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ON STABILITY AND PERIODICITY IN PHOSPHORUS
NUTRIENT DYNAMICS*

By E. M. ARNOLD (Battelle, Pacific Northwest Laboratory, Richland, Washington)

Abstract. The stability of an equilibrium and the existence of limit cycles in a
three-dimensional dynamical system arising in predator-prey-nutrient dynamics are
demonstrated, using center manifold theory. Some implications of this result for limnolo-
gical applications are discussed.

1. Introduction. This brief note deals with the stability and long run behavior of a
three-dimensional system which arises in phosphorus nutrient cycling in freshwater
plankton communities. This system forms part of several widely used lake ecosystem
models (see, for example, Di Toro, et al. [1]). The existence of limit cycles in the co-limit
sets of trajectories and the stability of an isolated equilibrium point will be established.
The method used is general enough to be useful in studying dynamical systems in
contexts different than that considered here. The system under consideration is:

*i = *i(Gp(x3) - ex2 - d)

x2 = x2 (G^xJ-c) (A)

x3 = mxl(f- Gp(x3))

where Gp(x3) and Gz(xt) are C1 monotone increasing functions which are often of the
rational form Gp(x3) = ax3/x3 + K, Gz(xJ = bx1/x1 + L in limnological applications.

This system models zooplankton, phytoplankton and phosphorus nutrient dynamics
with x1; x2, and x3, denoting phytoplankton, zooplankton and phosphorus concentra-
tions, and Gz(xj), Gp(x3), denoting (respectively) zooplankton and phytoplankton growth
rate functions. The remaining parameters are positive constants which may be
interpreted as follows: m = phosphorus-to-carbon ratio in phytoplankton,
c = zooplankton death rate, e = zookplankton grazing rate, d = endogenous respiration
rate, and / = phosphorus replenishment rate due to living phytoplankton. The constant/
is assumed to be greater than d, the excess being due to phosphorus containing ex-
cretions from phytoplankton. This model is conservative with respect to phosphorus,
which is renewable via biomass from dying phytoplankton and excretions from living
phytoplankton. It is assumed that both types of plankton die in proportion to the
number presently alive, and that there are no time lags in the system.

2. Results. Some preliminary facts about the dynamics of the system A are collected
in the following proposition:

Proposition 1. The plane x3 = G~ 1(f) (henceforth called M) is invariant under the
flow of A. M is monotonically attracting and its phase portrait consists of concentric
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cycles about a rest point E = (Gz_1(c), (/- d)/e, G~1(f)), which is stable with respect to
the two-dimensional flow on M.

Remark. By saying that M is monotonically attracting, it is meant that if x(x0, t) is
the solution starting at x0 4 M, that d(x(t)), M) -* 0 monotonically, where d is the
Euclidean distance in R3.

Proof (sketch). An examination of the derivative of D2 = [Gp(x3(t)) —/]2 in light of
the monotonicity of Gp shows that D2 decreases and hence that M is attracting. The
phase portrait within M can be obtained by an argument like that in Hirsch and Smale
[2, pp. 261-262], with the Liapounov function V{xl, x2) — V(G~l(c), (/— d)/e), where:

. r" Gz(£) — c rX2 (/-d) - erj ,
V(xi,x2)=  I -  drj.

j c 5 n
This sketch appears with slightly more detail in Arnold [3], A similar version with less

general growth rate functions is given in Freedman and Waltman [4].
The facts that M is attracting and E is stable under small perturbations, within M, of

initial conditions are convincing evidence that E is stable under small perturbations in
any direction in the phase space R3 of A. A proof of this assertion can be based on the
center-stable manifold Theorem. As a consequence, trajectories through points outside
M, but sufficiently close to E, do not spiral out to " infinity " as they approach M.

Proposition 2. The equilibrium point E is stable.
Proof. Since M is attracting, there can be no unstable manifold through E and the

(xj, x2, x3) phase space is a center-stable manifold. Next, to show that M is a center
manifold, the eigenvalues of the linear part of A written as x = f(x), with/: R3 -> R3, will
be calculated.

{£>/}* =<*£. yE. *>£)
r
dX:

E =

0 ~G;\c)e G;\c)G'p{f)

il—^1 G'z(c) 0 0
e

0 0 -mG;\c)G-p(.f)

where the primes denote differentiation. The eigenvalues of this matrix are Aj =
-™G;'(c)G;(/) < 0, A2 = i(G;l(C)(f - d)G'z(c))1'2 and A3 = -i(G;l(c)(f - d)G'z(c)Y'2.
The monotonicity of Gz and Gp imply that A, is negative and X2 and A3 are imaginary.
Thus, there is a one-dimensional stable manifold and a two-dimensional center manifold
through E. That M is a center manifold can be verified by a straight forward computa-
tion showing that M = Vc n R3, where Vc is the complex vector space spanned by the
eigenvectors v2 and v3 corresponding to X2 and X3 . The proof now follows from Proposi-
tion 1 and an application of the center-stable manifold theorem (Kelley [5]). The method
used to prove Proposition 2 can be generalized to higher-dimensional systems when
stability can be decided in an extracted center manifold.

Since M is attracting and has a phase portrait consisting of concentric cycles, it is
natural to ask if bounded solutions starting outside M approach these cycles as limit
cycles. This assertion also follows from center manifold theory.**

The author is grateful for the referee's suggestions on this point.
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Proposition 3. The co-limit set of a bounded solution x(x0, t) of A with x(x0, 0) = x0,
x0 $ M, contains a cycle. (Proposition 2 insures the existence of bounded solutions
through x0 near E.)

Proof. The cycles in M are stable in M, so the center stable manifold theorem insures
their stability in R3. Since M attracts and consists of stable oscillations, the approach to
M is to a cycle with asymptotic phase.

3. Discussion. The method used in this note allows the use of properties of a known
planar system to determine the stability of an equilibrium point for the overall system. In
this example the subsystem turns out to be a good indicator of system behavior evolving
from points outside but nearby the center manifold M. Indeed, numerical experiments
have shown that the approach to M is quite rapid. Thus each orbit C in M serves as an
approximate model of the system behavior for initial states (such as those whose distance
from M is measured by a physically reasonable phosphorus concentration) on the trajec-
tory approaching C which are not far removed from M. The periods of the orbits in M
can be estimated by averaging techniques. For the MichaelisMenten growth rate func-
tions mentioned above, Lin and Kahn [6] give some results which can be used for this
purpose.

To indicate some implications of the phase portrait of this system for applications,
consider the problem of an undesirably high and persistent level of phosphorus concen-
tration in a eutrophic lake. The fact that the solution trajectories of our system tend to M
(in a short time) means that the problem can't be solved or even relieved for long by
removing a quantity from the lake at some time. The model says that long-term control
can be achieved only by modification of the phosphorus pool by external means. This
suggests that the kinetics between the lake sediments and phosphorus pool is an impor-
tant consideration in the design of phosphorus control strategies.
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