
ar
X

iv
:2

10
9.

04
68

0v
1 

 [
m

at
h.

A
P]

  1
0 

Se
p 

20
21

ON STABILITY AND INSTABILITY OF STANDING WAVES

FOR 2D-NONLINEAR SCHRÖDINGER EQUATIONS WITH

POINT INTERACTION

NORIYOSHI FUKAYA, VLADIMIR GEORGIEV, AND MASAHIRO IKEDA

Abstract. We study existence and stability properties of ground-state stand-
ing waves for two-dimensional nonlinear Schrödinger equation with a point
interaction and a focusing power nonlinearity. The Schrödinger operator with
a point interaction (−∆α)α∈R describes a one-parameter family of self-adjoint
realizations of the Laplacian with delta-like perturbation. The operator −∆α

always has a unique simple negative eigenvalue. We prove that if the frequency
of the standing wave is close to the negative eigenvalue, it is stable. Moreover,
if the frequency is sufficiently large, we have the stability in the L2-subcritical
or critical case, while the instability in the L2-supercritical case.

1. Introduction

We consider the following nonlinear Schrödinger equation (NLS) with a focusing
power nonlinearity in two spatial dimension:

(1.1) i∂tu = −∆αu− |u|p−1u, (t, x) ∈ R× R
2,

where p > 1 and −∆α is the Laplacian with a point interaction with strength α ∈ R

at the origin (see (1.2)–(1.5) for the precise definition).
The study of the Laplace operator with point interactions in RN (N = 1, 2, or

3) seems to become intensive research area in the last decades. The first rigorous
attempt to define and study the spectral properties of these operators was done in
[14] by Berezin and Faddeev in 1961. Their study was extended in the work [10]
by Albeverio and Høegh-Krohn in 1981.

A simplest way to introduce a singular perturbation at a point is to consider the
potential perturbation −∆+ Vε of the Laplace operator with regular potentials Vε
spiking up and shrinking around a point in the limit ε→ 0. This approach is well-
known for dimension N = 1 [9], N = 2 [7], and N = 3 [6] (we also refer to [8] for a
comprehensive overview). In the case of one singular point, this approximation gives
a self-adjoint operator−∆α depending on the parameter α ∈ R. To be more precise,
starting with the symmetric operator of −∆|C∞

c (RN\{0}), one can characterize all

its nontrivial self-adjoint extension on L2(RN ) by means of a parameter α ∈ R. A
detailed overview of the construction and the main properties of −∆α can be found
in [18]. Fractional powers of the Laplace operator −∆α with singular perturbations
are studied in [35, 49].

The dispersive properties of the Schrödinger group (eit∆α)t∈R have been studied
intensively in the last years. In one-dimensional case, the dispersive and Strichartz
estimates and boundedness wave operators have been studied, for example, in [4,
27, 39]. In higher dimensional case, such properties have been studied recently by
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[22, 59] in N = 2, [25] in N = 3. See also [24] for the weighted dispersive estimate
in three dimension.

By using these dispersive properties, one can establish existence of nonlinear
evolution flow. The local well-posedness for (1.1) (in two or three-dimensional
cases) in the domain D(−∆α) has been studied in [18]. See, e.g., [4, 27] for the
one-dimensional case.

Recently, the nonlinear dynamics around standing waves in one dimension are
intensively studied in various contexts depending on whether the potential is at-
tractive or repulsive. In the attractive regime, the orbital stability and instability
of standing waves have been studied by [34, 36, 41], the asymptotic stability has
been done in [23, 46, 47], and the strong instability has been done in [51, 29]. In the
repulsive regime, the orbital stability and instability have been studied by [31, 45],
and the global dynamics below ground states were studied in [40].

As related topics, we mention the NLS with the concentrated nonlinearity. See
[3, 17, 42] for N = 1, [1, 2] for N = 2, and [5] for N = 3.

However, much less is known about the nonlinear dynamics and the existence and
stability/instability properties of the ground states for (1.1). Up to our knowledge,
there are no results treating such properties in the two-dimensional case. The
main goal of the work is to cover this case and establish fundamental properties of
ground states for (1.1) such as existence, uniqueness, nondegeneracy, and its orbital
stability/instability.

To state our main results, we shortly give the definition of the operator −∆α in
two dimension (see [8, Chapter I.5] for more details). The class of self-adjoint exten-
sions in L2(R2) of the positive and densely defined symmetric operator−∆|C∞

0 (R2\{0})
is a one-parameter family of operators (−∆α)α∈(−∞,+∞]. The extension −∆α=∞ is

the Friedrichs extension and is precisely the free Laplacian on L2(R2) with domain
H2(R2). All other extensions for α ∈ R represent nontrivial operators with a point
interaction at the origin, and are characterized explicitly by

D(−∆α) =

{
f +

f(0)

βα(λ)
Gλ : f ∈ H2(R2)

}
,(1.2)

(−∆α + λ)g = (−∆+ λ)f for g = f +
f(0)

βα(λ)
Gλ ∈ D(−∆α).(1.3)

Here λ > 0 is a fixed constant with λ 6= −eα (see (1.11) for the definition of eα),

(1.4) βα(λ) := α+
γ

2π
+

1

2π
ln

√
λ

2
,

γ > 0 denoting Euler–Mascheroni constant, and Gλ is the Green function of −∆+λ
on R2, defined by the distributional relation (−∆+ λ)Gλ = δ, that is

(1.5) Gλ(x) :=
1

2π
F−1

[
1

|ξ|2 + λ

]
(x) =

1

(2π)2

∫

R2

eix·ξ

|ξ|2 + λ
dξ,

where F−1 is the inverse Fourier transform. Note that f(0) makes sense for f ∈
H2(R2) from the embedding H2(R2) →֒ C(R2).

From the the expression (1.5), we can easily check that

Gλ ∈ H1−ε(R2), Gλ /∈ H1(R2),(1.6)

Gλ −Gµ ∈ H3−ε(R2), Gλ −Gµ /∈ H3(R2) if λ 6= µ(1.7)

for all ε > 0 and λ, µ > 0. The function Gλ is also represented as

(1.8) Gλ(x) =
1

2π
K0(

√
λ|x|),
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where K0 is the modified Bessel function of the second kind (or the Macdonald
function) of order zero. From the expression (1.8), Gλ is positive, radial, and
strictly decreasing function with

(1.9) Gλ(r) ∼
{

− ln(
√
λr) as r → 0,

r−1/2e−
√
λr as r → ∞

(see [26, Chapter 10] for more properties of Kν).
From the property (1.7) we can check that the definition of −∆α is independent

of λ. Indeed, if g = f + f(0)βα(λ)
−1Gλ for some f ∈ H2(R2) and λ 6= −eα, then

for µ 6= −eα, we have the decomposition

g = f̃ +
f̃(0)

βα(µ)
Gµ, where f̃ := f +

f(0)

βα(λ)
(Gλ −Gµ) ∈ H2(R2),

and the relation

(−∆α + µ)

(
f̃ +

f̃(0)

βα(µ)
Gµ

)
= (−∆+ λ)f + (µ− λ)

(
f +

f(0)

βα(λ)
Gλ

)
.

This means the independence.
The spectral properties of −∆α are also known (see [8, Theorem 5.4]). The

essential spectrum of −∆α are given by

σess(−∆α) = σac(−∆α) = [0,+∞), σsc(−∆α) = ∅,(1.10)

where σac and σsc denote the set of the absolutely and singularly continuous spec-
trum, respectively. The operator −∆α has a simple negative eigenvalue

σp(−∆α) = {eα}, eα := −4e−4πα−2γ .(1.11)

In this sense, −∆α can be regarded as an Schrödinger operator with an attractive
potential. The normalized eigenfunction corresponding to the eigenvalue eα is

χα :=
G−eα

‖G−eα‖L2

.

Note that βα(λ) defined in (1.4) is expressed as

βα(λ) =
1

4π
ln

λ

−eα
,

so one has

βα(λ) > 0 ⇐⇒ λ > −eα.
The energy space (or the form domain) H1

α(R
2) associated with −∆α can be

characterized by general results on the Krĕın–Vǐsik–Birman extension theory (see
e.g. [48]), and it is given explicitly by

(1.12) H1
α(R

2) =

{
{f + cGλ : f ∈ H1(R2), c ∈ C} if α ∈ R,

H1(R2) if α = ∞.

Note that H1
α(R

2) is independent of the choice of α ∈ R and λ > 0 from (1.7). For
λ > −eα, one can define the maximal extension of the form

〈(−∆α + λ)g, g〉 = ‖∇f‖2L2 + λ‖f‖2L2 +
|f(0)|2
βα(λ)

with g = f+f(0)βα(λ)
−1Gλ ∈ D(−∆α). This extension defines a positive quadratic

form well-defined on g ∈ H1
α(R

2) explicitly given by

(1.13) 〈(−∆α + λ)g, g〉 = ‖∇f‖2L2 + λ‖f‖2L2 + βα(λ)|c|2
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for g = f + cGλ ∈ H1
α(R

2). By using the relation

λ‖g‖2L2 = λ‖f + cGλ‖2L2 = λ‖f‖2L2 + 2λRe[c(f,Gλ)L2 ] +
|c|2
4π

,

we can rewrite (1.13) as

〈−∆αg, g〉 = ‖∇f‖2L2 − 2λRe[c(f,Gλ)L2 ] +

(
βα(λ) −

1

4π

)
|c|2.

We denote the H1
α-norm depending on the parameter λ > −eα by

(1.14) ‖g‖H1
α,λ

:=
√
〈(−∆α + λ)g, g〉

for g ∈ H1
α(R

2). The following equivalence holds:

‖g‖H1
α,λ

≃ ‖g‖H1
α,µ
, λ, µ > −eα.

As a special case, we choose λ = 1− eα and also use the notation

‖g‖H1
α
:= ‖g‖H1

α,1−eα
.

To study the stability properties of the standing waves, we need the local well-
posedness in the energy spaces H1

α(R
2). We have the following statement (see

Appendix B for the proof).

Proposition 1.1. Let α ∈ R and p > 1. For each u0 ∈ H1
α(R

2), there exists the

unique maximal solution

u ∈ C
(
(−Tmin, Tmax), H

1
α(R

2)
)
∩ C1

(
(−Tmin, Tmax), H

−1
α (R2)

)

of (1.1) with the initial data u(0) = u0, where H
−1
α (R2) is the dual space of H1

α(R
2).

Moreover, u satisfies the conservation laws of energy and the L2-norm:

E(u(t)) = E(u0), ‖u(t)‖L2 = ‖u0‖L2

for all t ∈ (−Tmin, Tmax), where the energy is defined by

E(v) :=
1

2
〈−∆αv, v〉 −

1

p+ 1
‖v‖p+1

Lp+1, v ∈ H1
α(R

2).

Now let us consider standing wave solutions with the form

(1.15) u(t, x) = eiωtφ(x),

where φ ∈ H1
α(R

2) is a nontrivial solution of the stationary equation

(1.16) −∆αφ+ ωφ− |φ|p−1φ = 0, x ∈ R
2.

Equation (1.16) can be rewritten as S′
ω(φ) = 0, where Sω is the action functional

defined by

(1.17) Sω(v) = Sα,ω(v) :=
1

2
‖v‖2H1

α,ω
− 1

p+ 1
‖v‖p+1

Lp+1, v ∈ H1
α(R

2).

We denote the set of all nontrivial solution of (1.16) by

Aω = Aα,ω := {φ ∈ H1
α(R

2) : φ 6= 0, S′
α,ω(φ) = 0}

and the set of all ground states (minimal action solution) by

Gω = Gα,ω := {φ ∈ Aα,ω : Sα,ω(φ) ≤ Sα,ω(ψ) for all ψ ∈ Aα,ω}.
Now we state our main results. First, we state the results about the existence,

symmetry, and uniqueness of ground states.

Theorem 1.2. If ω > −eα, then the set Gω is not empty.
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Theorem 1.3. Let ω > −eα and φ ∈ Gω. If φ is decomposed as φ = f +
f(0)βα(ω)

−1Gω with f ∈ H2(R2), then there exists θ ∈ R such that eiθf is positive,

radial, and decreasing function. In particular, the function eiθφ is also positive, ra-

dial, and decreasing.

Theorem 1.4. There exists ω1 > −eα such that if ω > ω1, then there exists the

unique positive radial ground state φω ∈ Gω such that the set of all ground states is

characterized as

(1.18) Gω = {eiθφω : θ ∈ R}.
Next, we state the results about orbital stability and instability of standing

waves. The definition of orbital stability is as follows.

Definition 1.5. Let ω ∈ R and let φ ∈ H1
α(R

2) be a nontrivial solution of (1.16).
The standing wave eiωtφ is stable if for any ε > 0 there exists δ > 0 such that
for any u0 ∈ H1

α(R
2) satisfying ‖u0 − φ‖H1

α
< δ, the solution u(t) of (1.1) with

u(0) = u0 exists globally in time and satisfies

sup
t∈R

inf
θ∈R

‖u(t)− eiθφ‖H1
α
< ε.

Otherwise, the standing wave eiωtφ is unstable.

The following two statements are main results of this paper. The first one
concerns the stability for ω close to −eα.
Theorem 1.6. For each α ∈ R and p > 1, there exists ω∗ > −eα such that if

ω ∈ (−eα, ω∗) and φ ∈ Gω, the standing wave eiωtφ is stable.

The second one concerns the stability/instability for large frequency ω. We
denote the unique ground state given in Theorem 1.4 by φω.

Theorem 1.7. For each α ∈ R and p > 1, there exists ω∗ ∈ (ω1,∞) such that the

following is true.

• If 1 < p ≤ 3, then the standing wave eiωtφω is stable for all ω > ω∗.
• If p > 3, then the standing wave eiωtφ is unstable for all ω > ω∗.

One can observe the similarity between the results in [28, 30, 32, 33, 34] and
Theorems 1.6 and 1.7. The paper [34] treats NLS with attractive δ-potential in
one dimension, and the papers [28, 30, 32, 33] concern NLS with general attractive
potential V (x). Since −∆α has a unique simple negative eigenvalue, we regard it
as a Schrödinger operator with an attractive potential, so it is natural to choose to
follow the approach in these papers.

Let us give a short outline of the proofs. The local well-posedness (Proposi-
tion 1.1) follows from the energy methods in [52] (see also [20, Chapter 3]) and
the Strichartz estimates for the operator −∆α obtained by [22]. The existence of
ground states (Theorem 1.2) follows from a standard variational method by using
the Nehari manifold. The positivity and symmetry of ground states (Theorem 1.3)
follow from the maximal principle and the symmetric rearrangement. In particular,
we use the result of Brothers and Ziemer [16] to obtain the radial symmetry and
decrease of ground states.

To investigate the stability properties, we consider rescaled ground states and use
a perturbation argument as in [30, 32, 33]. Let (φω)ω>−eα be a family of positive
ground states with φω = φα,ω ∈ Gα,ω . For ω close to −eα, we normalize the ground
states as

φ̂ω(x) :=
φω

‖φω‖L2

.
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Then φ̂ω is a positive solution of

−∆αφ̂+ ωφ̂− ‖φω‖p−1
L2 |φ̂|p−1φ̂ = 0.

Since we can verify ‖φω‖L2 → 0 as ω → −eα, φ̂ω can be regarded as a perturbation
of the solution for the linear equation

(1.19) −∆αφ̂ = eαφ̂,

that is, φ̂ω is close to the eigenfunction χα. On the other hand, for large ω, we
rescale φω as

φ̃ω(x) := ω−1/(p−1)φω(x/
√
ω).

Then φ̃ω is a positive solution of

−∆α̃φ̃+ φ̃− |φ̃|p−1φ̃ = 0,

where

α̃ = α̃(ω) := α+
1

4π
lnω.

Since −∆α=∞ is the free Laplacian −∆, φ̃ω can be regarded as a perturbation of
the solution for the equation

(1.20) −∆φ̃+ φ̃− |φ̃|p−1φ̃ = 0.

Therefore, we can investigate the stability properties by using the limiting equation
(1.19) for small ω and (1.20) for large ω.

The stability for small frequency (Theorem 1.6) follows from the argument of
[33]. If ω is sufficiently close to −eα, we can obtain the following coercivity property
for the linearlized operator around the ground state.

Proposition 1.8. For each α ∈ R and p > 1, there exists ω∗ > −eα such that if

ω ∈ (−eα, ω∗) and φ ∈ Gω, the following holds: There exists a positive constant k
such that

〈S′′
ω(φ)w,w〉 ≥ k‖w‖2H1

α

for any w ∈ H1
α(R

2) satisfying
∫
R2 φw dx = 0.

It is known that this coercivity implies the stability (see, e.g., [37, 44]). Because
we can prove Proposition 1.8 exactly in the same way as [33, Section 4], we omit
the proof.

Remark 1.9. In this paper, we do not discuss the uniqueness of ground states for
small frequencies because we do not need it if we just prove the stability. However,
we can obtain the uniqueness by the bifurcation theory. See, e.g., [53, 38, 47] for
more details.

To investigate the properties of the ground states for large frequency ω, we use
the limiting equation (1.20). It is well known that (1.20) has the unique positive

radial ground state φ̃∞ ∈ H1(R2) (see, e.g., [12, 43]), and it is nondegenerate in the

radial space, that is, the kernel of the linearized operator L̃∞ := −∆+1− pφ̃p−1
∞ is

trivial: ker L̃∞|H1
rad

= {0}. By using these properties, we establish the uniqueness

(Theorem 1.18) and nondegeneracy (Lemma 6.1) for large ω following the argument
of [30, Proposition 2 (v)]. Moreover, we can obtain the regularity of the map ω 7→ φω
(Corollary 8.2). To obtain the stability and instability, we use the following criteria.

Proposition 1.10 ([50, 54]). For ω > ω1, the standing wave eiωtφω of (1.1) is

stable if d
dω‖φω‖2L2 > 0 and unstable if d

dω‖φω‖2L2 < 0.
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Remark 1.11. Proposition 1.10 are well-known as the criteria of Grillakis, Shatah,
and Strauss [37] (see also [55, 58]). To use their result, we need to investigate the
spectral properties of the linearized operator S′′

ω(φω), but we do not discuss its
spectra in this paper. Instead, we can apply the arguments of [54] for the stability
and [50] for the instability because they only require the variational characterization
on the Nehari manifold, the uniqueness, and the differentiability of the map ω 7→ φω
with φω ∈ Gω. These properties are discussed in this paper.

From Proposition 1.10, the stability/instability problems can be reduced to the
investigation of the sign of the derivative d

dω‖φω‖2L2. When α = ∞, i.e., without
interaction, one can show by the scaling invariance for the equation that the ground
states φ∞,ω of (1.16) satisfies d

dω‖φ∞,ω‖2L2 > 0 if 1 < p < 3 and d
dω‖φ∞,ω‖2L2 < 0 if

p > 3 for all ω > 0. This means that when α = ∞, the ground-state standing wave
eiωtφ∞,ω of (1.1) is stable if 1 < p < 3 [19] and unstable if p ≥ 3 [13] (see [57] for
p = 3).

To investigate the sign of d
dω‖φω‖2L2 for large ω, we apply the argument of [30,

28]. Instead of d
dω‖φω‖2L2, we calculate the rescaled version d

dω‖φ̃ω‖2L2 and use

the convergence φ̃ω → φ̃∞. To estimate some error terms, we establish and use a

boundedness of the inverse linearized operator of φ̃ω. After that, we can determine
the sign of d

dω‖φω‖2L2 , and combining Proposition 1.10 we obtain Theorem 1.7.
The difficulty of the proofs of our results mainly comes from the treatment

of functions in the energy space H1
α(R

2) and the domain D(−∆α). Of special
importance in one-dimensional case is the fact that the fundamental solution of
(1−∆) is in H1(R), so one can use H1(R) as a natural space of the nonlinear flow
associated with the corresponding NLS. The situation changes essentially in two
dimension since we are forced to work with the perturbed H1

α(R
2) space, so there

are nontrivial difficulties to apply of the variational technique from [34] and the
cases of slowly decaying potentials [28, 30, 32, 33]. For a function in the spaces
H1

α(R
2) or D(−∆α), we need to decompose it into the regular and singular parts

and to treat these separately, and we have to avoid several difficult points requiring
appropriate new treatments.

• The local well-posedness for the standard 2d NLS with or without potential
requires the use of Strichartz estimates in Sobolev spaces

(1.21) Hs,p(R2) = {g = (1 −∆)−sψ : ψ ∈ Lp(R2)}, p ∈ (1, 2), s ∈ (0, 1],

if a contraction argument is applied. On the other hand, the case of singular
perturbed Laplacian −∆α requires the replacement of the classical Sobolev
space H1(R2) by the perturbed space H1

α(R
2), and we need to decompose

functions g ∈ H1
α(R

2) as

(1.22) g = f + cGλ.

There is no flexible treatment (up to our knowledge) of appropriate gen-
eralization of generic spaces Hs,p for the Laplacian of type −∆α. For this
we have chosen another approach based on compactness argument and the
results in [52].

• The existence of ground states seems to be closely connected with the in-
clusion

H1(R2) ⊂ H1
α(R

2).

However, the ground states φ = f+f(0)βα(ω)
−1Gω from Theorem 1.3 have

nontrivial singular part, since eiθf(0) is positive. This fact shows that the
ground states associated with α ∈ R are different from ground states with
α = ∞. Moreover the ground state φ from Theorem 1.3 is not in H1(R2).
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• The symmetry of the ground state for the classical NLS can be obtained
by Schwartz symmetrization. Since we have the decomposition φ = f +
f(0)βα(ω)

−1Gω for any φ ∈ D(−∆α) into regular and singular parts, a
formal symmetrization

φ∗ =

(
f +

f(0)

βα(λ)
Gλ

)∗

cannot work. We have chosen the following symmetrization

f +
f(0)

βα(λ)
Gλ → f∗ +

|f(0)|
βα(λ)

Gλ.

The technical difficulties associated with this symmetrization can be over-
come by using the results in [11].

• The uniqueness and nondegeneracy of ground states require careful use of
the decomposition (1.22) and modify accordingly the approach in [32, 33,
30].

• To determine the sign of d
dω‖φ̃ω‖2L2 , we need to estimate the error term

∂ω f̃ω(0) coming from the interaction of −∆α, where f̃ω is the regular part

of φ̃ω . As in the previous work [28, 30], we use the boundedness of the

inverse of the linearized operator L̃ω. However, it is not trivial how to

express and estimate the term ∂ω f̃ω(0) by using the operator L̃−1
ω . To

overcome this difficulty we make a good use the expression (1.3) of the
operator and the expression of the bilinear form as

f(0) =

〈
(∆α + λ)Gλ, f +

f(0)

βα(λ)
Gλ

〉

for f ∈ H2(R2;R). For more details, see Lemma 9.4.

The rest of organization of this paper is as follows. In Section 2 we correct the
properties of Gλ used in this paper. In Section 3 we prove Theorem 1.2 through the
characterization with the Nehari functional. Section 4 is devoted to the proof of
Theorem 1.3. In Section 5 we show that a family of rescaled ground states converges
to the ground state of NLS without interaction (i.e. α = ∞) as ω → ∞. In Section 6
we show lower boundedness and nondegeneracy of the linearized operator around
the ground state for large ω. This lower boundedness will be used in Section 9 as
the boundedness of the inverse operator. In Section 7 we prove Theorem 1.18. In
Section 8 we discuss the regularity of the map ω 7→ φω for large ω. Finally we
prove Theorem 1.7 in Section 9. In Appendix A we review the properties of wave
operators and Strichartz estimates for the operator −∆α. In Appendix B we prove
Proposition 1.1.

2. Preliminaries

The aim of this section is to recall the main properties of the singular-perturbed
Laplace operator −∆α and the Green function Gλ.

Note that (1.6) and (1.9) imply

(2.1) Gλ ∈ Lq(R2) for all q ∈ [1,∞).

This fact leads easily to the following Sobolev inequality

Lemma 2.1. For any q ∈ [2,∞) and λ > −eα there exists a constant C > 0 such

that

(2.2) ‖v‖Lq ≤ C‖v‖H1
α,λ

for all v ∈ H1
α(R

2).
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Proof. Any v ∈ H1
α(R

2) has the representation v = f + cGλ for some λ > −eα,
f ∈ H1(R2), and c ∈ C. Then the property (2.1) implies that

‖v‖Lq . ‖f‖Lq + |c| . ‖f‖H1 + |c|.
The relation (1.14) implies that

‖f‖H1 + |c| ∼ ‖v‖H1
α,λ
.

Hence, we have (2.2). �

Lemma 2.2. For λ, µ > 0, the inner product of Gλ and Gµ is given by

(Gλ, Gµ)L2 =





lnλ− lnµ

4π(λ− µ)
, µ 6= λ,

1

4πλ
, µ = λ.

Proof. The assertion follows from direct calculations. �

Lemma 2.3. F [x · ∇G1] = −2(|ξ|2 + 1)−1F [G1].

Proof. By a direct calculation, we have

∇F [G1] = − ξ

π(|ξ|2 + 1)2
,

F [x · ∇G1] = −2F [G1]− ξ · ∇F [G1] = − 1

π(|ξ|2 + 1)
+

|ξ|2
π(|ξ|2 + 1)2

= − 1

π(|ξ|2 + 1)2
= −2(|ξ|2 + 1)−1F [G1].

Thus, we have the assertion. �

3. Existence of ground states

In this section, we prove existence of ground states for (1.16) by using a standard
variational method and properties of the operator −∆α. Throughout this section,
we fix ω > −eα. We define the Nehari functional by

Kα,ω(v) := ∂λSα,ω(λv)|λ=1

= 〈S′
α,ω(v), v〉 = ‖v‖2H1

α,ω
− ‖v‖p+1

Lp+1

for v ∈ H1
α(R

2). We denote

Kα,ω := {v ∈ H1
α(R

2) : v 6= 0, Kα,ω(v) = 0},
dα(ω) := inf{Sα,ω(v) : v ∈ Kα,ω},
Mα,ω := {v ∈ Kα,ω : Sα,ω(v) = dα(ω)}.

For simplicity of notations, we shall often omit the subscript α like Sω, Kω, and so
on. We note that Gω ⊂ Aω ⊂ Kω.

We will prove the following.

Proposition 3.1. For any ω > −eα,
Gω = Mω 6= ∅.

By using the functional Kω, we can rewrite the action as

Sω(v) =
p− 1

2(p+ 1)
‖v‖2H1

α,ω
+

1

p+ 1
Kω(v)(3.1)

=
p− 1

2(p+ 1)
‖v‖p+1

Lp+1 +
1

2
Kω(v),(3.2)
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and dα(ω) as

dα(ω) = inf

{
p− 1

2(p+ 1)
‖v‖2H1

α,ω
: v ∈ Kω

}
(3.3)

= inf

{
p− 1

2(p+ 1)
‖v‖p+1

Lp+1 : v ∈ Kω

}
.(3.4)

Lemma 3.2. Mω ⊂ Gω.

Proof. Let φ ∈ Mω. By Kω(φ) = 0, we have

(3.5) 〈K ′
ω(φ), φ〉 = 2‖φ‖2H1

α,ω
− (p+ 1)‖φ‖p+1

Lp+1 = −(p− 1)‖φ‖p+1
Lp+1 < 0.

Therefore, there exists a Lagrange multiplier η ∈ R such that S′
ω(φ) = ηK ′

ω(φ).
Moreover, since

η〈K ′
ω(φ), φ〉 = 〈S′

ω(φ), φ〉 = Kω(φ) = 0,

it follows from (3.5) that η = 0, which implies S′
ω(φ) = 0.

Furthermore, if ψ ∈ Aω , by φ ∈ Mω and ψ ∈ Kω , we have Sω(φ) ≤ Sω(ψ).
Thus, we obtain φ ∈ Gω. This completes the proof. �

Lemma 3.3. If v ∈ H1
α(R

2) satisfies Kω(v) < 0, then

p− 1

2(p+ 1)
‖v‖p+1

Lp+1 > dα(ω),
p− 1

2(p+ 1)
‖v‖2H1

α,ω
> dα(ω).

Proof. Let v ∈ H1
α(R

2) satisfy Kω(v) < 0. From the shape of the graph of the

function λ 7→ Kω(λv) = λ2‖v‖2H1
α,ω

− λp+1‖v‖p+1
Lp+1, there exists λ0 ∈ (0, 1) such

that Kω(λ0v) = 0. From (3.3), we obtain

dα(ω) ≤
p− 1

2(p+ 1)
‖λ0v‖p+1

Lp+1 =
p− 1

2(p+ 1)
λp+1
0 ‖v‖p+1

Lp+1 <
p− 1

2(p+ 1)
‖v‖p+1

Lp+1.

Similarly, by using (3.4) we have dα(ω) <
p−1

2(p+1)‖v‖2H1
α,ω

. �

We note that from Lemma 3.3, the expression (3.3) can be written as

(3.6) dα(ω) = inf

{
p− 1

2(p+ 1)
‖v‖2H1

α,ω
: v ∈ H1

α(R
2), v 6= 0, Kω(v) ≤ 0

}
.

Lemma 3.4. dα(ω) > 0.

Proof. Let v ∈ Kω. From Kω(v) = 0 and the embedding H1
α(R

2) →֒ Lp+1(R2)
(Lemma 2.1), we have

‖v‖2H1
α,ω

= ‖v‖p+1
Lp+1 . ‖v‖p+1

H1
α,ω
.

Since v 6= 0 and p > 1, we have the uniform bound ‖v‖H1
α,ω

& 1. From the

expression (3.3) we obtain the conclusion. �

Now we use the action and Nehari functional without potential defined by

S∞,ω(f) :=
1

2
‖∇f‖2L2 +

ω

2
‖f‖2L2 − 1

p+ 1
‖f‖p+1

Lp+1,

K∞,ω(f) := ‖∇f‖2L2 + ω‖f‖2L2 − ‖f‖p+1
Lp+1,

respectively. We denote the minimal action value without potential by

d∞(ω) := min{S∞,ω(v) : v ∈ H1(R2), v 6= 0, K∞,ω(v) = 0}.
It is known that there exists the unique positive radial ground state φ∞,ω ∈ H1(R2)
of the equation

−∆φ+ ωφ− |φ|p−1φ = 0, x ∈ R
2,

and that φ∞,ω satisfies S∞,ω(φ∞,ω) = d∞(ω).
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We note that

Sα,ω(f) = S∞,ω(f), Kα,ω(f) = K∞,ω(f)

for all f ∈ H1(R2), which implies dα(ω) ≤ d∞(ω). We prove the strict inequality.

Lemma 3.5. dα(ω) < d∞(ω).

Proof. Suppose that dα(ω) = d∞(ω). Then we have

Sα,ω(φ∞,ω) = S∞,ω(φ∞,ω) = d∞(ω) = dα(ω),

Kα,ω(φ∞,ω) = K∞,ω(φ∞,ω) = 0.

This yields φ∞,ω ∈ Mα,ω. From Lemma 3.2, φ∞,ω is also a solution of (1.16). This
means that φ∞,ω ∈ D(−∆α)∩H2(R2). From the definition of the domain D(−∆α)
and the singularity of Gω, we see that φ∞,ω(0) = 0, which contradicts the positivity
of φ∞,ω . �

Lemma 3.6. Let (vn)n∈N be a sequence in H1
α(R

2) satisfy

Kω(vn) → 0, Sω(vn) → dα(ω).

Then there exist v0 ∈ H1
α(R

2) \ {0} and a subsequence (vnj )j∈N of (vn)n∈N such

that vnj → v0 in H1
α(R

2) as j → ∞. In particular, v0 ∈ Mω.

Remark 3.7. If we just prove the existence of the minimizer v0 ∈ Mω, it suffices
to only consider a minimizing sequence (vn)n∈N for dα(ω), that is, Kω(vn) = 0 and
Sω(vn) → dα(ω). However, we show the stronger statement in Lemma 3.6 because it
is used when we apply the argument of Shatah [54] for stability in Proposition 1.10.

Proof of Lemma 3.6. We decompose vn = fn + cnGω. From the assumptions and
the expressions (3.1) and (3.2), we have

p− 1

2(p+ 1)
‖vn‖2H1

α,ω
→ dα(ω),

p− 1

2(p+ 1)
‖vn‖p+1

Lp+1 → dα(ω).(3.7)

This implies that (vn)n is bounded in H1
α(R

2), and so there exists v0 ∈ H1
α(R

2) and
a subsequence of (vn) such that vn ⇀ v0 weakly in H1

α(R
2). From the definition of

H1
α(R

2), we see that fn ⇀ f0 weakly in H1(R2) and cn → c0 for some (f0, c0) ∈
H1(R2)× C.

Now we show that c0 6= 0. Suppose that c0 = 0. Then by (3.7) we have

p− 1

2(p+ 1)
(‖∇fn‖2L2 + ω‖fn‖2L2) → dα(ω),

p− 1

2(p+ 1)
‖fn‖p+1

Lp+1 → dα(ω).(3.8)

Let

λn :=

(
‖∇fn‖2L2 + ω‖fn‖2L2

‖fn‖p+1
Lp+1

)1/(p−1)

.

We have K∞,ω(λnfn) = 0. Moreover, (3.8) and Lemma 3.4 imply λn → 1. From
the definition of d∞(ω) and Lemma 3.5, we obtain

d∞(ω) ≤ p− 1

2(p+ 1)
‖λnfn‖p+1

Lp+1 → dα(ω) < d∞(ω).

This is a contradiction, which implies c0 6= 0.
We show the strong convergence. By the Brezis–Lieb Lemma [15], we have

‖vn‖2H1
α,ω

− ‖vn − v0‖2H1
α,ω

→ ‖v0‖2H1
α,ω
,(3.9)

Kω(vn)−Kω(vn − v0) → Kω(v0).(3.10)
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Since ‖v0‖H1
α,ω

> 0, by (3.9), we have

lim
n→∞

p− 1

2(p+ 1)
‖vn − v0‖2H1

α,ω
< lim

n→∞
p− 1

2(p+ 1)
‖vn‖2H1

α,ω
= dα(ω).

From this inequality and Lemma 3.3, we have Kω(vn − v0) > 0 for large n. There-
fore, from Kω(vn) → 0 and (3.10), we obtain Kω(v0) ≤ 0. Thus, from (3.6), the
lower semicontinuity of norms, we deduce that

dα(ω) ≤
p− 1

2(p+ 1)
‖v0‖2H1

α,ω
≤ p− 1

2(p+ 1)
lim inf
n→∞

‖vn‖2H1
α,ω

= dα(ω).

From (3.9), we have ‖vn − v0‖2H1
α,ω

→ 0. Therefore, vn → v0 in H1
α(R

2). This

completes the proof. �

Lemma 3.8. Gω ⊂ Mω.

Proof. Let φ ∈ Gω. Then φ ∈ Kω. Since Mω 6= ∅ by Lemma 3.6, we can take
ψ ∈ Mω. Moreover, by Lemma 3.2 we have ψ ∈ Gω. Therefore, for each v ∈ Kω

we obtain

Sω(φ) = Sω(ψ) ≤ Sω(v).

This implies φ ∈ Mω. This completes the proof. �

Proof of Proposition 3.1. The assertion follows from Lemmas 3.2, 3.6, and 3.8. �

4. Symmetry of ground states

In this section, we prove Theorem 1.3 based on the argument in [20, Proof of
Theorem 8.1.4] but need suitable modifications. We note that if φ ∈ Aω , then we
have

‖(−∆α + ω)φ‖L2 ≤ ‖φ‖pL2p . ‖φ‖pH1
α,ω
,

which implies φ ∈ D(−∆α). In particular, we can decompose φ = f+f(0)βα(ω)
−1Gω,

and by (1.3) and (1.16), we have the relation

(4.1) (−∆+ ω)f − |φ|p−1φ = 0.

Moreover, by the same argument in the proof of Lemma 3.6, we see that if φ =
f + f(0)βα(ω)

−1Gω ∈ Gω , then f(0) 6= 0.

Lemma 4.1. If ψ ∈ H1
α(R

2) satisfies

(4.2)
p− 1

2(p+ 1)
‖ψ‖2H1

α,ω
≤ dα(ω) ≤

p− 1

2(p+ 1)
‖ψ‖p+1

Lp+1,

then ψ ∈ Gω.

Proof. From the assumption (4.2), we have Kω(ψ) ≤ 0 and Sω(ψ) ≤ dα(ω). On
the other hand, by the first inequality in (4.2) and Lemma 3.3, we have Kω(ψ) ≥ 0.
Thus, Kω(ψ) = 0. Moreover, by the definition of dα(ω), we obtain dα(ω) ≤ Sω(ψ).
Therefore, ψ ∈ Mω = Gω . �

Throughout this section, we denote the Schwartz symmetrization of f by f∗.

Lemma 4.2. Let φ = f + f(0)βα(ω)
−1Gω ∈ Gω. Then

‖φ‖p+1
Lp+1 ≤

∥∥∥∥f
∗ +

|f(0)|
βα(ω)

Gω

∥∥∥∥
p+1

Lp+1

.
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Proof. We note that

‖φ‖p+1
Lp+1 =

∥∥∥∥f +
f(0)

βα(ω)
Gω

∥∥∥∥
p+1

Lp+1

≤
∥∥∥∥|f |+

|f(0)|
βα(ω)

Gω

∥∥∥∥
p+1

Lp+1

.

After that, we only have to show that

(4.3)

∥∥∥∥|f |+
|f(0)|
βα(ω)

Gω

∥∥∥∥
p+1

Lp+1

≤
∥∥∥∥f

∗ +
|f(0)|
βα(ω)

Gω

∥∥∥∥
p+1

Lp+1

.

To prove (4.3) we use [11, Theorem 2.2]. We denote

F (g, h) := (g + h)p+1

for g, h ∈ R+. Then we have

Fgh(g, h) = p(p+ 1)(g + h)p−1 ≥ 0

for all g, h ∈ R≥0. Therefore, from [11, Theorem 2.2], we obtain

(4.4)

∫

R2

F (g, h) dx ≤
∫

R2

F (g∗, h∗) dx

for all g, h ∈ S0. Here S0 is the set of all measurable functions w : R2 → R which
satisfy

(4.5) w ≥ 0, L2({x ∈ R
2 : w(x) > a}) <∞ for all a > 0,

where L2(A) is the Lebesgue measure of the set A.
Moreover, we see that |f | and Gω satisfy (4.5) because f ∈ H2(R2) and Gω is de-

creasing. Thus, we can use the inequality (4.4) for g = |f | and h = |f(0)|βα(ω)−1Gω.
Since G∗

ω = Gω, we obtain (4.3). This completes the proof. �

Lemma 4.3. If φ = f + f(0)βα(ω)
−1Gω ∈ Gω, then f

∗ + |f(0)|βα(ω)−1Gω ∈ Gω.

Proof. Let ψ := f∗ + |f(0)|βα(ω)−1Gω . We have

(4.6)

p− 1

2(p+ 1)
‖ψ‖2H1

α,ω
=

p− 1

2(p+ 1)

(
‖∇f∗‖2L2 + ω‖f∗‖2L2 +

|f(0)|2
βα(ω)

)

≤ p− 1

2(p+ 1)

(
‖∇f‖2L2 + ω‖f‖2L2 +

|f(0)|2
βα(ω)

)

=
p− 1

2(p+ 1)
‖φ‖2H1

α,ω
= dα(ω).

Moreover, from Lemma 4.2, we have

p− 1

2(p+ 1)
‖ψ‖p+1

Lp+1 ≥ p− 1

2(p+ 1)
‖φ‖p+1

Lp+1 = dα(ω).

Therefore, Lemma 4.1 implies ψ ∈ Gω. �

Lemma 4.4. If φ = f + f(0)βα(ω)
−1Gω ∈ Gω and f(0) > 0, then f is a positive

function.

Proof. Let

g := |Re f |, h := |Im f |, ψ := g + ih+
f(0)

βα(ω)
Gω.

Then we see that

‖ψ‖H1
α,ω

= ‖φ‖H1
α,ω
, ‖ψ‖Lp+1 ≥ ‖φ‖Lp+1.

Therefore, Lemma 4.1 implies ψ ∈ Gω. Since

ψ = g + ih+
(g + ih)(0)

βα(ω)
Gω ∈ D(−∆α),



14 N. FUKAYA, V. GEORGIEV, AND M. IKEDA

we can use (1.3) and obtain

(−∆+ ω)(g + ih) = (−∆α + ω)ψ = |ψ|p−1ψ = |ψ|p−1

(
g + ih+

f(0)

βα(ω)
Gω

)
.

We decompose it into the real part and the imaginary part as

(−∆+ ω)g = |ψ|p−1

(
g +

f(0)

βα(ω)
Gω

)
(4.7)

(−∆+ ω)h = |ψ|p−1h.(4.8)

Since each right-hand side of (4.7) and (4.8) is in L2(R2), we see that g, h ∈
H2(R2) ⊂ H1(R2) ∩ C(R2). Therefore, since g(0) = f(0) > 0 and g,Gω ≥ 0
in R2, applying the strong maximal principle (e.g., [21, Theorem 3.1.2]) to the so-
lution g of (4.7), we have g > 0 in R2. Similarly, by using h(0) = 0 and (4.8), we
obtain h ≡ 0 in R2.

From the continuity of f and the positivity of g, we see that the sign of f(x)
does not depend on x. Therefore, by f(0) > 0 we have f > 0 in R

2. This completes
the proof. �

Lemma 4.5. If φ = f + f(0)βα(ω)
−1Gω ∈ Gω and f is positive, then f is a radial

and strictly decreasing function.

Proof. We denote

ψ := f∗ +
f(0)

βα(ω)
Gω.

From Lemma 4.3 we have ψ ∈ Gω . In particular, ψ ∈ D(−∆α) and so f∗(0) = f(0).
Moreover, since ‖ψ‖2H1

α,ω
= ‖φ‖2H1

α,ω
by φ, ψ ∈ Mω, we see that

(4.9) ‖∇f∗‖L2 = ‖∇f‖L2.

Now we show that f∗ is strictly decreasing. Since ψ = f∗ + f∗(0)βα(ω)−1Gω is
a positive radial solution of (4.1), f∗(r) satisfies

(4.10) − f ′′ − 1

r
f ′ + ωf =

(
f +

f(0)

βα(ω)
Gω

)p

, r > 0.

Suppose that f∗ is not strictly decreasing. Then f∗ is constant in some interval
I = (r1, r2). From the equation (4.10), f∗ satisfies

ωf∗ =

(
f∗ +

f∗(0)

βα(ω)
Gω

)p

in (r1, r2).

The left hand side is a constant whereas the right hand side is not a constant on
(r1, r2) since Gω is a strictly decreasing function and f∗(0) = f(0) > 0. This is a
contradiction. Thus, f∗ is strict decreasing.

Since f∗(r) is strictly decreasing, we see that the Lebesgue measure of the set

(4.11) {x ∈ R
2 : ∇f∗(x) = 0, 0 < f∗(|x|) < ‖f∗‖L∞}

is zero. Therefore, combining (4.9), we can use [16, Theorem 1.1] to see that there
exists y ∈ R2 such that f(· − y) = f∗. Moreover, from f(0) = f∗(0) we obtain
f = f∗. This completes the proof. �

Proof of Theorem 1.3. Let φ = f + f(0)βα(ω)
−1Gω ∈ Gω . Since f(0) 6= 0, there

exists θ ∈ R such that eiθf(0) > 0. By Lemmas 4.4 and 4.5 we see that eiθf is a
positive, radial, and decreasing function. This completes the proof. �
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5. Rescaled limit

In this section, we prove that a family of rescaled positive ground states converges
to the positive radial ground state of (1.20). The argument is based on [32].

Let φ = f + f(0)βα(ω)
−1Gω ∈ Aω and define the rescaling

φ̃(x) := ω−1/(p−1)φ(x/
√
ω),

α̃ = α̃(ω) := α+
1

4π
lnω.

Since

βα(ω) = α+
γ

2π
+

1

2π
ln

√
ω

2

= α+
1

4π
lnω +

γ

2π
+

1

2π
ln

1

2
= βα̃(1),

Gω(λx) = Gλ2ω(x) for λ > 0,

we have the decomposition

(5.1) φ̃ = f̃ +
f̃(0)

βα̃(1)
G1 ∈ D(−∆α̃).

From this expression, (1.3), and f(x) = ω1/(p−1)f̃(
√
ω x), we have the relations

(−∆α + ω)φ = (−∆+ ω)f

= ω1/(p−1)ω(−∆+ 1)f̃(
√
ω ·)

= ωp/(p−1)(−∆α̃ + 1)φ̃(
√
ω ·),

ωφ = ωp/(p−1)φ̃(
√
ω ·),

|φ|p−1φ = ωp/(p−1)|φ̃(√ω ·)|p−1φ̃(
√
ω ·).

Therefore, φ̃ is a solution of

(5.2) −∆α̃φ̃+ φ̃− |φ̃|p−1φ̃ = 0.

Noting that βα̃(1) = βα(ω), we denote

‖v‖H̃1
α,ω

:= ‖v‖H1
α̃(ω),1

=
√
‖f‖2H1 + βα(ω)|c|2 for v = f + cG1 ∈ H1

α(R
2).

The action and the Nehari functional corresponding to (5.2) are given by

S̃α,ω(v) =
1

2
‖v‖2

H̃1
α,ω

− 1

p+ 1
‖v‖p+1

Lp+1, K̃α,ω(v) = ‖v‖2
H̃1

α,ω

− ‖v‖p+1
Lp+1

for v ∈ H1
α(R

2), respectively. The action and the Nehari functional corresponding
to the limit equation (5.2) are given by

S̃∞(v) =
1

2
‖v‖2H1 − 1

p+ 1
‖v‖p+1

Lp+1, K̃∞(v) = ‖v‖2H1 − ‖v‖p+1
Lp+1

for v ∈ H1(R2), respectively. Note that since

eα̃ = eαω
−1,

we have
ω > −eα ⇐⇒ 1 > −eα̃(ω).

In what follow, we only consider the ground state with the positive regular part:

(5.3) φω = fω +
fω(0)

βα(ω)
Gω ∈ Gω, fω > 0, fω ∈ H2

rad(R
2).

Note that from Theorem 1.3, for any ground state ψω ∈ Gω there exists θ ∈ R such
that φω := eiθψω satisfies (5.3).
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Remark 5.1. If φ is decompose as φ = f + f(0)βα(ω)
−1Gω , then it is natural to

decompose φ̃ as (5.1). However, since βα̃(1) = βα(ω), for simplicity of notations,
we always decompose it as

φ̃ = f̃ +
f̃(0)

βα(ω)
G1.

We denote
d̃α(ω) := S̃α,ω(φ̃ω),

d̃(∞) := S̃∞(φ̃∞) =
p− 1

2(p+ 1)
‖φ̃∞‖p+1

Lp+1,

where φ̃∞ is the unique positive radial solution of (1.20).

Proposition 5.2. Let (φω)ω>−eα be a family of ground states for (1.16) satisfying
(5.3). Then

(5.4) f̃ω → φ̃∞ in H2(R2) as ω → ∞.

In particular, φ̃ω → φ̃∞ in H1
α(R

2) as ω → ∞.

Proof. We divide the proof into several steps.

Step 1. ω < ω′ <∞ =⇒ d̃α(ω) < d̃α(ω
′) ≤ d̃(∞).

Since

K̃ω(φ̃ω′) < K̃ω′(φ̃ω′) = 0,

by Lemma 3.3 we have

d̃α(ω) <
p− 1

2(p+ 1)
‖φ̃ω′‖p+1

Lp+1 = d̃(ω′).

Similarly, since

K̃ω(φ̃∞) = K̃∞(φ̃∞) = 0,

we obtain

d̃α(ω) ≤
p− 1

2(p+ 1)
‖φ̃∞‖p+1

Lp+1 = d̃(∞).

Step 2. supω>−eα ‖φ̃ω‖H̃1
α,ω

<∞ and infω>1−eα ‖φ̃ω‖Lp+1 > 0.

This follows from the expression

d̃α(ω) =
p− 1

2(p+ 1)
‖φ̃ω‖2H̃1

ω

=
p− 1

2(p+ 1)
‖φ̃ω‖p+1

Lp+1

and Step 1.
Step 3. Weak convergence to a positive radial function.

If we decompose φ̃ω = f̃ω+ f̃ω(0)βα(ω)
−1G1, then by Step 2, there exist nonneg-

ative radial function f∞ ∈ H1(R2), a constant c∞ ∈ R, and a subsequence (ωj)j∈N

such that ωj → ∞ and

f̃ωj ⇀ f̃∞ weakly in H1(R2),(5.5)

f̃ωj (0)
2

βα(ωj)
→ c∞(5.6)

as j → ∞. By (5.5) and the radial compactness lemma, we see that

f̃ωj → f̃∞ in Lq(R2) as j → ∞ for any q > 2.

Since βα(ωj) → ∞, by (5.6) we have

f̃ωj(0)

βα(ωj)
→ 0 as j → ∞.
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Therefore, we obtain

φ̃ωj → f̃∞ in Lq(R2) as j → ∞ for any q > 2.

Moreover, from Step 2 again, we see that f̃∞ 6= 0.

Step 4. f̃∞ = φ̃∞.
From the equation

−∆f̃ω + f̃ω − φ̃pω = 0

and Step 3, we see that f̃∞ is a weak solution of Equation (1.20). Therefore, the
uniqueness of the nonnegative, radial, and decreasing solutions of (1.20), we obtain

f̃∞ = φ̃∞.
Step 5. Strong convergence in H2(R2), i.e.,

(5.7) f̃ωj → φ̃∞ in H2(R2).

From the equations we have

|(−∆+ 1)(f̃ωj − φ̃∞)| = |φ̃pωj
− φ̃p∞| . (φ̃p−1

ωj
+ φ̃p−1

∞ )|φ̃ωj − φ̃∞|.
Thus, by Steps 3 and 4, we obtain

‖f̃ωj − φ̃∞‖2H2 .

∫
(φ̃2(p−1)

ωj
+ φ̃2(p−1)

∞ )|φ̃ωj − φ̃∞|2 dx

. (‖φ̃ωj‖2(p−1)

L2(p+1) + ‖φ̃∞‖2(p−1)

L2(p+1))‖φ̃ωj − φ̃∞‖2Lp+1 → 0.

This means that (5.7) holds.
Step 6. Conclusion.

The above argument works if we start with any subsequence of (φ̃ω)ω>−eα . Thus
we have

f̃ω → φ̃∞ in H2(R2) as ω → ∞.

This completes the proof. �

6. Nondegeneracy and lower boundedness of linearized operator in
radial function space

In this section, we prove lower boundedness and nondegeneracy of the linearl-
ized operator around rescaled ground states with the large frequency in the radial
function space. We follow the argument in [28, 30].

We denote

Drad(−∆α;R) :=

{
f +

f(0)

βα(λ)
Gλ : f ∈ H2

rad(R
2;R)

}
,

H1
α,rad(R

2;R) := {f + cGλ : f ∈ H1
rad(R

2;R), c ∈ R}.
Let (φω)ω>−eα be a family of positive ground states. We define the linearized

operator around φ̃ω by

L̃ωv = L̃α,ωv := (−∆α̃(ω) + 1)v − pφ̃p−1
ω v for v ∈ H1

α(R
2;R).

We denote

L̃∞f := (−∆+ 1)f − pφ̃p−1
∞ f for f ∈ H2(R2;R).

It is known (see, e.g., [28]) that there exists C > 0 such that

‖f‖H2 ≤ C‖L̃∞f‖L2 for all f ∈ H2
rad(R

2;R),(6.1)

‖f‖H1 ≤ C‖L̃∞f‖H−1
rad

for all f ∈ H1
rad(R

2;R).(6.2)
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Lemma 6.1. There exist ω1 > −eα and C > 0 such that for all ω > ω1,

(6.3) ‖v‖H̃1
α,ω

≤ C‖L̃ωv‖H̃−1
α,ω,rad

for all v = f + cG1 ∈ H1
α,rad(R

2;R).

In particular, if v ∈ H1
α,rad(R

2;R) satisfies L̃ωv = 0, then v = 0.

Remark 6.2. Lemma 6.1 means that zero is not an eigenvalue of the operator

L̃ω : Drad(−∆α̃;R) → L2
rad(R

2;R). In fact, by essential spectral theorem, we see
that zero is its resolvent.

Proof of Lemma 6.1. For v = f + cG1, w = g + dG1 ∈ H1
α,rad(R

2;R), we have the
expression

〈L̃ωv, w〉 = 〈L̃ω(f + cG1), g + dG1〉
= (∇f,∇g)L2 + (f, g)L2 + cdβα(ω)− p(φ̃p−1

ω v, w)L2

= 〈L̃∞f, g〉+ cdβα(ω) + p(φ̃p−1
∞ f, g)L2 − p(φ̃p−1

ω v, w)L2

= 〈L̃∞f, g〉+ cdβα(ω) + p

∫
(φ̃p−1

∞ − φ̃p−1
ω )fg

− p

∫
φ̃p−1
ω (df + cg)G1 − pcd

∫
φ̃p−1
ω G2

1.

Therefore, using the estimate (6.2), we have

‖L̃ωv‖H̃−1
α,ω,rad

= sup{〈L̃ωv, w〉 : ‖w‖H̃1
α,ω,rad

≤ 1}

≥ sup

{
〈L̃ω(f + cG1), g + dG1〉 :

‖g‖2

H1
rad

≤1/2,

d2βα(ω)≤1/2

}

= sup

{
〈L̃∞f, g〉+ cdβα(ω) + p

∫
(φ̃p−1

∞ − φ̃p−1
ω )fg

− p

∫
φ̃p−1
ω (df + cg)G1 − pcd

∫
φ̃p−1
ω G2

1 :
‖g‖

H1
rad

≤2−1/2,

|d|≤(2βα(ω))−1/2

}

& ‖L̃∞f‖H−1
rad

+ βα(ω)
1/2|c|

− ‖φ̃∞ − φ̃ω‖Lp+1‖f‖Lp+1 − ‖f‖H1

βα(ω)1/2
− |c| − |c|

βα(ω)1/2

& ‖f‖H1 + βα(ω)
1/2|c| ≃ ‖v‖H̃1

α,ω

for large ω, where we used the fact βα(ω) → ∞ as ω → ∞. This completes the
proof. �

7. Uniqueness of ground states for large frequencies

In this section, we prove the uniqueness of ground states for large frequencies
(Theorem 1.4). The proof is based on [30].

Lemma 7.1. There exist δ > 0 and ω1 > −eα such that the following holds. If

(φω)ω>−eα is a family of positive ground states with φω ∈ Gω, ω0 > ω1, and ψ ∈ Aω0

is a real-valued radial solution satisfying ‖ψ̃ − φ̃∞‖H1
α
< δ, then ψ = φω0 .

Proof. We take a small δ > 0 to be chosen later, and let ‖ψ̃ − φ̃∞‖H1
α
< δ. We

define the operator

L̃∗
ωv := (−∆α̃(ω) + 1)v − Vω(x)v,

where

Vω(x) :=





φ̃ω(x)
p − |ψ̃(x)|p−1ψ̃(x)

φ̃ω(x) − ψ̃(x)
if φω(x) 6= ψ(x),

pφ̃ω(x)
p−1 if φω(x) = ψ(x).
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First, we show that there exist ω1 > −eα and C > 0 such that if ω > ω1, then

(7.1) ‖f‖H2 ≤ C‖L̃∗
ωv‖L2 for all v = f +

f(0)

βα(ω)
G1 ∈ Drad(−∆α̃;R).

To prove this, we will show that

(7.2) ‖Vω − pφ̃p−1
∞ ‖Lq . δ for all q ≥ 2 and large ω.

We can rewrite

Vω(x) = p

∫ 1

0

|φ̃ω(x) + srω(x)|p−1 ds, rω(x) := ψ̃(x) − φ̃ω(x).

Then we have

|Vω − pφ̃p−1
∞ |

≤ p

∫ 1

0

∣∣∣|φ̃ω + srω |p−1 − φ̃p−1
∞

∣∣∣ ds

.

{
(φ̃p−2

ω + |rω |p−2 + φ̃p−2
∞ )(|φ̃ω − φ̃∞|+ |rω |) if p > 2

|φ̃ω − φ̃∞|+ |rω | if 1 < p ≤ 2.

We note that Proposition 5.2 implies ‖φ̃ω − φ̃∞‖H1
α
< δ for large ω. Therefore, if

p > 2, then

‖Vω − pφ̃p−1
∞ ‖Lq . (‖φ̃ω‖p−2

L(p−1)q + ‖rω‖p−2
L(p−1)q + ‖φ̃∞‖p−2

L(p−1)q )

· (‖φ̃ω − φ̃∞‖L(p−1)q + ‖rω‖L(p−1)q )

. ‖φ̃ω − φ̃∞‖H1
α
+ ‖ψ̃ − φ̃∞‖H1

α
. δ.

If 1 < p ≤ 2, we have

‖Vω − pφ̃p−1
∞ ‖Lq . ‖φ̃ω − φ̃∞‖Lq + ‖rω‖Lq

. ‖φ̃ω − φ̃∞‖H1
α
+ ‖ψ̃ − φ̃∞‖H1

α
. δ.

Therefore, we have (7.2).
Next, we show the estimate (7.1). By using the expression

L̃∗
ωv = L̃∞f + pφ̃p−1

∞ f − Vω(x)v

= L̃∞f + (pφ̃p−1
∞ − Vω(x))f − f(0)

βα(ω)
Vω(x)G1

for v = f + f(0)βα(ω)
−1G1 ∈ Drad(−∆α̃;R), (6.1), (7.2), and the embedding

|f(0)| . ‖f‖H2 we obtain

‖L̃∗
ωv‖L2 ≥ ‖L̃∞f‖L2 − ‖(pφ̃p−1

∞ − Vω)f‖L2 − |f(0)|
βα(ω)

‖VωG1‖L2

& ‖f‖H2 − δ‖f‖H2 ≃ ‖f‖H2

if δ is small and ω is large sufficiently. This implies that the estimate (7.1) holds.

Finally, from the equation (5.2), we have L̃∗
ω(φ̃ω − ψ̃) = 0. By (7.1) we obtain

φ̃ω = ψ̃. This completes the proof. �

Proof of Theorem 1.4. The assertion follows from Theorem 1.3, Proposition 5.2,
and Lemma 7.1. �
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8. Regularity of ω 7→ φω

In this section, we verify the differentiability of ω 7→ φω for large ω following the
argument in [55, Section 6] with modifications.

Proposition 8.1. Let ω1 > −eα be as in Lemma 6.1 and Lemma 7.1 and let

φω = fω + fω(0)βα(ω)
−1Gω ∈ Gω be the unique positive radial ground state given

in Theorem 1.4. Then the map ω 7→ f̃ω is in C1((ω1,∞), H2
rad(R

2;R)).

Proof. We define the function F by

F (ω, f) := f − (1−∆)−1

[∣∣∣∣f +
f(0)

βα(ω)
G1

∣∣∣∣
p−1 (

f +
f(0)

βα(ω)
G1

)]
,

(ω, f) ∈ (−eα,∞)×H2
rad(R

2;R).

Then we have

∂F

∂ω
(ω, f) = − pf(0)

4πωβα(ω)2
(1−∆)−1

[∣∣∣∣f +
f(0)

βα(ω)
G1

∣∣∣∣
p−1

G1

]
,

and for w ∈ H2
rad(R

2;R),

∂F

∂f
(ω, f)w = w − p(1−∆)−1

[∣∣∣∣f +
f(0)

βα(ω)
G1

∣∣∣∣
p−1(

w +
w(0)

βα(ω)
G1

)]
.

From this expression we have

F ∈ C1
(
(−eα,∞)×H2

rad(R
2;R), H2

rad(R
2;R)

)
.

Let ω0 > ω1. We have

F (ω0, f̃ω0) = (1 −∆)−1S̃′
ω0
(φ̃ω0) = 0.

Moreover, since the operator L̃ω0 = (1−∆α̃)− pφ̃p−1
ω0

: Drad(−∆α̃;R) → L2(R2;R)

is invertible by Remark 6.2 and since the map τω : H
2
rad(R

2;R) → Drad(−∆α̃;R);
w 7→ w + w(0)βα̃(1)

−1G1 is also invertible by the definition of Drad(−∆α̃;R), we
see that the operator

∂F

∂f
(ω0, f̃ω0) = I − (1−∆)−1pφ̃p−1

ω0

= (1 −∆)−1L̃ω0τω0 : H
2
rad(R

2;R) → H2
rad(R

2;R)

is also invertible. Therefore, by the implicit function theorem, there exists a
C1-curve ω 7→ gω defined on a neighborhood of ω0 into H2

rad(R
2;R) such that

F (ω, gω) = 0 and gω0 = f̃ω0 . From Lemma 7.1 we have gω = f̃ω for ω around ω0.
This completes the proof. �

Note that by a standard elliptic regularity argument, one can obtain the spatially
exponential decay of fω. Thus, by Proposition 8.1 and the definition of the rescaling

f̃ω, we obtain the regularity of ω 7→ fω. In particular, we have

Corollary 8.2. Let ω1 > −eα be as in Lemma 6.1 and Lemma 7.1 and let φω
be the unique positive radial ground state given in Theorem 1.4. Then the map

ω 7→ φω is in C1((ω1,∞), H1
α,rad(R

2;R)).
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9. Stability and instability for large frequencies

In this section, we calculate the value d
dω‖φω‖2L2 for large ω based on [28, 30].

We prove the following.

Proposition 9.1. Let (φω)ω>ω1 be the family of the unique positive ground states

obtained in Theorem 1.4. Then there exists ω∗ = ω∗(p) ∈ (ω1,∞) such that the

following is true.

• If 1 < p ≤ 3, then d
dω‖φω‖2L2 > 0 for all ω > ω∗.

• If p > 3, then d
dω‖φω‖2L2 < 0 for all ω > ω∗.

We note that the rescaled ground state φ̃ω = f̃ω + f̃(0)βα(ω)
−1G1 satisfies the

equation

(9.1) (−∆+ 1)f̃ω − φ̃pω = 0.

Moreover, for ω > ω1, where ω1 is as in Proposition 8.1, the derivative ∂ω f̃ω is in

H2(R2), and ∂ω f̃ω(0) makes sense for
We prepare some lemmas.

Lemma 9.2. For ω > ω1, the following Pohozaev identity holds:

(9.2) ‖φ̃ω‖2L2 =
f̃ω(0)

2

4πβα(ω)2
+

2

p+ 1
‖φ̃ω‖p+1

Lp+1.

In particular,

(9.3)
d

dω
‖φ̃ω‖2L2 =

f̃ω(0)∂ω f̃(0)

2πβα(ω)2
− f̃ω(0)

2

8π2ωβα(ω)3
+ 2

∫
φ̃pω∂ωφ̃ω .

Proof. By multiplying x · ∇φ̃ω with the equation (9.1) and integrating it, we have

(9.4) 〈(−∆+ 1)f̃ω, x · ∇f̃ω〉+
f̃ω(0)

βα(ω)
〈(−∆+ 1)f̃ω, x · ∇G1〉 = 〈φ̃pω , x · ∇φ̃ω〉.

From properties of the scaling, we have

〈(−∆+ 1)f, x · ∇f〉 = 1

2

d

dλ
‖f(λ·)‖2H1

∣∣∣∣
λ=1

= −‖f‖2L2,(9.5)

〈φp, x · ∇φ〉 = 1

p+ 1

d

dλ
‖φ(λ·)‖p+1

Lp+1

∣∣∣∣
λ=1

= − 2

p+ 1
‖φ‖p+1

Lp+1.(9.6)

Moreover, by Lemma 2.3 we have

(9.7) 〈(−∆+ 1)f, x · ∇G1〉 = −2(f,G1)L2 .

By using (9.5), (9.6), (9.7), we can rewrite (9.4) as

(9.8) ‖f̃ω‖2L2 + 2
f̃ω(0)

βα(ω)
(f̃ω, G1)L2 =

2

p+ 1
‖φ̃ω‖p+1

Lp+1.

Moreover, from the expression

‖φ̃ω‖2L2 =

∥∥∥∥∥f̃ω +
f̃ω(0)

βα(ω)
G1

∥∥∥∥∥

2

L2

= ‖f̃ω‖2L2 + 2
f̃ω(0)

βα(ω)
(f̃ω, G1)L2 +

f̃ω(0)
2

4πβα(ω)2
,

we obtain (9.2). By differentiating (9.2) we have (9.3). �

Lemma 9.3. For ω > ω1,

(p− 1)

∫
φ̃pω∂ωφ̃ω =

f̃ω(0)
2

4πωβα(ω)2
.
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Proof. By the equation (9.1), we have 〈(−∆+ 1)f̃ω − φ̃pω , ∂ωφ̃ω〉 = 0. This can be
rewritten from the expression

(9.9) ∂ωφ̃ω = ∂ω f̃ω +
∂ω f̃ω(0)

βα(ω)
G1 −

f̃ω(0)

4πωβα(ω)2
G1

as
∫
φ̃pω∂ωφ̃ω = 〈(−∆+ 1)f̃ω, ∂ω f̃ω +

∂ω f̃ω(0)

βα(ω)
G1 −

f̃ω(0)

4πωβα(ω)2
G1〉(9.10)

= 〈(−∆+ 1)f̃ω, ∂ω f̃ω〉+
f̃ω(0)∂ω f̃ω(0)

βα(ω)
− f̃ω(0)

2

4πωβα(ω)2
,

where we used the fact that G1 is a solution of (−∆+ 1)G1 = δ0.
By differentiating the equation (9.1) with respect to ω, we have

(9.11) (−∆+ 1)∂ω f̃ω − pφ̃p−1
ω ∂ωφ̃ω = 0.

By multiplying this equation with φ̃ω and integrating it, we have

p

∫
φ̃pω∂ωφ̃ω = 〈(−∆+ 1)∂ω f̃ω, φ̃ω〉(9.12)

= 〈(−∆+ 1)∂ω f̃ω, f̃ω〉+
f̃ω(0)∂ω f̃ω(0)

βα(ω)
.

Therefore, the assertion follows from (9.10) and (9.12). �

Lemma 9.4. There exists C > 0 such that for ω > ω1,

|∂ω f̃ω(0)| ≤
C

ωβα(ω)3/2
.(9.13)

Proof. Noting that βα̃(1) = βα(ω), we have the relation

(−∆+ 1)∂ω f̃ω = (−∆α̃ + 1)

(
∂ω f̃ω +

∂ω f̃ω(0)

βα(ω)
G1

)
.

Therefore, by the expression (9.9), we can rewrite (9.11) as

L̃ω

(
∂ω f̃ω +

∂ω f̃ω(0)

βα(ω)
G1

)
= − pf̃ω(0)

4πωβα(ω)2
φ̃p−1
ω G1.

Thus, by the invertibility of L̃ω in the radial space (Lemma 6.1), we obtain

∂ω f̃ω +
∂ω f̃ω(0)

βα(ω)
G1 = − pf̃ω(0)

4πωβα(ω)2
(L̃ω)

−1(φ̃p−1
ω G1).

From this expression and the definition of the bilinear form for −∆α, we have
the estimate

|∂ω f̃ω(0)| =
∣∣∣∣
〈
(−∆α̃ + 1)G1, ∂ω f̃ω +

∂ω f̃ω(0)

βα(ω)
G1

〉∣∣∣∣(9.14)

=
pf̃ω(0)

4πωβα(ω)2

∣∣∣
〈
(−∆α̃ + 1)G1, (L̃ω)

−1(φ̃p−1
ω G1)

〉∣∣∣

≤ pf̃ω(0)

4πωβα(ω)2
‖(−∆α̃ + 1)G1‖H̃−1

α,ω
‖(L̃ω)

−1(φ̃p−1
ω G1)‖H̃1

α,ω
.

A Direct calculation gives

‖(−∆α̃ + 1)G1‖H̃−1
α,ω

= sup{〈(−∆α̃ + 1)G1, w〉 : ‖w‖H̃1
α,ω

≤ 1}(9.15)

= sup{dβα(ω) : |d| ≤ βα(ω)
−1/2} = βα(ω)

1/2.
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From Lemma 6.1 we obtain
(9.16)

‖(L̃ω)
−1(φ̃p−1

ω G1)‖H̃1
α,ω

. ‖φ̃p−1
ω G1‖H̃−1

α,ω,rad
= sup{〈φ̃p−1

ω G1, w〉 : ‖w‖H̃1
α,ω,rad

≤ 1}

≤ sup
{
〈φ̃p−1

ω G1, g + dG1〉 :
‖g‖

H1
rad

≤1,

d2βα(ω)≤1

}

. ‖φ̃ω‖p−1
Lp+1‖G1‖Lp+1 +

1

βα(ω)1/2
‖φ̃ω‖p−1

Lp+1‖G1‖2Lp+1.

Combining the estimates (9.14), (9.15), and (9.16) and using the bounds from
Proposition 5.2, we obtain the conclusion. �

Proof of Proposition 9.1. By the definition of the scaling φ̃ω , we have

‖φω‖2L2 = ω(3−p)/(p−1)‖φ̃ω‖2L2.

By (9.3) and Lemma 9.3, we have

d

dω
‖φω‖2L2 = ω2(2−p)/(p−1)

(
3− p

p− 1
‖φ̃ω‖2L2 + ω

d

dω
‖φ̃ω‖2L2

)

= ω2(2−p)/(p−1)

(
3− p

p− 1
‖φ̃ω‖2L2 +

ωf̃ω(0)∂ω f̃ω(0)

2πβα(ω)2

− f̃ω(0)
2

8π2βα(ω)3
+ 2ω

∫
φ̃pω∂ωφ̃ω

)

= ω2(2−p)/(p−1)

(
3− p

p− 1
‖φ̃ω‖2L2 +

ωf̃ω(0)∂ω f̃ω(0)

2πβα(ω)2

− f̃ω(0)
2

8π2βα(ω)3
+

f̃ω(0)
2

2(p− 1)πβα(ω)2

)
.

Note that Lemma 9.4 implies
∣∣∣∣∣
ωf̃ω(0)∂ω f̃ω(0)

2πβα(ω)2

∣∣∣∣∣ .
1

βα(ω)7/2
.

Therefore, we obtain

d

dω
‖φω‖2L2 = ω2(2−p)/(p−1)

(
3− p

p− 1
‖φ̃ω‖2L2 +

f̃ω(0)
2

2(p− 1)πβα(ω)2
+O

(
1

βα(ω)3

))

as ω → ∞. By Proposition 5.2, ‖φ̃ω‖L2 and f̃ω(0) converge to positive constants
as ω → ∞. Therefore, we deduce the conclusion. �

Proof of Theorem 1.7. The assertion follows from Propositions 9.1 and 1.10. This
completes the proof. �

Appendix A. Review of the properties of Laplace operator with
point interaction

Let us review of the properties of the operator −∆α. An important feature of
the family −∆α with α ∈ R is the following explicit formula for the resolvent, valid
for every λ > 0.

(A.1) (−∆α + λ)−1g = (−∆+ λ)−1g +
(g,Gλ)L2

βα(λ)
Gλ.

Identity (A.1) says that the resolvent of −∆α is a rank-one perturbation of the free
resolvent. As a consequence, it is possible to deduce the spectral properties (1.10)
and (1.11) of −∆α.
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One can apply Strichartz estimates for the non-negative self-adjoint operator
−∆α − eα since [22, Theorem 1.3] guarantees the existence of wave operators

W± = lim
t→±∞

eit∆αe−it∆

in Lp(R2) for 1 < p < ∞. We know also that W± are complete in the sense that
ran W± = L2

ac(−∆α), the absolutely continuous subspace of L2(R2) for −∆α. In
our case this is the space

L2
ac(−∆α) = {f ∈ L2(R2) : (f, χα)L2 = 0},

so we have

W ∗
±W± = 1, W±W

∗
± = Pac(−∆α),

where Pac(−∆α) is the orthogonal projection onto L2
ac(−∆α). The wave operators

satisfy the intertwining property

f(−∆α)Pac(−∆α) =W±f(−∆)W±

for any Borel function f on R.
By using the intertwining property one can deduce the following Strichartz esti-

mate [22, Corollary 1.5]:

(A.2) ‖eit∆αPac(−∆α)f‖Lr
t (R,L

q
x) . ‖f‖L2,

where (r, q) is an admissible Strichartz pair, i.e.

(A.3) 1 < r ≤ ∞, 1 < q <∞,
1

r
+

1

q
=

1

2
.

Since the orthogonal projection on L2
ac(−∆α) is given by

Pac(−∆α)f = f − (f, χα)L2χα,

we see that

eit∆αf = eit∆αPac(−∆α)f + (f, χα)L2eiteαχα

for all f ∈ L2(R2). So the property (2.1) guarantees that we have the following
(local in time) Strichartz estimate: there exists a constant C > 0 such that for any
T ∈ (0, 1] we have

(A.4) ‖eit∆αf‖Lr
t ([0,T ],Lq

x) ≤ C‖f‖L2

for all f ∈ L2(R2). By using TT ∗ argument and Christ–Kiselev lemma we arrive
at the following Strichartz estimate: there exists a constant C > 0 so that for any
T ∈ (0, 1] we have

(A.5)

∥∥∥∥
∫ t

0

ei(t−s)∆αF (s) ds

∥∥∥∥
L

r1
t ([0,T ],L

q1
x )

≤ C‖F‖
Lr′

2([0,T ],Lq′
2)

for any F ∈ Lr′2([0, T ], Lp′

2(R2)). Here and below (r1, q1) and (r2, q2) are admissible
Strichartz pairs, i.e. 1

rj
+ 1

qj
= 1

2 , qj ∈ [2,∞), for j = 1, 2.

Remark A.1. The L1-L∞ dispersive estimates cannot hold, in fact even for a smooth
initial data f the evolution eit∆αf exhibits, for almost every time t 6= 0, a non-trivial
singular component proportional to Gλ 6∈ L∞(R2).
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Appendix B. Local Well-posedness in H1
α(R

2)

In this section, we establish the local well-posedness in the energy space in
H1

α(R
2). To this aim, we apply the abstract theory of Okazawa, Suzuki, and

Yokota [52] to construct a weak solution to (1.1) with initial data u0 ∈ H1
α(R

2).
Then we establish the uniqueness of the solution by using the Strichartz estimate
obtained by [22].

First, we construct a weak solution to (1.1) by using [52, Theorem 2.2].

Lemma B.1. For any M > 0 there exists TM > 0 such that the following is true.

For u0 ∈ H1
α(R

2) with ‖u0‖H1
α
≤M , there exists a local weak solution

u ∈ Cw([−TM , TM ], H1
α(R

2)) ∩W 1,∞(−TM , TM ;H−1
α (R2))

of (1.1) satisfying

‖u(t)‖L2 = ‖u0‖L2 , E(u(t)) ≤ E(u0)

for all t ∈ [−TM , TM ].

Proof. We will apply [52, Theorem 2.2] as

S = −∆α − eα,

X = L2(R2), XS = H1
α(R

2), X∗
S = H−1

α (R2)

g(v) = eαv − |v|p−1v.

Under this setting, we see that S is a nonnegative self-adjoint operator in L2(R2)
and that H1

α(R
2) = D((1 + S)1/2). After that, we only have to verify [52, (G1)–

(G5)] given as follows.
(G1): there exists G ∈ C1(XS ,R) such that G′ = g.
(G2): for all M > 0 there exists C(M) > 0 such that

‖g(u)− g(v)‖X∗

S
≤ C(M)‖u− v‖XS ∀u, v ∈ XS with ‖u‖XS , ‖v‖XS ≤M.

(G3): for all M, δ > 0 there exists Cδ(M) > 0 such that

|G(u)−G(v)| ≤ δ + C(M)‖u− v‖X ∀u, v ∈ XS with ‖u‖XS , ‖v‖XS ≤M.

(G4):

〈g(u), iu〉X∗

S,XS = 0 ∀u ∈ XS .

(G5): given a bounded open interval I ⊂ R, let (wn)n∈N by any bounded sequence
in L∞(I,XS) such that

{
wn(t) → w(t) (n→ ∞) weakly in XS a.a. t ∈ I,

g(wn) → f (n→ ∞) weakly∗ in L∞(I,X∗
S).

Then ∫

I

〈f(t), iw(t)〉X∗

S ,XS dt = lim
n→∞

∫

I

〈g(wn(t)), iwn(t)〉X∗

S ,XS dt.

Now we check (G1)–(G5).
The conditions (G1) are easily verified as

G(v) =
1

p+ 1
‖v‖p+1

Lp+1, v ∈ H1
α(R

2)

by standard inequalities and the embedding Lq(R2) ⊂ H1
α(R

2) obtained in (2.2).
Similarly, the condition (G2) also can be verified.
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The condition (G3) follows from the following estimate:

|G(u)−G(v)| .
∫
(|u|p + |v|p)|u − v| dx

. (‖u‖pL2p + ‖v‖pL2p)‖u− v‖L2

.Mp‖u− v‖L2

for u, v ∈ H1
α(R

2) with ‖u‖H1
α
, ‖v‖H1

α
≤M .

The conditions (G4) is clear from the definition of g.
Finally, we will check the conditions (G5). From [52, Lemma 5.3], it is enough

to show that if (un)n∈N is a sequence H1
α(R

2) satisfies
{

un → u (n→ ∞) weakly in H1
α(R

2),

g(un) → f (n→ ∞) weakly in H−1
α (R2),

then f = g(u).
We follow the argument in [56, Proof of Theorem 1.1]. Let ϕ ∈ C∞

c (R2). Then

from the weak convergence of (un)n∈N in H1
α(R

2) and the compactness Lp+1
loc (R2) →֒

H1
loc(R

2) we see that

un → u in Lp+1
loc (R2).

Thus,

|〈g(un)− g(u), ϕ〉| . ‖ϕ‖Lp+1(‖un‖p−1
Lp+1 + ‖u‖p−1

Lp+1)‖un − u‖Lp+1(suppϕ) → 0

as n→ ∞. This means that g(un) → g(u) in D′(R2). On the other hand, g(un) → f
in H−1

α (R2) and hence in D′(R2). Therefore we obtain f = g(u). Thus, (G5) is
verified.

We have just finished the verification of (G1)–(G5). Therefore, [52, Theo-
rem 2.2] implies the conclusion. �

Lemma B.2. Let u0 ∈ H1
α(R

2). If u1, u2 ∈ L∞(−T, T ;H1
α(R

2)) are two weak

solutions of (1.1) with u1(0) = u2(0) = u0, then u1 = u2.

Proof. Without loss of generality we can assume T ∈ (0, 1]. Let

r = r(p) :=
2(p+ 1)

p+ 1
.

Then (r, p+ 1) is a admissible pair. By the Strichartz estimate (A.5) for

uj(t) = eit∆αu0 − i

∫ t

0

ei(t−τ)∆α |uj(τ)|p−1uj(τ) dτ,

we see that

‖u1 − u2‖Lr([0,T ],Lp+1
x ) . ‖|u1|p−1u1 − |u2|p−1u2‖L1([0,T ],L2

x)
.

From

‖|u1|p−1u1 − |u2|p−1u2‖L2
x
. (‖u1‖p−1

L
2(p+1)
x

+ ‖u2‖p−1

L
2(p+1)
x

)‖u1 − u2‖Lp+1
x

and the Sobolev inequality (2.2) we deduce

‖uj‖L2(p+1)
x

. ‖uj‖H1
α(R2) . 1.

Hence

‖u1 − u2‖L4([0,T ],L4
x)

≤ C

∫ T

0

‖u1(τ) − u2(τ)‖Lp+1
x

dτ

≤ CT (p+1)/2p‖u1 − u2‖Lr([0,T ],Lp+1
x )

so with T sufficiently small so that CT (p+1)/(2p) < 1 we conclude that u1(t) = u2(t)
for t ∈ [0, T ]. In a similar way, we obtain u1(t) = u2(t) for t ∈ [−T, 0]. �
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Proof of Proposition 1.1. The assertion follows from Lemmas B.1, B.2, and [52,
Theorem 2.3]. �
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