METHODS FOR SCHRÖDINGER-POISSON
AND CUBIC NONLINEAR SCHRÖDINGER EQUATIONS

CHRISTIAN LUBICH

Abstract. We give an error analysis of Strang-type splitting integrators for
nonlinear Schrödinger equations. For Schrödinger-Poisson equations with an
H4-regular solution, a first-order error bound in the H1 norm is shown and
used to derive a second-order error bound in the L2 norm. For the cubic
Schrödinger equation with an H4-regular solution, first-order convergence in
the H2 norm is used to obtain second-order convergence in the L2 norm. Basic
tools in the error analysis are Lie-commutator bounds for estimating the local
error and Hm-conditional stability for error propagation, where m = 1 for the
Schrödinger-Poisson system and m = 2 for the cubic Schrödinger equation.

1. Introduction

In this paper we give an error analysis of the Strang splitting time integration
method applied to nonlinear Schrödinger equations

(1.1) i
∂ψ

∂t
= −∆ψ + V ψ , x ∈ R3, t > 0,

where

(1.2) V = V [ψ] = ±|ψ|2

in the case of the cubic nonlinear Schrödinger equation, and

(1.3) −∆V = ±|ψ|2

in the case of the Schrödinger-Poisson equations. The equations are considered with
asymptotic boundary conditions lim|x|→∞ ψ(x, t) = 0 and lim|x|→∞ V (x) = 0. The
Poisson equation in (1.3) is thus to be interpreted as giving V by the convolution
with the fundamental solution of the negative Laplacian,

V = V [ψ] = ∓∆−1|ψ|2 := ± 1
4π|x| ∗ |ψ|

2 .

In both cases, the initial data is given as ψ(x, 0) = ψ0(x) for x ∈ R3.
The cubic nonlinear Schrödinger equation arises as a model equation from several

areas of physics; see, e.g., Sulem and Sulem [20]. The one-dimensional problem
(x ∈ R) is important in fiber optics; see Agrawal [1]. Schrödinger-Poisson equations
(1.1), (1.3) (also known as the Hartree equation), and generalizations are basic
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2142 CHRISTIAN LUBICH

equations in quantum transport; see, e.g., Brezzi, and Markowich [6] and Illner,
Zweifel, and Lange [13]. The more elaborate Schrödinger-Poisson system considered
there has the same mathematical difficulties as (1.1) with (1.3), so we restrict our
attention to this simpler set of equations.

In this paper we study the approximation properties of a semi-discretization
in time. The numerical integrator we consider is a Strang-type splitting method,
yielding approximations ψn to ψ(tn) with tn = nτ for a step size τ > 0 via

ψ−
n+1/2 = e

i
2 τ∆ψn,

ψ+
n+1/2 = e−iτV [ψ−

n+1/2] ψ−
n+1/2,(1.4)

ψn+1 = e
i
2 τ∆ψ+

n+1/2 .

Here, eit∆ is the solution operator of the free Schrödinger equation, expressed in
terms of Fourier transforms as F−1e−it|ξ|2F and approximately computed by FFT
in a Fourier spectral method, whereas the exponential of V acts as a pointwise
multiplication operator. Note that |ψ+

n+1/2| = |ψ−
n+1/2| and hence V [ψ+

n+1/2] =
V [ψ−

n+1/2]. Method (1.4) is therefore explicit and time-reversible. The method is
the composition of the exact flows of the differential equations

i
∂ψ

∂t
= −∆ψ and i

∂ψ

∂t
= V [ψ]ψ .

Such splitting methods are widely used; see, e.g., the early references Strang [19]
and Hardin and Tappert [11], the study of the split-step Fourier method for the
cubic nonlinear Schrödinger equation by Weideman and Herbst [21] and its use in
fiber optics as in Agrawal [1, Section 2.4], the use of splitting methods for the time-
dependent Kohn-Sham equations (closely related to the above Schrödinger-Poisson
equations) in time-dependent density functional theory by Appel and Gross [2], and
the papers by Bao, Mauser, and Stimming [4] on the use in the Schrödinger-Poisson-
Xα model and by Bao, Jaksch, and Markowich [3] on the numerical solution of the
Gross-Pitaevskii equation for Bose-Einstein condensation, which is closely related
to the cubic nonlinear Schrödinger equation. We further refer to the review of
splitting methods by McLachlan and Quispel [18].

To our knowledge, there is as yet no rigorous convergence result in the literature
for the splitting method for the cubic nonlinear Schrödinger equation. We mention,
however, the work by Besse, Bidégaray, and Descombes [5], where an error analysis
is given for globally Lipschitz-continuous nonlinearities, which is not the case with
the cubic nonlinearity considered here. For the Schrödinger-Poisson equation, a
first-order L2 error bound over a time interval [0, T ] with suitably small T for
initial data in the Sobolev space H2 has been shown by Fröhlich [8].

Here, we derive error bounds for the Strang splitting over any given finite time
interval that are second-order accurate in the L2 norm under the condition of H4

spatial regularity. This is more stringent than the H2 regularity needed for linear
Schrödinger equations with a smooth bounded potential [14]. The higher regularity
requirement for the nonlinear equations considered here is caused by a term ∆2ψ in
the double Lie commutator of i∆ with the nonlinearity, whereas in the linear case
there is a cancellation of higher derivatives that leaves only second-order derivatives.
It is also interesting to compare with finite-difference time-stepping methods such as
the Crank-Nicholson method or the implicit midpoint rule, for which second-order
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error bounds involve bounds on the third time derivative of the solution, which
would require H6-spatial regularity.

We remark that Weideman and Herbst [21] report an instability phenomenon in
the Strang splitting for the cubic Schrödinger equation for certain step sizes, caused
by resonances between the linear part, which has its spectrum on the imaginary
axis, and the nonlinearity. This instability can lead to an exponential error growth
that is stronger than in the error propagation by the equation itself, and can thus
impair the long-time behaviour of the method. It should be noted, however, that
this potential long-time instability is not at odds with the finite-time stability and
convergence results given here.

We restrict our attention in this paper to nonlinear Schrödinger equations (1.1)
on the whole space R3. Our arguments would apply similarly to problems with
periodic boundary conditions and in lower space dimension, and could be extended
to nonlinear Schrödinger equations with other power nonlinearities.

We only study semi-discretization in time but we expect that the results extend
to various types of full discretization, uniformly in the spatial discretization parame-
ter. What needs to be checked is the discrete version of the Lie commutator bounds
established in this paper for the spatially continuous case. Once such bounds are
available, the theory extends to the fully discrete case without further ado. The
same remark apparently applies to splitting methods for other nonlinear evolution
equations such as the KdV equation, where similarly the scheme of proof given here
becomes applicable once the necessary Lie bracket bounds are established.

Throughout the paper, L2 = L2(R3) denotes the Hilbert space of Lebesgue
square integrable functions, and Hk = Hk(R3) is the Sobolev space of L2-functions
having all generalized derivatives up to order k in L2. We denote the solution of
(1.1) at time t by ψ(t) = ψ(·, t). The L2 norm is preserved along the solution, and
we assume it to be of unit norm: ‖ψ(t)‖L2 = ‖ψ0‖L2 = 1.

The paper is organized as follows. In the first part (Sections 2 to 6) we consider
the Schrödinger-Poisson equation (1.1), (1.3) and then, in Sections 7 and 8, we
extend the results and techniques to the cubic Schrödinger equation. Sections 2
and 7 state the results of this paper. In Section 3 we give some inequalities related
to the nonlinearity in the Schrödinger-Poisson equation. In Section 4 we prove the
first-order error bound in the H1 Sobolev norm for solutions in H3, and in Section 5
this is used to show the second-order error bound in L2 for H4-regular solutions.
Section 6 proves an H2-regularity result of the numerical solution. Finally, Section 8
outlines the modifications in the proofs needed for the cubic Schrödinger equation.

PART A. SCHRÖDINGER-POISSON EQUATIONS

2. Error bounds for solutions in H4
: Statement of results

In this section we formulate error bounds in the H1 and L2 norm and state
some related results. According to a result by Illner, Zweifel, and Lange [13], the
Schrödinger-Poisson equation (1.1), (1.3) has a global strong solution: ψ0 ∈ H2

implies ψ(t) ∈ H2 for all t ≥ 0. The result can be extended to yield Hk regularity
of solutions to Hk initial data for any k ≥ 2 globally in time. We suppose that the
solution ψ(t) to the Schrödinger-Poisson equation (1.1), (1.3) is in H4 for 0 ≤ t ≤ T ,
and set

mk = max
0≤t≤T

‖ψ(t)‖Hk for k ≤ 4.
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Our main result concerning the error of the Strang-type splitting scheme (1.4) reads
as follows.

Theorem 2.1. Suppose that the exact solution ψ(t) to the Schrödinger-Poisson
equation (1.1), (1.3) is in H4 for 0 ≤ t ≤ T . Then, the numerical solution ψn given
by the splitting scheme (1.4) for the Schrödinger-Poisson equation (1.1), (1.3) with
step size τ > 0 has a first-order error bound in H1 and a second-order error bound
in L2,

‖ψn − ψ(tn)‖H1 ≤ C(m3, T ) τ

‖ψn − ψ(tn)‖L2 ≤ C(m4, T ) τ2
for tn = nτ ≤ T .

The following auxiliary results are of independent interest. We write the step of
the splitting scheme (1.4) briefly as

ψn+1 = Φτ (ψn) .

Proposition 2.2 (H1-conditional L2- and H1-stability). If ψ, φ ∈ H1 with

‖ψ‖H1 ≤ M1, ‖φ‖H1 ≤ M1,

then

‖Φτ (ψ) − Φτ (φ)‖L2 ≤ ec0τ ‖ψ − φ‖L2 ,

‖Φτ (ψ) − Φτ (φ)‖H1 ≤ ec1τ ‖ψ − φ‖H1 ,

where c0, c1 only depend on M1.

Note that also the L2-stability estimate depends on bounds in H1. The proof
of Theorem 2.1 therefore proceeds by first showing the H1 error bound, which, in
particular, establishes the required bound of the H1 norm of numerical solutions.
We then are in the position to prove the L2 error bound using the H1-conditional
L2-stability.

Proposition 2.3 (Local error in H1). If ψ0 ∈ H3 with ‖ψ0‖H3 ≤ M3, then the
error after one step of the method (1.4) is bounded in the H1 norm by

‖ψ1 − ψ(τ )‖H1 ≤ C3τ
2 ,

where C3 only depends on M3.

Proposition 2.4 (Local error in L2). If ψ0 ∈ H4 with ‖ψ0‖H4 ≤ M4, then the
error after one step of the method (1.4) is bounded in the L2 norm by

‖ψ1 − ψ(τ )‖L2 ≤ C4τ
3 ,

where C4 only depends on M4.

Proposition 2.5 (H2 regularity of the numerical solution). If ψ0 ∈ H2 and

‖ψn‖H1 ≤ M1 for all n with nτ ≤ T,

then in fact
‖ψn‖H2 ≤ ec2nτ‖ψ0‖H2 for nτ ≤ T,

where c2 only depends on M1.
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3. Some inequalities

Hardy’s inequality (e.g., [15], p. 350)∫
R3

|u(y)|2
|y|2 dy ≤ 4

∫
R3

|∇u(y)|2 dy (u ∈ H1)

implies some further inequalities that play an important role in the following.

Lemma 3.1. For u ∈ H1 and v, w ∈ L2,

(3.1) ‖∆−1(uv)w‖L2 ≤ K0 ‖u‖H1 ‖v‖L2 ‖w‖L2 ,

and for u, v ∈ L2 and w ∈ H1,

(3.2) ‖∆−1(uv)w‖L2 ≤ K0 ‖u‖L2 ‖v‖L2 ‖w‖H1 .

Proof. (a) Inequality (3.1) is essentially Lemma 3.3 of [13]. We have

‖∆−1(uv)w‖L2 ≤ ‖∆−1(uv)‖L∞ ‖w‖L2

and further, using the Cauchy-Schwarz inequality and Hardy’s inequality,

‖∆−1(uv)‖L∞ = sup
x

∫
R3

u(x − y)v(x − y)
4π|y| dy

≤ 1
4π

sup
x

(∫
R3

|u(x − y)|2
|y|2 dy

)1/2(∫
R3

|v(x − y)|2 dy
)1/2

≤ 1
2π

‖u‖H1 ‖v‖L2 .

(b) For the proof of (3.2) we use a duality argument. Using partial integration
and the L∞ bound of part (a), we obtain

‖∆−1(uv)w‖L2 = sup
‖φ‖L2=1

∫
R3

∆−1(uv)wφ dx = sup
‖φ‖L2=1

∫
R3

uv ∆−1(wφ) dx

≤ ‖uv‖L1 sup
‖φ‖L2=1

‖∆−1(wφ)‖L∞ ≤ ‖u‖L2 ‖v‖L2

1
2π

‖w‖H1 ,

which yields the result with K0 = 1
2π . �

With the product rule of derivatives, Lemma 3.1 immediately yields the following
bounds.

Lemma 3.2. We have

(3.3) ‖∆−1(uv)w‖H1 ≤ K1 (‖u‖H1 ‖v‖H1 ‖w‖L2 + ‖u‖H1 ‖v‖L2 ‖w‖H1)

for u, v, w ∈ H1, and

(3.4) ‖∆−1(uv)w‖H2 ≤ K2

∑
(k,�,m)

‖u‖Hk ‖v‖H� ‖w‖Hm

for u, v, w ∈ H2, where the sum is over all permutations (k, �, m) of (0, 1, 2). �

For further inequalities concerning ∆−1(uv)w we refer to Castella [7] and Illner,
Zweifel, and Lange [13].
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4. Proof of the first-order error bound in H1

4.1. H1-conditional stability: Proof of Proposition 2.2. (a) Since eiτ∆ pre-
serves both the L2 and the H1 norm, we only need to compare e−iτV [ψ]ψ and
e−iτV [φ]φ, which are the solutions at time τ of the linear initial value problems

iθ̇ = V [ψ]θ, θ(0) = ψ,

iη̇ = V [φ]η, η(0) = φ,

with H1 norms of ψ and φ bounded by M1. We rewrite the difference of the
right-hand sides as

V [ψ]θ − V [φ]η = ∆−1|ψ|2 · θ − ∆−1|φ|2 · η
= ∆−1

(
|ψ|2 − |φ|2

)
θ + ∆−1|φ|2 (θ − η)

= ∆−1
(
(ψ − φ)ψ

)
θ + ∆−1

(
φ(ψ − φ)

)
θ + ∆−1(φφ) (θ − η).

(b) By Lemma 3.1, we thus obtain

‖V [ψ]θ − V [φ]η‖L2 ≤ K0 ‖ψ − φ‖L2 ‖ψ‖H1 ‖θ‖L2 + K0 ‖ψ − φ‖L2 ‖φ‖H1 ‖θ‖L2

+ K0 ‖φ‖H1 ‖φ‖L2 ‖θ − η‖L2

and hence, recalling unit L2 norms of φ and θ,

‖θ(t) − η(t)‖L2 ≤ ‖ψ − φ‖L2 + 2K0M1t ‖ψ − φ‖L2 +
∫ t

0

K0M1 ‖θ(s) − η(s)‖L2 ds ,

so that by the Gronwall inequality,

‖e−iτV [ψ]ψ − e−iτV [φ]φ‖L2 = ‖θ(τ ) − η(τ )‖L2 ≤ ec0τ ‖ψ − φ‖L2

where c0 depends on M1.
(c) We proceed in the same way for the H1 estimate, using now Lemma 3.2 (and

recalling unit L2 norms) for the estimate

‖V [ψ]θ − V [φ]η‖H1 ≤ 2K1

(
‖φ‖H1 + ‖θ‖H1

)
‖ψ − φ‖H1 + 2K1‖φ‖H1 ‖θ − η‖H1 .

Next we estimate the H1 norm of θ(t). By Lemma 3.2 and unit L2 norms, we have

‖V [ψ]θ‖H1 ≤ K1

(
‖ψ‖2

H1 + ‖ψ‖H1 ‖θ‖H1

)
,

which yields, using the bound ‖ψ‖H1 ≤ M1,

‖θ(t)‖H1 ≤ (1 + K1M1t) ‖ψ‖H1 +
∫ t

0

M1 ‖θ(s)‖H1 ds .

With the Gronwall inequality we thus obtain

(4.1) ‖e−itV [ψ]ψ‖H1 = ‖θ(t)‖H1 ≤ ea1t ‖ψ‖H1 ,

where a1 only depends on M1. With the above estimate of ‖V [ψ]θ−V [φ]η‖H1 this
gives

‖θ(t) − η(t)‖H1 ≤ ‖ψ − φ‖H1 +
∫ t

0

2K1M1(1 + ea1s) ‖ψ − φ‖H1 ds

+
∫ t

0

2K1M1 ‖θ(s) − η(s)‖H1 ds .

Once again by the Gronwall inequality, we finally obtain

‖e−iτV [ψ]ψ − e−iτV [φ]φ‖H1 = ‖θ(τ ) − η(τ )‖H1 ≤ ec1τ ‖ψ − φ‖H1 ,

where c1 only depends on M1. �
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4.2. Commutator bound. We consider the vector fields on dense subsets of H1,

T̂ (ψ) = i∆ψ , V̂ (ψ) = −iV [ψ]ψ ,

that appear in (1.1). Their Lie commutator

[T̂ , V̂ ](ψ) = T̂ ′(ψ)V̂ (ψ) − V̂ ′(ψ)T̂ (ψ)

= i∆
(
−i∆−1(ψψ)ψ

)
+ i∆−1(i∆ψ ψ)ψ + i∆−1(ψi∆ψ)ψ + i∆−1(ψψ)i∆ψ

= 2∆−1(∇ψ · ∇ψ) ψ + 2∆−1(∇ψ ψ) · ∇ψ + 2∆−1(ψ∇ψ) · ∇ψ + 2∆−1(ψ∆ψ)ψ

plays an essential role in the error estimate.

Lemma 4.1. The commutator is bounded in H1 by

‖[T̂ , V̂ ](ψ)‖H1 ≤ C ‖ψ‖3
H2 + C ‖ψ‖2

H1 ‖ψ‖H3 for all ψ ∈ H3 .

Proof. The bound follows by applying Lemma 3.2 to the terms in [T̂ , V̂ ](ψ). We
note that the first three terms can be estimated using only the H2 norm, but the
last term requires a stronger norm. �

The estimate of the local error is now obtained with a nonlinear version of the
analysis of splitting methods by Jahnke and Lubich [14], similar to Lubich [17];
cf. also Kozlov, Kværnø and Owren [16] for another related technique.

4.3. Preparation: Lie derivatives. We use the calculus of Lie derivatives (see,
e.g., [9, Sect. III.5] or [12, Sect. IV.1.4]). Since this formalism only relies on the
differentiability and the semi-group property of the flow, it is applicable in the
present infinite-dimensional setting as well as in the finite-dimensional case. For a
vector field F on H1, such as T̂ or V̂ or Ĥ = T̂ + V̂ , we denote by ϕt

F the flow
at time t of the differential equation ψ̇ = F (ψ), that is, ϕt

F (v) is the solution at
time t of this differential equation with initial value ψ(0) = v. We consider the Lie
derivative DF defined by

(
DF G

)
(v) =

d

dt

∣∣∣
t=0

G(ϕt
F (v)) = G′(v)F (v)

for another vector field G on H1 and v ∈ H1, and we set(
exp(tDF )G

)
(v) = G(ϕt

F (v)).

In particular, for the identity Id, the flow is reproduced as exp(tDF )Id(v) = ϕt
F (v).

We then have the rule

d

dt
exp(tDF )G(v) =

(
DF exp(tDF )G

)
(v) =

(
exp(tDF )DF G

)
(v).

The commutator [DF , DG] = DF DG − DGDF of the Lie derivatives of two vector
fields F and G is the Lie derivative of the commutator of the vector fields in reversed
order:

[DF , DG] = D[G,F ].
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4.4. Local error: Proof of Proposition 2.3. (a) For notational simplicity we
write DH , DT , DV instead of D

Ĥ
, DT̂ , DV̂ , respectively. We start from the

nonlinear variation-of-constants formula

ψ(τ ) = exp(τDH)Id (ψ0) = exp(τDT )Id (ψ0)

+
∫ τ

0

exp((τ − s)DH) DV exp(sDT )Id (ψ0) ds.

Using this formula once more for the expression under the integral, we obtain

ψ(τ ) = exp(τDT )Id (ψ0)

+
∫ τ

0

exp((τ − s)DT ) DV exp(sDT )Id (ψ0) ds + r1

with the remainder

r1 =
∫ τ

0

∫ τ−s

0

exp((τ − s − σ)DH)DV exp(σDT )DV exp(sDT )Id (ψ0) dσ ds .

On the other hand, in this notation the numerical solution reads

ψ1 = exp( 1
2τDT ) exp(τDV ) exp( 1

2τDT )Id (ψ0),

and Taylor expansion exp(τDV ) = I + τDV + τ2
∫ 1

0
(1 − θ) exp(θτDV )D2

V dθ gives

ψ1 = exp(τDT )Id (ψ0) + τ exp( 1
2τDT )DV exp( 1

2τDT )Id (ψ0) + r2

with the remainder

r2 = τ2

∫ 1

0

(1 − θ) exp( 1
2τDT ) exp(θτDV )D2

V exp( 1
2τDT )Id (ψ0) dθ .

(b) The error now becomes

ψ1 − ψ(τ ) = τ exp( 1
2τDT )DV exp( 1

2τDT )Id (ψ0)

−
∫ τ

0

exp((τ − s)DT ) DV exp(sDT )Id (ψ0) ds + (r2 − r1),(4.2)

and hence the principal error term is just the quadrature error of the midpoint rule
applied to the integral over [0, τ ] of the function

(4.3) f(s) = exp((τ − s)DT ) DV exp(sDT )Id (ψ0).

We express the quadrature error in first-order Peano form,

τ f( 1
2τ ) −

∫ τ

0

f(s) ds = τ2

∫ 1

0

κ1(θ) f ′(θτ ) dθ

with the (scalar, bounded) Peano kernel κ1 of the midpoint rule. Since

f ′(s) = − exp((τ − s)DT ) [DT , DV ] exp(sDT )Id (ψ0)
= exp((τ − s)DT ) D[T̂ ,V̂ ] exp(sDT )Id (ψ0)

= eis∆ [T̂ , V̂ ](ei(τ−s)∆ψ0) ,

the commutator bound of Lemma 4.1 shows that the quadrature error is bounded
by

(4.4)
∥∥∥τ f( 1

2τ ) −
∫ τ

0

f(s) ds
∥∥∥

H1
≤ Cτ2‖ψ0‖3

H2 .
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(c) Finally, we estimate the remainder terms. For ‖ψ0‖H1 ≤ M1, we now show
that they are bounded by

(4.5) ‖r1‖H1 + ‖r2‖H1 ≤ C1τ
2 ,

where C1 only depends on M1. From the definitions we have

exp(ρDH)DV exp(σDT )DV exp(sDT )Id (ψ0) = eis∆V̂ ′(eiσ∆ψ(ρ))eiσ∆V̂ (ψ(ρ)),

exp( 1
2τDT ) exp(θτDV )D2

V exp( 1
2τDT )Id (ψ0) = eiτ∆/2V̂ ′(η)V̂ (η),

where η = e−iθτV [φ] φ with φ = eiτ∆/2ψ0, with ‖η‖H1 ≤ ea1τ ‖ψ0‖H1 by (4.1).
Since Lemma 3.2 yields the bounds (for ψ of unit L2 norm)

(4.6) ‖V̂ (ψ)‖H1 ≤ C ‖ψ‖2
H1 and ‖V̂ ′(ψ)φ‖H1 ≤ C ‖ψ‖2

H1 ‖φ‖H1 ,

we obtain the bound (4.5). �

4.5. Proof of the H1 error bound of Theorem 2.1. The stated error bound
follows from Propositions 2.2 and 2.3 with the standard argument of Lady Win-
dermere’s fan [10, Sect. II.3]. Note that the boundedness in H1 required by the
stability lemma, is ensured by induction by the H1 error bound. �

5. Proof of the second-order error bound in L2

5.1. Double-commutator bound.

Lemma 5.1. The double commutator of T̂ with V̂ is bounded in L2 by

‖[T̂ , [T̂ , V̂ ]](ψ)‖L2 ≤ C ‖ψ‖3
H4 for all ψ ∈ H4.

Proof. Direct calculation shows that among a plethora of more harmless terms that
can be bounded, by Lemmas 3.1 and 3.2, in terms of the H3 or even H2 norms, the
double commutator contains also the term 4i∆−1(ψ∆2ψ)ψ, which can be bounded
in terms of the H4 norm. �

5.2. Local error in L2: Proof of Proposition 2.4. (a) We return to the error
formula (4.2) and write the principal error term in second-order Peano form

τ f( 1
2τ ) −

∫ τ

0

f(s) ds = τ3

∫ 1

0

κ2(θ) f ′′(θτ ) dθ

with the Peano kernel κ2 of the midpoint rule and f of (4.3). We have

f ′′(s) = exp((τ − s)DT ) [DT , [DT , DV ]] exp(sDT )Id (ψ0)
= exp((τ − s)DT ) D[T̂ ,[T̂ ,V̂ ]] exp(sDT )Id (ψ0)

= eis∆ [T̂ , [T̂ , V̂ ]](ei(τ−s)∆ψ0) ,

and hence Lemma 5.1 shows that the quadrature error is bounded in L2 by
Cτ3‖ψ0‖3

H4 .
(b) With the function

g(s, σ) = exp((τ − s − σ)DT )DV exp(σDT )DV exp(sDT )Id (ψ0)

the remainder term can be expressed as

r2 − r1 =
τ2

2
g
(τ

2
, 0

)
−

∫ τ

0

∫ τ−s

0

g(s, σ) dσ ds + r̃2 − r̃1,
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where, in the same way as in part (c) of Section 4.4, the remainders can be bounded
by

‖r̃1‖L2 + ‖r̃2‖L2 ≤ C̃2τ
3

with C̃2 depending only on ‖ψ0‖H2 . The other two terms in r2 − r1 form the quad-
rature error of a first-order two-dimensional quadrature formula, and are therefore
bounded by∥∥∥τ2

2
g
(τ

2
, 0

)
−

∫ τ

0

∫ τ−s

0

g(s, σ) dσ ds
∥∥∥

L2

≤ Cτ3
(
max

∥∥∥∂g

∂s

∥∥∥
L2

+ max
∥∥∥ ∂g

∂σ

∥∥∥
L2

)
,

where the maxima are taken over the triangle 0 ≤ s ≤ τ , 0 ≤ σ ≤ τ −s. The partial
derivatives of g,

∂g

∂s
(s, σ) = exp((τ − s − σ)DT )D[T̂ ,V̂ ] exp(σDT )DV exp(sDT )Id (ψ0)

+ exp((τ − s − σ)DT )DV exp(σDT )D[T̂ ,V̂ ] exp(sDT )Id (ψ0),

∂g

∂σ
(s, σ) = exp((τ − s − σ)DT )D[T̂ ,V̂ ] exp(σDT )DV exp(sDT )Id (ψ0) ,

only contain V̂ and the simple commutator [T̂ , V̂ ] and their derivatives. The L2

norms of ∂g/∂s and ∂g/∂σ can therefore be bounded in terms of the H2 norm of
ψ0 using (4.6) and the argument of the proof of Lemma 4.1. Together, this shows

‖r2 − r1‖L2 ≤ C2τ
3 ,

where C2 only depends on ‖ψ0‖H2 . Recalling the error formula (4.2) and combining
the above bound with that of part (a) yields the result of Proposition 2.4. �

5.3. Proof of the L2 error bound of Theorem 2.1. With the H2 regularity
of the exact solution, with the L2 bound of the local error of Proposition 2.4, and
with the H1-conditional L2-stability of Proposition 2.2 together with the H1 bound
of the numerical solution established in Section 4, the result is obtained with the
standard argument of Lady Windermere’s fan [10, Sect. II.3]. �

6. H2
regularity: Proof of Proposition 2.5

Since eiτ∆ preserves the H2 norm, we only need to bound the H2 norm of
e−iτV [φ]φ for φ ∈ H2, which is the solution at time τ of

iη̇ = V [φ]η, η(0) = φ.

By Lemma 3.2 and ‖η‖L2 = ‖φ‖L2 = 1,

‖V [φ]η‖H2 ≤ K2 (‖φ‖H1 ‖η‖H2 + ‖φ‖H2 ‖η‖H1 + ‖φ‖H2 ‖φ‖H1) .

By (4.1) we have
‖η(t)‖H1 ≤ ea1t ‖φ‖H1 ,

where a1 depends only on M1. For the H2 norm we then obtain

‖η(t)‖H2 ≤ ‖φ‖H2 +
∫ t

0

C1 (‖φ‖H2 + ‖η(s)‖H2) ds

where C1 only depends on M1, and hence once again by the Gronwall inequality,

‖η(t)‖H2 ≤ ea2t‖φ‖H2

where again a2 only depends on M1. Combining these estimates yields Proposi-
tion 2.5. �
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PART B. THE CUBIC NONLINEAR SCHRÖDINGER EQUATION

7. Error bounds for solutions in H4
: Statement of results

For the cubic nonlinear Schrödinger equation (1.1), (1.2) with solutions in H4

similar results are obtained. We suppose that the solution ψ(t) to the cubic
Schrödinger equation (1.1), (1.2) is in H4 for 0 ≤ t ≤ T , and set

m4 = max
0≤t≤T

‖ψ(t)‖H4 .

Theorem 7.1. The numerical solution ψn given by the splitting scheme (1.4) for
the cubic nonlinear Schrödinger equation with step size τ > 0 has a first-order error
bound in H2 and a second-order error bound in L2,

‖ψn − ψ(tn)‖H2 ≤ C(m4, T ) τ

‖ψn − ψ(tn)‖L2 ≤ C(m4, T ) τ2
for tn = nτ ≤ T .

We again write the step of the splitting scheme (1.4) briefly as

ψn+1 = Φτ (ψn) .

Proposition 7.2 (H2-conditional L2-, H1- and H2-stability). If ψ, φ ∈ H2 with

‖ψ‖H2 ≤ M2, ‖φ‖H2 ≤ M2,

then

‖Φτ (ψ) − Φτ (φ)‖L2 ≤ ec0τ ‖ψ − φ‖L2 ,

‖Φτ (ψ) − Φτ (φ)‖H1 ≤ ec1τ ‖ψ − φ‖H1 ,

‖Φτ (ψ) − Φτ (φ)‖H2 ≤ ec2τ ‖ψ − φ‖H2 ,

where c0, c1, c2 only depend on M2.

Note that the L2- and H1-stability estimates depend on bounds in H2.

Proposition 7.3 (Local error in H2). If ψ0 ∈ H4 with ‖ψ0‖H4 ≤ M4, then the
error after one step of the method (1.4) is bounded in the H2 norm by

‖ψ1 − ψ(τ )‖H2 ≤ C4τ
2 ,

where C4 only depends on M4.

Proposition 7.4 (Local error in L2). If ψ0 ∈ H4 with ‖ψ0‖H4 ≤ M4, then the
error after one step of the method (1.4) is bounded in the L2 norm by

‖ψ1 − ψ(τ )‖L2 ≤ C4τ
3 ,

where C4 only depends on M4.

There is also an analogue of Proposition 2.5 for the cubic nonlinear Schrödinger
equation, inferring H3-regularity of the numerical solution from bounds in H2.

For the one-dimensional cubic nonlinear Schrödinger equation we would obtain
also H1-conditional stability (essentially because H1(R) ⊂ L∞(R)).
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8. Outline of the proofs

The proof of Theorem 7.1 and the above propositions is analogous to the cor-
responding results for the Schrödinger-Poisson equation. Essentially, the operator
∆−1 is to be replaced by the identity operator in all formulas. The estimates of
Lemma 3.1 need to be replaced by

‖uvw‖L2 ≤ K0 ‖u‖H1 ‖v‖H1 ‖w‖H1 ,

‖uvw‖L2 ≤ K0 ‖u‖L2 ‖v‖H2 ‖w‖H2 .

The first bound follows from the Sobolev embedding H1 ⊂ L6, and the second
bound from the Sobolev embedding H2 ⊂ L∞. We then have the further bounds

‖uvw‖H1 ≤ K1 ‖u‖H1 ‖v‖H2 ‖w‖H2 ,

‖uvw‖H2 ≤ K2 ‖u‖H2 ‖v‖H2 ‖w‖H2 .

The commutator bounds now become

‖[T̂ , V̂ ](ψ)‖H2 ≤ C‖ψ‖3
H4 ,

‖[T̂ , [T̂ , V̂ ]](ψ)‖L2 ≤ C‖ψ‖3
H4 .

With these bounds the results follow in the same way as before.
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