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Abstract

Model validation is the most important part of building a supervised model. For building a model with good generalization 

performance one must have a sensible data splitting strategy, and this is crucial for model validation. In this study, we con-

ducted a comparative study on various reported data splitting methods. The MixSim model was employed to generate nine 

simulated datasets with different probabilities of mis-classification and variable sample sizes. Then partial least squares for 

discriminant analysis and support vector machines for classification were applied to these datasets. Data splitting methods 

tested included variants of cross-validation, bootstrapping, bootstrapped Latin partition, Kennard-Stone algorithm (K-S) and 

sample set partitioning based on joint X–Y distances algorithm (SPXY). These methods were employed to split the data into 

training and validation sets. The estimated generalization performances from the validation sets were then compared with 

the ones obtained from the blind test sets which were generated from the same distribution but were unseen by the train-

ing/validation procedure used in model construction. The results showed that the size of the data is the deciding factor for 

the qualities of the generalization performance estimated from the validation set. We found that there was a significant gap 

between the performance estimated from the validation set and the one from the test set for the all the data splitting methods 

employed on small datasets. Such disparity decreased when more samples were available for training/validation, and this is 

because the models were then moving towards approximations of the central limit theory for the simulated datasets used. 

We also found that having too many or too few samples in the training set had a negative effect on the estimated model 

performance, suggesting that it is necessary to have a good balance between the sizes of training set and validation set to 

have a reliable estimation of model performance. We also found that systematic sampling method such as K-S and SPXY 

generally had very poor estimation of the model performance, most likely due to the fact that they are designed to take the 

most representative samples first and thus left a rather poorly representative sample set for model performance estimation.

Keywords Cross-validation · Bootstrapping · Bootstrapped Latin partition · Kennard-Stone algorithm · SPXY · Model 

selection · Model validation · Partial least squares for discriminant analysis · Support vector machines

1 Introduction

Supervised learning which is used for sample classification 

from (bio)chemical data is a very common task in chemo-

metrics studies. Most classification models have one or more 

model parameters that are used to control the complexity of 

the model. The higher the complexity in the model the more 

discriminating power the model possesses, although the risk 

of over-fitting also increases. Over-fitting is a phenomenon 

often seen when a trained model performs extremely well 

on the samples used for training but performs poorly on new 

unknown samples; that is to say the model does not general-

ize well. To find an optimal set of model parameter(s), which 
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have an appropriate balance between these two aspects, it is 

necessary to split the data into training and validation set. 

The training set is used to build the model with multiple 

model parameter settings and then each trained model is 

challenged with the validation set. The validation set con-

tains samples with known provenance, but these classifica-

tions are not known to model, therefore, predictions on the 

validation set allow the operator to assess model accuracy. 

Based on the errors on the validation set, the optimal model 

parameter(s) set is determined using the one with the lowest 

validation error. This procedure is called model selection 

[1]. It is important to have a good estimation of the per-

formance of the trained and optimized model on unknown 

samples in general, i.e., to assess the generalization per-

formance. A couple of decades ago, it was a commonly 

accepted assumption that the measured performance of the 

model using the validation set was an unbiased estimator 

of the performance of such models in general. However, 

multiple recent studies have demonstrated that this assump-

tion does not always hold. As demonstrated by Westerhuis 

et al. [2], the performance measured by cross-validation is 

an over-optimistic one. Harrington et al. [3] also demon-

strated that a single split of training and test set can provide 

erroneous estimation of model performance. These studies 

highlight the importance in having an additional blind test 

set which is not used during the model selection and valida-

tion process to have a better estimation of the generalization 

performance of the model. A general flowchart of a typical 

model validation process is given in Fig. 1. However, even 

following this procedure (Fig. 1) it is still impossible to tell 

how well the estimated predictive performance of the model 

from the blind test set matches the true underlying distribu-

tion of the data. This is because in real-world applications 

the latter is normally unknown, and one has to assume that 

the measured performance using blind test set is an unbi-

ased, accurate estimator for the model performance on all 

unknown samples coming from the same distribution of the 

training/test dataset. Clearly without sampling the whole 

of a population this is unlikely, but one assumes that with 

resampling one can approximate the central limit theory for 

that population. In addition, the estimated performance of 

the model is likely to be affected by many factors such as 

Fig. 1  General flowchart used for model selection. Blue arrows indicate the validation process while yellow arrows indicate the final training and 

test on blind test set process
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the modelling algorithm, the overlap between the data, the 

number of samples available for training and perhaps most 

importantly the method used for splitting the data.

There are many data splitting methods reported and used 

in the literature. These methods can be roughly categorized 

into three different types:

1. cross-validation (CV) [4];

2. randomly selecting a proportion of samples and retain-

ing these (holding out) as a validation set and then using 

the remaining samples for training. This process is usu-

ally repeated many times and the final estimation of the 

model performance is the average performance on vali-

dation sets of all the repeats; of course, one can also look 

at IQR of the predictive powers as well. In our opinion, 

the best-known method used for this type of repartition-

ing of the data is probably the bootstrap as proposed by 

Efron et al. [5].

3. Based on the distribution of the data, systematically 

selecting a given number of the most representative sam-

ples from the datasets and using the remaining samples 

for validation is a third approach. Kennard-Stone algo-

rithm (K-S) [6] is a good example of such a method.

These data splitting methods have one or two parameters 

that need to be optimized; e.g., the number of folds in CV, 

the number of iterations in the bootstrap, etc. All these meth-

ods have been routinely reported in the literature and despite 

their popularity, most people chose a method with which 

they have familiarity. Daszykowski et al. [7] presented an 

excellent review of data splitting methods based systematic 

sample selection; Puzyn et al. [8] conducted a comparative 

study into the effect of K-S, two of K-S variants and two 

closely related algorithms in QSAR studies. However, to 

the best of our knowledge a comprehensive comparison of 

the methods across all three categories, particularly with 

respect to the effect of choosing different parameter setting 

on each method, is still lacking. Therefore, in this study, we 

conducted a comprehensive comparative study of multiple 

data splitting methods commonly reported in the literature 

and we explored a wide range of different parameter settings. 

These methods include leave-one-out (LOO) CV, k-fold CV, 

Monte-Carlo CV [9], bootstrapping [5], bootstrapped Latin 

partition (BLP) [10], K-S and sample set partitioning based 

on joint X–Y distances (SPXY) [11].

The datasets we employed were simulated datasets gen-

erated by the MixSim model developed by Melnykov et al. 

[12]. The main advantage of this model is that it can gener-

ate true multivariate datasets (i.e., not pseudo multivariate 

by stacking multiple simulated discriminative variables 

together) with known probability of misclassification. This 

model was further improved by Riani et al. [13] allowing 

more controls on the probability of misclassification and 

it was incorporated to flexible statistics and data analysis 

(FSDA) toolbox for MATLAB. MixSim provides an excel-

lent testing ground for examining classification algorithms 

and for us this also includes the various different data split-

ting methods. In this study, we employed the improved 

MixSim model implemented in FSDA to generate three 

underlying distributions with different known probabilities 

of misclassification. For each distribution, three datasets 

were generated containing different number of samples: 30, 

100 and 1000. We then employed two commonly used mul-

tivariate classification models on these datasets including 

partial least squares for discriminant analysis (PLS-DA), as 

this is a very popular algorithm [14, 15], and support vec-

tor machines for classification (SVC) [16, 17] as the kernel 

needs optimization and can be used for non-linear, as well 

as linear classification mapping. The model training/vali-

dation was performed using the data splitting methods as 

listed above with a wide range of parameter settings (vide 

infra). The estimated model performances on the validation 

sets were then compared with the ones obtained from the 

corresponding blind test sets which were 1000 additional 

samples generated in MixSim from the same distribution but 

unknown to the training/validation procedure.

2  Chemometric Methods

In this section, a brief description of the MixSim model is 

given, followed by a short review of all the data splitting 

methods used in this study. Since the descriptions for PLS-

DA and SVC had already been extensively reported in the 

literature [14–17] they will not be repeated here.

2.1  MixSim Model

The MixSim model is essentially a multivariate finite mixed 

normal distribution of c classes in v dimension. Each class 

is defined by a covariance matrix C and a mean vector � . 

The probability of misclassification (i.e., overlap) between 

class i and j, denoted as �j|i , is formulated as the cumulative 

distribution function of linear combinations of v independ-

ent non-central χ2 random variables and v normal random 

variables. The probability of misclassification �j|i can be 

calculated using Eq. (1):
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MixSim generates simulated data by first determining 

the parameters of a mixed normal distribution which would 

match the specified overlap. This is achieved in four steps:

1. Specify the number of classes k, number of variables v. 

The desired overlap � is determined by setting two out 

of three parameters: the mean overlap �̄ , the maximum 

overlap �
max

 and the standard deviation of overlap �
�
 . 

One can also determine the size of the samples in each 

class by giving the probability of occurrence of each 

class �1,�2,… ,�
c
, subject to 

∑c

l=1
�

c
= 1 . The sample 

size of each class is then drawn from a multinomial dis-

tribution with such occurrence probabilities.

2. Generate mean vectors independently and uniformly 

from a v-variate hypercube. Random covariance matri-

ces are initially drawn from a Wishart distribution. This 

step is repeated if these parameters bring to an asymp-

totic �̄ (or �
max

 ) larger than the desired �̄ (or �
max

).

3. Estimate the pairwise probabilities using Eq. (1) and 

calculate resulting �̄.

4. If the calculated �̄ or �
max

 are close enough to the speci-

fied targets, the algorithm stops; otherwise, the covari-

ance matrices were inflated or deflated by multiplying 

each C with a positive scaling factor and return to step 

(3).

After the parameters are determined, a given number of 

samples can be generated from the mixed normal distribu-

tion and labels were assigned to these samples accordingly.

2.2  Data Splitting Methods

2.2.1  Cross‑Validation (CV)

CV is probably the most commonly used data splitting 

method in model selection. It divides the data into k differ-

ent parts (referred to as k-folds). One part (fold) is held out 

(1)�j�i = PrNp(�i,Ci)

⎡
⎢⎢⎢⎢⎢⎣

v�

l = 1

l ∶ �l ≠ 1

�
�l − 1

�
Ul + 2

v�

l = 1

l ∶ �l ≠ 1

�lWl ≤

v�

l = 1

l ∶ �l ≠ 1

�l�
2
l

�l − 1
−

v�

l = 1

l ∶ �l = 1

�2
l
+ log

⎛
⎜⎜⎝
�2

j
��Ci

��
�2

i

���Cj
���

⎞⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

,

as the validation set. The model is trained on the remaining 

k-1 parts (or folds) and then applied to the validation set and 

record its predictive performance. This process repeated k 

times so that each part has been used as a validation set once. 

The recorded predictive performances are then averaged, 

the optimal model parameter is determined as the one that 

had the best averaged predictive performance. This method 

is often under the name of k-fold CV and a special case 

when k = n (i.e., where n = the total number of samples) is 

called leave-one-out cross-validation (LOO-CV). As one of 

the oldest data splitting method, there are abundant applica-

tions of CV reported in literatures.

2.2.2  Bootstrap and Monte‑Carlo Cross‑Validation (MCCV)

The bootstrap is a data resampling method for estimating 

the statistical parameters of an unknown distribution such 

as mean, median, variance, confidence interval, etc. [18]. It 

has been later proved to be a good resampling method for 

model selection [19]. Given n samples available in the data, 

bootstrap randomly chose n samples with replacement; i.e., 

the same sample can be chosen multiple times. These sam-

ples are used as the training set and the unselected samples 

are used as the validation set. The ratio of the samples in 

training and validation set is variable and on average 63.2% 

samples would be used as a training set and 36.8% samples 

would be used as a validation set. This process is repeated 

t times (e.g., t = 100) and the predictive performance of the 

validation sets of those repeats are recorded and averaged 

as the final estimation of the generalization performance of 

the model.

Although MCCV [9] includes the term CV (viz. cross-

validation) it shares more similarity with bootstrap than 

k-fold CV or LOO-CV. Like bootstrap, MCCV randomly 

chose a subset of samples and used as training set to train the 

model and the unselected samples are used as a validation 

set to calculate the predictive performance of the trained 

model. This process is also to be repeated t times and the 

final estimated performance is the averaged predictive per-

formance of the validation sets of these repeats. The differ-

ence in MCCV is that the random sampling is conducted 

without replacement, instead one needs to specify the num-

ber of samples to be used for training (nt).
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2.2.3  Bootstrapped Latin Partition (BLP)

BLP [8] can be considered as a within-class permuted k-fold 

CV. In BLP, the number of partitions (i.e., splits) k is to be 

specified by the user. For m partitions, m mutually exclusive 

data splitting indices are generated and ~ 1/m of the samples 

are used for validation, and the remaining samples are used 

for training. Then the row indices for a class are selected, 

randomized and concatenated to form a long vector k con-

taining the indices of all classes. This vector is then reshaped 

to a n/k × k matrix K with the indices in k filling K along row 

direction. Another all false logic matrix L is created with 

the same size as K. An index in K in column a defines the 

element in the corresponding row of L in column a to be set 

to be true. As a result, each column in L defines a split of 

training and validation sets, the true elements are the ones 

to be used for validation and the ones with false are to be 

used for training. This method is best illustrated using a real 

number example as shown in Fig. 2.

BLP has combined merits of random selection methods 

and systematic cross-validation. The class distribution is 

well preserved on both training and test set while all samples 

are used for testing, for only once. Also, due to its random 

nature, upper and lower bound of model performance can 

also be estimated through repeating the process multiple 

times [3].

2.2.4  Kennard‑Stone algorithm (K‑S) and Sample Set 

Partitioning Based on Joint X–Y Distances Algorithm 

(SPXY)

The K-S algorithm [6], also known as computer-aided 

design of experiment (CADEX) algorithm, is designed to 

select most representative samples from a given dataset. 

K-S employed a stepwise procedure. In the first step, the 

Euclidean distance between each pair of samples was cal-

culated between each pair of samples and a pair of samples 

with the largest distance was chosen and ranked as most 

representative. Then in each following step, the remain-

ing samples having the greatest distance from the already 

selected samples is chosen and added to the bottom of the 

previous rank list. This procedure is repeated until a pre-

defined number of samples had been chosen and ranked. 

These selected samples are usually used as the training set 

since a representative dataset is crucial for training a good 

model and the remaining samples are used as validation set. 

Unlike CV and bootstrap, there is only one split of training 

and validation set in K-S algorithm.

SPXY [11] algorithm is based on the same idea of K-S 

algorithm, the only difference is that SPXY uses a composite 

distance as shown in Eq. (2) which measures the distance in 

both data matrix X and the target vector/matrix Y.

where dx(p, q) = ||xp − xq|| ,  dy(p, q) = ||yp − yq|| and 

p, q ∈ [1, n].

The rest of the sample partitioning is as in the K-S 

algorithm.

3  Experiment Design and Software

In this study, three different ten-dimensional (i.e., the num-

ber of input variables was set to 10) mixed normal distribu-

tions, denoted as p1, p2 and p3, were generated using the 

MixSim model as described above. The expected probabili-

ties of misclassification are listed in Table 1. Based on these 

probabilities, the expected correct classification rates of a 

“perfect” classification model applied to the data drawn from 

these populations were 97.5, 90 and 65.6% for p1, p2 and 

(2)dxy(p, q) =
dx(p, q)

maxp,q∈[1,n]dx(p, q)
+

dy(p, q)

maxp,q∈[1,n]dy(p, q)
,

Fig. 2  A schematic of the BLP algorithm. Y is binary coded class membership matrix, m is index vector, M is reshaped index matrix and L is a 

logical matrix of specifying which samples shall be used for validation in which F is logical false and T is logical true 
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p3, respectively. These three distributions represent three 

different classification problems:

1. an easy problem with mild overlap (ω < 3%) between 

each pair of classes;

2. one class is well separated from the other two (ω < 2%) 

and the remaining two classes have significant overlap 

between each other (ω > 10%); and

3. a difficult classification problem with 13–21% overlap 

between each pair of classes.

For each distribution, three simulated datasets are gener-

ated with 30, 100 and 1000 samples, respectively, and thus 

a total number of nine simulated datasets were generated for 

model training and validation. Finally, an additional dataset 

with 1000 samples was generated for each population (p1, p2 

and p3) and they were used as blind test set. We denote the 

collection of datasets generated from p1, p2 and p3 as data1, 

data2 and data3, respectively. It is worth noting that in real 

applications, training, validation and test set are drawn from 

the same dataset. The reason we chose to have an external 

test set with a large number of samples is that this enables a 

stable estimation of model performance, not to be affected 

by other factors such as sample size, data splitting methods. 

This is vital for a fair comparison across different combina-

tions of datasets, data splitting methods and their parameter 

settings. Of course, this is only possible with simulated data 

with access to unlimited samples. In real applications, we 

highly recommend users to repeat the model validation pro-

cess multiple times with different combinations of all three 

sets to assess the stability of the estimation of the model 

performance.

PLS-DA and SVC with linear kernel, which are popular 

for classification [20], were used as classification models 

and applied to the nine simulated datasets. Both models 

have a single model parameter which need to be optimized: 

the number of PLS components for PLS-DA and the cost 

parameter for SVC. For PLS-DA, the number of PLS 

components was varied from 1 to 10 and for SVC the cost 

parameter was varied from  2−14 to  214 in log2 space. We 

intentionally set a wide choice of model parameter candi-

dates so that the optimal parameter will be missed because 

it was not included. This was done to test whether, or how 

often, the validation process can be drawn to some unrea-

sonable parameter settings. The PLS-DA class membership 

assignment was determined by assigning the test sample 

to the class with largest predicted output while one-vs-one 

approach [16] was employed for SVC class membership 

prediction.

LOO-CV, k-fold CV, BLP, bootstrap, MCCV, K-S and 

SPXY with a wide range of parameter settings were applied 

to split each dataset into training and validation set and used 

to train the models and find optimal model parameters. The 

parameter settings of these methods that we used are listed 

below:

1. k-fold CV: k was set to be 3, 7 and 10.

2. BLP: k was set to be 2, 3, … 10. We followed Har-

rington’s recommendation and each BLP splitting 

was repeated four times and the averaged results were 

reported.

3. Bootstrap: t was set to be 10, 100 and 1000.

4. MCCV: nt was set to be 10, 20, … 90% of the dataset 

and t was set to be 10, 100 and 1000, every combination 

of nt and t was tested.

5. K-S: 10, 20, … 80% of top-ranked samples in the dataset 

was selected as the training set.

6. SPXY: used the same parameters as K-S.

Again, it was intentional to test a wide range of param-

eters, this was to demonstrate the effect of using some 

unreasonable parameter settings on model selection; e.g., 

K-S with the 10% top-ranked samples to be used for training 

when this was applied to a dataset with 30 samples, the train-

ing set would only contain three samples. Once the optimal 

model parameters were decided, the model was trained again 

on the full data with training and validation set combined 

using the optimal model parameter and applied to the blind 

test set to assess its generalization performance.

All the calculations were conducted on MATLAB 2017a 

(Mathworks, MA, US.). FSDA toolbox for MATLAB was 

obtained from the Ro.S.A. website at [21]; BLP was imple-

mented as a MATLAB function using the code provided in 

the supporting information of Ref. [10]; SPXY was imple-

mented as a MATLAB function using the code provide in 

the supporting information of Ref. [11]; SVC was imple-

mented using LibSVM toolbox [22]. Liblinear [23], a variant 

of LibSVM toolbox was used for analyzing datasets with 

1000 samples as it has much faster training speed on large 

datasets; PLS-DA was performed using plsregress function 

Table 1  A confusion matrix depicting the probability of misclassi-

fication in the three distributions used to generate simulated dataset 

(p1, p2 and p3)

Distribution Class 1 Class 2 Class 3

p1 Class 1 – 0.0053 0.0279

Class 2 0.0054 – 0.0049

Class 3 0.0259 0.0056 –

p2 Class 1 – 0.1394 0.0177

Class 2 0.1106 – 0.0142

Class 3 0.0094 0.0086 –

p3 Class 1 – 0.1611 0.1363

Class 2 0.1884 – 0.1317

Class 3 0.2137 0.1998 –
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in the MATLAB Statistics toolbox, all other calculation was 

performed using in-house MATLAB scripts which are freely 

available on our GitHub repository at https ://githu b.com/

biosp ec.

4  Results and Discussion

To give an intuitive view of the patterns within the data-

sets drawn of the three distributions as described above we 

conducted principal component analysis (PCA) [24]. The 

PCA scores plots of principal component 1 (PC1) versus 

PC2 for data1 and data2, each containing 100 samples, are 

shown in Fig. 3a, b and one can see the different classes 

and the overlap between them. The overlap in data3 was 

too high, and therefore, PCA was unable to show any sepa-

rations between classes in first 3 PCs (data not shown), a 

scores plot of discriminant function analysis (DFA) [25] 

applied directly to data3 with 100 samples was provided 

instead in Fig. 3c.

The correct classification rate (CCR) of all the sim-

ulations are provided in an EXCEL spreadsheet named 

“results_summary.xlsx” as electronic supplementary mate-

rial (ESM). Graphical presentation of the CCRs on data1, 

data2 and data3 are given in Figs.4, 5, 6 respectively. The 

effect of the dataset size (30, 100 or 1000 samples) is the 

most obvious influential factor. The variation in CCRs of 

both validation and test sets reduced significantly when the 

number of samples increased. With 1000 samples avail-

able, the CCRs obtained from using the different data 

splitting methods had almost become a constant. This 

suggests that when sufficiently large number samples are 

available the choice of data splitting method and its param-

eter become much less important, and that all partitioning 

methods approximate the different normal distributions 

of the different classes in these populations; that is to say 

these models are approaching the central limit theory for 

the population distributions. However, on small datasets 

with only 30 samples available, it is evident that the CCRs 

of validation sets varied very significantly and the low 

CCRs on test sets was evident. This highlights the need to 

have an appropriate parameterized data splitting method 

if one wants to have a best possible model on a small data-

set. This is especially important for clinical investigations 

as most metabolomics studies use very small cohorts in 

case–control disease classifications [26, 27]. 

Regardless of sample size, the variations in the CCRs 

on the validation sets was always larger than those for the 

blind test data, especially with small datasets with only 30 

samples. In general, we found that the CCRs of validation 

sets were higher than those of test sets, indicating that the 

CCR of validation set was usually an over-optimistic esti-

mation of the model generalization performance compared 

 

 

(a)

(c)

(b)

Fig. 3  PCA scores plot of a data1 (p1); and b of data2 (p2); and c a 

DFA scores plot of data3 (p3). All scores plots are constructed with 

100 samples in each of the datasets

https://github.com/biospec
https://github.com/biospec
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to test set; this is consistent with previous findings [2]. 

The two systematic sampling methods—K-S and SPXY—

showed the largest variations in CCRs of validation sets, 

particularly on two ends of parameter settings: when too 

few samples (10–20%) were used for training, the esti-

mated CCRs were generally over-pessimistic (i.e., lower 

than those in test sets); in contrast, when too many samples 

(> 50%) were selected for training, the estimated CCRs 

were generally over-optimistic (i.e., higher than those on 

test sets).

When we inspected CCRs for data2 and data3 several 

settings of K-S and SPXY had achieved perfect classifica-

tion (i.e., CCR = 100%), and this was when enough samples 

had been selected for training. SPXY seemed to generate 

more over-optimistic estimations than K-S. For example, on 

data1, containing 30 samples, with the SVC model, when 

only 30% of the samples were used for training SPXY had 

achieved 100% CCR on the validation set while for K-S at 

least 70% samples were needed to achieve the same CCR. 

When 30–40% samples selected for training, the CCRs on 
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Fig. 4  CCRs on data1 (p1) for a PLS-DA and b SVC
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the validation sets were sometimes close to the test set CCR. 

Despite these observations, the gaps between these two 

types of CCRs were still much wider than other data split-

ting methods. This suggested that these systematic sampling 

methods may be too good at selecting the most representa-

tive samples from the model performance estimation point 

of view, because a representative sample set is also required 

for a realistic estimation of modelling error. It is worth not-

ing that there are other systematic data splitting methods 

[28–30] which considered the representative of both training 

and test set and these methods may perform better. Interest-

ingly, despite poor estimations of model performance on the 

validation sets, the model parameter selected using these 

two methods were in fact mostly reasonable and the CCRs 

on the test sets were similar to the other data splitting meth-

ods, except a few extreme cases when too many samples 

had been used for training and these resulted in 100% CCR. 

Under such circumstances it was impossible to tell the dif-

ferences between the different model parameters and this 

resulted in an overly simplistic model (the in-house model 

(a) 

(b) 

Fig. 5  CCRs on data2 (p2) for a PLS-DA and b SVC
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selection script was written in a way that if models with dif-

ferent parameters generated the same best CCR, the script 

would favor the simplest model). This suggested that model 

selection itself does not require an accurate estimation of 

generalization performance of the model, a certain amount 

of systematic bias can be tolerated, and the small variations 

in test set also confirmed this. For other splitting methods, 

although these had less variation in CCRs on validation sets, 

such variations were still significantly higher than those of 

test sets. Again, such differences were also most evident 

when the number of samples was small. Similarly, when 

there were either too many or too few samples in the train-

ing set, the gaps between the two types of CCRs were the 

widest. Again, this highlighted the need to have a balanced 

training and validation set to have a reasonable estimation 

of the predictive performance of the model. Imagine that 

when someone tries to build a classification model on data 

with large overlaps, it is intuitive to think that the most con-

venient way to improve the performance of the model is to 

increase the size of the training set. However, in real-world 

(a) 

(b) 

Fig. 6  CCRs on data3 (p3) for a PLS-DA and b SVC
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scenarios where samples may be hard to obtain, no extra 

samples are available, this would consequently decrease the 

size of test set and thus result in an even worse estimation 

of the model’s performance.

Figures 4, 5, 6 are illustrative summaries of the CCRs for 

all the models and also show that no data splitting method 

had any obvious advantage over others in finding the opti-

mal model parameters. Instead, most data splitting methods 

with many different parameter settings resulted in similar 

CCRs on the test sets. A summary of the maximum, mini-

mum and median CCR, as well as the improvement of the 

best CCR over the median CCR are given in Tables 2 and 

3. For 15 out of 18 cases the best model provided no more 

than 3% improvement over the corresponding median CCR. 

The other three models were exceptions and these were for 

data3 (n = 30) with PLS-DA classification; data1 (n = 30) 

with SVC; and data3 (n = 100) also with SVC. However, 

these three cases were from different data splitting meth-

ods: the best model for data3 (n = 30) with PLS-DA was 

found by BLP (with k = 3) and bootstrap (t = 10); the best 

model for data1 (n = 30) by SVC was found by MCCV 

(t = 100, nt = 30 × 50% = 15); and the best model for data3 

(n = 100) with SVC was found by BLP (k = 8). This suggests 

that despite employing a wide range of parameter settings 

for each data splitting methods, it was rare to find a model 

parameter that was significantly better than the other data 

splitting methods (including with different settings) and it 

was difficult to decide which method/parameter combina-

tions were the best for model selection. A general impression 

is that employing a random sampling method (e.g., MCCV 

or bootstrap) with enough number of repeats (t ≥ 100) and 

a reasonable balance between training and test set (50–70% 

for training) one was likely to get a good model. In addition, 

BLP also appeared to be a good model selection method and 

was often able to find good model parameters, but there is 

no clear evidence on how many data splits would be best.

Finally, we also compared the classification performances 

of PLS-DA and SVC. The CCRs of these two models using 

different data splitting methods were pooled and the results 

presented as box–whisker plots in Figs. 7, 8, 9 for the three 

datasets. In most cases, the performance of these two models 

were very close to each other on the test set as seen by the 

overlaps in the CCR distributions. For the two datasets with 

smaller overlaps (Fig. 3) and low sample numbers (n = 30) 

PLS-DA performed slightly better than SVC on data1 (p1) 

and data2 (p2); by contrast, when the data had more overlap 

Table 2  Summary of CCRs for 

PLS-DA
Best CCR Median CCR Worst CCR Best CCR improve-

ment over the 

median

data1 n = 30 92.52% 91.89% 63.69% 0.69%

n = 100 96.00% 94.86% 94.70% 1.20%

n = 1000 96.38% 96.35% 95.79% 0.03%

data2 n = 30 73.68% 72.55% 63.60% 1.56%

n = 100 78.29% 77.92% 77.79% 0.47%

n = 1000 80.72% 80.56% 79.32% 0.20%

data3 n = 30 37.13% 34.35% 34.35% 8.09%

n = 100 45.13% 44.82% 37.15% 0.69%

n = 1000 46.84% 46.67% 44.95% 0.36%

Table 3  Summary of CCRs of 

SVC
SVC Best CCR Median CCR Worst CCR Best CCR improve-

ment over the 

median

data1 n = 30 90.98% 84.44% 83.39% 7.75%

n = 100 95.49% 94.82% 92.14% 0.71%

n = 1000 95.98% 95.94% 94.51% 0.04%

data2 n = 30 73.21% 71.49% 62.49% 2.41%

n = 100 79.34% 78.99% 76.79% 0.44%

n = 1000 80.92% 80.87% 80.68% 0.06%

data3 n = 30 41.08% 40.21% 34.47% 2.16%

n = 100 51.92% 44.63% 42.47% 16.33%

n = 1000 46.66% 46.59% 46.00% 0.15%
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SVC showed significantly better performance on data3 (p3 

with 30 samples). Moreover, despite the fact that the data 

were generated from simple multivariate mixed normal dis-

tributions in MixSim, where we did not include additional 

random noise on the input variables and did not include out-

liers, the best CCRs on the largest datasets provided by these 

two models were still lower than the expected CCR (Figs. 7, 

8, 9) and the differences in CCRs were larger on data with 

more overlap (viz. data3). On data1 the best CCR of trained 

model achieved 98.85% of expected CCR, 89.91% on data2 

and only 71.62% on data3. This was most likely due to the 

limitations of classification model itself and suggests that 

there is still large room for further development of modelling 

algorithms—although we recognize that if the data contains 

misclassifications we can not improve on that.  

5  Conclusion

In this study, we conducted a comprehensive compari-

son study on various different data splitting methods for 

model selection and validation. To have predetermined 

Fig. 7  Comparison showing 

the CCR distributions as box–

whisker plots for PLS-DA and 

SVC analyses on data1 (p1). In 

these box–whiskers the red line 

is the median CCR, the top and 

bottom of the boxes are the 25th 

and 75th percentiles; the size of 

the box is the interquartile range 

(IQR); the whiskers extend to 

the most extreme data points 

which are not considered as 

outliers (red crosses), defined as 

no more than 1.5 × IQR outside 

of the IQR
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classifications we based this on simulated data using Mix-

Sim which we used to generate nine simulated datasets 

each with 10 input variables based on finite mixed normal 

distribution with different probabilities of misclassifica-

tion (Table 1) and variable sample sizes. We chose sample 

sizes of 30, 100 and 1000 as many studies reported in the 

metabolomics literature [26] typically have small sample 

sizes of between 30 and 100.

The results suggested that most methods with typical 

parameter settings resulted in similar correct classification 

results (Figs. 4, 5, 6, 7, 8, 9 and see ESM), therefore, they are 

all viable options for model selection. However, estimating 

errors on the validation datasets proved to be very sensi-

tive to the choice of data splitting method used to partition 

the training data into training and validation sets, as well as 

its parameter setting, especially when small datasets with 

just 30 samples were used. To have a stable estimation of 

model performance, a good balance between training and 

test set is required. Also, there is no clear evidence sug-

gesting which method/parameter combination would always 

give significantly better results than others. This perhaps 

expected within the chemometrics arena—There is no free 

lunch!—therefore, the choices of which method to use for 

data splitting and which parameters to use cannot be decided 

a priori and would be data dependent.

The MixSim model was very useful as this allowed us 

to generate a dataset with a known probability of misclas-

sification. This enabled us to compare the generalization 

performance estimated from the data against the “true” 

answers and we found that even the performance of the 

best model cannot reach the expected/known correct clas-

sification rate.

In conclusion, we found that model performance 

improved when more samples were used and this is in 

agreement with metabolomics studies where 300 or more 

subjects per class are recommended to effect good clas-

sification [31]. However, as reported [26] this is rarely the 

case and perhaps why there are so many false discoveries 

in metabolomics [27] and biomarker discovery in general 

[32].
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