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Abstract. It is shown that the methods previously used by the author [Wei82] and by R. Lui
[Lui89] to obtain asymptotic spreading results and sometimes the existence of traveling
waves for a discrete-time recursion with a translation invariant order preserving operator
can be extended to a recursion with a periodic order preserving operator. The operator can
be taken to be the time-one map of a continuous time reaction-diffusion model, or it can be
a more general model of time evolution in population genetics or population ecology in a
periodic habitat. Methods of estimating the speeds of spreading in various directions will
also be presented.

1. Introduction

In 1937 R. A. Fisher [Fis37] introduced the model

u,t = u,xx + u(1 − u),

where u is the frequency of one of two forms of a gene, for the evolutionary take-
over of a habitat by a fitter genotype. He found traveling wave solutions of all
speeds c ≥ 2, and showed that there are no such waves of slower speed. Fisher
conjectured that the take-over occurs at the asymptotic speed 2. This conjecture
was proved in the same year by Kolmogorov, Petrowski, and Piscounov [KPP37]1.
More specifically, they proved a result which implies that if at time t = 0 u is 1
near −∞ and 0 near ∞, then limt→∞ u(x−ct) is 0 if c > 2 and 1 if c < 2. We call
such a result, which states that a fitter state in the initial values spreads at a speed
which is both no larger and no smaller than a certain spreading speed, a spreading
result.

The results of Kolmogorov, Petrowski, and Piscounov for models of the form

u,t = u,xx + f (u)
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1 [KPP37] was actually motivated by a similar model in which the growth term isu(1−u)2,
but the result applies to both models.
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were extended in a number of directions. (See, e.g., [Fif79]). [AW75] applied phase
plane analysis to show that if f (0) = f (1) = 0 and f changes sign at most once in
the interval (0,1), then there is a spreading speed c∗ with the property that if u(x, t)
is a solution of this equation with nonnegative initial data which vanish outside a
bounded interval, then an observer who travels to the left or right with speed greater
than c∗ will eventually see u go to 0, while an observer who travels with a speed
below c∗ eventually sees u approach 1. A stronger spreading result was proved by
Fife and McLeod [FM77], who showed that for a large class of f the solution with
such initial values approaches what looks like a juxtaposition of traveling waves.
The results of [AW75] were extended to more general equations in [AW78], and it
was shown that a spreading result also applies to solutions of the problem

u,t = D∇2u + f (u) (1.1)

in any number of dimensions. Because the equation is rotationally invariant, the
spreading speed c∗ is the same in all directions, and it is equal to that of the corre-
sponding one-dimensional problem. It was also shown that there is a traveling wave
of speed c∗ in each direction, and that in the Fisher case there are also waves of all
speeds greater than c∗. Equations of the form (1.1) serve as models for a number
of situations in population genetics, population biology, and other fields.

It was shown in [Wei82] that many of these results could be carried over to
recursions of the form

un+1 = Q[un], (1.2)

where un is a scalar-valued function on a Euclidean space or, more generally, a hab-
itat H in such a space, while Q is a translation invariant order-preserving operator
with the properties that Q[0] = 0, and Q[π1] = π1 for some positive constant π1.
If u(x, t) is a solution of the equation (1.1) and τ is any positive number, then the
sequence of functions un(x) := u(x, nτ) satisfies the recursion (1.2) with Q the
operator which takes the initial values u(x, 0) to the values u(x, τ ) of the solution
of (1.1) at time τ . This Q is called the time-τ map of the equation (1.1). It is
easily seen that if f (0) = f (1) = 0 and f ′(1) < 0, then this Q has the properties
required of Q above, with π1 = 1. In population genetics, one can think of u as a
gene fraction. In population ecology, u can be thought of as the population density,
or, if H is discrete, the population in the census tract centered at each point.

Under some technical conditions on Q which are satisfied by the time-τ map
of (1.1) it was shown that the recursion (1.2) has a spreading speed in each direction,
and that for large n, the part of un which lies above the largest equilibrium below
π1, which is denoted by π0, spreads like the solution of a wave equation with these
wave speeds in the various directions. It was also shown that the spreading speeds
can be bounded above and below, and in some cases found explicitly, by solving
linear problems. Under the additional condition thatQ[α] > α for every constant α
in (0, π1) (the heterozygote intermediate or Fisher case) it was shown that there is
a traveling wave of speed c in any direction if and only if c is at least as large as the
spreading speed in this direction. Under other conditions, such as the heterozygote
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inferior or bistable case, the methods in [Wei82] still give the spreading result, but
they provide no information about the existence of a traveling wave.

In 1979 Gärtner and Freidlin [GF79] used probabilistic methods to show that
one can still obtain spreading results for an equation of Fisher type in which the
mobility and the growth function vary periodically in space.

Shigesada, Kawasaki, and Teramoto [SKT86], [SK97] studied population
spreading in a periodically varying habitat. They used the one-dimension model

u,t = (D(x)u,x),x + u[ε(x) − u],

where the mobility D and the growth rate ε are periodic functions of period 1, to
model the growth and spread of an invading species in a forest which consists of
trees planted in periodic rows when the population density u does not vary in the
direction of the rows. They obtained a formula for the speeds of what they call peri-
odic traveling waves of the linearization of this equation about u = 0. As Theorem
2.3 and Corollary 2.1 will show, this system is linearly determinate in the sense that
its spreading speed is given by the slowest wave speed of this linearized system.
The same is true of the two-dimensional version

u,t = (D(x)u,x),x + (D(x)u,y),y + u[ε(x) − u] (1.3)

of this model, which has recently been treated by Kinezaki, Kawasaki, Takasu, and
Shigesada [KKTS01]. They showed how to obtain spreading speeds not only in the
direction perpendicular to the rows but in each direction.

The methods presented in the present paper permit the treatment of the periodic
model (1.3) and of the more general model in which the mobilityD and the carrying
capacity ε are periodic functions of both x and y. Such models can be thought of
as simple cases of growth and spread in a patchy environment.

As in [Wei82], we shall study such problems by considering a recursion of the
form (1.2), but with an operator Q which is periodic but not necessarily translation
invariant. That is, Q commutes with some but not all translations. As in the case of
the equation (1.1), a continuous-time model like (1.3) can be reduced to a recursion
of the form (1.2), where un(x) := u(x, nτ) and Q is the time-τ mapping of (1.3),
which takes the initial values u(x, 0) of a solution of (1.3) to the values u(x, τ ) at
time τ .

R. Lui [Lui89] showed that the discrete-time methods of [Wei82] can be ex-
tended to multispecies recursion systems of the form (1.2) in which u and Q[u]
are vector-valued functions and Q is translation invariant and order preserving,
provided one makes suitable assumptions about Q. We shall obtain our results by
showing that the methods of [Wei82] and [Lui89] can be extended to the case of a
periodic operator.

The class of discrete-time models of population genetics or population ecol-
ogy was introduced as a more flexible model in which one avoids the somewhat
questionable assumption that the system is in equilibrium at every instant, which
is implicit in any continuous-time diffusion model. However, it also permits the
treatment of time-periodic models which allow for diurnal or annual variations.
The fact that spatially discrete models are included permits models in which the
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required measurements involve only aggregate populations in census tracts. Such
measurements are more likely to be possible than measurements at every point.
Of course, numerical simulations of continuous models use discrete-time discrete-
space models.

In all these cases it is shown that the spreading results obtained for translation
invariant partial differential equation models are still valid. Lui’s work on multi-
species systems [Lui89] shows that one can also obtain these results for systems of
partial differential, integro-differential, or finite difference equations where phase
plane methods become difficult or impossible to apply. An extension of these
results to more general systems which include models for invasion by a com-
peting species was presented in [WLLnt] and [LLWnt]. The present work gives an
extension in a different direction. It seems likely that the methods presented here
can be combined with those found in these earlier papers to obtain correspond-
ing results about models for two competing species or any number of cooperating
species in a periodically varying environment. Such an extension might also pro-
vide sufficient conditions for the hairtrigger effect, which will not be discussed
here.

Section 2 formulates the problem in detail, and states all the theorems in this
work. Section 3 shows how the spreading speed is defined, and the next two sections
prove the spreading properties. Application of these results to a prescribed model
requires a way of calculating the spreading speed. Proposition 3.1 at the end of
section 3 shows how to obtain a lower bound for the spreading speed by means of
numerical simulation. Section 6 shows how to obtain both upper and lower bounds
for the spreading speed and the ray speed in terms of the eigenvalues of linear
problems. Corollary 2.1 is the general version of linear determinacy, in which the
spreading speed is equal to that of the linearization of the problem. It requires the
assumption that the operator Q[u] is bounded above by its linearization around
u = 0, which can be interpreted as the absence of an Allee effect. This assumption
is crucial to much of the work in this area, but it is not needed for any of our results
other than Corollary 2.1.

Section 7 shows that for problems of Fisher type, the spreading speed in a di-
rection is equal to the slowest speed of traveling waves in that direction. There is
a large literature on the existence of traveling waves for continuous-time models
in periodically varying Euclidean spaces of one or more dimensions. See, e.g.,
[Xin00], [PX91], [Xin91], [HZ95], [Hei01], [Nak00]. The speeds of these waves
are upper bounds for the spreading speeds, but our result has the advantage of
showing that the spreading speed is no slower than the slowest wave speed. The
existence of traveling waves has also been proved for periodically varying discrete
lattices. (See, e.g. [Kee87], [Zin92], [CMPS98], [MP99], [CMPvV99].) Some of
these results include the sophisticated phenomenon of pinning, which does not
appear to be obtainable from our methods.

The existence of traveling periodic waves has been extended to partially bound-
ed domains such as strips and cylinders in [BL89], [BLL90], and [BN92]. Berest-
ycki and Hamel [BH02] have recently extended these results to a rather general
class of domains such as periodically varying strips or cylinders. In Section 8 we
shall show how the results of the present work can be extended to such domains.
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2. Formulation of the problem and statement of the results

We suppose that we are given an unbounded habitat H, which is a closed
d-dimensional subset of the Euclidean space Rd . We shall study a recursion of
the form

un+1 = Q[un], (2.1)

where the operator Q takes a set M of uniformly bounded continuous functions
into itself. The initial function u0 is prescribed. We are interested in the asymptotic
behavior of the function un for large n when u0 vanishes outside a bounded set. We
shall assume that Q is order preserving.

For any a in Rd we define the translation by a of a point x to be x − a. We also
define the translation operator

Ta[u](x) := u(x − a).

We say that a set L of vectors is a lattice if a ± b is in L whenever a and b are in
L. That is, L is an additive group of vectors. Then the corresponding translations
Ta also form a group.

This work is distinguished from earlier work by the fact that, instead of assum-
ingQ to be translation invariant, we make the weaker assumption that it is periodic.
We shall suppose that for some d-dimensional lattice L every translation Ta with
a ∈ L takes the habitat into itself, so that H is unbounded in all directions. Then
Ta[u] is defined for all u ∈ M, and we suppose that M contains all these trans-
lates. We say that u is periodic with respect to L (or, more briefly, L-periodic) if
Ta[u] = u for all a ∈ L. We say that the operatorQ is periodic with respect to L if

Q[Ta[u]] = Ta[Q[u]] for all a ∈ L (2.2)

for every u. It is easily seen that if u and Q are periodic with respect to L, then
Q[u] is also periodic with respect to L.

An equilibrium θ(x) is a fixed point of Q: Q[θ ] = θ . We shall deal with two
or three equilibria φ(x) ≤ θ0(x) < θ1(x) which are periodic with respect to L. By
changing the variable from un to vn = un −φ and writing the recursion (2.1) in the
form vn+1 = Q[φ + vn] − φ we can (and shall) assume without loss of generality
that φ = 0. Note that the new operator Q[φ + v] −φ is again order preserving and
periodic with respect to L and has the equilibrium 0. We denote the other resulting
equilibria θi − φ by πi . We shall assume that π0 is unstable and π1 is stable in a
very strong sense. We shall take the domain M of Q to be the set

M = {u(x) : u continuous on H, 0 ≤ u(x) ≤ π1(x)}.
We write down our basic assumptions about the operator Q.

Hypotheses 2.1. i. The habitat H is a closed subset of Rd , which is not contained
in any lower-dimensional linear subspace of Rd .

ii. Q is order preserving in the sense that if u(x) ≤ v(x) on H, then Q[u](x) ≤
Q[v](x). That is, an increase throughout H in the population un at time nτ

increases the population un+1 = Q[un] throughout H at the next time step.
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iii. There is a closed d-dimensional lattice L such that H is invariant under trans-
lation by any element of L, and Q is periodic with respect to L in the sense that
(2.2) holds for all u ∈ M and a ∈ L. Moreover, there is a bounded subset P of
H such that every x ∈ H has a unique representation of the form x = z + p
with z in L and p in P .

iv. Q[0] = 0, and there are L-periodic equilibria π0(x) and π1(x) such that
0 ≤ π0 < π1, Q[π0] = π0 and Q[π1] = π1. Moreover if π0 ≤ u0 ≤ π1,
u0 is periodic with respect to L, and u0 �≡ π0, then the solution un of the
recursion (2.1), which is again periodic with respect to L, converges to π1 as
n→∞ uniformly on H. (That is, π0 is unstable and π1 is stable.) In addition,
any L-periodic equilibrium π other than π1 which satisfies the inequalities
0 ≤ π ≤ π1 also satisfies π ≤ π0.

v. Q is continuous in the sense that if the sequence um ∈ M converges to u ∈ M,
uniformly on every bounded subset of H, then Q[um] converges to Q[u], uni-
formly on every bounded subset of H. That is, a change in u far from the point
x has very little effect on the value of Q[u] at x.

vi. Every sequence {um} of functions in M contains a subsequence {uni } such that
{Q[uni ]} converges to some function, uniformly on every bounded set.

Example 2.1. We consider a stepping stone model for growth and spread of a pop-
ulation in the Euclidean plane. The plane is broken into unit squares, which can be
thought of as census tracts. Let un(i, j) denote the population of the nth synchro-
nized generation of some species in the square i ≤ x < i + 1, j ≤ y < j + 1. We
associate this square and its population with the center (i + 1

2 , j + 1
2 ). Thus we let

H be the set of points with coordinates of the form (i + 1
2 , j + 1

2 ) where i and j

are integers. We assume that if un(i, j) is the population in the square with center
(i + 1/2, j + 1/2) at the nth time step, the population grows or decays to the value
g(i, j, un(i, j)), after which a positive fraction d(i, j) < 1/4 of this population
migrates to each of the four adjacent squares. Then

un+1(i, j) = [1 − 4d(i, j)]g(i, j, un(i, j)) + d(i − 1, j)g(i − 1, j, un(i − 1, j))

+ d(i + 1, j)g(i + 1, j, un(i + 1, j))

+ d(i, j − 1)g(i, j − 1, un(i, j − 1))

+ d(i, j + 1)g(i, j + 1, un(i, j + 1)). (2.3)

This is a recursion of the form (2.1), where Q[un] is the function of i and j on the
right. We shall use the growth function

g(i, j, u) := er(i,j)u + t (i, j)s(i, j)u2

1 + s(i, j)u

where s(i, j) > 0 and 0 ≤ t (i, j) < 1. (2.4)

Here r(i, j) is the growth rate when the population is small, s(i, j) > 0 is a lo-
gistic parameter, and − ln t (i, j) is the decay rate when the population is large.
When t (i, j) = 0, this is just the Beverton-Holt growth law. 0 < d(i, j) < 1/4
is the mobility. Because g(i, j, u) is increasing in u and d(i, j) < 1/4, Q is order
preserving.
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We now suppose that for some positive integers N1 and N2 the square [i, i +
1) × [j, j + 1) has the same growth and dispersion properties as the square
[i+N1, i+N1 + 1)× [j +N2, j +N2 + 1). That is, the functions r(i, j)), s(i, j),
t (i, j), and d(i, j) are periodic of period N1 in i and of period N2 in j . We define
the lattice L := {(kN1, )N2) : k, ) integers}. It is easily verified that Q is
L-periodic. Hypothesis 2.1.iii is satisfied with the set P = {(i − 1/2, j − 1/2) :
i = 1, · · · , N1, j = 1, · · · , N2}. Since H is discrete, all functions are continuous,
and Hypotheses 2.1.v and 2.1.vi are trivially satisfied. Thus all the Hypotheses 2.1
are valid with the possible exception of Hypothesis 2.1.iv.

It only remains to verify Hypothesis 2.1.iv. 0 is clearly an equilibrium. Argu-
ments of maximum principle type show that there is at most one other nonnegative
periodic equilibrium, and that if it exists, it is strictly positive. Since t (i, j) < 1,
the population decreases if it is large. From this we can obtain the existence of a
positive N -periodic equilibrium π1(i, j) such that Hypothesis 2.1.iv is valid with
π0(i, j) ≡ 0 if and only if the equilibrium 0 is unstable. One can determine whether
or not this is the case by looking at the stability of the linearization M of Q, which
is obtained by replacing the function g(i, j, u) in (2.3) by its linearization er(i,j)u.
This problem will be discussed in Example 6.1 in the special case where N2 = 1,
so that the parameters are independent of j , and the set P is one-dimensional. The
methods presented there serve to show that, even without this special assumption,
Hypotheses 2.1 are satisfied if r(i, j) > 0 everywhere, and that there is no positive
equilibrium if r(i, j) < 0 everywhere.

Example 2.2. Let H be the Euclidean plane, and consider the equation
(2.1) of [KKTS01]

u,t = [D(x)u,x],x + [D(x)u,y],y + u(ε(x) − u), (2.5)

where the functions D(x) and ε(x) are independent of y and periodic of period 1
in x. Then L is the set of vertical lines {(i, y) : i an integer}. Hypothesis 2.1.iii is
satisfied with P the segment P = {(x, y) : 0 ≤ x < 1, y = 0}. Well-known prop-
erties of parabolic equations show that the time-one mapQ of this equation satisfies
all the Hypotheses 2.1 with the possible exception of Hypothesis 2.1.iv. As in the
preceding example, the existence of a periodic π1(x) such that Hypothesis 2.1.iv is
satisfied with π0 ≡ 0 is equivalent to the linear instability of the equilibrium 0. It
is easily seen that this property is valid when ε(x) > 0 and invalid when ε(x) < 0,
but needs to be investigated numerically as in Example 6.2 when ε changes sign.

We remark that when π1(x) > 0 is known, the variable v := u/π1 satisfies a
periodic equation of the form

v,t = D(x)[v,xx + v,yy] − e1(x)v,x − e2(x)v,y + r(x)v(1 − v), (2.6)

which is of the type treated by probabilistic means by Gärtner and Freidlin
[GF79], [Fre84]. The equation

U,t = {D(x)U},xx + {D(x)U},yy + R(x)U − [1 − T (x)]S(x)U2,

is obtained as a formal limit of the preceding example withN2 = 1 by shrinking the
sides of the squares and the time interval by the factor N1, scaling the parameters
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suitably, and letting N1 approach infinity. This equation can also be put into the
form (2.6) by letting v := U/π1 when a positive equilibrium π1 is known.

Our principal results will be stated in terms of spreading speeds, which are
defined and characterized by the following theorem.

Theorem 2.1. For each unit vector ξ there exists a spreading speed c∗(ξ) ∈
(−∞,∞] such that solutions of the recursion (2.1) have the following spreading
properties:

1. If u0(x) ≥ 0, inf[π1(x)−u0(x)] > 0, and u0(x) = 0 in a half-space of the form
ξ · x ≥ L and if c∗(ξ) < ∞, then for every c > c∗(ξ)

lim sup
n→∞

[
sup

ξ·x≥nc

[un(x) − π0(x)]

]
≤ 0; (2.7)

and
2. If 0 ≤ u0 ≤ π1 and there is a constantK such that infξ·x≤−K [u0(x)−π0(x)] >

0, then for every c < c∗(ξ)

lim
n→∞

[
sup

ξ·x≤nc

[π1(x) − un(x)]

]
= 0. (2.8)

This theorem states that if u0 is zero for all large values of ξ ·x and uniformly above
π0 for all sufficiently negative values of ξ · x, then an observer who moves in a
direction ξ with a speed above c∗(ξ) will see the solution go down to at most π0,
while an observer who moves in this direction at a speed slower than c∗(ξ) sees the
solution approach π1. It should be noted that if the model includes a phenomenon
such as a prevailing wind, c∗(ξ) may be negative in some directions. In this case an
observer who stands still sees the solution go down to or below the unstable state
π0 because the cloud of growing population gets blown away.

The next two theorems show that the spreading speeds also serve to describe
the asymptotic location of any level surface between π0 and π1 of a solution of the
recursion (2.1) in any number of dimensions when the initial function u0 vanishes
outside a bounded set. We first define the set

S := {x ∈ Rd : ξ · x ≤ c∗(ξ) for all unit vectors ξ}. (2.9)

If c∗(ξ) were the propagation speed in the ξ-direction of a wave equation, S would
be the ray surface. (See, e.g., pp. 552–587 of [CH62].) This convex set can also
be characterized by the ray speed C(η) in the direction of the unit vector η. C(η)
is defined to be the largest value of α such that αη ∈ S. It is related to c∗ by the
formula

C(η) = inf
ξ·η>0

c∗(ξ)
ξ · η

, (2.10)

where the right-hand side is defined to be +∞ if the set of ξ where c∗(ξ) < ∞ and
ξ · η > 0 is empty. When S contains the origin so that c∗(ξ) ≥ 0, C(η) is defined
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and nonnegative for all directions η. If c∗(ξ0) < 0, then C(η) < 0 for all η such
that η · ξ > 0. Moreover, if η · ξ0 = 0, then the line αη does not intersect S, so
that C(η) is undefined.

For any positive β we define the dilation βS to be the set of points of the form
βx with x ∈ S. Clearly, βS = {x ∈ Rk : ξ · x ≤ βc∗(ξ) for all ξ}.
Theorem 2.2. Let un(x) be a solution of the recursion (2.1). Suppose that u0 van-
ishes outside a bounded set, and that 0 ≤ u0(x) < π1(x). Then

1. If C(η) is defined and finite, then for any c > C(η)

lim sup
n→∞

[
sup
β≥c

[un(nβη) − π0(nβη)]

]
≤ 0, (2.11)

and if C(η) is undefined,

lim sup
n→∞

[
sup
β

[un(βη) − π0(βη)]

]
≤ 0. (2.12)

2. Suppose in addition that the set S is nonempty and bounded, and let S ′ be any
open set which contains S. Then

lim sup
n→∞

[
sup

x �∈nS ′
{un(x) − π0(x)}

]
≤ 0. (2.13)

Note that the statements of Theorem 2.2 become stronger when π0 ≡ 0.
Theorem 2.2 states that an observer moving in the direction η sees the values

of the function above π0 spread at a speed which is no faster than C(η). The next
theorem shows that, if S has interior points, these values do not spread at a slower
speed either.

Theorem 2.3. Suppose that the set S has nonempty interior, and let S ′′ be any
closed bounded subset of the interior of S. For every positive constant σ there
exists a radius Rσ with the property that if un is a solution of the recursion (2.1),
if 0 ≤ u0 ≤ π1, and if u0 ≥ π0 + σ on the ball |x| ≤ Rσ , then

lim
n→∞

[
sup

x∈nS ′′
{π1(x) − un(x)}

]
= 0. (2.14)

In particular, if C(η) is defined and if −C(−η) < c < C(η), then

lim
N→∞

[π1(ncη) − un(ncη)] = 0.

Remark. A simple continuity argument shows that when Q[u](y) := (1/2)∫ y+1
y−1 u(x){1 + (u(x)− 1)(3 + sin x −u(x))} dx, there is an initial function which

lies above π0 ≡ 1 somewhere and for which the sequence un approaches zero uni-
formly. Thus the requirement of this Theorem that u0 lie above π0 on a sufficiently
large set is needed.
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It is computationally difficult to calculate the spreading speed c∗(ξ) from the
definition in Section 3. As in the case of the Fisher equation, one can often obtain
bounds for, and sometimes the value of, c∗(ξ) in terms of a linear problem. Let L
be a linear operator on nonnegative functions which are continuous on H. Suppose
that L is strongly order preserving in the sense that if u ≥ 0 and u �≡ 0, then
L[u] > 0. Also suppose that L is periodic with respect to L. That is, TaL = LTa
for all a ∈ L. Finally, we assume that, for each µ, L[eµ|x|] exists in the following
sense: The nondecreasing sequence L[min{n, eµ|x|}](y) converges to a function,
which we call L[eµ|x|](y). (We use the convention that L acts on a function of x
to produce a function of y.) If L[eµ|x|] exists, L[e−ξ·xψ(x)](y) with ψ is bounded
and continuous can also be defined by a limiting process. In particular, one can seek
traveling waves of the recursion un+1 = L[un] of the form

un(x) = e−µ(ξ·x−nc)ψ(x)

where the function ψ is continuous and periodic with respect to L. If we insert this
form into the recursion, we find that ψ has to satisfy the equation

eµξ·yL[e−µξ ·xψ(x)](y) = eµcψ(y).

That is, eµc is a positive eigenvalue of the operator

Lµξ[ψ](y) := eµξ·yL[e−µξ ·xψ(x)](y), (2.15)

and ψ is the corresponding eigenfunction. By applying a translation Ta with a ∈ L
to this definition, it is easily verified that the linear operator Lµξ is again periodic
with respect to L and strongly order preserving. Consequently, Lµξ takes non-
negative periodic functions into positive periodic functions, and we shall only con-
sider the restriction ofLµξ to such functions. Such an order preserving operator has
a positive eigenvalue λ(µξ) with a positive eigenfunction, and with the property
that the absolute values of all the eigenvalues of Lµξ are below λ(µξ). λ(µξ) is
called the principal eigenvalue of Lµξ. We note that the speed of the above wave
satisfies eµc = λ(µξ), so that c = (1/µ) ln λ(µξ).

Theorem 2.4. Suppose that there is a linear operator L with the properties

1. there is a positive number η such that

Q[u] ≥ L[u] for every u such that 0 ≤ u ≤ η; (2.16)

2. L is L-periodic and strongly order-preserving, and L[eµ|x|] is defined for all µ.
3. There is a positive L-periodic function r such that L[r] > r , and the truncated

operator

Q[L,r][u] := min{L[u], r}
satisfies the hypotheses 2.1;
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Let λ(µξ) be the principal eigenvalue of the operator Lµξ defined by (2.15). Then

c∗(ξ) ≥ inf
µ>0

[(1/µ) ln λ(µξ)], (2.17)

and the ray speed in the direction η has the lower bound

C(η) ≥ inf
ζ∈Rd
η·ζ>0

[{ln λ(ζ)}/η · ζ]. (2.18)

We can also find an upper bound for c∗(ξ) in terms of a linear problem.

Theorem 2.5. Suppose that there is a linear operator L such that

1. Q[u] ≤ L[u] for all u with 0 ≤ u ≤ π1; (2.19)

2. L is L-periodic and strongly order-preserving, and L[eµ|x|] is defined for all µ.
3. there is a positive L-periodic function r such that L[r] > r , and the truncated

operator

Q[L,r][u] := min{L[u], r}
satisfies the hypotheses 2.1;

Let λ(µξ) be the principal eigenvalue of the operator Lµξ[u] defined by (2.15).
Then

c∗(ξ) ≤ inf
µ>0

[(1/µ) ln λ(µξ)], (2.20)

and the ray speed in the direction η has the upper bound

C(η) ≤ inf
ζ∈Rd
η·ζ>0

[{ln λ(ζ)}/η · ζ]. (2.21)

We remark that if, instead of taking the infimum, we take a particular value of µ in
(2.20) or a particular value of ζ in (2.21), we still obtain an upper bound.

The linear operator M is said to be the linearization (or Fréchet derivative) of
the operator Q at 0 if for every positive number σ there is a positive number ησ
such that 0 ≤ u(x) ≤ ησ implies that |Q[u] − M[u]| ≤ σ supx u(x). For most
models which have been studied it is true that for every positive number δ there is
an η such that the operator (1 − δ)M satisfies the conditions on L in Theorem 2.4.
By letting δ approach zero, one finds the lower bounds (2.17) and (2.18) with λ(ζ)
replaced by the principal eigenvalue λ̃(ζ) of Mζ . It many problems Q[u] ≤ M[u]
for all u in M. This can be interpreted as the lack of an Allee effect in the growth
law. The following obvious corollary of Theorems 2.4 and 2.5 shows that when
this is the case, one can determine c∗(ξ) exactly in terms of the eigenvalues of
a linear problem. When this happens, we say that the recursion (2.1) is linearly
determinate in the direction ξ.
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Corollary 2.1. If the linearization M of Q at u = 0 satisfies the conditions on L

in Theorem 2.5 and if for each small positive δ the operator (1 − δ)M satisfies the
conditions on L in Theorem 2.4, then

c∗(ξ) = inf
µ>0

[(1/µ) ln λ̃(µξ)], (2.22)

and

C(η) = inf
ζ∈Rd
η·ζ>0

[{ln λ̃(ζ)}/η · ζ]. (2.23)

where λ̃(µξ) is the principal eigenvalue of Mµξ. Thus, the spreading speed is
linearly determinate in all directions under these conditions.

The formula (2.23) was found by Gärtner and Freidlin [GF79].
Under the additional condition π0 ≡ 0 we shall show that the spreading speed

c∗(ξ) can be characterized as a slowest speed of what Shigesada, Kawasaki, and Ter-
amoto [SKT86] call a traveling periodic wave, and Berestycki and Hamel [BH02]
call a pulsating wave, which is defined as follows:

Definition 2.1. A solution un of the recursion (2.1) is called a periodic traveling
wave of speed c in the direction of the unit vector ξ if it has the form un(x) =
W(ξ · x − nc, x), where the function W(s, x) has the properties

a. For each s the function W(ξ · x + s, x) is continuous in x ∈ H.
b. For each s, W(s, x) is L-periodic in x;
c. For each x ∈ H, W(s, x) is nonincreasing in s;
d. W(−∞, x) = π1(x);
e. W(∞, x) = 0.

Theorem 2.6. Suppose that π0 ≡ 0. Then there is a periodic traveling wave of
speed c in the direction ξ if and only if c ≥ c∗(ξ).

We remark that if Q is the time-one map of a continuous-time process such as
(1.3), then un(x) = u(n, x). In this case, it it is easily seen that all our theorems
have continuous-time analogs. For example, we may replace (2.7) and (2.8) by

lim sup
t→∞

[
sup

ξ·x≥ct

[u(t, x) − π0(x)]

]
≤ 0 when c > c∗(ξ),

and

lim
t→∞

[
sup

ξ·x≤ct

[π1(x) − u(t, x)]

]
= 0 when c < c∗(ξ),

(2.13) by

lim sup
t→∞

[
sup

x �∈tS ′
{u(t, x) − π0(x)}

]
≤ 0,
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and (2.14) by

lim
t→∞

[
sup

x∈tS ′′
{π1(x) − u(t, x)}

]
= 0.

Moreover, we can see from the methods used in [LWL02] that there is a periodic
traveling wave of the form W(ξ · x − ct, x) for the continuous-time problem if and
only if c ≥ c∗(ξ).

We are unable to show the existence of traveling waves without assuming that
π0 ≡ 0. In fact, simple phase plane analysis shows that the translation-invariant
problem

u,t = 8u + u
(
u − 1

3

) (
u − 2

3

)
(1 − u), (2.24)

whose time-one map satisfies the Hypotheses 2.1, does not have any traveling wave
which connects u ≡ 1 with u ≡ 0.

If π0 �≡ 0, we are also unable to show that the part below π0 of the solution does
not travel faster than the speed given by c∗. It may well be that there is a faster speed
c∗+(ξ) > c∗(ξ) at which this smaller part travels. In fact, it is not difficult to show
that for the equation (2.24) c∗(ξ) is equal to the speed of a traveling wave which
connects u ≡ 1 to u ≡ 1

3 . This speed is less than the speed (2/3)2/3 of the slowest
wave which connects u ≡ 1 to u ≡ 2

3 . On the other hand, the fact that the equation
is of Fisher type for 0 ≤ u ≤ 1

3 shows that for any initial data other than 0 the part
of the solution below 1

3 increases to 1
3 at the faster speed c∗+(ξ) = √

3(2/3)2/3. In
this case the solution approaches not a traveling wave, but what Fife and McLeod
[FM77] call a stacked combination of fronts.

3. Construction of the spreading speeds

The principal tool of this work is the following Comparison Principle, which is
easily proved by induction.

Lemma 3.1 (Comparison Principle). LetR be an order-preserving operator. If the
sequences of functions vn and wn satisfy the recursive inequalities vn+1 ≤ R[vn]
and wn+1 ≥ R[wn], and if v0 ≤ w0, then vn ≤ wn for all n.

One of the principal ideas in both [Wei82] and [Lui89] is to reduce the spreading
speed problem from dimension d to dimension 1 by looking at propagation in one
direction at a time. The analogous process here is to choose a fixed d-dimensional
unit direction vector ξ and to look at functions of the form v(ξ · x, x). We first need
to define a suitable space of functions.

Definition 3.1. For any unit vector ξ the space M̃ξ is the set of functions v(s, x)
such that

a. v(s, x) is L-periodic in x for each fixed s;
b. 0 ≤ v(s, x) ≤ π1(x) for all s and x;
c. the function v(ξ · x + s, x) is continuous in x for each s.
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Note that periodic functions such as π0 and π1 can be considered as members
of M̃ξ which do not depend upon s. We remark that the condition (c) does not
imply that v(s, x) is continuous in either s or x. For instance, if d = 1, ξ = (1),
and [x] denotes the largest integer which does not exceed x, the function

v(s, x) :=




1 when s ≤ x − [x] − 1

1 − x + [x] when x − [x] − 1 < s ≤ x − [x]

0 when s > x − [x]

is discontinuous in s and in x, but v(x + s, x) is continuous in x, so that v is in M̃1.
We observe that the transformation

Hξ[v](x) := v(ξ · x, x)

takes the functions of M̃ξ into functions in M. We define the operator 2

Q̃ξ[v](s, y) := Q[v(ξ · {x − y} + s, x)](y). (3.1)

We note that if y is replaced by y − a where a is any element of L, the
L-periodicity of Q and that of v show that the right-hand side of (3.1) remains
unchanged. Therefore the function Q̃ξ[v] has the property (a) in the definition of

M̃ξ. Since the other two properties follow from the properties of Q, we find that

Q̃ξ takes M̃ξ into itself. Moreover, the operator Q̃ξ is translation invariant in the
variable s and order preserving.

Setting s = ξ · y in (3.1) gives the intertwining property

Hξ[Q̃ξ[v]] = Q[Hξ[v]]. (3.2)

We shall obtain comparison functions for solutions of the recursion (2.1) by ob-
serving that if vn(s, x) satisfies the recursion

vn+1 = Q̃ξ[vn],

then, by the intertwining property (3.2), Hξ[vn] satisfies the recursion (2.1).
We now choose a continuous initial function φ(s, x) with the properties

a. φ(s, x) is uniformly continuous in s and x, and L -periodic in x;
b. φ(s, x) is nonincreasing in s for each fixed x;
c. φ(s, x) ≡ 0 for s ≥ 0;
d. π0(x) < φ(−∞, x) < π1(x).

(3.3)

2 Here and in what follows we use the convention that if φ is a functions of x and some
other variables possibly including y, thenQ[φ](y)means the value at y of the result of letting
Q act on the function of x which is obtained from φ by fixing the values of all its variables
other than x. The resulting function is independent of the dummy variable x.
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As in [Wei82] and [Lui89], we define for any real c the sequence an(c, ξ; s, x) by
the recursion

an+1(c, ξ; s, x) = max{φ(s, x), Q̃ξ[an](s + c, x)}
a0(c, ξ; s, x) = φ(s, x).

(3.4)

(The maximum is the larger of the two numbers for each s and x.) Replacing s by
s + ξ · y in the definition of Hξ shows that the recursion equation in (3.4) can be
written in the form

an+1(c, ξ; ξ · y + s, y) = max{φ(ξ · y + s, y),Q[an(c, ξ; ξ · x + s + c, x)](y).
(3.5)

Clearly, a1 ≥ a0. Because Q is order-preserving, an induction argument shows
that an+1(c, ξ; s, x) ≥ an(c, ξ; s, x). Because Q̃ξ is also translation invariant in
the variable s, it takes functions which are nonincreasing in s into functions which
are nonincreasing in s. Therefore an is nonincreasing in s for all n. The translation
s → s + c applied to a nonincreasing function is nonincreasing in c, and it follows
thatan(c, ξ; s, x) is also nonincreasing in c for alln. Becausean(c, ξ; s, x) ≤ π1(x),
the nondecreasing sequence an has a limit

lim
n→∞ an(c, ξ; s, x) = a(c, ξ; s, x),

which is again nonincreasing in s and c. It follows, in particular, that the limits
an(c, ξ; ±∞, x) and a(c, ξ,±∞, x) all exist.

If {sk} is a sequence which goes to −∞, then by Hypothesis 2.1.vi there is a
subsequence {s′

k} such that Q[an(c, ξ; ξ · x + s′
k, x)](y) converges uniformly on

bounded sets. Because a is monotone in s, the same is true when s′
k is replaced by

s and s approaches −∞. Thus we see from Hypothesis 2.1.v that we may let s in
(3.5) approach −∞ to find that

an+1(c, ξ; −∞, y) = max{φ(−∞, y),Q[an(c, ξ; −∞, x)](y)}
≥ Q[an(c, ξ; −∞, x)](y).

Since a0(c, ξ; −∞, x) = φ(−∞, x) > π0(x), the Comparison Principle and Hy-
pothesis 2.1.iv show thatan(c, ξ; −∞, x) increases toπ1(x). Becausean ≤ a ≤ π1,
it follows that

a(c, ξ; −∞, x) = π1(x).

By Hypotheses 2.1.v and 2.1.vi we may let n go to infinity in (3.5) to obtain the
equation

a(c, ξ; ξ · y + s, y) = max{φ(ξ · y + s, y),Q[a(c, ξ; ξ · x + s + c, x)](y)}.
(3.6)

We now use Hypothesis 2.1.vi and the monotonicity in s to see that we can let s
increase to infinity on both sides of this equation to find that

a(c, ξ; ∞, y) = Q[a(c, ξ; ∞, x))](y).

That is, the continuous periodic function a(c, ξ; ∞, x) is an equilibrium of Q.
The last part of Hypothesis 2.1.iv now shows that there are two possibilities:
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Case (i): a(c, ξ; ∞, x) = π1(x); or
Case (ii): a(c, ξ; ∞, x) ≤ π0(x).

Because a(c, ξ; ∞, x) is the limit of functions which are nonincreasing in c, it has
the same property. This means that if Case (i) holds for some c, it also holds for
all smaller c, and that if Case (ii) is valid for one c, it is also valid for all larger
c. We define c∗(ξ) to be the unique number such c < c∗(ξ) implies Case (i), and
c > c∗(ξ) implies Case (ii). If Case (i) is valid for all c, we define c∗(ξ) = ∞.
Proposition 3.1 will show that case (i) holds when c is sufficiently negative. The
following Lemma states that c = c∗(ξ) implies Case (ii), and also gives a way of
characterizing the number c∗(ξ).

Lemma 3.2. The number c∗(ξ) has the property that

a(c, ξ; ∞, x)

{
= π1(x) if c < c∗(ξ)
≤ π0(x) if c ≥ c∗(ξ).

(3.7)

Moreover, c < c∗(ξ) if and only if there is an integer N such that

aN(c, ξ; 1, x) > φ(−∞, x). (3.8)

Proof. We prove the second part first. Suppose that a(c, ξ; ∞) = π1. Because a

is nonincreasing in s, a(c, ξ; s, x) = π1(x) for all s. Let the bounded set P be
contained in the closed ball Bρ of radius ρ centered at the origin. Since the function
an(c, ξ; ξ · x + 1 + ρ, x) approaches π1(x) uniformly on the bounded set P , there
is an N such that

aN(c, ξ; ξ · x + 1 + ρ, x) > φ(−∞, x) on P̄ , (3.9)

where P̄ is the closure of P . Because ξ · x ≥ −ρ on P̄ and a is nonincreasing in
s, we conclude that (3.8) is satisfied.

Conversely, suppose that (3.8) is valid. Then aN(c, ξ; s + 1, x) ≥ φ(s, x) =
a0(c, ξ; s, x) for all s and x. The Comparison Principle shows that aN+n(c, ξ; s +
1, x) ≥ an(c, ξ; s, x) for all n. Let n approach infinity to see that a(c, ξ; s+1, x) ≥
a(c, ξ; s, x). Since a is nonincreasing in s, this shows that a is independent of s,
so that a(c, ξ; ∞, x) = π1(x).

We have shown that Case (i) implies (3.9) which implies (3.8) which implies
Case (i). Thus if c > c∗(ξ) so that Case (ii) holds, then (3.9) cannot be satisfied for
any N . In particular, for each pair of positive integers (N, ν) there is a point xN,ν

in P̄ such that

aN(c
∗(ξ) + ν−1, ξ; ξ · xN,ν + 1 + ρ, xN,ν) ≤ φ(−∞, xN,ν). (3.10)

Because P̄ is closed and bounded, there is, for any fixed N , a sequence νi such
that xN,νi converges to a point xN in P̄ . Because both sides of (3.9) are continuous
functions of c and x, we conclude that

aN(c
∗(ξ), ξ; ξ · xN + 1 + ρ, xN) ≤ φ(−∞, xN).
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Thus, the inequality (3.9) cannot hold for any N , and we conclude that Case (ii)
holds at c = c∗(ξ). This is the statement (3.7).

This statement, in turn, shows that c < c∗(ξ) if and only if Case (i) holds, and
we have already shown that this is true if and only if there is an integer N for which
the inequality (3.8) is satisfied. Thus we have proved the second statement of the
lemma, so that the Lemma has been established.

Because of Theorem 2.1 we call c∗(ξ) the spreading speed in the direction ξ
of the recursion (2.1). The following lemma shows that c∗(ξ) does not depend on
the choice of the initial function φ.

Lemma 3.3. Let ân(c, ξ; s, x) be the sequence obtained from the recursion (3.4)
whenφ(s) is replaced by another nonincreasing function φ̂ with the properties (3.3).
Then the limit â of ân as n→∞ satisfies the equation â(c, ξ; ∞) = a(c, ξ; ∞). In
particular, the property (3.7) holds when a is replaced by â.

Proof. Since ân(c, ξ; −∞, x) satisfies the inequality ân+1 ≥ Qξ[ân], Hypothe-
ses 2.1.iv and 2.1.vi show that ân(c, ξ; −∞, x) converges to π1, uniformly on P .
Hence there exists an n0 such that ân0(c, ξ; −∞, x) > φ(−∞). Therefore there
is an L such that a0(c, ξ; s, x) = φ(s) ≤ ân0(c, ξ; s − L, x)]. By the Comparison
Principle a)(c, ξ; s, x) ≤ ân0+)(c, ξ; s − L, x) for all nonnegative integers ). We
now let ) and then s approach infinity to see that a(c, ξ; ∞, x) ≤ â(c, ξ; ∞, x).
By reversing the roles of an and ân in the above argument, we obtain the opposite
inequality, and this establishes the statement of the Lemma.

We note that if we replace s by s − (n + 1)c in (3.5), we obtain the recursion

an+1(c, ξ;ξ · y + s − (n + 1)c, y)

= max{φ(ξ · y + s − (n + 1)c, y),Q[an(ξ · x + s − nc, x)](y)}
≥ Q[an(ξ · x + s − nc, x)](y). (3.11)

Thus the sequence an(ξ · x + s − nc, x) is a supersolution of the recursion (2.1).

We can use this fact to obtain a lower bound for c∗(ξ). Let bn(s, x) be the
solution of the recursion bn+1(s, y) = Q̃ξ[bn](s, y) with b0 = φ. We see from Hy-
pothesis 2.1.iv that bn(−∞, x) approaches π1(x). Therefore for every sufficiently
large n, bn(−∞, x) > φ(−∞, x), and hence there is a translation L such that
bn(s, x) ≥ φ(s − L, x).

Proposition 3.1. Let bn(s, x) satisfy the recursion bn+1 = Qξ[bn] with b0 = φ,
where φ has the properties (3.3). If

bn(s, x) ≥ φ(s − L, x),

then

c∗(ξ) ≥ L/n. (3.12)
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Proof. Let δ be any small positive number. The Comparison Principle and (3.11)
show that an(L/n−δ, ξ; s−n(L/n−δ), x) ≥ bn(s, x) ≥ φ(s−L, x) = a0(L/n−
δ, ξ; s −L, x). As in the proof of lemma 3.2, this inequality implies that a(L/n−
δ, ξ; s, x) ≡ π1(x), so that L/n − δ < c∗(ξ). Since δ is arbitrary, this gives the
lower bound (3.12).

In addition to showing that c∗(ξ) is always bounded below, this inequality gives
a numerical method for finding a lower bound for it from a simulation.

4. The speed limit: proof of Theorem 2.2

We begin with a simple lemma, which is the first statement of Theorem 2.1.

Lemma 4.1. Suppose that u0(x) has the properties

a. u0 is continuous and nonnegative;
b. supx[π1(x) − u0(x)] > 0;
c. There is a constant L such that u0(x) = 0 when ξ · x ≥ L.

Then the solution un of the recursion (2.1) has the property that for any c > c∗(ξ)

lim sup
n→∞

[
sup

ξ·x≥nc

[un − π0]

]
≤ 0.

Proof. Because of the properties (b) and (c) there is a nonincreasing functionφ(s, x)
with the properties (3.3) such that φ(ξ · x − L − 1, x) ≥ u0(x). Let an(c, ξ; s, x)
be defined by the recursion (3.4). The Comparison Principle and (3.11) show that

un(x) ≤ an(c
∗(ξ), ξ; ξ · x − L − 1 − nc∗(ξ), x).

Because an(s, x) is nonincreasing in s,

un(x) ≤ an(c
∗(ξ), ξ; n[c − c∗(ξ)] − L − 1, x) when ξ · x ≥ nc.

We now recall that c > c∗(ξ), let n approach infinity, and use the property (3.7) to
obtain the statement of the Lemma.

We shall now use this Lemma to prove Theorem 2.2. To prove the first state-
ment, we note that the definition (2.10) implies that if c > C(η), then there is a
unit vector ξ0 such that ξ0 · η > 0 and c∗(ξ0)/ξ0 · η < c. We write this as

c0 := cη · ξ0 > c∗(ξ0),

and observe that for β ≥ c the point nβη satisfies the inequality ξ0 · (nβη) ≥ nc0.
Thus Lemma 4.1 with ξ = ξ0 and c = c0 gives the inequality (2.11). C(η) is
undefined if and only if there is a ξ0 such that c∗(ξ0) < 0 and ξ0 · η = 0. We then
obtain (2.12) by noting that ξ0 · (βη) = 0 > c∗(ξ0) and applying Lemma 4.1) with
ξ = ξ0 and c = 0.

Suppose now that S is bounded and nonempty. If there were a vector y �= 0
such that ξ · y ≤ 0 for all ξ for which c∗(ξ) is finite, then for every point x of S the
half-line x +αy with α ≥ 0 would also be in S. This would contradict the fact that
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S is nonempty and bounded. Consequently, the intersection of the closed bounded
sets {x : |x| = 1, ξ ·x ≤ 0} over all ξ with c∗(ξ) finite is empty. By Helly’s Theorem
(the finite intersection property; see, e. g., page 3 of [BF48]) there is a finite set
ξ1, · · · , ξK of unit vectors such that c∗(ξj ) < ∞ and max1≤j≤K ξj · x > 0 when
|x| = 1. Since max1≤j≤K ξj · x is continuous, it has a positive minimum α on the
unit sphere. Thus for all x

max
1≤j≤K

[ξj · x] ≥ α|x|.

Therefore for all x on the closed set

A := {x : ξj · x ≤ c∗(ξj ) + 1 for j = 1, · · · ,K} (4.1)

|x| ≤ max1≤j≤K [c∗(ξj ) + 1]/α, so that A is bounded. By definition, the comple-
ment c[S ′] is closed, and its intersection with S is empty. Hence the intersection of
the closed subsets A ∩ c[S ′] ∩ {x : ξ · x ≤ c∗(ξ)+ δ} of A over all 0 < δ < 1 and
all unit vectors ξ is empty. Helly’s Theorem shows that there are a δ ∈ (0, 1) and a
finite collection of unit vectors ξK+1, ξK+2, · · · , ξL, such that the intersection of
the sets c[S ′] ∩ {x : ξj · x ≤ c∗(ξj ) + δ, j = 1, · · · , L} is already empty. (Note
that this intersection is automatically a subset of A.) If x �∈ nS ′, then n−1x ∈ c[S ′],
and hence one of these inequalities must be violated by n−1x. That is, x �∈ nS ′
implies that

ξj · x > n[c∗(ξj ) + δ] for some j ≤ L. (4.2)

Lemma 4.1 with c = c∗(ξj ) + δ shows that for any positive ε there is an in-
teger nj,ε such that (4.2) implies that un − π0 ≤ ε when n ≥ nj,ε . If we define
nε := max1≤j≤K nj,ε , we see that for n ≥ nε , un − π0 ≤ ε on the complement of
nS ′. Since ε is arbitrary, this is the second statement (2.13) of Theorem 2.2, and
the Theorem is proved.

5. Upward convergence: Proof of Theorem 2.3

In order to introduce some of the ideas in the proof of Theorem 2.3, we start with
a lemma which is the second statement of Theorem 2.1.

Lemma 5.1. If 0 ≤ u0(x) ≤ π1(x) and u0(x) is continuous, and if there is a
positive constant K such that

inf
ξ·x≤−K

[u0(x) − π0(x)] > 0,

then for any c < c∗(ξ) the solution un of the recursion (2.1) has the property

lim
n→∞

{
sup

ξ·x≤nc

[π1(x) − un(x)]

}
= 0. (5.1)
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Proof. By the above assumption, there is a continuous L-periodic function α0(x)
such that

u0(x) ≥ α0(x) > π0(x) when ξ · x ≤ −K.

We choose a φ(s, x) with the properties (3.3) and the additional properties

φ(s, x) = α0(x) when s ≤ −K , and
φ(ξ · x, x) ≤ u0(x).

(5.2)

We define the sequence an(c, ξ; s, x) by the recursion (3.4) with this φ. Because
c < c∗(ξ), Lemma 3.2 shows that there is an integer n0 such that

an0(c, ξ; 1, x) > α0(x). (5.3)

Moreover, since αn increases to π1 uniformly, there is for any positive number δ
an integer nδ such that

π1(x) − αnδ (x) < δ. (5.4)

We suppose for the moment that Q has the additional property

u < π1 implies that Q[u] < π1. (5.5)

Since α0 < π1, this property implies that

αn0(x) < π1(x). (5.6)

We define the sequence of L-periodic functions βn(x) by the recursion

βn+1(y) = Q[βn(·)](y)
with β0(x) = α0(x). Hypotheses 2.1.iv, 2.1.v, and 2.1.vi show that βn(x) converges
to π1(x) uniformly. Then there is an integer n1 > n0 such that

βn1(x) > αn0(x). (5.7)

We shall assume without loss of generality that

nδ > n1.

In order to prove the Lemma, we need to obtain a lower bound for un. We
first choose a real-valued continuous nonincreasing cutoff function ζ(s) with the
properties

ζ(s) =
{

1 for s ≤ 1
2

0 for s ≥ 1.
(5.8)

For each positive integer k, we define the approximating operator

Qk[u](y) := Q[ζ(|x − y|/k)u(x)](y). (5.9)

(Recall the convention in Footnote 2.) This operator is again order preserving and
periodic with respect to L. It has the advantage that the value of Qk[u] at y only
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depends on the values of u(x) on the ball |x − y| ≤ k. We also define the new
operator Q̃k,ξ by replacing Q by Qk in the definition (3.1) of Q̃ξ:

Q̃k,ξ[v](s, y) := Q[ζ(|x − y|/k)v(ξ · (x − y) + s, x)](y).

We define the sequence α(k)n by the recursion

α
(k)
n+1(y) = max

{
α0(y),Qk[α(k)n (·)](y)

}
with α

(k)
0 = α0. We also define the sequence a(k)n (c, ξ; s, x) by the recursion (3.4)

with the operator Q̃ξ replaced by Q̃k,ξ, and a
(k)
0 (c, ξ; s, x) = φ(s, x). Because

Q̃k,ξ[w](s, x) depends only on the values of w(σ, x) with |σ − s| ≤ k, we find
from (5.2) that

a(k)n (c, ξ; s, x) =
{
α
(k)
n (x) for s ≤ −K − n(k + c)

0 for s ≥ n(k − c).
(5.10)

Finally, we define the sequence b(k)n (s, x) as the solution of the recursion

b
(k)
n+1(ξ · y + s, y) = Qk[b(k)n (ξ · x + s, x)](y)

with b
(k)
0 = φ. (Note the absence of a translation by −c on the right.) By Hypoth-

esis 2.1.v Qk[u] increases to Q[u] for any u in M. By using this fact repeatedly
and using the inequalities (5.3), (5.4), and (5.7), we choose a k0 such that

a(k0)
n0

(c, ξ; 1, x) > α0(x), (5.11)

π1 − α(k0)
n (−∞, x) < δ for n ≥ nδ, (5.12)

and

b(k0)
n1

(−∞, x) > αn0(x) ≥ α(k0)
n0

(x). (5.13)

The inequality (5.13) and the fact that an(c, ξ; s, x) vanishes for sufficiently
large s by (5.10) show that there is a constant L1 such that

b(k0)
n1

(ξ · x + s, x) ≥ a(k0)
n0

(c, ξ; ξ · x + s − n0c + L1, x).

Because (5.11) implies that a(k0)
n (c, ξ; s, x) > φ(s, x) when n ≥ n0, the maximi-

zation can be dropped from the recursion for a(k0)
n . The Comparison Principle and

(3.11) with Q replaced by Qk0 then show that

bn(ξ · x + s, x) ≥ a
(k0)
n−n1+n0

(c, ξ; ξ · x + s − nc + L1, x) when n ≥ n1.

In particular,

bn(nc, x) ≥ a
(k0)
n−n1+n0

(c, ξ;L1, x) ≥ a
(k0)
n−n1+n0

(c, ξ; ξ · x + ρ + L1, x).
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We see from Lemma 3.2, (5.11), and Hypothesis 2.1.vi that the last function on the
right approaches the limit of the sequence α(k0)

n (x), uniformly on P̄ . By (5.12) this
limit is larger than π1(x)− δ. Thus we conclude from (5.14) that for all sufficiently
large n

π1(x) − bn(nc, x) < δ.

We recall that φ was chosen so that u0(x) ≥ φ(ξ · x, x) = b0(ξ · x, x). Since
un+1 = Q[un] ≥ Qk0 [un], the Comparison Principle shows that

un(x) ≥ bn(ξ · x, x)

for all n. Because bn(s, x) is nonincreasing in s, we see that

sup
ξ·x≤nc

[π1(x) − un(x)] ≤ π1(x) − bn(nc, x) < δ (5.14)

for all sufficiently large n. Since δ can be taken arbitrarily small, this proves the
statement (5.1) of the Lemma under the additional assumption (5.5).

If Q does not have the property (5.5), we replace it by the operator

Q̂[u](x) := min{Q[u](x), (1 − γ )Q[u](x) + γ u(x)}, (5.15)

where γ is a small positive constant to be determined. This operator is order pre-
serving and periodic. It is easily verified that Q̂ has the property (5.5), and that
it has exactly the same equilibria as Q. Moreover, Q̂[u] approaches Q[u] from
below as γ goes to zero. In particular, we can and shall choose γ so small that if the
sequence ân is defined by the recursion (3.4) with Q replaced by Q̂ and â0 = φ,
then ân0(c, ξ; 1, x) > α0(x). The above proof then shows that the solution ûn of
the recursion (2.1) with Q replaced by Q̂ and û0 = u0 has the property (5.1).
The Comparison Principle and the inequality un+1 = Q[un] ≥ Q̂[un], imply that
un ≥ ûn. Since un ≤ π1, the property (5.1) for ûn implies the same property for
un, and this establishes the Lemma.

We remark that Lemmas 4.1 and 5.1 prove Theorem 2.1.

Proof of Theorem 2.3. The above proof needs considerable adaptation to produce a
spreading result in all directions ξ. We begin by examining the geometric properties
of the sets S and S ′′. Let x0 be a point of S ′′. If we introduce the new coordinates
x′ := x − x0, we find that the habitat H is replaced by Tx0 [H] and the set P is
replaced by Tx0 [P ]. Moreover, the operator Q is replaced by Tx0QT−x0 . It is easily
seen that the Hypotheses 2.1 are satisfied by this new operator, and that c∗(ξ) is
replaced by c∗(ξ)+ ξ · x0. That is, the coordinates x′ move with the velocity −x0.
Thus we shall assume without loss of generality that the origin 0 is in S ′′, and hence
that it is an interior point of S. Then c∗(ξ) > 0 for all ξ.

We observe that the Theorem is strengthened if S ′′ is replaced by a larger set.
A result in §27 of [BF48] shows that S ′′ is contained in a closed bounded sub-
set of the interior of S, of which the origin is an interior point, and which has a
smooth boundary with a uniformly positive curvature tensor. We shall replace S ′′
by this larger set, which we again call S ′′. If x is any point other than the origin, let
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[1/D(x)]x be the unique point of the ray from the origin through x which lies on the
boundary of S ′′. Then the set S ′′ is characterized by the fact that D(x) ≤ 1 there.
In particular, the unit outward normal vector τ (x) to the boundary at [1/D(x)]x is
given by

τ (x) = |∇D(x)|−1∇D(x). (5.16)

Because the origin is interior to S ′′, this set contains a ball of some positive
radius r centered at the origin. Because S ′′ is bounded, it is contained in a ball of
some radius R centered at the origin. The support function of S ′′ is defined as

S(ξ) = max
x∈S ′′ ξ · x. (5.17)

It satisfies the inequalities

r ≤ S(ξ) ≤ R. (5.18)

Because the closed set with smooth boundary S ′′ lies in the interior of S, there is
a positive ε such that

max
|ξ|=1

[(1 + ε)S(ξ)/c∗(ξ)] < 1. (5.19)

It is easily seen that the maximum in (5.17) is attained when x is a boundary
point and τ (x) = ξ. Since D is homogeneous of degree 1, we have the equa-
tion x · ∇D(x) = D(x) = 1 at a boundary point. Thus we see from (5.16) that
S(τ (x)) = |∇D(x)|−1, so that

τ (x) = S(τ (x))∇D(x). (5.20)

As in the proof of Lemma 5.1, we choose a continuous L-periodic function
α0(x) with π0 < α0 < π1, and a continuous function φ(s, x) with the properties
(3.3) and the additional property

φ(s, x) = α0(x) for s ≤ −1. (5.21)

For each unit vector ξ define the sequence an((1+ ε)S(ξ), ξ; s, x) by the recursion
(3.4) with c = (1 + ε)S(ξ) and a0 = φ. As before, this sequence is nondecreasing
in n. Because c < c∗(ξ), an converges to π1. In particular, we see that for each ξ
there is an integer n0 such that

an0((1 + ε)S(ξ), ξ; 1, x) > α0(x). (5.22)

Because the left-hand side is continuous for ξ on the unit sphere, the n0 required
for this inequality is bounded, and we choose a fixed n0 so that the inequality holds
for all ξ.

We define the sequence of L-periodic functions αn(x) by the recursion
αn+1(x) = max{α0(x),Q[αn](x)}, so that an((1 + ε)S(ξ), ξ; −∞, x) = αn(x).
We choose an arbitrary positive constant δ, and again see that there is an integer nδ
for which the inequality (5.4) is satisfied for all unit vectors ξ.
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As before, we suppose for the moment that Q has the property (5.5). Then
αn0(x) < π1(x), and the fact that each an((1 + ε)S(ξ), ξ; s, x) increases to π1
implies that there is an index m, again independent of ξ, such that

am((1 + ε)S(ξ), ξ; 1, x) > αn0(x). (5.23)

As above, we choose a real-valued continuous nonincreasing cutoff function
ζ(s) with the properties (5.8), and define the operators Qk by (5.9). We define the
sequence α(k)n by the recursion

α
(k)
n+1(y) = max{α0(y),Q[ζ(|x − y|/k)α(k)n (x)](y)}

with α(k)0 = α0. (Recall the convention of Footnote 2.) We also define the sequence

a
(k)
n (c, ξ; s, x) by the recursion (3.4) with the operator Q̃ξ replaced by Q̃k,ξ, and

a
(k)
0 (c, ξ; s, x) = φ(s, x). Because Q̃k,ξ[v](s, x) depends only on the values of
v(σ, x) with |σ − s| ≤ k, we find the properties (5.10) with K = 1.

By Hypothesis 2.1.iv and Dini’s theorem a
(k)
n ((1+ε)S(ξ), ξ; 1, x) increases to

an((1 + ε)S(ξ), ξ; 1, x) as k goes to infinity, uniformly in x and ξ. We see from
(5.22), (5.23), and (5.4) that we can choose a k0 independent of ξ so that

a(k0)
n0

((1 + ε)S(ξ), ξ; 1, x) > α0(x),

a(k0)
m ((1 + ε)S(ξ), ξ; 1, x) > α(k0)

n0
(x),

and the inequality (5.12) is satisfied. The first of these states that for n ≥ n0,
a
(k0)
n > φ, so that

a
(k0)
n+1((1 + ε)S(ξ), ξ; s, x) = Q̃k0,ξ[a(k0)

n ](s + (1 + ε)S(ξ), x)) for n ≥ n0.

(5.24)

Lemma 3.2 shows that a(k0)
n converges to limn→∞ α

(k0)
n . The second inequality

shows that this limit is larger than α
(k0)
n0 . Hence, there is an n1 > n0, independent

of ξ, so that

a(k0)
n1

((1 + ε)S(ξ), ξ; (R/r)n0k0, x)) ≥ α(k0)
n0

(x). (5.25)

We now combine the functions a(k0)((1 + ε)S(ξ); s, x) into a function of x by
setting ξ = τ (x) and letting s depend on x. More specifically, we form the function

e)(x) := a(k0)
n1

((1 + ε)S(τ (x)), τ (x);
τ (x) · x − [A + )(1 + 1

2ε)(n1 − n0)]S(τ (x)), x), (5.26)

where A is a constant. We shall make use of the following Lemma, whose proof
will be given in the Appendix.
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Lemma 5.2. Let µ be a bound for the square root of the sum of the squares of the
third partial derivatives of D(x) for x on the unit sphere. Then if

A ≥ r−1

{
2k0(n1 − n0) − (R/r)k0n0 + µk2

0(n1 − n0)
2

ε(n1 − n0) + 2(1 + ε)n0

}
, (5.27)

the sequence e) satisfies the inequality

e)+1 ≤ Q[e)]. (5.28)

In order to apply this Lemma, we first choose any small positive constant σ . By
Hypothesis 2.1.iv, the solution un of the recursion un+1 = Q[un] with u0 = π0 +σ

converges to π1. In particular, there is an integer Mσ such that uMσ > α
(k0)
n1 . If ζ(s)

is again a scalar-valued cut-off function with the properties (5.8), the family of
functions ζ(|x|/γ )[π0 + σ ] converges to π0 + σ uniformly on every bounded set
as γ approaches infinity. (5.10) shows that e0 vanishes outside a bounded set. By
applying Hypothesis 2.1.v repeatedly, we see that if w(γ )

n is the solution of (2.1)
with w

(γ )
0 (x) = ζ(|x|/γ )[π0 + σ ], there is a constant Rσ such that

w
(Rσ )
Mσ

≥ α(k0)
n1

on the bounded set where e0 > 0.

Since e0 ≤ α
(k0)
n1 , this implies that w(Rσ )

Mσ
≥ e0. Because w

(Rσ )
0 ≤ π0 + σ and

vanishes for |x| ≥ Rσ , the Comparison Principle shows that if un is a solution of
the recursion (2.1) and u0 ≥ π0 + σ for |x| ≤ Rσ , then uMσ ≥ e0. Because of
(5.28), another application of the Comparison Principle shows that

uMσ+)(n1−n0) ≥ e)

for all ).
We see from (5.10) with K = 1 that

a(k0)
n1

(s, x) = α(k0)
n1

(x) for s ≤ −1 − n1[k0 + (1 + ε)S(τ (x)).

The definition (5.26) of e) then shows that

e)(x) = α(k0)
n1

when τ (x) · x − [A + )(1 + 1
2ε)(n1 − n0)]S(τ (x))

≤ −1 − n1[k0 + (1 + ε)S(τ (x))].

The identity (5.20) and the homogeneity of D show that τ (x) · x = D(x)S(τ (x)).
Because S(ξ) ≥ r , we obtain the weaker statement

e)(x) = α(k0)
n1

when D(x) ≤ A + )(1 + 1
2ε)(n1 − n0)

−r−1(1 + n1k0) − n1(1 + ε). (5.29)

Division shows that for any n ≥ Mσ + nδ − n1 there is a unique integer ) such
that

0 < n − (Mσ + nδ − n1) − )(n1 − n0) ≤ n1 − n0 (5.30)
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The Comparison Principle shows that Qn−Mσ−)(n1−n0)

k0 [e)] is a lower bound for

un. If y is a point with the property that e) = α
(k0)
n1 throughout the ball of radius

k0(nδ −n0) centered at y, then un(y) ≥ αnδ > π1(y)− δ. Suppose that y lies in the
set nS ′′. The set of points at distance at most k0(nδ − n0) from a point of nS ′′ is a
convex set with the support function nS(ξ)+k0(nδ−n0). Because S(ξ) ≥ r , this set
is contained in the set with the support function [n+r−1k0(nδ−n0)]S(ξ). Therefore
if e) = α

(k0)
n1 on this set, then un > π1 − δ on nS ′′. The inequality (5.30) shows that

this set is contained in the set [)(n1 − n0)+Mσ + nδ − n0 + r−1k0(nδ − n0)]S ′′.
We have shown that if e) = α

(k0)
n1 for every point with

D(x) ≤ )(n1 − n0) + Mσ + nδ − n0 + r−1k0(nδ − n0),

then un > π1 − δ on nS ′′. Because the coefficient of ) in this inequality is smaller
than that in the statement (5.29), we see that the conclusion holds for all sufficiently
large ). Since the definition (5.30) of ) shows that large n implies large ), we have
shown that infx∈nS ′′ [π1(x) − un(x)] < δ for all sufficiently large n. Since δ is
arbitrary, this proves the first statement (2.14) of Theorem 2.3 under the additional
hypothesis (5.5).

If this hypothesis is not valid, we proceed exactly as in the last paragraph of
the proof of Lemma 5.1 by defining the auxiliary operator Q̂ by (5.15) with a suf-
ficiently small γ and first proving (2.14) for the sequence ûn obtained from the
recursion (2.1) with Q replaced by Q̂ and û0 = u0. Since ûn ≤ un ≤ π1, (2.14)
follows, so that the first statement of the Theorem is proved in all cases.

We observe that if −C(−η) < c < C(η), then cη is an interior point of S.
If we choose S ′′ so that it contains this point, then ncη lies in nS ′′, so that (2.14)
implies the last statement of the Theorem. This finishes the proof of Theorem 2.3.

6. Bounds for the spreading speed from linear problems

In this section we shall show how to obtain bounds for the spreading speed c∗(ξ)
in terms of the properties of some linear operators, and, in some cases, to obtain
the exact value of the spreading speed. We shall also give some examples to show
what is involved in finding these bounds.

The proofs of Theorems 2.4 and 2.5 will be based on two lemmas.

Lemma 6.1. Suppose that the operator Q satisfies the hypotheses 2.1, and that the
operator Q̂ satisfies the same hypotheses withπ0 andπ1 replaced by the L-periodic
functions π̂0 and π̂1. Assume that

0 ≤ π̂0 ≤ π0 < π̂1 ≤ π1,

and that
Q̂[u] ≤ Q[u] for all u with 0 ≤ u ≤ π̂1.

Then for each unit vector ξ the spreading speed ĉ∗(ξ) of the recursion (2.1)
with Q replaced by Q̂ satisfies the inequality

ĉ∗(ξ) ≤ c∗(ξ).
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Proof. Choose a function φ(s, x) which is uniformly continuous in both variables,
L-periodic in x, and nonincreasing in s, and for which π0(x) < φ(−∞, x) <

π̂1(x). Construct the sequence an defined by the recursion (3.4) and the sequence
ân defined by replacing Q by Q̂ in this recursion, with a0 = â0 = φ. Then
ân(c, ξ; s, x) ≤ π̂1(x). If ân(c, ξ; s, x) ≤ an(c, ξ; s, x), then

ân+1(s, y) = max{φ(s, y), { ˜̂
Q}ξ[ân](s + c, y} ≤ max{φ(s, y), Q̃ξ[ân](s + c, y)}

≤ max{φ(s, y), Q̃ξ[an](s + c, y)} = an+1(s, y).

Since â0 = a0, induction shows that ân ≤ an for all n, and hence that the limit
functions satisfy â(c, ξ; s, x) ≤ a(c, ξ; s, x). Since by definition a(c∗(ξ), ξ; ∞) ≤
π0, it follows that â(c∗(ξ), ξ; ∞) ≤ π0 < π̂1. Thus the property (3.7) of ĉ∗ implies
the statement of the Lemma.

Lemma 6.2. Let L be a linear operator on the continuous functions on H with the
following properties:

1. L is periodic with respect to L, and L[eµ|x|] is defined for all real µ.
2. L is strongly order preserving in the sense that if u is nonnegative and not

identically zero, then L[u] is strictly positive;
3. There is a strictly positive L-periodic function r(x)with the property thatL[r] >

r , and the truncated operator

Q[L,r][u](x) := min{L[u](x), r(x)}
satisfies the hypotheses 2.1.

Let λ(µξ) be the principal eigenvalue of the operator Lµξ defined in (2.15) and
restricted to L-periodic functions.

Then the spreading speed c̄(ξ) ofQ[L,r] in the direction ξ is given by the formula

c̄(ξ) = inf
µ>0

{
1

µ
ln λ(µξ)

}
. (6.1)

Moreover, the ray speed C(η) of QL,r in the direction of the unit vector η is given
by the formula

C(η) = inf
ζ∈Rd
η·ζ>0

{
ln λ(ζ)

η · ζ

}
. (6.2)

Proof. Because for each fixed y the number L[u](y) is a nonnegative bounded
linear functional on the bounded continuous functions, L[u] can be written in the
form

L[u](y)) =
∫
H
u(x)m(y; x, dx),

where, for each y ∈ H, m(y; x, dx) is a bounded nonnegative measure in x. (See,
e.g., Theorem 2 of Section IV.6.2 of [DS58].) BecauseL takes continuous functions
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into continuous functions,m varies continuously in y in the sense of total variations
of measures. The L-periodicity of L is equivalent to the condition

m(y − z; x, dx) = m(y; x + z, dx) for all z ∈ L.

The operator Lµξ defined by (2.15) is then given by

Lµξ[ψ0](y)) =
∫
H
ψ0(x)eµξ·[y−x]m(y; x, dx)

for any L-periodic function ψ0. This linear operator is just the extension from
the finite-dimensional vector space to the infinite-dimensional space of L-periodic
functions of the matrix operatorBµ which was introduced by Lui [Lui89] . We shall
prove the Lemma by extending the proof of Lemma 6.3 in [Lui89].

In order to prove the convexity of the function ln λ(µξ) not only in µ, but in
the vector variable µξ, we adapt the proof of Lemma 6.4 in [Lui89]. The Perron-
Frobenius theorem is now replaced by the Krein-Rutman theorem [KR50], which
states that if ρ(x) is any positive L-periodic function, then

min
x∈P

Lµξ[ρ](x)

ρ(x)
≤ λ(µξ) ≤ max

x∈P
Lµξ[ρ](x)

ρ(x)
(6.3)

with equality on both sides when ρ is the eigenfunction ψ(µξ; x) corresponding
to λ(µξ). To obtain the convexity, choose any vectors µ1ξ1 and µ2ξ2, and set
µξ = 1

2 (µ1ξ1 + µ2ξ2) and ρ = √
ψ(µ1ξ1; x)ψ(µ2ξ2; x). Then by (6.3) and

Schwarz’s inequality,

λ( 1
2 [µ1ξ1 + µ2ξ2])

≤ max
y∈P

∫
H{ψ(µ1ξ1; x)eµ1ξ1·[y−x]ψ(µ2ξ2; x)eµ2ξ2·[y−x]}1/2m(y; x, dx)

{ψ(µ1ξ1; y)ψ(µ2ξ2; y)}1/2

≤ max
y∈P

{Lµ1ξ1
[ψ(µ1ξ1)](y)Lµ2ξ2

[ψ(µ2ξ2)](y)}1/2

{ψ(µ1ξ1; y)ψ(µ2ξ2; y)}1/2

= {λ(µ1ξ1)λ(µ2ξ2)}1/2.

Taking the logarithms of both sides shows that ln λ(µξ) is convex in µξ.
Once we have this convexity, we can follow the proof of Lemma 6.3 in [Lui89].

For a fixed unit vector ξ define the functions

B(µ) := (1/µ) ln λ(µξ)

and

C(µ) = ∂

∂µ
ln λ(µξ).

The convexity of ln λ shows that C is nondecreasing. The fact that µB′ = C − B

shows that the graph of C lies below that of B when µ is below the value µ∗ at
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which the infimum of B is attained. If µ∗ is finite, the graph of C crosses that of
B at µ∗, and then stays above it. Lui’s arguments show that

C(µ) ≤ c̄(ξ) ≤ B(µ) for all µ < µ∗. (6.4)

If µ∗ is finite, both B and C approach the infimum B(µ∗) of B as µ increases to
µ∗. If µ∗ = ∞, then L’Hôpital’s rule shows that B and C have the same limit at
infinity, and this limit is the infimum of B. In either case, letting µ increase to µ∗
in (6.4) yields the statement (6.1) of the Lemma.

The formula (6.2) is obtained by combining (6.1) with the formula (2.10) for
the ray speed, noting that both formulas involve infima, and setting ζ = µξ.

Remark. It is easily seen that the first two conditions of Lemma 6.2 and the exis-
tence of r imply all but the last of the hypotheses 2.1. Thus the last part of the third
condition is just the assumption that Hypothesis 2.1.vi is also valid.

Proof of Theorem 2.4. If γ is any positive constant, then because L is linear,
L[γ r] > γ r . Thus we may assume without loss of generality that r ≤ η. Then
the operators Q and Q[L,r] defined by Q[L,r][u](x) := min{r(x), L[u](x)} satisfy
the conditions of Lemma 6.1. Therefore, c∗(ξ) ≤ c̄(ξ). By combining this with
Lemma 6.2 we obtain the inequality (2.17) of Theorem 2.4. The inequality (2.18)
follows from this and the formula (2.10).

Proof of Theorem 2.5. By the same argument as in the proof of the preceding lem-
ma, we may assume without loss of generality that r ≥ π1. Then Lemmas 6.1
and 6.2 yield the inequality (2.20), and (2.21) follows from this and (2.10).

The use of either Theorem 2.4 or Theorem 2.5 depends on finding the principal
eigenvalues λ(µξ) of a linear operator. For problems with a discrete habitat H this
is a matrix eigenvalue problem.

Example 6.1. Recall the stepping stone model (2.3) with the growth function (2.4)
of Example 2.1. We take the periods N1 > 1 and N2 = 1, so that the parameters are
periodic of period N1 in i and independent of j . The linearization M of Q is given
by replacing g(i, u) by its linearization er(i)u, where r(i), like d(i), is periodic of
period N1 in i.

Let ψ(i) be N1-periodic and independent of j . Then Mζ[ψ](y) =
eζ·yM[e−ζ·xψ(x)](y) is again N1 periodic and independent of j . Thus the ei-
genvalue problem Mζ[ψ] = λψ consists of N1 equations in the N1 independent
values ψ(1), ψ(2), · · · , ψ(N1). By taking account of the fact that the quantities at
0 which occur in the first equation can be replaced by the values at N1 and that the
values at N1 + 1 which appear in the last equation can be replaced by the values at
1, we find that the operator Mζ is a matrix operator with a simple pattern, which is
best conveyed by writing the matrix for N1 = 4:




[1 + {2 cosh ζ2 − 4}d(1)]er(1) d(2)er(2)−ζ1 0 d(4)er(4)+ζ1

d(1)er(1)+ζ1 [1 + {2 cosh ζ2 − 4}d(2)]er(2) d(3)er(3)−ζ1 0

0 d(2)er(2)+ζ1 [1 + {2 cosh ζ2 − 4}d(3)]er(3) d(4)er(4)−ζ1

d(1)er(1)−ζ1 0 d(3)er(3)+ζ1 [1 + {2 cosh ζ2 − 4}d(4)]er(4)


. (6.5)
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The principal eigenvalue of this matrix with nonnegative entries, that is, the
eigenvalue with a positive eigenvector, is λ̃(ζ), which can be used in the formulas
(2.22) and (2.23). We recall that the model (2.3) has a positive N1-periodic equilib-
rium π1 such the Hypotheses 2.1 are satisfied with this π1 and π0 ≡ 0 if and only
if the equilibrium 0 is unstable. The condition for this is simply that λ(0) > 1.

Rough bounds for an eigenvalue can be found by using the finite dimensional
case of the bound (6.3), which is called the Perron-Frobenius bounds. For example,
if one sets ψ(i) = e−r(i)/d(i), one finds that

min
i

[1 + 2(cosh ζ2 + cosh ζ1 − 2)d(i)]er(i) ≤ λ(ζ)

≤ max
i

[1 + 2(cosh ζ2 + cosh ζ1 − 2)d(i)]er(i).

These bounds show that if r(i) > 0 for all i, then λ(0) > 1 so that 0 is linearly
unstable and the Hypotheses 2.1 are valid with π0 ≡ 0, and that when r(i) < 0 for
all i, λ(0) < 1 so that there is no positive equilibrium. More accurate bounds can be
obtained by using a numerically approximated eigenvector in the Perron-Frobenius
bounds.

It remains to determine whether the conditions of Corollary 2.1 are satisfied. It
is easily verified that for every positive δ the function g(i, u) is bounded below by
(1 − δ)er(i)u when u is positive and sufficiently small, and that g(i, u) ≤ er(i)u for
all positive u if and only if

t (i) ≤ er(i).

Thus, M satisfies the conditions of Corollary 2.1 if and only if this additional in-
equality is valid for all i. Since t (i) < 1, this is automatically true when r(i) ≥ 0,
but may be false if r(i) < 0. If it is false, then the right-hand sides of (2.22) and
(2.23) still serve as lower bounds for c∗(ξ) and C(η). However, one only obtains
upper bounds by applying Theorem 2.5 with an L which is obtained from the right-
hand side of (2.3) by replacing g by the linear function max{er(i), t (i)}u. The failure
of the inequality Q[u] ≤ M[u] does not imply that the equations (2.22) and (2.23)
are not true. In fact, Theorem 3.1 of [WLLnt] indicates that there may be a weaker
condition which suffices to establish these equations.

Example 6.2. We consider the growth-migration model of [KKTS01]

u,t = {D(x)u,x},x + {D(x)u,y},y + u(ε(x) − u) (6.6)

where D is strictly positive, and D and ε are periodic of period 1 in x and inde-
pendent of y. This problem was discussed in Example 2.2. The operator Q is the
time-1 map of this differential equation. Because for every positive δ, u(ε(x)−u) ≥
(1 − δ)ε(x)u for all sufficiently small positive u and u(ε(x) − u) ≤ ε(x)u for all
positive u, the comparison theorem for parabolic equations shows that the time-
one map M of the linearized equation in which u(ε(x) − u) is replaced by ε(x)u

satisfies the conditions of Corollary 2.1. To find the principal eigenvalue of Mζ
one looks at a separated solution of the form eγ t−ζ1x−ζ2yψ(x) of the linearized
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equation, where ψ depends only on x and is periodic of period 1. This leads to the
eigenvalue problem

Dψ ′′ + (D′ − 2ζ1D)ψ ′ + [(ζ 2
1 + ζ 2

2 )D − ζ1D
′ + ε]ψ = γψ

ψ(1) = ψ(0), ψ ′(1) = ψ ′(0). (6.7)

The principal eigenvalue γ̃ (ζ) of this equation is that eigenvalue whose eigen-
function ψ̃ does not change sign. Because of the factor eγ t in the solution of the
linearized equation, the principal eigenvalue λ̃(ζ) of the time-one map Mζ is equal

to eγ̃ (ζ). Thus ln λ̃(ζ) is to be replaced by γ̃ (ζ) in the formulas (2.22) and (2.23).
While (6.7) is an eigenvalue problem for an ordinary differential equation, it is

usually not possible to solve it exactly, and the eigenvalue must be approximated
numerically. Shigesada et al. [KKTS01] treated the special case in which the func-
tions D and ε are piecewise constant, and showed how to find the ray speed C(η)
in this case.

Arguments like those in [PW66] show that if Nζ[ψ] denotes the left-hand side
of (6.7) and ρ is any smooth positive L-periodic function, then

min
x∈P

Nζ[ρ]

ρ
≤ γ̄ (ζ) ≤ max

x∈P
Nζ[ρ]

ρ
.

By choosing ρ ≡ 1, one finds that

min[(ζ 2
1 + ζ 2

2 )D − ζ1D
′ + ε] ≤ γ̄ (ζ) ≤ max[(ζ 2

1 + ζ 2
2 )D − ζ1D

′ + ε].

In particular, we find that min ε(x) ≤ γ̄ (0) ≤ max ε(x). This shows that when the
growth rate ε is positive everywhere, the equilibrium 0 is unstable, so that there is
a positive equilibrium such that the hypotheses 2.1 are valid with π0 ≡ 0, and that
if ε < 0 everywhere, then 0 is stable and there is no positive equilibrium. Better
bounds can be obtained from the above inequalities by using a smooth numerical
approximation to the eigenfunction for ρ.

The minimization processes in the formulas (6.1) and (6.2) of Lemma 6.2 may
be facilitated by the fact that the function (η ·ζ)−1 ln λ(ζ) is convex in the variable
σ := (η ·ζ)−1[ζ+ (1−η ·ζ)η]. In particular, the right-hand side of (6.1) is convex
in 1/µ.

7. The existence of traveling waves: Proof of Theorem 2.6

To establish the existence of a periodic traveling wave when π0 ≡ 0 and c ≥ c∗(ξ),
we recall the construction of the function a(c, ξ; s, x) as the limit of the solution
an(c, ξ; s, x) of the recursion (3.4). Because of the presence of the maximization
on the right, the formula (3.6) shows that a is not quite a traveling wave. To elim-
inate this maximization, we recall that, by Lemma 3.3, the spreading speed c∗(ξ)
is independent of the choice of the initial function φ = a0, as long as it has the
properties (3.3). If φ has these properties and m is any positive integer, m−1φ also
has these properties.
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We define the sequence an(c, ξ,m; s, x) as the solution of the problem (3.4)
withφ replaced bym−1φ. This sequence is again nondecreasing in n, and converges
to a function a(c, ξ,m; s) as n approaches infinity. Then (3.6) becomes

a(c, ξ,m; ξ · y + s, y) = max{m−1φ(ξ · y + s, y),

Q[a(c, ξ,m; ξ · x + s + c, x)](y)}. (7.1)

The obvious way to get a traveling wave is to let m approach infinity on both sides.
However, it may happen that a(c, ξ,m; s, x) approaches zero as m→∞. We shall
avoid this problem by letting s depend upon m before taking the limit.

Assume that c ≥ c∗(ξ), so that a(c, ξ,m; −∞, x) = π1(x), and a(c, ξ,m;
∞, x)) = 0. We wish to show that there are pairs of points (sm, s′

m) whose distance
s′
m − sm is bounded and such that, for a fixed value x0 of x, a(c, ξ,m; sm, x0) ≤

3
4π1(x0) and a(c, ξ,m; s′

m, x0) ≥ 1
4π1(x0). This fact with s′

m = sm clearly follows
from the intermediate value theorem if a(c, ξ; s, x)) is continuous in s. However,
the uniform convergence of an(c, ξ; ξ ·x+s, x)) to a(c, ξ; ξ ·x+s, x)) on bounded
subsets of H does not imply continuity in s.

We shall overcome the possible lack of continuity by a trick found in [Wei82]
and [Lui89]. Choose a z0 in L such that

ξ · z0 > 0

and an x0 in H. For any positive integer m define the sequence

Km()) := 1
2 [a(c, ξ,m; ξ · [x0 + )z0], x0) + a(c, ξ,m; ξ · [x0 + () + 1)z0], x0)],

where ) ranges over all the integers. Then Km is nonincreasing in ), Km(−∞)

= π1(x0), and Km(∞) = 0. Moreover,

Km()) − Km() − 1)

= 1
2 [a(c, ξ,m; ξ · [x0 + () + 1)z0], x0) − a(c, ξ,m; ξ · [x0 + () − 1)z0], x0)]

≤ 1
2π1(x0).

Thus, Km()) cannot decrease by more than half of its range at consecutive integers.
It follows that there must be an integer )m such that 1

4π1(x0) ≤ Km()m) ≤ 3
4π1(x0).

Because a is nonincreasing, these inequalities imply that

a(c, ξ,m; ξ · [x0 + )mz0], x0) ≥ 1
4π1(x0)

and a(c, ξ,m; ξ · [x0 + ()m + 1)z0], x0) ≤ 3
4π1(x0). (7.2)

By Hypothesis 2.1.vi there is, for any fixed s and positive integer N , a sequence
m
(N)
i which increases to ∞ with i, and such that the sequence Q[a(c, ξ,m(N)

i ;
ξ · x + s + )

m
(N)
i

ξ · z0 − nc), x)](y) converges uniformly for y in any bound-

ed subset of H, and for all n with |n| ≤ N . By induction we make m
(N+1)
i a

subsequence of m(N)
i . Then by (7.1), and Hypothesis 2.1.v the diagonal sequence
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a(c, ξ,m
(i)
i ; ξ · y + s + )

m
(i)
i

ξ · z0 − (n + 1)c, x))](y) converges to a function of

s− (n+1)c and y which we write in the form W(ξ ·y+ s− (n+1)c, y), uniformly
in y on bounded subsets of H for every n. Thus the function W̃ (s, y) is defined
for all s ∈ R and is nonincreasing in s. Hypothesis 2.1.v shows that we may take
limits on both sides of (7.1) to see that the sequence un = W(ξ · x − nc + s, x)
satisfies the recursion (2.1).

The fact that a(c, ξ; s, x) is L-periodic in x is equivalent to saying that for any
fixed i the function ψi(s, x) := a(c, ξ; ξ · (x + s + )

m
(i)
i

ξ · z0, x) has the property

ψi(s+ξ ·z, x−z) = ψi(s, x) for all z ∈ L. By fixing z and s and letting i approach
infinity, we see that the limit function ψ(s, x) := W(ξ · x + s, x) has the same
property, which implies that W(s, x) is L-periodic in x. Thus W has the first three
properties in the Definition 2.1 of a traveling wave.

It follows as before that the limits W(±∞, x) must be periodic equilibria. Hy-
pothesis 2.1.iv shows that the only equilibria between 0 and π1 are these equilibria.
Since (7.2) shows thatW(0, x0) ≥ 1

4π1(x0) andW(ξ ·z0, x0) ≤ 3
4π1(x0), and since

W is nonincreasing in s, we conclude that W(−∞, x) = π1(x) and W(∞, x) = 0.
Thus W has all the properties of Definition 2.1, and is therefore a periodic traveling
wave. We have established the existence of the periodic traveling wave of speed c

in the direction ξ whenever c ≥ c∗(ξ).
To prove that there is no such wave when c < c∗(ξ), we suppose that for

some c there is a wave W(ξ · x − nc, x) with the desired properties. Because
W(−∞, x) = π1(x), we can choose a nondecreasing function φ with the prop-
erties (3.3) such that φ ≤ W . The Comparison Principle shows that the solution
an of (3.4) satisfies an(c, ξ, s, x) ≤ W(s, x). Therefore a(c, ξ; s, x) ≤ W(s, x).
Because W(∞, x) = 0, this shows that a(c, ξ; ∞, x) = 0. Therefore c ≥ c∗(ξ) by
(3.7). Thus Theorem 2.6 is established.

Remark. By using the methods in [LWL02] we can show that if the time-one map
of a continuous-time problem which is invariant under time translation satisfies the
Hypotheses 2.1, then there is a periodic traveling wave of the form W(ξ · x − ct, x)
with W(∞) = π1 and W(∞) = 0 if and only if c ≥ c∗(ξ). When Qτ is the time-τ
map of a parabolic partial differential equation, the function W satisfies an elliptic
or possibly degenerate parabolic equation. For the equation (2.6) in Example 2.2
with D and r independent of y, the equation for the wave W(ξ1x + ξ2y − ct, x) is

−cW,s = D(x)[W,ss + 2ξ1W,sx + W,xx]

−e1(x)[ξ1W,s + W,x] − e2(x)ξ2W,s + r(x)W(1 − W).

When ξ2 �= 0 so that |ξ1| < 1, this equation is elliptic. When ξ2 = 0, the equation
is parabolic if c �= 0, but degenerate elliptic if c = 0.

8. Partially bounded habitats

Berestycki and Nirenberg [BH02] have shown how to obtain traveling waves for a
partial differential equation on a region such as the strip −∞ < x < ∞, −1 <

y < 1 when the coefficients and the boundary conditions are periodic in x. These
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results have been extended in a recent paper of Berestycki and Hamel [BH02] to
boundary value problems on a very general class of domains which are bounded in
some directions and periodic in others.

Example 8.1. Consider the stepping stone model of Example 2.1 not in the whole
Euclidean plane, but only on those unit squares (experimental fields) whose centers
are of the form (i − 1/2, j − 1/2) with j = 1 or 2 and i arbitrary, or with j = 3
and i even. All other squares will be assumed to have such hostile environments
that the population un is always zero there. We shall assume that the parameters
r(i, j), s(i, j), t (i, j) in the growth law (2.4), and the mobility d(i, j) depend
only on the function (−1)i+j , so that they form a checkerboard pattern. Then L is
the one-dimensional lattice of horizontal integer translations {(i, 0)}.

We can extend all our results to such domains by removing the requirement that
L be d-dimensional from Hypothesis 2.1.iii. If the dimension of L is less than d,
there are direction vectors ξ which are orthogonal to all members of L. These are
just the directions in which the habitat is bounded. It is clear that neither spreading
nor a traveling wave in such a direction makes sense. If, on the other hand, there is
a member z of L such that ξ · z �= 0, then all our proofs go through.

In this way we recover all our results with the understanding that only those
ξ which are not orthogonal to all members of L are to be used. In particular, the
infima in such formulas as (2.10) are to be taken only over such ξ or ζ. For instance,
in the above example, we omit the cases where ξ1 = 0 or ζ1 = 0.

A. Appendix: Proof of Lemma 5.2

We shall first prove the inequality (5.28) when ) = 0. We see from the definition
(5.26) of e) and (5.24) that

e1(y) = a(k0)
n1

((1 + ε)S(τ (y)), τ (y);
τ (y) · y − [A + (1 + 1

2ε)(n1 − n0)]S(τ (y)), y))

= Q
n1−n0
k0

[a(k0)
n0

((1 + ε)S(τ (y)), τ (y); τ (y) · x

− [A + (1 + 1
2ε)(n1 − n0)]S(τ (y)) + (n1 − n0)(1 + ε)S((τ (y)), x)](y)

= Q
n1−n0
k0

[a(k0)
n0

((1 + ε)S(τ (y)), τ (y); τ (y) · x − AS(τ (y))

+ 1
2ε(n1 − n0)S(τ (y)), x)](y).

Because Q
n1−n2
k0

[u](y) depends only on the values of u(x) with |x − y| ≤
k0(n1 −n0) and because Qk0 is order-preserving, we see from the definition (5.26)
of e0 that if

a(k0)
n1

((1 + ε)S(τ (x)), τ (x); τ (x) · x − AS(τ (x)), x)

≥ a(k0)
n0

((1 + ε)S(τ (y)), τ (y); τ (y) · x − AS(τ (y)) + 1
2ε(n1 − n0)S(τ (y)), x)

when |x − y| ≤ k0(n1 − n0), (A.1)

then Q
n1−n0
k0

[e0](y) ≥ e1(y). Thus if we can prove the inequality (A.1), we have
proved the case ) = 0 of Lemma 5.2.
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The inequality (5.25) shows that if

τ (x) · x − AS(τ (x)) ≤ (R/r)n0k0, (A.2)

then the left-hand side of (A.1) is no smaller than α
(k0)
n0 , which is an upper bound

for the right-hand side. Thus the inequality (A.1) is valid when (A.2) holds.
On the other hand, (5.10) shows that if

τ (y) · x − AS(τ (y)) + 1
2ε(n1 − n0)S(τ (y)) ≥ n0[k0 − (1 + ε)S(τ (y))], (A.3)

then the right-hand side of (A.1) is zero, so that the inequality is again valid. Thus
if we can show that at least one of the inequalities (A.2) and (A.3) holds whenever
|x − y| ≤ k0(n1 − n0), we will have proved (A.1). To do this, we suppose that the
inequality (A.2) is violated, so that

τ (x) · x − AS(τ (x)) > (R/r)n0k0. (A.4)

We recall the identity (5.20), which says that τ (x) = S(τ (x))∇D(x). Thus we may
write the inequality (A.4) in the form

[∇D(x) · x − A]S(τ (x)) > (R/r)n0k0. (A.5)

Because r ≤ S(ξ) ≤ R for all ξ, this inequality implies that

[∇D(x) · x − A]S(τ (y)) > n0k0. (A.6)

The identity (5.20) also shows that the inequality (A.3) can be written in the
form

[∇D(y) · x − A + 1
2ε(n1 − n0) + n0(1 + ε))]S(τ (y)) ≥ n0k0. (A.7)

The inequality (A.6) implies this if the coefficient of S(x) on the left of (A.6) is no
larger than the corresponding coefficient in (A.7); that is, if

∇D(x) · x − ∇D(y) · x ≤ 1
2ε(n1 − n0) + n0(1 + ε) (A.8)

Thus the inequality (A.1) will follow if we can show that the inequality (A.4) and
the inequality

|x − y| ≤ k0(n1 − n0) (A.9)

imply (A.8). To obtain a bound for the left-hand side of (A.8), we define the function

h(θ) := ∇D(y + θ(x − y)) · x,

so that h(1) = ∇D(x) · x and h(0) = ∇D(y) · x. Because ∇D is homogeneous of
degree zero, we see that h′(1) = 0. Thus Taylor’s theorem with remainder shows
that for some θ ∈ (0, 1)

∇D(x) · x − ∇D(y) · x = 1
2h

′′(θ) = 1
2

d∑
α,β,γ=1

D,xαxβxγ xα(xβ − yβ)(xγ − yγ ).



546 H.F. Weinberger

By Schwarz’s inequality

∇D(x) · x − ∇D(y) · x ≤ 1
2 |x||y − x|2




d∑
α,β,γ=1

D2
,xαxβxγ




1/2

. (A.10)

Because |τ (x)| = 1, the inequality (A.4) implies that

|x| ≥ rA + (R/r)n0k0. (A.11)

The third derivatives of D are homogeneous of degree −2, and

|y + θ(x − y)| ≥ |x| − |y − x| ≥ |x| − k0(n1 − n0) for 0 ≤ θ ≤ 1.

By (A.11) and (5.27) the right-hand side is positive. Thus (A.10) implies the in-
equality

∇D(x) · x − ∇D(y) · x ≤ µk2
0(n1 − n0)

2|x|
2[|x| − k0(n1 − n0)]2 , (A.12)

where µ is a bound for the square root on the right of (A.10) when its argument is
any unit vector. The right-hand side of (A.12) is nonincreasing in |x|, so that it can
be bounded by replacing |x| by the right-hand side of (A.11). Thus

∇D(x) · x − ∇D(y) · x ≤ µk2
0(n1 − n0)

2[rA + (R/r)n0k0]

2[rA + (R/r)n0k0 − k0(n1 − n0)]2 .

It is easily verified that the inequality (5.27) implies that this right-hand side is no
larger than the right-hand side of (A.8).

Thus we have proved the inequality (A.8), which shows that (A.1) is true whether
or not (A.2) is satisfied. This, in turn, implies that e1 ≤ Q

n1−n0
k0

[e0] ≤ Qn1−n0 [e0].
To obtain the statement of the the Lemma, we observe that replacing the constant A
byA+)(1+ 1

2ε) replaces e0 by e) and e1 by e)+1. Since the constantA+)(1+ 1
2ε)

still satisfies the inequality (5.27), the same proof shows that e)+1 ≤ Q[e)] for any
nonnegative ), which proves Lemma 5.2.
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