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Abstract. Extremal problems and the existence of designs is investigated in a new 
type of combinatorial structures, called squashed geometries. 

1, Introduction 

Suppose X is an n-element set 0 < k < n, L c {0, 1 , . . . ,  k - 1 }. An (n, k, L)-system 
is a family M of  k-subsets o f  X satisfying 

] A c ~ A ' I c L  fo r a l l  distinct A , A ' ~ M .  (1.1) 

The investigation o f  the maximum size o f  (n, k, L)-systems has been the subject 
of  a large number  o f  papers. Let us recall: 

Theorem 1.1 ( [DEF]) .  Suppose ~ is an (n, k, L)-sys tem,  L={ lo  . . . .  , Is-I}, 
Io< 11 <" • " < ls-l . There exists a constant  c = c( k, L)  such that either tMI < cn ~-1 
or (i)-(iii) hold: 

n - I  
(i) I~[--- I] _ 1; 

IcL k 

(ii) (11 - lo)l(12 - 11)1 " ' • [(ls-i - ls-2)l(k - 1~_~); 

Note  that  the upper  bound  in (i) has degree s in n, thus it holds for all 
n > no(k, s). In (i) equality holds (for n > no(k, s ) )  if and only if  M is the family 
of  flats o f  rank s o f  a perfect  matroid  design (a matroid in which all flats o f  rank 
i have size It, 0 <-- i <  s), cf. [De 1]. Special cases include the E r d 6 s - K o - R a d o  
theorem [EKR] :  L = {t, t + 1 . . . .  , k - 1), t-designs with A = 1: L = {0, 1 , . . . ,  t - 1}, 
etc. 
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In  the present  p a p e r  we investigate the p rob l em for  restricted (n, k, L)-systems.  
Let ~ be  a family o f  sets closed under  intersection ~ c  2 x, F, G c  ~ implies 
F n G ~ ; .  

D e f i n i t i o n  1.2. An (n, k, L) - sys tem M ~  ~ is called an ~-squashed (or  shortly) 
squashed family.  

F rom now on M will always denote  an ~ - s q u a s h e d  (n, k, L)-sys tem.  The 
m a x i m u m  size of  M is denoted by m~(n,  k, L). Set 

9:(') = { F ~  97: IF l=  r}. 

Let  us define the quant i ty  n~ by  

n~= max (r) l  U F - G  I. 
G ~  ( ' )  G c F ~  

Note  that  n, = n - r holds for  ~" = 2 ×. 

T h e o r e m  1.3. Suppose that M is an ~;-squashed (n, k, L)-system. Then either 
[MI < c(k, L)n ~-~ or (i)-(i i i)  hold. 

s - I  

(i) = -  f l n , ,  
i=o k -  1[ 

( i i )  

( i i i )  

( l ,  - Io)] • • "l( l , -z  - l~_2) ] ( k  - l , _ , ) ;  

The invest igat ion o f  the case o f  equali ty leads to the definition o f  squashed 
designs and  squashed geometries which we discuss in Section 3, af ter  the p r o o f  
o f  T h e o r e m  1.3 given in Section 2. In  the case where  N (i) = {0, 1 , . . . ,  n ~i)- 1} 
and  X = N tn x N (2) x .  • • x N (d) one calls a subset  B c X injective if  all elements 
o f  B have distinct entries for  each N ~°, i.e., i f b  = (b~ , . . . ,  ba ) and b' = ( b l , . . . ,  b~) 
are in B then  b~ ~ b~ holds  for  1 -< i <- d. 

I f  3: is the  family  o f  all injective subsets o f  N (~) x -  • • x N ~d) then  Theorem 
1.3 implies  

C o r o l l a r y  1.4 ( [DF]) .  Suppose ~f is an (n, k, L)-system of  injective subsets of  
N ° ) x  • • • x N <d) then for mini n (0>  no(k, L) 

s - -1  lul-< I111 =, nU)- li 
iffio k - li holds. (1.2) 

In  (1.2) equali ty holds if  and only if  M is an injection design (cL [DF]) .  
Suppose  X = XI  u .  • • w Xk where the X~ are pairwise disjoint fi-element sets 

and  ~; consists o f  partial transversals, i.e., ~: = { F  c X :  I F  n Xit-< 1 f o r  1 -< i -  k } ,  
we have n, = ( k -  r)fi. Then  Theorem 1.3 yields 
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Corollary 1.5. Suppose ~ is an (n, k, L)-system consisting of  transversals of  
X1 u .  • • u Xk, n > no(k, L). Then I~i <- ~ holds. 

Here equality corresponds to transversal matroid designs (cf. [CDF]). 

2. The Proof of  Theorem 1.3 

We apply induction on k. We distinguish two cases. 

(a) lo=0 

Set Xo=UF~F. By definition tXo[=no. For all x ~ X o  the family M(x )=  
{ A -  {x}: x ~ A ~ M} is an (n - 1, k - 1, {l~ - 1 . . . .  , I~_~ - 1})-system which is ;~(x)- 
squashed for ~ ( x )  = { F - { x } :  x~ FE  ;T}. By induction we infer 

s-I  
I~¢(x)l ~ FI n,, for n > no(k, L). 

i= lkx l i  

Moreover, (12-1,)[. • .l(k- l,_,) and [Aa~<x) BI = 1, - 1 follow unless [M(x) I < 
c(k, L)n s-2. Using Yx~xo [~t(x)[ = kl~¢l, (i) follows. 

To prove (ii) we have to show l~ = (1~- lo)[(&-lz). Define ~ as the collection 
of  l~-subsets D such that for some x c D we have D - {x} = n ~¢(x). By definition 

consists of pairwise disjoint sets only. Omit all A ~ ~¢ which contain some x 
with tO ~¢(x)l # !~ - 1. By the induction hypotheses we omitted at most c(k - 1, 
{!~- 1 . . . . .  1~_:- 1})n ~-~ sets. The remaining' sets are all the disjoint union of 
k~ 1~ members of  D. If two of them, say A, A' intersect in/2 elements, then A c~ A' 
must be the disjoint union of members of 9,  yielding 11112 and thus !~](12-l~l). 
If not, by induction the number of remaining members of ~¢ is bounded by 
m( n, k, L -  {12}). Thus [M t < c( k, L )n ~-~, as desired. 

(iii) follows in a trivial way. 

(b) 1o>0 

Consider Ao=(-'~ ~. If [Aol # lo, then Theorem 1.1 implies < c(k, L)n "-1. If 
[Aol = lo, then (i)-(ii) follow by the induction hypothesis applied to ~ ( A o ) =  
{A - Ao: A ~ ~}.  [] 

Remark 2.1. Looking carefully at the proof of Theorem 1.3, we see that for 
[~1 > c(k, L)n ~-~ equality in (i) implies that there is a family ~ of  pairwise disjoint 
(l~-lo)-sets D such that IU@t = n~ o and every A e M  is the disjoint union of  
( k - l o ) / ( l l -  lo) members of  @ along with A o = O  ~t, having cardinality lo. 

Remark 2.2. Note that for the case 3~ a perfect matroid design, Theorem 1.3 
was proved in [De 1]. 
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R e m a r k  2.3. The p r o o f  o f  Theorem 1.3 shows tha t  if  n~,_, is sufficiently large 
and  M attains equality in (i) then M verifies tA, c ~ . . .  c~ Abl ~ L for  all b->2,  
moreover ,  the  meet  semilatt ice generated by  M is short, i.e., for  all A ~ , . . . ,  Ab s 
there exist A, A'  e M 'with A~ n .  • • c~ A~ = A n A'. 

R e m a r k  2.4. It is easy to see that  if one strengthens the assumpt ions  of  Theorem 
1.3 to JA1 c~. • • n AbJ ~ L for  all b-> 2, then (i) and (iii) always hold (i.e., for all 
n). Moreover ,  equality in (i) implies that sg is a squashed design (cf. the definition 
in the next section). 

3 .  S q u a s h e d  D e s i g n s  a n d  G e o m e t r i e s  

An ~.squashed geometry of  rank  s is a family  ~ par t i t ioned into ~q = (go u (g~ u 
• • • u fg, satisfying: 

(i) fg c ~ ,  ~ is closed under  intersection, i.e., G, G '  c fg implies ( G  c~ G ' )  ~ (g. 
(ii) I f  (3 c H, G e ~di, H e ~ ; then i < j .  

(iii) I f  G e ~i, i < s x ~ G, G u {x} is conta ined  in some m e m b e r  of  ~:, then 
there exists an H ~ ~+~ containing G u {x}. 

I f  ~ = 2 x, then  a squashed  geometry  is jus t  a matroid.  For  G c ~3~ the family 
~ga={Gc~G': G ' ~  ~} is the family of  flats o f  a mat ro id  o f  rank i on G. An 
~;-squashed design is an ~:-squashed geomet ry  in which flats o f  equal  rank  have 
equal  size. The  sizes lo, 11 . . . . .  l~ along with/s+~ = n = J U ~  l are called the par- 
ameters of  the squashed design. Clearly, setting l~ = k, ~, is an (n, k, {io, •, •, ls_~})- 
system. For  (3 ~ ~ ,  ~da = { G n G' :  G '  e (g} is the family of  flats o f  a perfect  matroid  
design. 

P r o p o s i t i o n  3.1. I f  ~ is a squashed design of  rank s with parameters/o, • • . ,  l~_~, k, n 
then 

s -1  nt  
1 ,1 -< 11 ,. ', (3.1) 

with equality holding if and only if 

J U ( H - G ) : G c H e ~ I = n l ,  holdsforall Ge~gi, l<. i<s.  (3.2) 

Proof. Let us note first that  in view of  (i) and (ii) ~go consists o f  a single set, 
say Go, IGot--to. Consequent ly  every G e  ~g contains  Go. Defining fg(Go) = 
{ G - G o :  G e  c~}, ~(Go)={F_Go:  Go = F e  ~:}, ~ (Go)  is an ~ : (Go)-squashed  
design with paramete rs  (0, l~ - l o , . . . ,  l~_~ - lo, k - lo, n - lo), thus it is sufficient 
to consider  the  case lo = 0, i.e., ~o = {0}. N o w  (i) and  (iii) imply  that  U ~ =  U ~:. 

We app ly  induct ion on s. I f  s = 1, then ~s = ~ is a family o f  pairwise disjoint 
l~ - lo = lz-element sets. In  view of  (i) and (iii) we have  U ~  = U ~ .  Consequent ly  
I~lJ = no/l~ holds.  Next  consider  the general  case; s >- 2. For  an arbi trary x ~ U ~: 
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~ ( x ) = { G - x : x e G e ~ }  is an 3;(x)-squashed design with parameters 
(ll - 1 , . . . ,  l,_l, k -  1, n(3;(x)), where 

n (3 ; (x ) )=  I U H l = l ~ - l + [ U ( F - G o ( X ) ) : G o ( x ) ~ F ~ 3 ; l < - l t - l + n t ~  • 
H¢3~(x) 

Consequently 

s-1  

I ~ ( x ) l ~  II n,, 
i = 1  k-li  

holds with equality itt n(3;(x)) = l~ - 1 + n~ and 3;(x) satisfies the last conclusion 
of Proposition 3.1. Now (3.1) follows from Y.~ I~(x)l-- kl~l, and the condition 
for the equality is derived via the above observation. [] 

I f  (3.2) holds for all i, 1 - i-< s, then ~ is called a perfect squashed design. 
Let us note that every 3~-squashed design ~ is a g-squashed design. 

Proposition 3.2. Suppose ~ = 3; is a 3;-squashed design. Then the following condi- 
tions are equivalent: 

(i) ~ is a perfect 3;.squashed design of rank s; 
(ii) there exist integers t o , . . . ,  r~ so that each H ~ ~ is contained in exactly r~ 

members of (~. 

Proof. ( i )~ ( i i ) :  H e  ~ ,  it is easily seen that ~ ( H ) = { G - H :  H e  G e  ~} is a 
perfect 3;(H)-squashed design. Thus (ii) holds with 

l-I nt~ 
r~ = i~j<, k - lj" 

( i i )~ ( i ) :  For H e ~  define X ( H ) = U n : F ~ F - - H .  By definition nt,= 
m a x . ~ . ~  tx(n)l. For  i = s - a w e  obtain r~_~ = Ix(n)l/(k- l~_O. i.e., t X ( H ) I  is  
constant: nl,_~ = r~_~(k - l,-O proving (3.2) for i = s - 1. Applying induction back- 
wards we see that r~, the number of  G e (~, containing H e (~, is 

tx(n)l VI . , ,  
i < j < s  

r,= II ( k - l j )  
i~--j.<s 

This yields that IX(H)I is the same for all H e  (0i as desired. [] 

In view of  Proposition 3.2 a meet semilattice 3; is a perfect 3;.squashed design 
if and only if it is an Ms-design in the sense of  Neumaier [Ne] .  We refer the 
reader for some interesting results on Mrdesigns to [Ne]. 
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Definition 3.3. An ~:-squahsed geometry c~ of  rank s is called regular if it enjoys 
the following two properties: 

(i) Given G e  ~s, H e  cgt, H c  G, the number of  sets E e  ~r with H c  E c  G 
is a constant m (t, r). 

(ii) Given H e  (g,, the number of sets E e  ~, with H c  E is a constant c(t, r). 

Note that conditions (i) and (ii) are in complete analogy with those of [D 1], 
however, Delsarte in his definition of regular semilattices puts a third, stronger 
condition which ensures that qJ, is an association scheme where G, G'e ~g~ are 
/-associated if Go7 G ' e  ~ .  

4. Examples of Squashed Designs 

The simplest case is ~ = 2 x. Then qd = ~: is a perfect squashed design. So are the 
truncations of ~:: ~T(s): {F c X: IFJ--s} u {X}. In general, given an ~-squashed 
design ~ with parameters (10, l~ , . . . ,  Is_~, k, n) one may define its tth truncation 
~( ' )= (goU'" .w~ , ,  l<-t<s. It is an ~:-squashed design with parameters 
(lo, l ~ , . . . , l , n ) .  Analogously one can define derived designs: fg(G)= 
{ H - G :  G c  H e  ~} is an ~(G)-squashed  design for all Ge ~i, i<s. 

Instead of  2 x one can consider ~: as all subspaces of V, an n-dimensional 
vector space, projective or affine space over GF(q). By analogy we denote it by 
2 v. In general, for ~ = 2 x, a perfect squashed design is simply a perfect matroid 
design. In most cases ~ is uniquely determined by ~gs, therefore in most examples 
we define (gs only. 

Example 4.1. (a) Suppose X is the Cartesian product X l x " "  X Xd where 
Ix ,  I = n, and ~ is the family of  all injective subsets ( F c  X is injective if for all 
distinct elements ( f l , . . .  ,fd), ( f ~ , . . .  , f ~ ) e  F, f~ ~f~ for 1 -< i -  < d (cf. [DF])). 
We set ~:=aC(X~ . . . . .  Xa). 

(b) Suppose now V=  Vlx 112×---× Va where V~ is a vector space of  
dimension n ,  If  W is an affine subspace of  V, one can define ~r~(W) as its natural 
projection on V~. Define ~¢a( V I , . . . ,  Va) as the set of all injective affine subspaces, 
,,CA(V~,..., lid) = { A -  < V: dim(re(A)) = dim (A) for i = 1 . . . . .  d}. Similarly, for 
vector subspaces 

~ v ( V ~ , . . . ,  Vd)={ W -  < V: dim(m(W))=dim(W) for i =  1 , . . . ,  d}. 

Example 4.2. Suppose Y and Z are both either finite sets or finite-dimensional 
vector spaces over GF(q).  Let gr( y, Z)  denote the set of all partial transversals 
(transverse subspaces), i.e., all W <  Yx  Z such that J Wc~ ( Y x  {z}) I _< 1 holds for 
all z e Z. Note that the definition is not symmetric in Y and Z. (This example is 
due to Delsarte [D 1].) 

Let us note that Example 4.2 is a regular semilattice in the sense of Delsarte 
[D 1]), but Example 4.1(a), (b) is not. 
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Example 4.3. Suppose V is an n-dimensional vector space and f (x ,  y) is a 
sesquilinear form on V (cf. [Di]). Let ~r= ~s be the collection of  singular 
subspaces, i.e., 

~ s = { W < -  V:f (w,  w') = 0  for all w, w'E W}. 

Note that 2 v = ~s f o r f t h e  identically zero form. Note also that if f is nondegener- 
ate then ~s is a perfect squashed design. This is true for the other examples and 
their truncations as well. 

In the examples considered so far ~d was simply a truncation of ~. There are 
several other examples of  this type, related to polar spaces and buildings (cf. [Ne]). 

Example 4.4. Suppose ~ = 2 x, 2 A, 2 v, 2 P or more generally a squashed geometry. 
A family ~ c ~ ,  is called a t-design with repetition h in ~s if every F ~ ~, is 
contained in exactly h members of fg. For h = 1 we call ~ shortly a t-design in 
~:s- If  ~ is a perfect squashed design then a t-design ~d defines a perfect squashed 
design. 

Note that for regular semilattices our definition of  t-designs coincides with 
the notion of  combinatorial t-design in [D 1] or combinatorial relative t-designs 
in [D 2]. If  5~ow.- . u  ~s is a regular squashed geometry then a t-design with 
repetition A is also a t '-design with some repetition h '  for 0 <  t ' <  t. 

Let us remark that a t-design 3 in a regular squashed geometry is a packing 
of maximal size of members of  ~-s such that any two of them have intersection 
of rank less than t. Similarly, it is a minimal covering of the members of ~:,. 

Let us note that 15rl = I ,l/m(0, t). It follows from a much more general result 
of [FR] that for an arbitrary positive e and n~,_, sufficiently large with respect to 
m(0, t) and e there exists a packing of  size at least ( 1 -  e)l~,l/m(o, t). 

Note that if d = 2 and IX d = IX2[ = n then there is a natural correspondence 
between the symmetric group S, and the flats of maximal rank (i.e., of  rank n) 
in ,,~(X~,X2). Namely, a permutation (i~,i2 . . . . .  i,) is associated with 
{(1, it) . . . .  , (n, i,)}. In  this case any t-fold transitive permutation group F is a 
t-design with repetition h = IFl/n(n - 1) • • - (n - t +  1). A general t-design with 
repetition A in ~¢(X1, X2) is called a A-uniform t-transitive permutation set (cf. 
[De 2]) or orthogonaI permutation array (cf. [It]). 

The existence problem of  t-designs is a hopelessly difficult one in general, 
even for ~ :=  2 x. In this case 1-designs are just partitions of  X into subsets of  
size s. In the case ~ : =  2 x, t = 2 Wilson [Wi] proved that t-designs with repetition 
h exist in (2 x) whenever the trivial necessary conditions and n > n o ( ~ , h )  are 
fulfilled. The existence problem for t-designs in 2 v was raised in [Ray]. 

Example 4.5. Suppose A is an n-dimensional affine space over GF(q)  and ~dl 
is the class of  subspaces of  dimension d, parallel to a fixed d-dimensional 
subspace. Then ~d~ is a 2A-squashed design. 
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Example 4.6. Suppose P is an n-dimensional projective space, ( d + l ) l ( n + l )  
and ~31 is a spread of d-dimensional subspaces (i.e., the members of c~ are 
pairwise disjoint and their union is P, cf. [Dem]). Then cgl is a 2e-squashed design. 

Example 4.7. Let V be an (n + 1)-dimensional vector space corresponding to P 
from the preceding example, and A the corresponding (n + 1)-dimensional affine 
space. Let q32 consist of all affine translates of all (d + 1)-dimensional subspaces 
whose projection in P is in the spread. Then qd2 is a 2A-squashed design with 
parameters (0, 1, qd+~, q~+l). 

Example 4.8 (Laurent [La]). Suppose ktnln2 . . . .  ha, k-<minin~. Then there 
exists a 1-design in , ~ k ) ( x t ,  X2 . . . .  , Xd) .  

Example 4.9. In 5"( y, Z)  and Y, Z finite sets t-designs with repetition a corre- 
spond to orthogonal arrays of strength t (cf. [Rao]). In the vector space case 
t-designs always exist (cf. [D 1]). 

Example 4.10. If a family ~1 attains equality in Theorem 1.3(i) for f f  = ~:( Y, Z), 
it is called a transversal matroid design (cf. [CDF] for some examples). 

Example 4.11. A family ~¢ attaining equality in Theorem 1.3(i) for ~ =  
o ~ ( X l , . . .  , X  d) is called an injection design (cf. [DF]). The special case d =2,  
[XlJ = iX21 = k corresponds to permutation geometries (cf. [CD]). In [CD], [DF], 
and [DCF] several examples are given and we describe several new constructions 
in Sections 5 and 6. 

5. Some Examples of t-Designs 

Proposition 5.1. Suppose ~o = ~:oU" • • u ~s is a (regular) squashed design and 
~ '=  ~;s is a t-design in ~;. Suppose that for  some k <- s and all T ~ ~ there exists a 
t-design with repetition A in ( ~;o w " . . w ~;k)r = { F ~ ~;i: F c T, i ~ k}. That is, for  
each T ~ ~r there exists a¢( T)  c (~:k C3 2 r) with the property that each F ~ ~;t with 
F c  T is contained in exactly A members o f  ~ (  T).  Then UrEerc~(T) is a t-design 
with repetition A in the kth truncation, ~;oU" • • w ~k  o f  ~.  

Proof. By inspection, it is left to the reader. [] 

Example 5.2. Suppose ]X[ =pC', p a prime and consider the elements of X as 
the elements of the finite field of order p'L Let A = AL(1, p~) be the group of all 
affine linear transformations x-~ ax+  b. Then [A[ = p '~(p '~ -1 )  and A is sharply 
2-transitive. Thus (see the remark after Example 4.4) A corresponds to a 2-design 
8-(A) in , , ~ (X ,X) .  If  for some 2 < k < p  ~ there exists a 2-design in (x) with 
repetition A then there exists a 2-design with repetition ~ in the kth truncation 
of ¢~(X, X). In view of  Example 1.6 in [DF] the same is true in A~(X, X , . . . ,  X). 
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Corollary 5.3. Suppose p~ ~- 1 or 3 (mod 6). Then there exists a Steiner triple- 
system in ~ ( X ~ , . . . ,  Xa) for Ix, I . . . . .  [x l = f  

Proof. Use Example 5.2 and the fact that Steiner triple-systems exist in (x) 
whenever p~ - 1 or 3 (mod 6) (cf. [Ki]) [] 

Example 5.4. Using the general projective group PGL(2, p~) which acts sharply 
3-transitively on the p"  + 1 points of  the projective line, it was shown in [DF] 
that there exists a 3-design in ,,¢(X1, X2 . . . .  , Xa) for [XI[ . . . . .  [Xa[ =pC" +1, 

X d > 2 .  Since there exist 3-designs in (p~+l) for IX[ =p2g+ 1, in the above way, 
we infer the existence of 3-designs in the ( p '  + 1)th trunction of , ,~(X~, . . . ,  Xd) 
for IxzI . . . . .  IXa]=p2t~ + l. 

Let us introduce the notation ~ ( n l , . . . ,  ha) for ~({ 1 , . . . ,  nl},. .  •, { 1 , . . . ,  nd }). 
For given k >-3 and d > 1 define M(k, d) as the set of  those values of(n1 . . . .  , ha) 
for which there exists a 2-design of  k-element injective sets in J(n~ . . . .  , na). 

Proposition 5.5. I f  ( n l , .  . . ,  nd)e  M ( k ,  d )  then min{nl . . . .  , ha} > -- k; moreover 
(i) and (ii) hold: 

(i) k (k-1 ) i  1] (nj(nj-1),  
t<--j<--d 

(ii) ( k - l )  I I] ( n j -1 ) .  
l ~ j ~ d  

Proof. Clearly the number of 2-element injective subsets in J(n~ . . . .  , ha) must 
be a multiple of (2k), this implies (i). To prove (ii), one considers the derived 
designs, e.g., the ( k -  1)-element injective sets left over after removing the point 
(nl . . . . .  ha) from all sets containing it. These sets partition o~(nl-  1 . . . . .  n d -  1) 
yielding (ii). 

Conjecture 5.6. I f  minl_<~_<d nj is sufficiently large with respect to k and (i) and 
(ii) are fulfilled, then ( n l , . . . ,  nd)~ M(k,  d). 

Let us note that for d = 1, Conjecture 5.6 follows from the existence results 
of Wilson [Wi]. 

Recall that a pairwise balanced design ~ c 2 x is just a collection of subsets 
of X so that [B] >- 2 for all B e ~ and every 2-subset of X is contained in exactly 
one member of ~. 

Proposition 5.7. Suppose there exist pairwise balanced designs ~i  c 2 {1"2"'''n,), i = 
1 , . . . ,  d so that (IBd . . . . .  IB l) ~ M(k ,  d) holds for all B, ~ ~,,  i = 1 , . . . ,  d. Then 
(n, . . . .  , r id)~ M ( k ,  d ) .  

Proof. For each choice of B1 ~ ~1 . . . .  , Bd ~ ~a replace the brick BI x .  • • x Bd 
by an injection 2-design. It is left to the reader to verify that in this way we obtain 
an injection 2-design in J ( n l  . . . .  , r i d ) .  [] 
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Finally, let us ment ion  that  for k = 3, d = 2 an injection 2-design in ~ (3 ,  n) is 
equivalent  to a latin square  with (1, 2 , . . . ,  n) as main  diagonal  (i.e., mult ipl icat ion 
table of  idempoten t  quasigroup) .  This latter exists for  all n except  n = 2. To see 
this equivalence,  first assume ~q is an injection 2-design in ~ (3 ,  n). Then [~1 = 
n ( n - 1 ) .  I f  G~(~ ,  G = { ( 1 ,  a) ,  (2, b), (3, c)} then put  in the latin square a in 
posi t ion (b, c). This way the diagonal  will remain  unfilled. Write a in posit ion 
(a, a).  This leads to a latin square since ~ is an injection design and clearly, one 
can reverse the steps. Note  that,  in view o f  Proposi t ion 5.7, the existence of  an 
injection 2-design in ~ ( 3 ,  n) implies that  it exists in ~ ( ra ,  n) whenever  m --- 1 or  
3 (mod  6). The  first case for  which we could not decide whether  an injection 
2-design (with k = 3) exists is in ~¢(4, 5). 

6. A Recurrent Construction for Injection Designs 

Let us recall that  an injection design D with parameters  ( l o , . . . ,  l~_~, k, n) and 
of  d imens ion  d is a perfect  ~ ( X ~ , . . . ,  Xd) - squashed  design o f  rank s in which 
the size of  the flats are 10 . . . .  , I~_1, k. For  a set D = 
{x(1) ~(2) , x~a)), (X~k 1), x~d))} we define the first project ion of  D by 
~r(D) = {x~ ~), . . ,  X(k~)}. We know (cf. [DF])  that  ~r(D, ~ ) =  {Tr(D ~ D' ) :  D ' ~  ~}  
defines a perfect  mat ro id  design for all D ~ @, in part icular  for  D e ~ .  ~ is 
called concentrated i f  for  all D, D ' ~  ~ ,  7r(D) c~ ~r(D') e ~ ( D ,  ~ )  holds.  

Proposition 6.1. Suppose ~ is a concentrated injection design with parameters 
(lo . . . .  , l~-l, k, n) then for  all i, 0 < i < s  (and even for  i = s i f  k < n) the fami ly  
7 r ( ~ )  = {~r(D): D ~ ~i}  is a perfect matroid design with parameters 
( lo , . .  . ,  I,_l, l,, n). 

Proof. Clear ly  ¢ r ( ~ )  is an (n, l~, { l o , . . . ,  l~_~})-system which verifies the assump-  
t ions o f  R e m a r k  2.4, i.e., the intersection o f  any number  o f  distinct members  o f  
¢ r ( ~ )  has size belonging to L. The p roof  can be concluded as that  o f  Theorem 1.3. 

[ ]  

For A c X~ clearly A = r r (D)  implies that  D is an injective subset  in A x X2 x 
• . .  x Xd. Thus,  if IAI = l,, Ix~t = n (j~, then the number  of  D ~ ~,  with a = or(D) 
is at  most  I ]o_~_~ ,  I]~=1 ( n ( j ) -  l~). 

Proposition 6.2. Suppose ~(~) is a concentrated injection design with parameters 
(to, 11 . ,  Is-l ,  k, n) and  o f  dimension d (~) in J ( X ~ ) ,  . v(~)~ . . . . .  , ~ a~ J, u = 1, 2. Suppose 
further  X~ ~) = X~ 2) and for  all i, 0 <- i <- s, Ir( ~ 1)) = zr( ~ l  2)) holds. Then there exists 
a concentrated injection design with parameters ( l o , . . . ,  I~_~, k, n) and o f  dimension 
d(1)+ d (2)- 1 in ~ ( X ~ l ) , . . . ,  X~d't ), X~22),..., X(d2)). 

With x - ( a ,  x2 , . . . , X d ~ ) e X ~  X . . .  Xd~ and y - ( a ,  y2 , . . . , y d z ) e  Proof  " - (~) (~) (~) × (~) _ (2) (2) 
(2) • (1) X(l) (2) (2) • - • X~ 2) x .  • • x d2 we associate  xy = (a, x2 , . . . ,  d,, Y2 . . . .  , Yd~ ). Similarly, ff A ~  

~(~), B ~ ~(2) and ~ ( A )  = ¢r(B) then we can  define A B  = {xy: x ~ A, y ~ B, x and 
y have the same first coordinate}. This leads to the definition of  @ = ~(~)~(2) = 
{ A B :  A ~ ~(1), B ~ ~(2), or(A) = ¢r(B)}. 
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We want  to show that  @ is the desired injection design. For  C c X~ x) c X~ ~) 
we define ¢r~l(C) = { D e  @(~): or(D) = C}, v = 1, 2. Since ~r(@ (l)) = q T ( ~  (2))  is a 
P M D  on X~ 1), in view o f  our  remarks  after  Proposi t ion 6.1, ¢ r ~ ( C )  is an injection 
design on ¢¢(C, X ~ ) , . . . ,  X( f  )) for  v = 1, 2 and C e w ( ~ ° ) ) .  Define r r - I ( C )  = 
{ D e @ :  w ( D ) =  C}. Clearly, I~r-~(C)l=lzr iq(C)[  • [~rf~(C)[ holds,  i.e., ¢ r - l (C)  
has the size o f  an injection design in • (C,  X~) ,  • • . ,  ~'d,,V(~) X~2),. . . ,  X~a2]). Thus 
~ = ( D e  ~ :  [DI = 1~} satisfies 

2 d (~) i - 1  

[@,1 = H H H (,,5 
~,~1  j = 2  b=O 

Using lw(D~))[ = Ho~b<~ (n~ ~ -  lb) / ( l , -  Ib), we see that  @~ has the desired size. 
To conclude the proof ,  in view of  our  remarks  after the p roo f  of  Theorem 1.3, 

we only need to show that  @ is closed under  intersection. Let AB, A'B'  ~ ~. Since 
@(~) is concentra ted  for  all C ~ ~r(@(~)), D(~)~ @(~), the set {x e D(~): ~r(x)e  C} 
is in @(~). Consequent ly  if  ¢:(D(~)) = w ( D  (2)) then {x~ D¢~)D(:): ¢r(x)~ C } e @  
holds. Since rr(@ (~) is closed intersection, C = ¢r(A c~ A')  c~ ~r(B c~ B' )  e ~r(@(~)). 
Now A B c ~ A ' B ' = { x e A B :  ¢r (x)~C},  thus ( A B n A ' B ' ) ~ @ ,  concluding the 
proof.  []  

P r o p o s i t i o n  6.3. Suppose @(~) is an injection design with parameters (0, 1 , . . . ,  
s - 1, k ("), n (~)) in J ( X ~  ~), v(~)~ • . . ,  ~ ,a~ , ,  v = 1, 2 .  M o r e o v e r  X~ ')= X~ 2), IX~2)[ = k (2). 
Then there exists an injection design with parameters (0, 1 . . . . .  s - l ,  k (2), 
n(~)n(2)/n~2)) in aC(X~ ~), , X(d~), X(22), v(2)x 

. . . . . .  , ,¢~ d2 J • 

Proof.. For  0-< i < s the fiats o f  rank i in the produc t  design @ are all injective 
subsets o f  size i in ~¢(X~ ~), X (2h • . . ~  d2 /* 

As to @,, for arbi trary A e @~) and B e ~ = )  we first define BA as the unique 
subset  o f  B satisfying or(A) = ¢r(Ba). Then the corresponding e lement  in @~ is 
ABa. From here on the p r o o f  practically coincides with that  o f  the preceding 
proposi t ion.  []  

Note  that  the reason why we do not need concentratedness  explicitly in this 
propos i t ion  is that  ¢ r ( ~  ~)) = ~ r ( ~  :)) is automat ica l ly  satisfied for  O<-i< s. Also 
k (2) = n~ 2) implies that  ~r(D) - X~ 2) holds for all ~(2) - D ~ ~ , i.e., @(2) is concentrated 
in a very strong sense. 

For  more  construct ions see [DL] ,  [La].  
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