
QUARTERLY OF APPLIED MATHEMATICS 477
JANUARY 1985

ON STABILITY DIAGRAMS FOR DAMPED HILL EQUATIONS*
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Abstract. In previous works, the Galerkin approach is shown to be most efficient for
quantitative stability analysis of the solutions to Hill equations. This approach, further-
more, should be recognized to be a theoretical tool as well, which enables us in a most
simple way to prove a number of theorems on decoupling, symmetry and other similarities
related to the stability diagrams.

In addition to the classification of solution functions we classify the possible excitation
functions. Finally, a two parameter excitation function <#> = cos 2r + a6 cos 6t +
a10cos 10t, belonging to the class here termed as extended harmonic functions is discussed
specifically, and detailed stability diagrams are presented. The accuracy of the analysis is
verified.

1. Introduction. The stability analysis for the solutions to differential equations with
periodic coefficients has been a challenge for more than one hundred years. In spite of the
efforts the available quantitative results in terms of stability diagrams are rather meagre,
also for the case of a single differential equation and even for the case of a harmonic
periodic coefficient, here termed the excitation function. This should also be seen in the
light of the fact that computers have been available for more than twenty years now. An
approach suggested in [1] still seems to be advantageous compared with alternative
approaches, and in this paper we shall extend the description and present new results,
analytically as well as numerically.

Three alternative approaches are frequently used. The perturbation method is based on
the assumption of small parameters, and seldom is the term "small" quantified. Often
results are presented which far exceed the assumption made. The second approach is
numerical integration over one period, using classical Floquet theory. The critical com-
ment to this method is that it concentrates on specific parameters, and if more general
stability diagrams have to be evaluated, it will be very computer-costly. Besides, numerical
approximations are inherent in the determination. The third approach is based on Hill's
infinite determinants. For a more detailed discussion of the three approaches, see Nayfeh
& Mook [2].
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The approach of [1], also used in the present paper, presents some similarities to the
perturbation approach as well as to the approach with Hill's infinite determinants, but the
negative aspects of these approaches are omitted, and the way of thinking is also quite
different (being more engineering oriented). Furthermore, we are not satisfied with only
knowing stability/instability boundaries.

To make this last point more clear let us assume a Hill equation with damping

y" + 2coy' + (ao + 24<*#»o(T)) y = 0, (1.1)

where all quantities are real. The parameters are c0 > 0 for damping, a0 for excitation
level, q0 for excitation amplitude, and <p0(t) is the 77-period excitation function. With y'
defined as dy/dr our goal is to determine whether y = y( r) is stable, i.e. we are not
interested in the solution corresponding to specific initial conditions. On the other hand,
we want quantitative information about the behaviour corresponding to specific data c0,
a0' <7o. <Po(T)-

To do this we introduce the free parameter c which is not a physical damping but a
complex quantity

c = a + iu, i2 = — 1. (1-2)

This parameter is introduced by the variable substitution

y(r) = <?(c-c°)tz(t) = e(a-Co)Te'"Tz( r), (1.3)

and we get a new damped Hill equation

z" + 2 cz' +{a + 2q<i>{j))z = 0, with (1-4)

a = a0 + c2 - Co =» a - c2 = a0 - Cq, and

q<t>(r) = (q/A)(<p(r)A) = ^o(T) =" 9 = VoA> <t> = <t>o/A

where A is a normalization constant, described in Sec. 3.
If c - 0 this is the classical transformation from a damped Hill equation to an

undamped Hill equation. However, as we shall see, dealing with c as well as c0 enables the
quantitative interpretation, and is a more direct approach than the classical formulation
with characteristic exponent, although in principle, it is the same.

Now the eigenvalue problem that makes z(t) a 27r-period solution is formulated,
returning c as the eigenvalue when c0, a0, q0, <f>0(r) is given. In general, we find

c = c(c0,a0,q0,<t>0(T)), (1.5)

and prove that c is either pure real c = a or pure imaginary c = iu. By means of (1.3) the
two cases give for c2 > 0

y(r) = e(a~c°)rz( t), (1.6)

i.e. flutter (dynamic instability) for a > c0, 277-period critical solutions for a = c0, and
damped-periodic solutions for a < c0.

For c2 < 0 we get

y(T) = e~c°Te'"Tz(T), (1.7)
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i.e. a solution which is a product of two limited periodic solutions, which are damped for
c0 > 0. We thus see how c gives the quantitative information on the behaviour indepen-
dent of the specific initial conditions.

Often the Bubnov-Galerkin method is classified as a numerical technique and perturba-
tion methods as analytical techniques. In the author's opinion this classification is
misleading. By the Bubnov-Galerkin expansion we shall in this paper prove new valuable
theorems in addition to those proved in [1], We shall see also that the small parameter
asymptotic expansions are easily evaluated from the Galerkin approach. Without losing
the results from perturbation analysis, we thus have an approach, not depending on small
parameters, which returns theoretical as well as numerical results.

In Sec. 2 we describe and classify the possible excitation functions. Then the solution
functions are classified, and in Sec. 4 the approach of [1] is described shortly. Details with
theorems and proofs are given in the appendix. In [1] the excitation function 4>0(t) =
cos2t + o4cos4t is studied in detail, and in [3], the excitation function <p0(r) =
(1 + £Cos2t)_1 is studied by its Fourier transform. In this paper we shall concentrate on
the detailed stability diagrams for <f>0(r) = cos2r + a6cos6t + a10coslOr, that is excita-
tion functions belonging to the class here termed as extended harmonic functions.

2. Classification of excitation functions. The Hill equation, written in the standard form
(1.1) assumes the excitation function <j>0 to be a w-period function, which we describe by

<t>o(T) = X, aksin(k + l)r + £ ak cos/ct, (2.1)
it —1,3,... k = 2,4,...

assuming alt a2 =£ 0,0.

Thus, the constants ak are the parameters of the excitation function.
Important simplifications appear in the stability analysis, both when <£0 is an even

function and when it is an odd function. Furthermore, the results of the stability analysis
are not influenced by the origo t0 of time, and some functions are even in relation to some
origo, say cos2t for t0 = 0, and odd in relation to some other origo, say cos2t for
t0 = 77-/4. As the simplifications for even functions are not the same as those for odd
functions, we get a class of excitation functions with joint simplifications.

The nomenclature for the parameter a0 in the standard form (1.1) should be seen in
relation to the parameters ak of the description (2.1). By this description the excitation
function is normalized to

f <Po(T) = f <P(T) dr = 0, (2.2)
'o •'o

which holds independent of ak in (2.1). To get a comparable effect of the parameter q in
the standard form (1.4) we choose furthermore to normalize <f>(r) by

/"Jo
<P2(t) dT — it/2, (2-3)

which, by (2.1), gives the normalization constant A defined in (1.4) as

A2= £ a2k. (2.4)
*-1,2,3,...
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The excitation functions are classified by the following four classes:

<p( t):= ^--periodic satisfying (2.2) and (2.3),
in general neither even nor odd for any origo t0 . (2.5)

<#>(t):= ^-periodicsatisfying (2.2) and (2.3), (2 6)
even for some origo f0, but not odd for any origo.

77-periodic satisfying (2.2) and (2.3),
odd for some origo f0, but not even for any origo.

4>( t):= 77-periodic satisfying (2.2) and (2.3),
even for some origo f0, and odd for some origo f0.

(2.7)

(2.8)

This last class includes the harmonic functions and might be termed extended harmonic
functions.

Examples related to the description (2.1) may be given as follows:

<f>(r) = (sin2r + cos2t + sin4r + cos4t)/\/4 , (2-9)

4>(r) = (cos2t + cos4t)/\/2 , (2-10)

<5>(t) = (sin2T + sin4r)/V/2 , (2.11)

4>(t) = (cos2t + cos6t + cos10t)//3\ (2.12)

<P
2

Examples of normalized excitation functions . ^ even
 yp odd

V general
^ even
yp odd
y ext. harm.

■n/4 n/2 3tx/4
I

T

Fig. 2.1. Normalized excitation functions.
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and these functions are shown in Fig. 2.1. From this figure we note some properties which
may also be proved algebraically:

<#> needs a full period for its description,

<p and <J> only need half a period for their description, (2-13)
<j> only needs a quarter of a period for its description.

3. Classification of solution functions. The quantitative stability analysis of the solutions
to Hill equations with damping is for given 4>(T) reduced (cf. [1]) to the solution of an
eigenvalue problem with the triple (c, q, a) as eigenvalue to

z" + 2cz' +(a + 2q<t>(r))z = 0,
z( t) = z(t + 277), ■z'(t) = z'(t + 277).

Note that 77-periodic solution functions

z(t) = z( T + 77), z'(t) = z'(t + 77), (3.2)

are included in this formulation.
This eigenvalue problem is then solved by the Bubnov-Galerkin procedure using the

expansion

z(t) = L b„v„(r),
n = 1,2,...

1>1 = 1,
n 0 . (3.3)

vn = cos —T, n = 2,4,..., v '

vn = sin   t, n = 3,5, 

In this expansion we separate the 77-periodic solution functions Zj(t) from the remaining
ones z2(t), i.e.

z(t) = zx(t) + z2(t) = £ b„v„+ £ (3.4)
« = 1,4,5,8,9,... 11 = 2,3,6,7,...

In relation to some simplified problems (c = 0 and 4> = <£, even functions) it is also
practical to separate into even solution functions z(r) and odd solution functions z(t), i.e.

z(r) = z(t) + z(r) = £ + Z (3.5)
« = 1,2,4,6,... n = 3,5,7,...

In total, the solution functions are then classified by the following four classes

Zj(t):= even 77-periodic function

E (3-6)
n-1,4,8,12,...

Zj(t) := odd 77-periodic function

I Kv„, (3.7)
« = 5,9,13,...
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z2(t) := even 277-periodic (but not ^-periodic) function

E Kvn> (3-8)
n = 2,6,10,...

z2(t):= odd 2w-periodic (but not 77-periodic) function

E bnv„, (3.9)
«=3,7,11,...

and the arbitrary solution function z(t) is added by

z( t) = zx{ t) + zx( r) + z2(t) + z2(t). (3.10)

4. Determinant factorizations. In this section we shall give a short presentation of the
approach described in [1], Details of the involved matrices, theorems and proofs are given
in the appendix. The Bubnov-Galerkin expansion (3.3) results in a homogeneous set of
equations for the constants bn, contained in the vector {B}, i.e.

[£]{£} = {0}, (4.1)
and thus the eigenvalue (c, q, a) of (3.1) is obtained by the determinant condition, which
is worked out algebraically to a polynomial condition

\[S]\= A(c,q,a) = 0. (4.2)
To enable us study the influence of the excitation function, the parameters ak in the

description (2.1) are included and we get a more extended polynomial

A(c,q,a,a1,a2,...) = 0. (4.3)

Two important characteristics are proved to be valid for all excitation functions. Firstly,
we proved the determinant to be independent of the sign of c, which we indicate by the
squared parameter c2

A(c2, q, a,ak) = 0. (4.4)

Secondly, the w-period solutions zx decouple from the remaining 27>period solutions z2
also for all <£, and this we write by the factorization

A = A1A2. (4.5)

The remaining characteristics are only valid in relation to specific classes of excitation
functions (2.6)-(2.8). For the class of odd excitation functions the determinant is indepen-
dent of the sign of q, which we with (4.4) and (4.5) write

A^c2, q2, a, ak)A2(c2, q2, a, ak) = 0. (4.6)

This means that stability diagrams a = a(q) for this class of excitation functions are
symmetric with respect to the q = 0 line.

Simplicity in relation to the even excitation functions is only obtained when the damping
parameter c is zero. When this is the case the even solution functions z decouple from the
odd solution functions z. Taking also (4.5) into consideration we get

a- ak)Ax{q, a, ak)A2(q, a, ak)A2(q, a, ak) = 0

(c = 0) (4.7)
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This means that a stability diagram (like the classical Strutt-Haines diagram) may be
obtained with determinants of relatively low order, at the cost of dealing with four
determinants.

The joint simplifications of (4.6) and (4.7) are then valid for the class (2.8) of extended
harmonic excitation functions. Furthermore, it is proved in the appendix that A 2(q,...) =
A 2( — q,...) for this class, and we may therefore write

A2(±q, a, a^l^q2, a, ak)Kx{q2,a, ak) = 0, (4.8)

for this important class of excitation functions.

5. Stability diagrams for extended harmonic excitations. The class of extended harmonic
excitation functions as defined by (2.8) may be described by a pure sine series: ax = 1 and
then ak ¥= 0 only for k = 5,9,13,..., or by a pure cosine series a2 = 1 and then ak # 0
only for k = 6,10,14, Here, we choose the cosine description

4>0(r) = c°s2t + £ akcoskT. (5.1)
A: = 6,1Q,14,...

With no damping parameter (c = 0) the eigenvalue analysis according to (4.8) give rise
to the three (four) separated determinant polynomials

AiU2, a, a6, aw,...) = 0, (5.2)

for the even 7r-period solution functions,

\(q2,a,a6,aw,...) = 0, (5.3)

for the odd 77-period solution functions,

A2(q, a, a6, aw,...) = A2(-q, a, ab, a10,...) = 0, (5.4)

for the even and odd remaining 27r-period solution functions.
To point out that our analysis also contains the results obtained by perturbation

analysis, we shall focus primarily on the low order approximations for the 2w-period
solutions. From the appendix (A.8) we read directly for n = 1 with a2 — 1:

a— l±q = 0^>a = l + q, (5-5)

i.e. only information related to the main domain of instability. For the part n = 1,2 the
second order determinants return

a2 +( + 4(1 + a6) - 10)a +(q2(-l + a6) + q(-9 - a6) + 9) = 0, (5.6)

which we solve approximately for a6 = 0 as

1 2 1 1
a ~ I + q — —<7 + — q\

0 1*1 ,"*9 + 8? T64« '

Note that not until n = 1,2 is the second coefficient a6 of the excitation function involved.
Furthermore, we now also get information about the next (27r-period) domain of instabil-
ity. For the part n = 1,2,3, aU) also is involved, and we get information about three
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domains. Here we shall only give the resulting approximations for a6 = al0 = 0, which
give a = a(q) explicitly

1 2 1 3
a ~ \ + q - —q ± —q ,

, 8 , 64 (5.8)
" ' 9 + l6«! + 64«3'

and continuing for the part n = 1,2,3,4 we again get

1 2 1 3
a ~ 1 + q - g<r ± 77? >

, 8 , 64 (5.9)
9 + i6«2 + ««'•

The intention of showing the explicit results (5.5), (5.7)-(5.9) is primarily to prove that
these are also available with the present approach. In the author's opinion it is, however,
more advantageous to stay by the implicit results like (5.6).

In the remaining part of the paper we shall concentrate on presenting stability diagrams
for excitation functions (5.1), which are needed from the more practical point of view. The
symbolic computer language of FORMAC [4], [5] is used to obtain higher order determi-
nants analytically, and we write the resulting expression for the determinant

(/', j, k, /, m non-negative integers).

The resulting solutions to the five parameter polynomial (5.10) may then be presented in
different forms, all of which are obtained by Newton-Raphson solutions to (5.10), which is
very convenient because derivatives 3A/9a, 3A/3q, 3A/3a6, 3A/3a10 or 3A/3(c2) are
easily obtained. Alternative forms are presented in [1], but here we restrict the presenta-
tion to diagrams which are specific related to a given normalized excitation function <#>(t).
The abcissa is (a — c2) = (a0 - Cq) and the ordinate is |<jr| = \qa\A. Thus in these
diagrams we read directly the value of c = a + iu corresponding to specific data c0, a0,
q0, 4>q(t), and obtain from eq. (1.3) the quantitative information about stability.

6. Examples and practical aspects. Fig. 6.1 shows and numbers as 1-8 some specific
excitation functions for which stability diagrams will be presented.

First, we want to see the influence of the " shape" of excitation and therefore show four
joint diagrams in Figs. 6.2 and 6.3. These diagrams with results only for c - 0
(stability/instability boundaries with no damping, i.e. with c0 = 0), are based on the fully
factorized determinants (5.2)-(5.4), which makes high order expansions (high accuracy)
possible. With reference to expansion (3.3), «max for these results is 25, and we show the
diagrams up to \q\ = 8. Note the "coexistent" solutions (crossing curves) in the third
domain of instability for excitation functions with ab < 0, i.e. for excitation functions 2, 7
and 8.

Now, in Figs. 6.2 and 6.3 we have pointed out the specific domain of -2 < a < 6,
0 < |g| < 2 for which detailed stability diagrams are going to be presented. We see that in
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1: = cos(2t) + cos(6t)/2 5: <pQ = cos(2t) + cos(6t)/2+cos(1 0t)/2

2: (fQ = cos(2t)-cos(6t)/2 6: ipQ = cos(2t) + cos(6t)/2-cos(1 0t)/2

v/4 n/2 3n/4 n  v/4 */£ 3lt/4

3: = cos(2t)+cos(10t)/2 7: = cos(2t)-cos(6t)/2+cos(1 0t)/2

4: = cos(2t)-cos(1 0t)/2 8: ^ = cos(2t)-cos(6t)/2-cos(1 0t)/2

'/>

Fig. 6.1. "Shape" of the eight excitation functions for which stability
diagrams are presented.
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this domain the results are almost independent of the sign for the parameter a10 (3 = 4,
5 = 6, 7 = 8). Thus we only present results corresponding to the excitation functions 1, 2,
3, 5 and 7.

The detailed stability diagrams of Figs. 6.4-6.8 have a common symbolism. Full lines
are identical to the results in Figs. 6.2, 6.3, and are thus high accuracy results correspond-
ing to c = 0. Dashed lines correspond to c2 < 0, i.e. a = 0, to = ± ^-c2, and the
domains with these lines are always stable according to Eq. (1.7). The dash-dot lines
correspond to c2 > 0, i.e. a-]/c2, u = 0, and the domains with these lines are
stable/unstable depending on the actual c0 according to Eq. (1.6).

Fig. 6.2. Non-detailed but extended stability diagrams for excitation func-
tions 1-4 as defined in Fig. 6.1.
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A few comments on the practical aspects of obtaining the lines, i.e. about the
Newton-Raphson solutions to (5.10):

As the solutions are non-unique, a good starting point is necessary, and thus the
analytical solutions to q = 0 are used. From (1.4) with q = 0 and z = e'"T (n = 0,1,...)
we get

(-n2 + i2cn + a0 + c2 - Cq) = 0, (6.1)

which gives

ao - Co = (« + (6-2)

Fig. 6.3. Non-detailed but extended stability diagrams for excitation func-
tions 5-8 as defined in Fig. 6.1.
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Fig. 6.4. Detailed stability diagram for

z" + 2c0y' + | a0 + 2<70|cos2t + ^ cos6t j j y = 0.

0 0

Fig. 6.5. Detailed stability diagram for

z" + 2c0y' +1 a0 + 2<?0|cos2t - cos6t y = 0.
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'0 0

Fig. 6.6. Detailed stability diagram for

y" + 2coy' +^ao + 2<?0^cos2t + ^ coslOrjj y = 0.

0 0

Fig. 6.7. Detailed stability diagram for

y" + 2c0 y' +(^ao + 2%^cos2t + ~ cos6t + ~ coslOrjjy = 0
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with c2 < 0 for n = 0 and c2 > 0 for n = 1,2, The curves starting from q = 0 are
obtained as a = a(q0) for given c and then plotted as q = q(a - c2) = q(a0 — Cq). The
curves not reaching q = 0 are mostly obtained as q0 - q0(a) and then plotted as
q = q{a - c2). The reason for choosing (a - c2) as the abscissa will be shown later.

In the stability diagrams (Figs. 6.4-6.8) the accuracy of the dashed and dash-dotted
lines correspond to «max in expansion (3.3) equal to 13. The nice agreement with the high
accuracy full lines shows that this is enough for the actual domain. The independent
polynomials from At, and A2, respectively, may also be mutually tested. As an example in
the stable domain around 1 < a < 4, we get from Eq. (1.7)

yi = e~c°Te'UlTe'u = y2 = e~CoTeio,irei2r (6.3)

for co2 = Wj — 1.

Test in agreement with this also return high accuracy.
Finally, tests are carried out in relation to simulated solutions with specific initial

conditions. The CSMP [6] program is used for this and the results of nine simulations are
shown in Fig. 6.9. This also gives an opportunity of showing how the stability diagrams
are used to predict these results without carrying out the simulations.

Let our specific Hill equation be

y" + 2 c0y +(a0 + 0.6(cos2t — 0.5cos6t + 0.5 cos IOt))^ = 0 (6.4)

and we want to know the behavior^ = y(t) for the c0, a0 values listed in Table 6.1. In this
table we have also determined the normalized q value corresponding to Eq. (6.4), and
listed the a, w values as read directly from stability diagram. Fig. 6.8.

a"c2=Vco 6

Fig. 6.8. Detailed stability diagram for

y" + 2 c0y' + ^ a0 + 2<ji0|cos 2t - -^-cos6t + cos 10t j J y = 0.
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Unstable solutions with high damping c0 = 0.1.

C S u p
Simulation for a0 = 11)0

C S M P
Simulation for a0 = 1.10

C S M P
Simulation for a £0

o to 40 60 »0 100 0 20 40 SO BO 100 0 20 40 to tO 100

Stable solutions with high damping c0 = 0.1.

c s M P
Simulation for a0 = 1 25

C S M P
Simulation for a. = 1 30

C S M P
Simulation for a0 = 1.50

0 20 40 60 tO 100 0 20 40 60 80 100 0 20 40

Stable solutions with weak damping c0 = 0.001.

c s M p c s m p
Sirriuiafi m tor a-, - 11 40.

C S M P
simli^aiwr* /or

SO 100 ISO 200 o 50 100 ISO

Fig. 6.9. CSMP [6] simulated solutions to eq. (6.4) based on the initial
conditions _y(r = 0) — 0 and 3^/9t(t = 0) = 1.
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q0 = 0.3, A2 = 3/2, => q = q0A = 0.37
<t>0 as by stability diagram in Fig. 6.8

CO

0.1
1.0

0.99
0.15

0.1
1.1
1.09
0.13

0.1
1.2
1.19
0.10

0.1
1.25
1.24
0.05

0.1
1.3
1.29

0.01

0.1
1.5
1.49

0.18

0.001
1.3
1.30

0.02

0.001
1.4
1.40

0.13

0.001
1.5
1.50

0.19

Table 6.1. List of given parameters qQ, A, <j>0, c0, a0 for Eq.

(6.4), and the corresponding stability parameters a, w as inter-
polated from Fig. 6.8.

The first row of unstable solutions (in Fig. 6.9) and the first stable solution in the
second row are directly seen to agree with the a values of Table 6.1. The highly damped
solutions for c0 = 0.1 in the second row make it difficult to see the influence of co = 0.01
and 0.18, respectively. However, in the last row with weak damping, c0 = 0.001, the values
of co = 0.02, 0.13 and 0.19 are directly seen to agree with the CSMP simulations.

We see that even for a damped Hill equation (c0 ¥= 0) the stability diagrams give
directly quantitative information about the behaviour, and not only the classification
stable/unstable.

7. Conclusions. Stability diagrams for Hill equations are effectively established by the
approach based on a Galerkin expansion. This, in fact, is a natural choice because each
"point" in the diagram constitutes an eigenvalue problem.

In the present paper we have primarily focused on the theoretical information on
decoupling, symmetry, etc. that can be obtained from the appearance of the Galerkin
coefficient matrix. Most of the theorems given in the appendix are well known, but it is
interesting to note how easily they are obtained from the theory of determinants.

Joint simplifications are actual for a class of excitation functions termed "extended
harmonics". All the numerical results are concentrated on a two-parameter function
<f> = cos2r 4- a6 cos6t + a10coslOr belonging to this class. Such excitation functions do
not seem to have been studied before. Main results are the location of coexistent solutions
in the third domain of instability for a6 < 0 and, for moderate values of excitation, a
rather weak dependence on the sign of al0.

The detailed stability diagrams of the present paper are refined in a way, which make
them directly useable also for damped Hill equations. The normalization of excitation
functions and the choice of the abscissa to be (a - c2) and not just (a) add highly to the
usefulness of the diagrams.

Appendix: Coefficient matrix of the Bubnov-Galerkin expansion with theorems of
decoupling, symmetry and other similarities. Firstly, the total coefficient matrix is sep-
arated according to the separation zv z2, defined in section three:
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[^] =

[5],=

[S]2 =

[S]u [0]
. [0], [S]2

The two submatrices are individually separated according to the separations z and z

[^]2,2> [ ̂  3 2,2

[5]2,2, [ *^ ] 2,2

and the eight submatrices are then listed, reordered but directly taken from [1]

[S] i,i = (A.4)
2a,

a - 4,
a - 16, +q

a — 36
diagonal

0 , la2, 2a4, 2a6,
A 4 ' a2 a6 ' a4 '

a8 > a2 aW '
J12 '

a - 4,
a - 16,

+ q
a - 36

diagonal

" a4 ' a2 a6 ' a4 '
— aS > a2 ~ fl10 >

— a 12 '

0,
4,0,

8,0, +q
12,0

codiagonal

a}, aj + a5, a3 + a7,
" 4" , A 7 > £2 ̂ £7^ ,

■fl3 + a7,—+ ,

— c

0,4,
0, 8,

0,12
codiagonal

+ 9

[^]2,2 — [S]2,2 —
(upper sign) (lower sign)

a — 1,
fl - 9,

a-25 + <?
diagonal

±fl2 ' a2 i a4 ' i i fl8 '

ia6 ' fl2 i a8 ' a4 i flio '

iflio ' a2 i fl12 '

symmetric

(A.l)

(A.2)

(A.3)

«i
symmetric

[S] i,i = (A.5)

symmetnc

[S] i,i = (A.6)
, 2ci2 9 2^5,

[5]i,i = (A.7)
2^1 , #3 , *"t~ ̂5 , ^3 "J" #7 ,

2^3 , ~1~ ^ , fly , "I- £7^ ,

2fl5 , 4~ ~t~ Qq , ^11 >

(A.8)
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[Shi = [S]h =
(upper sign) (lower sign) (A-9)

2,
6,

10,
diagonal

+ 1

al > +£21 + ^3, +#3 + 05, +£*5 + 07,

al + a3, a5, ±ax + an, ±a3 + a9 ,

a3 + a5, flj + a7, a9, ±al + all,

Theorem 1. The total determinant is equal to the product of the determinant of the
7r-period solutions and the determinant of the remaining 2w-period solutions, i.e. A = Aj •
A 2'

Proof. This follows directly from (A.l), which shows that the zl solutions decouple from
the z2 solutions.

Theorem 2. The determinants Ax and A2 are both independent of the sign of c, i.e.
A1 = A^c2,...) and A2 = A2(c2,..

Proof. The matrices [5]! and [S]2 are both antimetric depending on c as seen from
(A.6), (A.7) and (A.9). The determinant of a matrix is equal to the determinant of the
transposed matrix, thus by the antimetric nature proving the independence of the sign of

Theorem 3. The parameter c = a + iu is either pure real c = a or pure imaginary c = iw.
Proof. This follows directly from theorem 2, when c2 is a real quantity.

Theorem 4. For an odd excitation function 4>(t + f0) = ~4>( — t + f0) the determinants
A! and A2 are both independent of the sign of q, i.e. Ax = A^2,...) and A2 = A2(q2,. ■ ■)■
Stated in other terms: The resulting stability diagrams will be symmetric relative to the
line q = 0.

Proof. A proof directly from Hill's equation is given in [1], An alternative proof follows
from the determinants calculated by

Ai = |[S]i,i| |[S]i,i ~ [S]i,l[>S]i,i [Sli.il

^2 ~ I [ *^ Is.sl )[*-*] 2,2 ['S'] 2,2[ ̂ ]2,2 [-^ ] 2,2!

which is possible according to Gantmacher [7], p. 46. When <f> is described by a pure sine
series, all ak = 0 for k even, and then [S]u, [S]j j, [S]22, [S]22 are all diagonal matrices
independent of q, as seen from (A.4), (A.5) and (A.8). The independence of the sign of q
then follows when the matrix multiplications are performed.

Theorem 5. For an even excitation function <$>(t + t0) = <#>(-t + f0) the determinants
Ax, A2 corresponding to no damping (c = 0) are equal to the product of the determinants
of even solutions and the determinants of odd solutions, i.e. A! = AjAj and A2 = A2A2.

Proof. When <#> is described by a pure cosine series, all ak = 0 for k odd and then for
c = 0 we have by (A.6), (A.7) and (A.9) that [5]j} = [S]jj = [5]22 = [5]22 = [0]. The
proof thereby follows directly from (A.2) and (A.3).
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Theorem 6. For an odd/even excitation function <f>(r + t0) = —4>( —t + f0), 4>(t + f0)
= 4>(-r + f0) the determinant A2 is equal to the determinant A2 by a change of sign for
the parameter q, i.e. A2(<7,...) = h2{-q,...).

Proof. When <p is described by ak =£ 0 only for k = 2,6,10,..., then as seen from (A.8),
with a change of sign of q, [ 5" ] 5,2 w'" only differ from [ S ] -2-2 in the signs of the elements
whose sum of suffices are odd. According to Muir [8] p. 25, this does not alter the
determinant.

Theorem 7. When the excitation function originates from a Fourier expansion of
(1 + b cos t)"1 where |6| < 1, we have a = q and a2p = a$ foip = 2,3,..., with all other
ak = 0. For this case with no damping (c = 0) we have Aj = 2qhY and thereby no
instability domains corresponding to 77-period solutions.

Proof. The excitation function is treated in [3], but without the proof to be given here.
Inserting a = q and a2p = a% in (A.4) we get

2<?, 2a2q , 2a\q , 2a\q ,
ajq + q - 4,a2(l + a\)q,a\{\ + aj)q,

a2q + q - 16 , a2(l + a2) q ,
symmetric

By row operations the determinant of this matrix is

2q , 2a2q , 2a\q , 2a\q ,

0, -a\q + q - 4 , a2(l - a22)q,a22(l - a22)q,

0 , a2{\ - a\)q, -a2q + q - 16 , a2(l - a2)q,

[S] i,i

Ax =

which is seen to be directly proportional to the determinant of [5],; as given by (A.5)
when a = q and a2p = a% is inserted.
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