
 Open access  Posted Content  DOI:10.1101/2020.08.25.265546

On stability of Canonical Correlation Analysis and Partial Least Squares with
application to brain-behavior associations — Source link 

Markus Helmer, Shaun Warrington, Ali-Reza Mohammadi-Nejad, Ali-Reza Mohammadi-Nejad ...+8 more authors

Institutions: Yale University, University of Nottingham, National Institute for Health Research, John Radcliffe Hospital

Published on: 25 Aug 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Partial least squares regression, Overfitting, Canonical correlation and Principal component analysis

Related papers:

 Towards Reproducible Brain-Wide Association Studies

 A positive-negative mode of population covariation links brain connectivity, demographics and behavior

 The minimal preprocessing pipelines for the Human Connectome Project.

 The organization of the human cerebral cortex estimated by intrinsic functional connectivity

 The WU-Minn Human Connectome Project: An Overview

Share this paper:    

View more about this paper here: https://typeset.io/papers/on-stability-of-canonical-correlation-analysis-and-partial-
240hdkay0v

https://typeset.io/
https://www.doi.org/10.1101/2020.08.25.265546
https://typeset.io/papers/on-stability-of-canonical-correlation-analysis-and-partial-240hdkay0v
https://typeset.io/authors/markus-helmer-35d937xn27
https://typeset.io/authors/shaun-warrington-2xfz9j962c
https://typeset.io/authors/ali-reza-mohammadi-nejad-nxoyp98wtd
https://typeset.io/authors/ali-reza-mohammadi-nejad-nxoyp98wtd
https://typeset.io/institutions/yale-university-sbbuxg8k
https://typeset.io/institutions/university-of-nottingham-3kb5u51w
https://typeset.io/institutions/national-institute-for-health-research-hz2bzese
https://typeset.io/institutions/john-radcliffe-hospital-1dbnr3qj
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/partial-least-squares-regression-kh78rw34
https://typeset.io/topics/overfitting-2a9z2saq
https://typeset.io/topics/canonical-correlation-b1f0q7er
https://typeset.io/topics/principal-component-analysis-1xv2bzbh
https://typeset.io/papers/towards-reproducible-brain-wide-association-studies-1yf2v29ipr
https://typeset.io/papers/a-positive-negative-mode-of-population-covariation-links-30ejwfbcz8
https://typeset.io/papers/the-minimal-preprocessing-pipelines-for-the-human-connectome-5329unl1le
https://typeset.io/papers/the-organization-of-the-human-cerebral-cortex-estimated-by-2ubdo6btxv
https://typeset.io/papers/the-wu-minn-human-connectome-project-an-overview-m4aucl0bmz
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-stability-of-canonical-correlation-analysis-and-partial-240hdkay0v
https://twitter.com/intent/tweet?text=On%20stability%20of%20Canonical%20Correlation%20Analysis%20and%20Partial%20Least%20Squares%20with%20application%20to%20brain-behavior%20associations&url=https://typeset.io/papers/on-stability-of-canonical-correlation-analysis-and-partial-240hdkay0v
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-stability-of-canonical-correlation-analysis-and-partial-240hdkay0v
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-stability-of-canonical-correlation-analysis-and-partial-240hdkay0v
https://typeset.io/papers/on-stability-of-canonical-correlation-analysis-and-partial-240hdkay0v


On stability of Canonical Correlation Analysis and Partial Least Squares

with application to brain-behavior associations

Markus Helmer1, Shaun Warrington2, Ali-Reza Mohammadi-Nejad2,3, Jie Lisa Ji1,4, Amber Howell1,4,

Benjamin Rosand5, Alan Anticevic1,4,6 Stamatios N. Sotiropoulos2,3,7,* John D. Murray1,4,5,*

1 Department of Psychiatry, Yale School of of Medicine, New Haven, CT 06511

2 Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham,

Nottingham, NG7 2UH, United Kingdom

3 National Institute for Health Research (NIHR) Nottingham Biomedical Research Ctr,

Queens Medical Ctr, Nottingham, United Kingdom

4 Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven,

CT 06511, USA

5 Department of Physics, Yale University, New Haven, CT 06511, USA

6 Department of Psychology, Yale University, New Haven, CT 06511, USA

7 FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical

Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United

Kingdom

* john.murray@yale.edu (JDM), stamatios.sotiropoulos@nottingham.ac.uk (SNS)

Abstract

Associations between datasets, each comprising many features, can be discovered through multivariate

methods like Canonical Correlation Analysis (CCA) or Partial Least Squares (PLS). Application of

CCA/PLS to high-dimensional datasets raises critical questions about reliability and interpretability. To

study this, we developed a generative modeling framework to simulate synthetic datasets, parameterized by

dimensionality, variance structure, and association strength. We found that CCA/PLS associations could be
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highly inaccurate when the number of samples per feature is relatively small. For PLS, profiles of feature

weights exhibit detrimental bias toward leading principal component axes. We confirmed these trends in

state-of-the-art neuroimaging datasets, Human Connectome Project (n≈1000) and UK Biobank (n=20000),

finding that only the latter comprised sufficient samples for stable estimates. Analysis of the neuroimaging

literature using CCA to map brain-behavior relationships revealed also that the commonly employed sample

sizes yield unstable CCA solutions. Finally, we provide a calculator of dataset properties required for

CCA/PLS stability. Collectively, we characterize how to limit detrimental effects of overfitting on CCA/PLS

stability, and provide recommendations for future studies.

Introduction 1

Discovery of associations between datasets is a topic of growing importance across scientific disciplines in 2

analysis of data comprising a large number of samples across high-dimensional sets of features. For instance, 3

large initiatives in human neuroimaging collect, across thousands of subjects, rich multivariate neural 4

measures as one dataset and psychometric and demographic measures as another linked dataset [1, 2]. A 5

major goal is to determine, in a data-driven way, the dominant latent patterns of association linking 6

individual variation in behavioral features to variation in neural features [3, 4]. 7

A widely employed approach to map such multivariate associations is to define linearly weighted 8

composites of features in both datasets (e.g., neural and psychometric) and to choose the sets of 9

weights—which correspond to axes of variation—to maximize the association strength (Fig. 1A). The 10

resulting profiles of weights for each dataset can be examined for how the features form the association. If 11

the association strength is measured by the correlation coefficient, the method is called canonical correlation 12

analysis (CCA) [5], whereas if covariance is used the method is called partial least squares (PLS, or PLS 13

correlation, see Discussion) [6, 7]. CCA and PLS are commonly employed across scientific fields, including 14

genomics [8], and neuroimaging [3, 9]. 15

Although the utility of CCA and PLS is well established, a number of open challenges exist regarding 16

their stability in characteristic regimes of dataset properties. Stability implies that elements of CCA/PLS 17

solutions, such as association strength and weight profiles, are reliably estimated across different independent 18

sample sets from the same population, despite inherent variability in the data. Instability or overfitting can 19

occur if an insufficient amount of data is available to properly constrain the model. Manifestations of 20

instability and overfitting in CCA/PLS include inflated association strengths [10–12], cross-validated 21
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Figure 1. Overview of CCA, PLS and the generative model used to investigate their properties.
A) Two multivariate datasets, X and Y , are projected separately onto respective weight vectors, resulting
in univariate scores for each dataset. The weight vectors are chosen such that the correlation (for CCA)
or covariance (for PLS) between X and Y scores is maximized. B) In the principal component coordinate
system, the variance structure within each dataset can be summarized by its principal component spectrum.
For simplicity, we assume that these spectra can be modeled as power-laws. CCA, uncovering correlations,
disregards the variance structure and can be seen as effectively using whitened data (cf. Methods). C) The
association between sets is encoded in the association strength of X and Y scores. D) Datasets X and Y are
jointly modeled as a multivariate normal distribution. The within-set variance structure (B) corresponds to
the blocks on the diagonal, and the associations between datasets (C) are encoded in the off-diagonal blocks.
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association strengths that are markedly lower than in-sample estimates [13], or feature profiles that vary 22

from study to study [10,13–16]. Stability of models is essential for their replicability, generalizability, and 23

interpretability. Therefore, it is important to assess how stability of CCA/PLS solutions depends on dataset 24

properties. 25

Instability of CCA/PLS solutions is in principle a known issue [4, 14]. Prior studies using a small number 26

of specific datasets or Monte-Carlo simulations have suggested to use between 10 and 70 samples per feature 27

in order to obtain stable models [11, 15,17]. However, it remains unclear how the various elements of 28

CCA/PLS solutions (including association strengths, weights, and statistical power) differentially depend on 29

dataset properties and sampling error, nor how CCA and PLS as distinct methods may exhibit differential 30

robustness across data regimes. To our knowledge, no framework exists to systematically quantify errors in 31

CCA/PLS results, depending on the numbers of samples and features, the assumed latent (between-set) 32

correlation and the variance structure in the data, for both CCA and PLS. 33

To investigate these issues, we developed a generative statistical model to simulate synthetic datasets with 34

known latent axes of association. Sampling from the generative model allowed quantification of deviations 35

between estimated and true CCA or PLS solutions. We found that stability of CCA/PLS solutions requires 36

more samples than are commonly used in published neuroimaging studies. With too few samples, estimated 37

association strengths were too high, and estimated weights could be unreliable for interpretation. CCA and 38

PLS differed in their dependences and robustness, in part due to PLS exhibiting a detrimental bias of 39

weights toward principal axes. We analyzed two large state-of-the-art neuroimaging-psychometric datasets, 40

the Human Connectome Project [1] and the UK Biobank [2], which followed similar trends as our model. 41

These model and empirical findings, in conjunction with a meta-analysis of estimated stability in the 42

brain-behavior CCA literature, suggest that typical CCA/PLS studies in neuroimaging are prone to 43

instability. Finally, we applied the generative model to develop algorithms and a software package for 44

calculation of estimation errors and required sample sizes for CCA/PLS. We end with 10 practical 45

recommendations for application and interpretation of CCA and PLS in future studies (see also Tab. 1). 46

Results 47

A generative model for cross-dataset multivariate associations. To analyze sampling properties of 48

CCA and PLS, we need to generate synthetic datasets of stochastic samples with known properties and with 49

known correlation structure across two multivariate datasets. We therefore developed a generative statistical 50
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modeling framework that satisfies these requirements, which we refer to as GEMMR (Generative Modeling of 51

Multivariate Relationships). GEMMR is central to all that follows as it allows us to design and generate 52

synthetic datasets, investigate the dependence of CCA/PLS sampling errors on dataset size and assumed 53

covariances, estimate weight errors in CCAs reported in the literature, and calculate sample sizes required to 54

bound estimation errors. 55

To describe GEMMR, first note that data for CCA and PLS consist of two datasets, given as data 56

matrices X and Y , with respectively px and py features (columns) and an equal number n of samples (rows). 57

We assume a principal component analysis (PCA) has been applied separately to each dataset so that, 58

without loss of information, the columns of X and Y are principal component (PC) scores. The PC scores’ 59

variances, which are also the eigenvalues of the within-set covariance matrices, SXX and SY Y , are modeled 60

to decay with a power-law dependence (Fig. 1B) for PLS, as empirical variance spectra often follow 61

approximate power-laws (for examples, see Fig. S1A-J). For CCA, which optimizes correlations instead of 62

covariances, the two datasets are effectively whitened internally during the analysis (see Methods). 63

Between-set associations between X and Y (Fig. 1C) are summarized in the cross-covariance matrix SXY . 64

By performing a singular value decomposition of SXY a solution for CCA and PLS can be obtained (after 65

whitening for CCA, see Methods) with the singular values giving the association strengths and the singular 66

vectors encoding the weight vectors for the latent between-set association modes. Conversely, given 67

association strengths and weight vectors for between-set association modes (i.e., the solution to CCA or 68

PLS), the corresponding cross-covariance matrix can be assembled making use of the same singular value 69

decomposition, where different weight normalizations reflect the distinction between CCA and PLS (see 70

Methods and Fig. S4). The joint covariance matrix for X and Y is then composed from the within- and 71

between-set covariances (Fig. 1D) and the normal distribution associated with this joint covariance matrix 72

constitutes our generative model for CCA and PLS. 73

In the following we systematically vary the parameters on which the generative model depends and 74

investigate their downstream effects on the stability of CCA and PLS solutions. Specifically, we vary the 75

number of features (keeping the same number of features for both datasets for simplicity), the assumed 76

between-set correlation, the power-laws describing the within-set variances, and the number of samples 77

drawn. Weight vectors are chosen randomly and constrained such that the ensuing X and Y scores explain 78

at least half as much variance as an average principal component in their respective sets. For simplicity, we 79

restrict our present analyses to a single between-set association mode. Of note, in all of the manuscript, 80

“number of features” denotes the total number across both X and Y , i.e., px + py. Also of note, the 81
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terminology used for CCA properties (e. g. weights, scores) is not uniform across the literature. CCA/PLS 82

“scores” (as described above) could also be called “variates”, “weights” (as described above) could also be 83

called “vectors” or “saliences”, and “loadings” (as described below) could also be called “parameters” or 84

“structure coefficients”. For CCA, the correlation between the score vectors, i. e. the “between-set 85

correlations” or “inter-set correlations” are also called “canonical correlations” [4, 6, 9, 18, 19]. 86

Sample-size dependence of estimation error. Using randomly sampled surrogate datasets from our 87

generative model, we characterized the estimation error in multiple elements of CCA/PLS solutions. First, 88

we asked whether a significant association can robustly be detected, quantified by statistical power. To that 89

end we calculate the association strength in each synthetic dataset as well as in 1000 permutations of sample 90

labels, and calculate the probability that association strengths are stronger in permuted datasets, giving a 91

p-value. We repeat this process, and estimate statistical power as the probability that the p-value is below 92

α = 0.05 across 100 synthetic datasets drawn from the same normal distribution with given covariance 93

matrix. For a sufficient number of samples that depends on the other parameter values statistical power 94

eventually becomes 1 (Fig. 2A-B). Note that here we use “samples per feature” as an effective sample-size 95

measurement to account for the fact that datasets in practice can have widely varying dimensionalities (see 96

also Fig. S5). A typical value in the brain-behavior CCA/PLS literature is about 5 samples per feature (Fig. 97

S6A), which is also marked in Fig. 2. 98

Second, we evaluated the association strength (Fig. 2C-D). While the observed association strength 99

converges to its true value for sufficiently large sample sizes, it consistently overestimates the true value and 100

decreases monotonically with sample size. Moreover, for very small sample sizes, observed association 101

strengths are very similarly high, independent of the true between-set correlation (Fig. S8O-P). Thus as 102

above, a sufficient sample size, depending on other parameters of the covariance matrix, is needed to bound 103

the error in the association strength. We also compared in-sample estimates for the association strength to 104

cross-validated estimates. We found that cross-validated estimates underestimate the true value (Fig. S9A-B) 105

to a similar degree as in-sample estimates overestimate it (Fig. S9C-D). Interestingly, the average of 106

in-sample and cross-validated association strength was a better estimator than either of the two alone in our 107

simulations (Fig. S9E-F). Finally, bootstrapped association strengths overestimated, on average, slightly 108

more than in-sample estimates (Fig. S9G-H). 109

Third, CCA/PLS solutions provide weights that encode the nature of the association in each dataset. We 110

quantify the corresponding estimation error as the cosine distance between the true and estimated weights, 111
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separately for X and Y and taking the greater of the two. As the sign of weights is ambiguous in CCA and 112

PLS it is chosen to obtain a positive between-set correlation between observed and true weight. We found 113

that weight error decreases monotonically with sample size (Fig. 2E-F). Bootstrapped weight errors were 114

again, on average, slightly larger than in-sample estimates (Fig. S9I-L), while the variability of individual 115

weight elements across repeated datasets can be well approximated through bootstrapping (Fig. S9M-N). 116

Fourth, CCA/PLS solutions provide scores which represent a latent value assigned to each sample (e.g., 117

subject). Applying true and estimated weights to common test data to obtain test scores, score error is 118

quantified as 1 − Spearman correlation between true and estimated scores. It also decreased with sample 119

size (Fig. 2G-H). 120

Finally, some studies report loadings, i. e. the correlations between original data features and CCA/PLS 121

scores (Fig. S10A-B). In practice, original data features are generally different from principal component 122

scores, but as the relation between these two data representations cannot be constrained, we calculate all 123

loadings here with respect to principal component scores. Moreover, to compare loadings across repeated 124

datasets we calculate loadings for a common test set, as for CCA/PLS scores. The loading error is then 125

obtained as (1 − Pearson correlation) between test loadings and true loadings. Like other error metrics, it 126

decayed with sample size (Fig. 2I-J). Interestingly, convergence for PLS is somewhat worse than for CCA 127

across all metrics assessed in Fig. 2. 128
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Figure 2. Sample-size dependence of CCA and PLS. (Caption follows)
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Figure 2. Sample-size dependence of CCA and PLS. For sufficiently large sample sizes, statistical 129

power to detect a non-zero correlation converges to 1 (A, B), between-set covariances approach their 130

assumed true value (C, D), and weight (E, F), score (G, H), and loading (I, J) errors become close to 0. 131

Left and right columns show results for CCA and PLS, respectively. For all metrics, convergence depends on 132

the true between-set correlation rtrue and is slower if rtrue is low. Note in C, D) that estimated between-set 133

association strengths overestimate the true values. The true value in C) is the indicated correlation, whereas 134

in D) it is given by the indicated correlation multiplied by the standard deviations of X and Y scores which 135

depend on the specific weight vectors. The dashed vertical line at 5 samples per feature represents a typically 136

used value (Fig. S6A). 137
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Weight error and stability. Fig. 2 quantifies the effect of sampling error on various aspects of the 138

model in terms of summary statistics. We next focus on the error and stability of the weights, due to their 139

centrality in CCA/PLS analysis in describing how features carry between-set association. First we illustrate 140

how weight vectors are affected when typically used sample-to-feature ratios are used. For this illustration we 141

set up a joint covariance matrix with a true between-set correlation of 0.3 and assuming 100 features per 142

dataset, and then generated synthetic datasets with either 5 or 50 samples per feature. Using 5 samples per 143

feature, estimated CCA weights varied so strongly that the true weight were not discernable in the 144

confidence intervals (Fig. 3A). In contrast, with 50 samples per feature the true weights became more 145

resolved. For PLS, the confidence interval for weights estimated with 5 or 50 samples per feature did not 146

even align with the true weights (Fig. 3B) indicating that even more samples than for CCA should be used. 147

We next assessed weight stability, i.e., the consistency of estimated weights across independent sample 148

datasets. We quantified weight stability as the cosine-similarity between weights obtained from two 149

independently drawn datasets and averaged across pairs of datasets. When the datasets consisted of only few 150

samples, the average weight stability was close to 0 for CCA and eventually converged to 1 (i. e. perfect 151

similarity) with more samples (Fig. 3E). PLS exhibited striking differences from CCA: mean weight stability 152

had a relatively high value even at low sample sizes where weight error is very high (Figs. 3F, 2F), with high 153

variability across datasets. 154

Finally, to show the dependence of weight error on the assumed true between-set correlation and the 155

number of features we estimated the number of samples required to obtain less than 10% weight error (Fig. 156

3C-D). The required sample size is higher for increasing number of features, and lower for increasing true 157

between-set correlation. We also observe that, by this metric, required sample sizes can be much larger than 158

typically used sample sizes in CCA/PLS studies. 159

Weight PC1 similarity in PLS. Figs. 3A-B,E-F and 2E-F show that at low sample sizes, PLS weights 160

exhibit, on average, high error but also reasonably high stability. This combination suggests a systematic 161

bias in PLS weights toward a different axis than the true latent axis of association. To gain further intuition 162

of this phenomenon, we first consider the case of both datasets comprising 2 features each, so that weight 163

vectors are 2-dimensional unit vectors lying on a circle. Setting rtrue = 0.3, we drew synthetic datasets from 164

the normal distribution and performed CCA or PLS on these. When 50 samples per feature were used, all 165

resulting weight vectors scattered tightly around the true weight vectors (Fig. 3G-H). With only 5 samples 166

per feature, which is typical in CCA/PLS studies (Fig. S6A), the distribution was much wider. For CCA the 167
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circular histogram peaked around the true value. In contrast, for PLS the peak was shifted towards the first 168

principal component axis when 5 samples per feature were used. 169

Next, we investigated how this weight bias toward the first principal component axis in PLS manifests 170

more generally. We first considered an illustrative data regime (64 features/dataset, rtrue = 0.3). We 171

quantified the PC similarity as the cosine similarity between estimated weight vectors and a principal 172

component axis. Compared to CCA, PC similarity to the dominant principal comonents was strong for PLS, 173

even with a large number of samples (Fig. 3I-J), and more so for a small number of samples. Note also, that 174

the average PC similarity in permuted datasets was similar to that in unpermuted datasets, for both CCA 175

and PLS. Finally, these observations also held for datasets with differing number of features and true 176

correlations. For PLS the weight vectors are biased toward the first principal component axis, compared to 177

CCA, and more strongly than random weight vectors, particularly when few samples per feature were used 178

to estimate them (Fig. 3L). 179
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Figure 3. Large number of samples required to obtain good weight estimates. (Caption follows)
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Figure 3. Large number of samples required to obtain good weight estimates. A, B) Realistic 180

example where the true betwen-set correlation was set to rtrue =0.3. The area plots show 95% confidence 181

intervals. A) For CCA, good weight estimates could be obtained with 50, but not 5, samples per feature. B) 182

For PLS even more samples were necessary. C-D) Sample sizes required to obtain less than 10% weight 183

errors. E-F) Weight stability, i. e. the average cosine-similarity between weights across pairs of repetitions, 184

increases towards 1 (identical weights) with more samples. For PLS, weight stability can be high, even with 185

few samples. The true between-set correlation was set to rtrue=0.3. G-H) Example situation assuming a 186

true between-set correlation of rtrue=0.3 between datasets and 2 features each for both X and Y datasets. In 187

this 2-dimensional setting weight vectors, scaled to unit length, lie on a circle. Synthetic datasets were 188

generated repeatedly. 5 samples per feature gave good estimates in many cases but notably all possible 189

weight vectors occurred frequently. 50 sampes per feature resulted in consistently better estimates. Dots near 190

border of semi-circles indicate directional means of distributions. I-J) Another example with 64 features per 191

dataset and a between-set correlation rtrue=0.3. PLS weights have a strong PC1 similarity (cosine-similarity 192

with first principal component). K-L) PC1 similarity was stronger for PLS (L) than for CCA (K) also for 193

datasets with varying number of features and true between-set correlations rtrue. Shown is relative PC1 194

similarity across synthetic datasets with varying number of features, relative to the expected PC1 similarity 195

of a randomly chosen vector with dimension matched to each synthetic dataset. 196
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Comparison of loadings and weights. In addition to weights, loadings provide a measure of 197

importance for each variable. It has previously been argued that loadings provide provide a better basis for 198

interpretation of linear models than weights, as weights are more susceptible to noise [?]. Moreover, mixed 199

results have been reported regarding differential stability of weights and loadings [?, 18]. Here, we have used 200

simulations to elucidate these issues. We generated data with GEMMR assuming 32 features / set and a true 201

between-set correlation of 0.3. Here (unlike in the rest of the manuscript), we also worked in coordinate 202

systems that were randomly rotated from the principal-component coordinate system, to mimic each 203

variable’s original coordinate system. This matters, as the coordinate system affects loadings. 204

We first investigated stability. Stability was measured as pairwise cosine-similarity of weight vectors, and 205

pairwise pearson-correlation of loading vectors, respectively, obtained from a CCA / PLS of 25 independent 206

data samples. This was then repeated for 25 different data scenarios, each of which had different true weight 207

/ loading vectors and different relative orientation to the principal component axes. For CCA (Fig. 4A) 208

loadings were slightly more stable than weights. At the same time, loading error decreased as loading 209

stability increased. For PLS (Fig. 4B) weight and in particular loading stability was high already for small 210

sample sizes, where the loading error was high as well. This indicates that, for PLS, stability of loadings is 211

not a good indicator for accuracy of loadings. 212

Stability depended on the within-set variance spectrum (Fig. 4C,D). For both CCA and PLS, the steeper 213

the powerlaw describing this spectrum (i. e. if there exist strongly dominating PCs) stability was higher 214

compared to shallower powerlaws. For PLS, we observed a similar effect for weights. 215

Finally, we evaluated the pattern of weights and loadings in terms of their similarity to principal 216

component axes (Fig. 4E, F). CCA weights for small sample sizes overlapped more with low-variance 217

principal component axes. On the other hand, CCA loadings, as well as PLS loadings and weights resembled 218

more dominant principal component axes. Thus, the within-set variance can have a strong influence on these 219

CCA / PLS properties. For a specific example of this effect in real data see Fig. S7. Of note, strong 220

similarity of weights / loadings with dominant PC-axes might complicate interpretation of between-set effects 221

based on weights or loadings of, say, modality X, as these weights or loadings might appear similar even for 222

disparate input datasets Y . 223

Empirical brain-behavior data. Do these phenomena observed in synthetic data from our generative 224

modeling framework also hold in empirical data? We focused on two state-of-the-art population 225

neuroimaging datasets: Human Connectome Project (HCP) [1] and UK Biobank (UKB) [2]. Both datasets 226
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Figure 4. Stability and PC similarity of weights and loadings. A CCA loadings are slightly more
stable than weights. B Similarly for PLS. Also, PLS loadings were extremely stable despite large loading
error. C-D The steeper the within-set variance spectrum the more stable were loadings (and weights for
PLS). E CCA loadings resembled dominant principal component axes while CCA weights for small sample
sizes resembled more low-variance PC-axes. F PLS weights and loadings resembled PC-axes.

provide multi-modal neuroimaging data along with a wide range of behavioral and demographic measures, 227

and both have been used in prior studies using CCA to map brain-behavior relationships [2, 3, 20–24]. HCP, 228

comprising around 1200 subjects, is one of the lager neuroimaging datasets available and is of exceptional 229

quality. We analyzed two neuroimaging modalities in the HCP dataset, resting-state functional MRI (fMRI) 230

(in 948 subjects) and diffusion MRI (dMRI) (in 1020 subjects, shown in Fig. S2A-D). UKB is a 231

population-level study and, to our knowledge, the largest available neuroimaging dataset. We analyzed fMRI 232

features from 20000 UKB subjects. HCP and UKB thereby provide two independent testbeds, across 233

neuroimaging modalities and with large numbers of subjects, to investigate error and stability of CCA/PLS 234

in brain-behavior data. 235

After modality-specific preprocessing (see Methods), both datasets in each of the three analyses were 236

deconfounded and reduced to 100 principal components (see Methods and Fig. S1K), in agreement with prior 237

CCA studies of HCP data [3, 20–24]. Functional connectivity features were extracted from fMRI data and 238

structural connectivity features were extracted from dMRI. Note that, as only a limited number of samples 239

were available in these empirical datasets, we cannot use increasingly more samples to determine how CCA 240

or PLS converge with sample size (as we did with synthetic data above). Instead, we repeatedly formed two 241
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non-overlapping sets of subjects of the available data, varying their sizes from 202 up to 50% of the available 242

number of subjects. 243

We found that the first mode of association was statistically significant for all three sets of data and for 244

both CCA and PLS (p-values from a permutation test were A) 0.001, C) 0.004, I) 0.001, K) 0.001). 245

Association strengths decreased with increasing size of the subsamples, but clearly converged only for the 246

UKB data. Cross-validated association strengths estimates increased with subsample size and, for UKB, 247

converged to the same value as the in-sample size. Fig. 5A overlays reported CCA results from other 248

publications that used 100 features per set in HCP data, which further confirms the decreasing trend of 249

association strength as a function of sample size. 250

Weight stabilities (i. e., the cosine-similarities between the two estimated weight vectors of a pair of data 251

matrices with non-overlapping subjects) for the HCP datasets remained low and at intermediate values for 252

CCA and PLS, respectively. In contrast, in the UKB dataset weight stabilities reached values close to 1 253

(perfect similarity). Moreover, for all datasets weight PC1 similarity was close to 0 for CCA but markedly 254

larger for PLS weights. We also investigated stability (i. e. the Pearson correlation between the two 255

estimated loading vectors of a pair of data matrices with non-overlapping subjects) and PC1 similarity for 256

loadings in the HCP-fMRI and UKB dataset. Here, loadings were calculated either for principal components 257

(i. e. the correlations between PC-scores and CCA/PLS scores) or for original variables (i. e. the correlations 258

between original data variables and CCA/PLS scores). Both PC-loadings and original-variable loadings show 259

a similar behavior as weights, with loadings being slightly more similar to PC1 than weights. 260

All these results were in agreement with analyses of synthetic data discussed above (Figs. 2-4). 261

Altogether, we emphasize the overall similarity between CCA analyses of different data modalities and 262

features (first and second row in Fig. 5) and data of similar nature from different sources (first and third row 263

in Fig. 5). This suggests that sampling error is a major determinant in CCA and PLS outcomes and this is 264

valid across imaging modalities and for independent data sources. Note also that stable CCA and PLS 265

results with a large number of considered features can be obtained with sample sizes that become available 266

with UKB-level datasets. 267

We also considered reducing the data to different numbers of principal components than 100. Fig. S2E-H 268

shows a re-analysis of HCP data in which a smaller number of principal components was selected according 269

to an optimization procedure [25]. Moreover, using UKB data, we separately varied the number of retained 270

neuroimaging and behavioral principal components from 1 to 100 and calculated in-sample and 271

cross-validated association strengths for CCA and PLS (Fig. S3). For both methods, we found that the 272

16/73

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.08.25.265546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265546


obtained association strength rose strongly when retaining an increasing number of behavioral PCs, but only 273

up to about 10. Retaining more than 10 behavioral PCs lead to more marginal increases in association 274

strength. The situation for neuroimaging PCs differed between the methods, however. For CCA, retaining 275

more neuroimaging PCs improved the association strength up to about 20-40 before plateauing. For PLS, on 276

the other hand, the top PCs (≈ 5-10) were enough for the association strength to plateau. This is in line 277

with the described PC similarity for PLS. Altogether, these findings suggest that, for both methods, the 278

between-set association is encoded in the top few behavioral PCs, and this can be exploited with 279

dimensionality reduction methods before using CCA / PLS. 280

Samples per feature alone predicts published CCA strengths. We next examined stability and 281

association strengths in CCA analyses of empirical datasets more generally. To that end we performed an 282

analysis of the published literature using CCA with neuroimaging data to map brain-behavior relationships. 283

From 100 CCAs that were reported in 31 publications (see Methods), we extracting the number of samples, 284

number of features, and association strengths. As the within-set variance spectrum is not typically reported, 285

but would be required to assess PLS results (as described above), we did not perform such an analysis for 286

PLS. 287

Most studies used less than 10 samples per feature (Fig. 6A and S6A). Overlaying reported canonical 288

correlations as a function of samples per feature on top of predictions from our generative model shows that 289

most published CCAs we compiled are compatible with a range of true correlations, from about 0.5 down to 290

0 (Fig. 6A). Interestingly, despite the fact that these studies investigated different questions using different 291

datasets and modalities, the reported canonical correlation could be well predicted simply by the number of 292

samples per feature alone (R2 = 0.83). 293

We next asked whether weight errors can be estimated from published CCAs. As these are unknown in 294

principle, we estimated them using our generative modeling framework. We did this by (i) generating 295

synthetic datasets of the same size as a given empirical dataset, and sweeping through assumed true 296

correlations between 0 and 1 (ii) selecting those synthetic datasets for which the estimated canonical 297

correlation matches the empirically observed one, and (iii) using the weight errors in these matched synthetic 298

datasets as a proxy for the weight error in the empirical dataset (Fig. S6C). This resulted in a distribution of 299

weight errors across the matching synthetic datasets for each published CCA study that we considered. The 300

mean of these distributions are overlaid in color in Fig. 6A and the range of the distributions is shown in Fig. 301

6B. The mean weight error falls off roughly with the distance to the correlation-vs-samples/feature curve for 302
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Figure 5. CCA and PLS analysis of empirical population neuroimaging datasets. For all datasets
and for both CCA and PLS a significant mode of association was detected. Association strengths monotonically
decreased with size of the subsamples (orange in column 1, green in column 3). Association strengths for
permuted data are shown in grey (with orange and green outlines in columns 1 and 3, respectively). Deviations
of the orange and green curves from the grey curves occur for sufficient sample sizes and correspond to
significant p-values. Note how the curves clearly flatten for UKB but not for HCP data where the number
of available subjects is much lower. Circle indicates the estimated value using all available data and the
vertical bar in the same color below it denotes the corresponding 95% confidence interval obtained from
permuted data. In A) we also overlaid reported canonical correlations from other studies that used HCP
data reduced to 100 principal components. Cross-validated association strengths shown in red (column 1) and
blue (column 3), cross-validated estimation strengths of permuted datasets in grey with red and blue outlines
in columns 1 and 3, respectively. Triangle indicates the cross-validated association strength using all data
and the vertical bar in the same color below it denotes the corresponding 95% confidence interval obtained
from permuted data. Cross-validated association strengths were always lower than in-sample estimates and
increased with sample size. For UKB (but not yet for HCP) cross-validated association strengths converged to
the same value as the in-sample estimate. Weight stabilities increased with sample size for UKB and slightly
for the PLS analyses of HCP datasets, while they remained low for the CCA analyses of HCP datasets. PC1
weight similarity was low for CCA but high for PLS. Both PC-loadings and original-variable-loadings show a
similar pattern as weights, with loadings being slightly more similar to PC1 than weights. All analyses were
performed with repeatedly subsampled data of varying sizes (x-axis). For each subsample size and repetition,
we created two non-overlapping sets of subjects and calculated stability of weights / loadings using these
non-overlapping pairs.
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permuted data (see also Fig. S6B). Altogether, these analyses suggest that many published CCA studies 303

might have unstable feature weights due to an insufficient sample size. 304
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Figure 6. CCAs reported in the population neuroimaging literature might often be unstable.
A) Canonical correlations and the number of samples per features are extracted from the literature and overlaid
on predictions from the generative model for various between-set correlations rtrue. Many studies employed a
small number of samples per feature (cf. also Fig. S6A) and reported a large canonical correlation. These
studies fall in the top-left corner of the plot, where predictions from the generative model for rtrue < 0.5 and
also the null-data (having no between-set correlation, resulting from permuted datasets) are indistinguishable
(see also Fig. S8O-P). In fact, the reported canonical correlation can be predicted from the used number of
samples per feature alone using linear regression (R2 = 0.83). We also estimated the weight error (encoded
in the colorbar) for each reported CCA (details are illustrated in Fig. S6C). The farther away a CCA lies
from the predictions for permuted data the lower the mean-estimated weight error (cf. Fig. S6B). B) The
distribution of estimated weight errors for each reported CCA is shown along the y-axis. For many studies
weight errors could be quite large, suggesting that conclusions drawn from interpreting weights might not be
robust.

Benefit of cross-loadings in PLS. Given the instability associated with estimated weight vectors, we 305

investigated whether other measures provide better feature profiles. Specifically, we compared loadings and 306

cross-loadings. Cross-loadings are the correlations across samples between CCA/PLS scores of one dataset 307

with the original data features of the other dataset (unlike loadings, which are the correlations between 308

CCA/PLS scores and original features of the same dataset). In CCA, they are collinear (see Methods and 309

Fig. S10C) and to obtain estimates that have at most 10% loading or cross-loading error required about the 310

same number of samples (Fig. S10E). For PLS, on the other hand, true loadings and cross-loadings were, 311

albeit not collinear still very similar (Fig. S10D), but cross-loadings could be estimated to within 10% error 312

with about 20% to 50% less samples as loadings in our simulations (Fig. S10F). 313

Calculator for required sample size. In both synthetic and empirical datasets we have seen that 314

sample size plays a critical role to guarantee stability and interpretability of CCA and PLS, and that many 315

existing applications may suffer from a lack of samples. How many samples are required, given particular 316
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dataset properties? We answer this question with the help of GEMMR, our generative modeling framework 317

described above. Specifically, we suggest to base the decision on a combination of criteria, by bounding 318

statistical power as well as relative error in association strength, weight error, score error and loading error at 319

the same time. Requiring at least 90% power and admitting at most 10% error for the other metrics, we 320

determined the corresponding sample sizes in synthetic datasets by interpolating the curves in Fig. 2 (see 321

Fig. S11A and Methods). The results are shown in Fig. 7 (see also Fig. S8A-L). Assuming, for example, that 322

the decay constants of the variance spectra satisfy ax + ay = −2, several hundreds to thousands of samples 323

are necessary to achieve the indicated power and error bounds when the true correlation is 0.3 (Fig. 7A). 324

More generally, the required sample size per feature as a function of the true correlation roughly follows a 325

power-law dependence, with a strong increase in required sample size when the true correlation is low (Fig. 326

7B). Interestingly, PLS generally needs more samples than CCA (see also Fig. S12). As mentioned above, 327

accurate estimates of the association strength alone (as opposed to power, association strength, weight, score 328

and loading error at the same time) could be obtained in our simulations with fewer samples: by averaging 329

the in-sample with a cross-validated estimate (Fig. S9E-F). Moreover, accurate estimates of a PLS feature 330

profile required fewer samples when assessed as cross-loadings (Fig. S10F). We also evaluated required 331

sample sizes for sparse CCA with our analysis framework (Fig. S8M-N) but note that an in-depth analysis of 332

sparse CCA is beyond the scope of this manuscript. 333

Given the complexity and computational expense to generate and analyze enough synthetic datasets to 334

obtain sample size estimates in the way described above, we finally asked whether we could formulate a 335

concise, easy-to-use description of the relationship between model parameters and required sample size. To 336

that end, we fitted a linear model to the logarithm of the required sample size, using logarithms of total 337

number of features and true correlation as predictors (Figs. S11). We additionally included a predictor for 338

the decay constant of the within-set variance spectrum, |ax + ay|. Using split-half predictions to validate the 339

model, we find good predictive power for CCA and PLS (Fig. S11C-D). 340

Discussion 341

We characterized CCA and PLS through a parameterized generative modeling framework. CCA and PLS 342

require a sufficient number of samples to work as intended and the required sample size depends on the 343

number of features in the data, the assumed true correlation, and the principal component variance spectrum 344

for each dataset. 345
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Figure 7. Required sample sizes. Sample sizes to obtain at least 90% power as well as at most 10% error
for the association strength, weight, scores and loadings. Shown estimates are constrained by the within-set
variance spectrum (here ax + ay = −2, cf. Fig. S8E-L for other values). A) Assuming a true between-set
correlation of rtrue = 0.3 100s to several 1000s of samples are required to reach target power and error levels.
See Fig. S8A-D for other values of rtrue. Shaded areas show 95% confidence intervals. B) The required
number of samples divided by the total number of features in X and Y scales with rtrue. For rtrue = 0.3
about 50 samples per feature are necessary to reach target power and error levels in CCA, which is much
more than typically used (cf. Fig. S6A). Generally, more features are necessary for PLS than CCA (see also
Fig. S12), and if the true correlation is smaller. Every point for a given rtrue represents a different number of
features and is slightly jittered for visibility. Values for a given pX are only shown here if simulations were
available for both CCA and PLS.

Generative model for CCA and PLS. At least for CCA, the distribution of canonical correlations has 346

been reported to be intractable, even for normally distributed data [26]. Thus, a generative model is an 347

attractive alternative to investigate sampling properties. Our generative model for CCA and PLS made it 348

possible to investigate all aspects of a solution, beyond just the canonical correlations, at the cost of higher 349

computational expenses. For example, the generative model can be used to systematically explore parameter 350

dependencies, to assess stability, to calculate required sample sizes in new studies, and to estimate weight 351

stability in previously published studies. While this generative model was developed for CCA and PLS, it 352

can also be used to investigate related methods like sparse variants [27]. More broadly, extending the 353

generative model to other domains, like associations with gene expression maps where spatial 354

autocorrelations between samples have to be taken into account, could be a promising future direction. 355

Pitfalls in CCA and PLS. Association strengths can be overestimated and, at least for CCA when the 356

number of samples per feature as well as the true correlation are low, observed canonical correlations can be 357

compatible with of true correlations, down to zero (Fig. S8O-P). Estimated weight vectors do not need to 358

resemble the true weights when the number of samples is low and can overfit, i. e. vary strongly between 359

datasets sampled from the same population(Fig. 3), affecting significantly their interpretability and 360

generalizability. Furthermore, PLS weights also show a consistent similarity to the first principal component 361
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axis (Fig. 3G-L). As a consequence, similarity of weights obtained for two datasets drawn from the same 362

population is necessary but not sufficient to infer replicability. The PC1 similarity also existed for null data. 363

Therefore, estimated weights that strongly resemble the first principal component axis need not indicate an 364

association, but could instead indicate the absence of an association, or insufficient sample size. Importantly, 365

we have shown that the same pitfalls also appear in empirical data. 366

Differences between CCA and PLS. First and foremost, CCA and PLS have different objectives: 367

while CCA finds weighted composites with the stronfgest possible correlation between datasets, PLS 368

maximizes their covariance. When features do not have a natural commensurate scale, CCA can be 369

attractive due to its scale invariance (see Fig. 1 and Methods). In situations where both analyses make sense, 370

PLS comes with the additional complication that estimated weights show a consistent similarity towards the 371

first principal component axis. Moreover, our analyses suggest that the required number of samples for PLS 372

is usually higher than for CCA, except maybe when the true PLS weights overlap strongly with the first 373

principal component axis (see Fig. S12). Based on these arguments, CCA might often be preferable to PLS. 374

Sample size calculator for CCA and PLS. Previous literature, based on small numbers of specific 375

datasets or Monte-Carlo simulations, has suggested using between 10 and 70 samples per feature for 376

CCA [11,15, 17]. Beyond that, our calculator is able to suggest sample sizes for the given characteristics of a 377

dataset, and can do so for both CCA and PLS. As an example, consider the UKB data in Fig. 5. Both 378

in-sample and cross-validated CCA association strengths converge to about 0.5. Fig. 7B then suggests to use 379

about 20 samples per feature, i. e. 4000 samples, to obtain at least 90% power and at most 10% error in 380

other metrics. This is compatible with Fig. 5J: at 4000 subjects weight stability is about 0.8 (note that 381

weight stability measures similarity of weights between different repetitions of the dataset; we expect the 382

similarity of a weight vector to the true weight vector—which is the measure going into the sample size 383

calculation—to be slightly higher on average). Our calculator is made available as an open-source Python 384

package named GEMMR (Generative Modeling of Multivariate Relationships). 385

Brain-behavior associations. CCA and PLS have become popular methods to reveal associations 386

between neuroimaging and behavioral measures [2, 3, 9, 13, 21–24,28]. The main interest in these applications 387

lies in interpreting weights or loadings to understand the profiles of neural and behavioral features carrying 388

the brain-behavior relationship. We have shown, however, that stability and interpretability of weights or 389

loadings are contingent on a sufficient sample size which, in turn, depends on the true between-set correlation. 390
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How strong are true between-set correlations? While this depends on the data at hand, and is in principle 391

unknown a priori, our analyses provide estimates in the case of brain-behavior associations. First, we saw in 392

UKB data that both in-sample and cross-validated canonical correlations converged to a value of around 0.5. 393

As the included behavioral measures comprised a wide range of categories (cognitive, physical, life-style 394

measures and early life factors) this canonical correlation is probably more on the upper end, such that 395

brain-behavior associations probing more specialized modes are likely lower. Second, we saw in a literature 396

analysis of brain-behavior CCAs that reported canonical correlations as a function of sample-to-feature ratios 397

largely follow the trends predicted by our generative model, despite different datasets investigated in each 398

study. We also saw that few studies which had 10-20 samples per feature reported canonical correlations 399

around 0.5-0.7, while most studies with substantially more than 10 samples per feature appeared to be 400

compatible only with values ≤ 0.3. In this way, we conclude that true canonical correlations in 401

brain-behavior applications are probably not greater than 0.3 in many cases. 402

Assuming a true between-set correlation of 0.3, our generative model implies that about 50 samples per 403

feature are required at minimum to obtain stability in CCA results. We have shown that many published 404

brain-behavior CCAs do not meet this criterion. Moreover, in HCP data we saw clear signs that the available 405

sample size was too small to obtain stable solutions—despite that the HCP data comprised around 1000 406

subjects which is one of the largest and highest-quality neuroimaging datasets available to date. On the 407

other hand, with UKB data, where we used 20000 subjects, CCA and PLS results appeared to have 408

converged. As the resources required to collect datasets of this size go well beyond what is available to 409

typical research groups, this observation supports the accruement of datasets that are shared widely [29]. 410

Generalizability. Small sample and effect sizes have been identified as challenges for neuroimaging that 411

impact replicability and generalizability [30, 31]. Here, we have considered stability of CCA/PLS analyses 412

and found that observed association strengths decrease with used sample-per-feature ratio. Similarly, a 413

decrease in reported effect size with increasing sample size has been reported in meta-analyses of various 414

classification tasks of neuroimaging measures [32]. These sample-size dependences of the observed effect sizes 415

are an indication of instability. 416

A judicious choice of sample size, together with an estimate of the effect size, are thus advisable at the 417

planning stage of an experiment or CCA/PLS analysis. Our generative modeling framework provide 418

estimates for both. Beyond that, non-biological factors—such as batch or site effects [33] or flexibility in the 419

data processing pipeline [34]—certainly contribute to unstable outcomes and could be addressed in 420
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extensions of the generative model. External validation with separate datasets is also necessary to establish 421

generalizability of findings beyond the dataset under investigation. 422

Limitations and future directions. For tractability it was necessary to make a number of assumptions 423

in our study. Except for Fig. 6 it was assumed that both datasets had an equal number of features (but see 424

Fig. S5 where we used different number of features for the two datasets). We also assumed that data were 425

normally distributed, which is often not true in practice. For example, cognitive scores are commonly 426

recorded on an ordinal scale. To address that, we used empirical datasets and found similar sample-size 427

dependencies as in synthetic datasets. In an investigation of the stability of CCA for non-normal data 428

varying kurtosis had minimal effects [17]. We then assumed the existence of a single cross-modality axis of 429

association, but in practice several ones might be present. Moreover, we assumed that data are described in a 430

principal component (PC) basis. In practice, however, PCs and the number of PCs need to be estimated, too. 431

This introduces an additional uncertainty, although, presumably, of lesser influence than the inherent 432

sampling error in CCA and PLS. We therefore expect that a dataset whose features have been rotated into a 433

new coordinate system by an orthogonal transformation matrix to have the same sample size requirements as 434

the untransformed dataset. Furthermore, we used “samples per feature” as an effective sample-size 435

parameter to account for the fact that datasets in practice have very different dimensionalities. This is in line 436

with previous studies [32, 35]. Here, Fig. S5 show that power and error metrics for CCA are parameterized 437

well in terms of “samples per feature”, whereas for PLS it is only approximate. Nonetheless, as “samples per 438

feature” is arguably most straightforward to interpret, we presented results in terms of “samples per feature” 439

for both CCA and PLS. 440

Several related methods have been proposed to potentially circumvent shortcomings of standard CCA and 441

PLS (see [36] for a recent review). Regularized or sparse CCA or PLS [27] have been designed to mitigate 442

the problem of small sample sizes. They modify the modeling objective by introducing a penalty for the 443

elements of the weight vectors, encouraging them to “shrink” to smaller values. This modification has the 444

goal to obtain more accurate predictions, but will also bias the solutions away from their true values. (We 445

assume that, in general, the true weight vectors are non-sparse.) Conceptually, thus, these variants follow 446

more a “predictive” rather than “inferential” modeling goal [37, 38]. Our analysis pipeline evaluated with a 447

commonly used sparse CCA method [27] suggested that in some situations–namely, high dimensionalities and 448

low true correlations—fewer samples were required than for CCA to obtain the same bounds on evaluation 449

metrics (Fig. S8M-N). Nonetheless, although sparse CCA can in principle be used with fewer samples than 450
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features, these required sample sizes for sparse CCA were still many times the number of features: when 451

rtrue = 0.3, for example, 35–50 (depending on the number of features) samples per feature were required. We 452

note, however, that a complete characterization of sparse CCA or PLS methods was beyond the scope of this 453

manuscript. PLS has ben compared to sparse CCA in a setting with more features than samples and it has 454

been concluded that the former (latter) performs better when having fewer (more) than about 500 features 455

per sample [39]. We note that sparse methods are also often used in classification tasks, where they have 456

been observed to provide better prediction but less stable weights [40,41], which indicates a trade-off between 457

prediction and inference [40]. Correspondingly, it has been suggested to consider weight stability as a 458

criterion in sparsity parameter selection [40,42]. 459

Moreover, whereas CCA and PLS are restricted to discovering linear relationships between two datasets, 460

there exist non-linear extensions, such as kernel [43], deep [44] or nonparametric [45] CCA, as well as 461

extensions to multiple datasets [46]. Due to their increased expressivity, and therefore capacity to overfit, we 462

expect them to require even larger sample sizes. For classification, kernel and deep-learning methods have 463

been compared to linear methods, using neuroimaging-derived features as input [47]. Accuracy was found 464

similar for kernel, deep-learning and linear methods and also had a similar dependence on sample size, using 465

up to 8000 subjects. 466

There exist several variants of PLS [6, 7]. Here, we have used one that is also sometimes referred to as 467

PLS correlation (PLSC) or PLS-SVD. This variant treats both datasets X and Y symmetrically and is thus 468

conceptually similar to CCA: both PLSC/PLS-SVD and CCA strive to optimize an association strength 469

between weighted averages of their two original feature sets. In contrast, PLS regression approaches treat the 470

two datasets X and Y asymmetrically, aiming to find the best possible prediction of one dataset’s scores 471

from the other dataset’s scores. As prediction methods, PLS regression approaches are thus conceptually 472

different from PLSC/PLS-SVD [37,38] in that the focus lies on obtaining accurate out-of-sample scores, 473

potentially even at the cost of less accurate weights. While evaluation of PLS regression with our pipeline 474

remains an interesting direction for future work, we note that prediction approaches in general might still 475

require considerable number of samples per feature [48]. 476

The number of features in the datasets was an important determinant for stability. Thus, methods for 477

dimensionality reduction hold great promise. On the one hand, there are data-driven methods that, for 478

example, select the number of principal components in a way that takes the between-set correlation into 479

account [25]. Applying this method to HCP data we saw that the reduced number of features the method 480

suggests leads to slightly better convergence (Fig. S2E-H). On the other hand, previous knowledge could be 481
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used to preselect the features hypothesized to be most relevant for the question at hand. 482

Recommendations. We end with 10 recommendations for using CCA or PLS in practice (summarized in 483

Tab. 1). 484

1. Sample size and the number of features in the datasets are crucial determinants for stability. Therefore, 485

any form of dimensionality reduction as a preprocessing step can be useful, as long as it preserves the 486

features that carry the between-set association. PCA is a popular choice and can be combined with a 487

consideration for the between-set correlation [25]. 488

2. Significance tests used with CCA and PLS usually test the null hypothesis that the between-set 489

association strength is 0. This is a different problem than estimating the strength or the nature of the 490

association [49,50]. For CCA we find that the number of samples required to obtain 90% power at 491

significance level α = 0.05 is lower than to obtain stable association strengths or weights, whereas for 492

PLS the numbers are about commensurate with required sample sizes for other metrics (Fig. S8C-D). 493

As significant results can also be obtained even when power is low, detecting a significant mode of 494

association with either CCA or PLS does not in general indicate that association strengths or weights 495

are stable. 496

3. CCA and PLS overestimate the association strength for small sample sizes, and we found that 497

cross-validated estimators underestimate it. Interestingly, the average of the in-sample and the 498

cross-validated association strength was a much better estimator in our simulations. 499

4. The main interest of CCA/PLS studies is often the nature of the between-set association, which is 500

encoded in the weight vectors, loadings and cross-loadings. Every CCA and PLS will provide weights, 501

loadings and cross-loadings, but they may be inaccurate or unstable if an insufficient number of 502

samples was used for estimation. In our PLS simulations, cross-loadings required less samples than 503

weights and loadings to obtain an error of at most 10%. 504

5. PLS weights that strongly resemble the first principal component axis can indicate that either no 505

association exist or that an insufficient number of samples was used. 506

6. As a side effect of this similarity of PLS weights towards the first principal component axis, PLS 507

weights can appear stable across different sample sets, although they are inaccurate. 508

7. Performing CCA or PLS on subsamples of the data can indicate stability, if very similar results are 509

obtained for varying number of samples used, and compared to using all data. 510
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8. Bootstrapped estimates were useful in our simulations for assessing the variability or precision of 511

elements of the weight vectors. Estimates were, however, not accurate: they were as biased as 512

in-sample estimates, i. e. they overestimated association strengths, and both association strength and 513

weight error had a similar sample-size dependence as in-sample estimates. 514

9. For CCA and PLS analyses in the literature it can be difficult to deduce what datasets precisely were 515

used. We recommend to always explicitly state the used sample size, number of features in both 516

datasets, and obtained association strength. Moreover, the within-set principal component variances 517

are required and are thus useful to report. 518

10. CCA or PLS requires a sufficient number of samples for reliability. Sample sizes can be calculated 519

using GEMMR, the accompanying software package. An assumed but unknown value for the true 520

between-set correlation is needed for the calculation. Our literature survey suggests that between-set 521

correlations are probably not greater than 0.3 in many cases. 522

Conclusion. We have presented a parameterized generative modeling framework for CCA and PLS. It 523

allows analysis of the stability of CCA and PLS estimates, prospectively and retrospectively. Exploiting this 524

generative model, we have seen that a number of pitfalls exist for using CCA and PLS. In particular, we 525

caution against interpreting CCA and PLS models when the available sample size is low. We have also shown 526

that CCA and PLS in empirical data behave similar to the predictions of the generative model. Sufficient 527

sample sizes depending on characteristics of the data are suggested and can be calculated with the 528

accompanying software package. Altogether, our analyses provide guidelines for using CCA and PLS in 529

practice. 530
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Materials and Methods 531

Experimental Design. 532

The goal of this work was to determine requirements for stability of CCA and PLS solutions, both in 533

simulated and empirical data. To do so, we first developed a generative model that allowed us to generate 534

synthetic data with known CCA/PLS solutions. This made it possible to systematically study deviations of 535

estimated from true solutions. Second, we used large state-of-the-art neuroimaging datasets with associated 536

behavioral measurements to confirm the trends that we saw in synthetic data. Specifically, we used data 537

from the Human Connectome Project (HCP) (n ≈ 1000) and UK Biobank (UKB) (n = 20000). Third, we 538

analyzed published CCA results of brain-behavior relationships to investigate sample-size dependence of 539

CCA results in the literature. 540

Human Connectome Project (HCP) dataset 541

fMRI data. We used resting-state fMRI (rs-fMRI) from 951 subjects from the HCP 1200-subject data 542

release (03/01/2017) [1]. The rs-fMRI data were preprocessed in accordance with the HCP Minimal 543

Preprocessing Pipeline (MPP). The details of the HCP preprocessing can be found elsewhere [51, 52]. 544

Following the HCP MPP, BOLD time-series were denoised using ICA-FIX [53,54] and registered across 545

subjects using surface-based multimodal inter-subject registration (MSMAll) [55]. Additionally, global signal, 546

ventricle signal, white matter signal, and subject motion and their first-order temporal derivatives were 547

regressed out [56]. 548

The rs-fMRI time-series of each subject comprised of 2 (69 subjects), 3 (12 subjects), or 4 (870 subjects) 549

sessions. Each rest session was recorded for 15 minutes with a repetition time (TR) of 0.72 s. We removed 550

the first 100 time points from each of the BOLD sessions to mitigate any baseline offsets or signal intensity 551

variation. We subtracted the mean from each session and then concatenated all rest sessions for each subject 552

into a single time-series. Voxel-wise time series were parcellated to obtain region-wise time series using the 553

“RelatedValidation210” atlas from the S1200 release of the HCP [57]. Functional connectivity was then 554

computed as the Fisher-z-transformed Pearson correlation between all pairs of parcels. 3 subjects were 555

excluded (see section below), resulting in a total of 948 subjects with 64620 connectivity features each. 556

dMRI data. Diffusion MRI (dMRI) data and structural connectivity patterns were obtained as described 557

in [58, 59]. In brief, 41 major white matter (WM) bundles were reconstructed from preprocessed HCP 558
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diffusion MRI data [60] using FSL’s XTRACT toolbox [59]. The resultant tracts were vectorised and 559

concatenated, giving a WM voxels by tracts matrix. Further, a structural connectivity matrix was computed 560

using FSL’s probtrackx [61, 62], by seeding cortex/white-grey matter boundary (WGB) vertices and 561

counting visitations to the whole white matter, resulting in a WGB × WM matrix. Connectivity “blueprints” 562

were then obtained by multiplying the latter with the former matrix. This matrix was parcellated (along 563

rows) into 68 regions with the Desikan-Killany atlas [63] giving a final set of 68 × 41 = 2788 connectivity 564

features for each of the 1020 HCP subjects. 565

Behavioral measures. The same list of 158 behavioral and demographic data items as in [3] was used. 566

Confounds. We used the following items as confounds: Weight, Height, BPSystolic, BPDiastolic, HbA1C, 567

the third cube of FS BrainSeg Vol, the third cube of FS IntraCanial Vol, the average of the absolute as well 568

as the relative value of the root mean square of the head motion, squares of all of the above, and an indicator 569

variable for whether an earlier of later software version was used for MRI preprocessing. Head motion and 570

software version were only included in the analysis of fMRI vs behavioral data, not in the analysis of dMRI 571

vs behavioral data. Confounds were inverse-normal-transformed. Subsequently, missing values were set to 0. 572

3% and 5% of confound values were missing in the fMRI vs. behvior, and dMRI vs behavior analysis, 573

respectively. All resulting confounds were z-scores once more. 574

UK Biobank (UKB) dataset 575

fMRI data. We utilized pre-processed resting-state fMRI data [64] from 20000 subjects, available from the 576

UK Biobank Imaging study [2]. 577

In brief, EPI unwarping, distortion and motion correction, intensity normalization and high-pass temporal 578

filtering were applied to each subject’s functional data using FSL’s Melodic [65], data were registered to 579

standard space (MNI), and structured artefacts are removed using ICA and FSL’s FIX [53,54,65]. A set of 580

resting-state networks were identified common across the cohort using a subset of subjects (≈ 4000 581

subjects) [64]. This was achieved by extracting the top 1200 components from a group-PCA [66] and a 582

subsequent spatial ICA with 100 resting-state networks [65, 67]. Visual inspection revealed 55 non-artifactual 583

ICA components. Next, these 55 group-ICA networks were dual regressed onto each subject’s data to derive 584

representative timeseries for each of the ICA components. Following the regression of the artifactual nodes 585

for all other nodes and the subsequent removal of the artifactual nodes, the timeseries were used to compute 586
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partial correlation parcellated connectomes with a dimensionality of 55 × 55. The connectomes were z-score 587

transformed and the upper triangle vectorized to give 1485 functional connectivity features per subject, for 588

each of the 20000 subjects. 589

Behavioral measures. The UK Biobank contains a wide range of subject measures [68], including 590

physical measures (e.g., weight, height), food and drink, cognitive phenotypes, lifestyle, early life factors and 591

sociodemographics. We hand-selected a subset of 389 cognitive, lifestyle and physical measures, as well as 592

early life factors. For categorical items, we replaced negative values with 0, as in [2]. Such negative values 593

encode mostly “Do not know” / “Prefer not to answer”. Measures with multiple visits were then averaged 594

across visits, reducing the number of measures 226. We then performed a check for measures that had 595

missing values in more than 50% of subjects and also for measures that had identical values in at least 90% 596

of subjects; no measures were removed through these checks. We then performed a redundancy check. 597

Specifically, if the correlation between any two measures was > 0.98, one of the two items was randomly 598

chosen and dropped. This procedure further removed 2 measures, resulting in a final set of 224 behavioral 599

measures, available for each of the 20000 subjects. 600

Confounds. We used the following items as confounds: acquisition protocol phase (due to slight changes 601

in acquisition protocols over time), scaling of T1 image to MNI atlas, brain volume normalized for head size 602

(sum of grey matter and white matter), fMRI head motion, fMRI signal-to-noise ratio, age, sex. In addition, 603

similar to [2] we used the squares of all non-categorical items (i. e. T1 to MNI scaling, brain volume, fMRI 604

head motion, fMRI signal-to-noise ratio and age), as well as age × sex and age2× sex. Altogether these were 605

14 confounds. 6% of values were missing and set to 0. All resulting confounds were z-scores across subjects. 606

Preprocessing of empirical data for CCA and PLS 607

We prepared data for CCA following, for the most part, the pipeline in [3]. 608

Deconfounding. Deconfounding of a matrix X with a matrix of confounds C was performed by

subtracting linear predictions, i.e.

Xdeconfounded = X − Cβ (1)

where

β = C+X =
(

CTC
)−1

CTX (2)

30/73

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.08.25.265546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.265546


The confounds used were specific to each dataset and mentioned in the previous section. 609

Neuroimaging data. Neuroimaging measures, were, on the one hand, z-scored. On the other hand, 610

normalized values were used as additional features: normalization was performed by calculating features’ 611

absolute value of the mean across subjects and, in case this mean was above 0.1 (otherwise this feature was 612

not used in normalized form), the original values of the feature were divided by this mean, and the resulting 613

values were z-scored across subjects. 614

The resulting data matrix was de-confounded (as described in the previous above), decomposed into 615

principle components via a singular value decomposition, and the left singular vectors, multiplied by their 616

respective singular values were used as data matrix X in the subsequent CCA or PLS analysis. 617

Behavioral and demographic data. The list of used behavioral items were specific to each dataset and 618

mentioned in the previous sections. Given this list, separately for each item, a rank-based inverse normal 619

transformation [69] was applied and the result z-scored. For both of these steps subjects with missing values 620

were disregarded. Next, a subjects × subjects covariance matrix across variables was computed, considering 621

for each pair of subjects only those variables that were present for both subjects. The nearest positive 622

definite matrix of this covariance matrix was computed using the function cov nearest from the Python 623

statsmodels package [70]. This procedure has the advantage that subjects can be used without the need to 624

impute missing values. An eigenvalue decomposition of the resulting covariance matrix was performed where 625

the eigenvectors, scaled to have standard deviation 1, are principal component scores. They are then scaled 626

by the square-roots of their respective eigenvalues (so that their variances correspond to the eigenvalues) and 627

used as matrix Y in the subsequent CCA or PLS analysis. 628

Generating synthetic data for CCA and PLS 629

We analyzed properties of CCA and PLS with simulated datasets from a multivariate generative model.

These datasets are be drawn from a normal distribution with mean 0 and a covariance matrix Σ that encodes

assumed relationships in the data. To specify Σ we need to specify relationships of features within X, i. e.

the covariance matrix ΣXX ∈ R
px×px , relationships of features within Y , i. e. the covariance matrix

ΣY Y ∈ R
py×py , and relationships between features in X on the one side and Y on the other side, i.e. the

matrix ΣXY ∈ R
px×py . Together, these three covariance matrices form the joint covariance matrix (Fig. 1D)
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Σ =







ΣXX ΣXY

ΣT

XY ΣY Y






∈ R

px+py×px+py (3)

for X and Y and this allows us to generate synthetic datasets by sampling from the associated normal 630

distribution N (0,Σ). 631

The covariance matrices ΣXX and ΣY Y 632

Given a data matrix X, the features can be re-expressed in a different coordinate system through 633

multiplication by an orthogonal matrix O: X̃ = XO. No information is lost in this process, as it can be 634

reversed: X = X̃OT. Therefore, we are free to make a convenient choice. We select the principal component 635

coordinate system as in this case the covariance matrix becomes diagonal, i. e. ΣXX = diag(~σXX). 636

Analogously, for Y we choose the principal component coordinate system such that ΣY Y = diag(~σY Y ). 637

For modeling, to obtain a concise description of ~σXX and ~σY Y we assume a power-law such that 638

σXX,i = cXX i−aXX and σY Y,i = cY Y i
−aY Y with decay constants aXX and aY Y (Fig. 1B). Unless a match to 639

a specific dataset is sought, the scaling factors cXX and cY Y can be set to 1 as they would only rescale all 640

results without affecting conclusions. 641

The cross-covariance matrix ΣXY 642

The between-set covariance matrix ΣXY encodes relationships between the datasets X and Y . One such 643

relationship is completely specified if we are given the weights of the variables in each dataset, ~wX and ~wY , 644

and the association strength of the resulting weighted composite scores. 645

For PLS, the relation between the between-set covariance matrix, the weight vectors and association

strengths is given by

ΣXY = WXdiag(~σXY )W
T

Y (for PLS) (4)

where the m columns of WX and WY contain the weight vectors for the m between-set modes,

WT

XWX = 1m, WT

Y WY = 1m and ~σXY are the covariances of the composite scores. Arguably, correlations

are more accessible to intuition though and we therefore re-express ~σXY in terms of the assumed true

(canonical) correlations. For each mode with weights ~wX and ~wY and covariance σXY we have

σXY = rtrue
√

var (X ~wX) var (Y ~wY ) (5)
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where var (X ~wX) = ~wT

XΣXX ~wY and var (Y ~wY ) = ~wT

Y ΣY Y ~wXY are, respectively, the variances along the X 646

and Y composite scores. 647

For CCA, we have to consider the singular value decomposition of ΣCCA
XY = Σ

−1/2
XX ΣXY Σ

−1/2
Y Y :

ΣXY = Σ
1/2
XXΣCCA

XY Σ
1/2
Y Y

= Σ
1/2
XX

(

Udiag(~σXY )V
T
)

Σ
1/2
Y Y

= Σ
1/2
XX

(

Σ
1/2
XXWX

)

diag(~σXY )
(

Σ
1/2
Y Y WY

)T

Σ
1/2
Y Y (6)

where we have used (??) and (??). Here, ~σXY are directly the assumed true correlations and, by 648

construction, the weights matrices WX and WY (with m columns, one for each mode) are constrained to 649

satisfy the normalization 1m = UTU = (Σ
1/2
XXWX)TΣ

1/2
XXWX and analogously for WY . If m = 1 and given 650

WX ,WY (i. e. they have a single column) the normalization can be obtained by scaling Σ
1/2
XXWX to 651

unit-length, and analogously for Y . 652

Thus, in summary, to specify ΣXY we select the number m of between-set association modes, for each of 653

them the association strength in form of the assumed true correlation, and sets of weight vectors ~wX,i and 654

~wY,i (for 1 ≤ i ≤ m). The weight vectors for each set need to be orthonormal (WT

XWX = WT

Y WY = 1m) for 655

PLS, while for CCA they need to satisfy WT

XΣXXWX = WT

Y ΣY Y WY = 1m. 656

Choice of weight vectors 657

We impose two constraints on possible weight vectors: 658

1. We aim to obtain association modes that explain a “large” amount of variance in the data, otherwise

the resulting scores could be strongly affected by noise. The decision is based on the explained variance

of only the first mode and we require that it is greater than 1/2 of the average explained variance of a

principal component in the dataset, i.e. we require that

~wT

XΣXX ~wX >
1

2

trΣXX

pX
(7)

and analogously for Y . 659

2. The weight vectors impact the joint covariance matrix Σ (via (3), (4) and (6)). Therefore, we require 660

that the chosen weights result in a proper, i. e. positive definite, covariance matrix Σ. 661
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To increase chances of finding weights that satisfy the first constraint, we compose them as a linear

combination of a high-variance subspace element, and another component from the low-variance subspace.

The high-variance subspace is defined as the vector space spanned by the first qX and qY (for datasets X

and Y , respectively) components where qX and qY are chosen to explain 90% of their respective within-set

variances. Having chosen (see below) any unit vectors of the low- and high-variance subspaces, ~wlo and ~whi,

they are combined as

~w = c~whi +
√

1− c2 ~wlo (8)

so that ‖~w‖ = 1. Here, c is a uniform random number between 0 and 1 (but see also below). If the resulting 662

weight vectors do not satisfy the imposed constraints, new values for ~wlo, ~whi and c are drawn. Note that, in 663

case the number of between-set association modes m is greater than 1, only the first one is used to test the 664

constraint (7), but weight vectors for the remaining modes are composed in the same way as just described. 665

Weight vector components of the low-variance subspace are found by multiplication of its basis vectors

Ulo ∈ R
p×p−q with a rotation matrix Rlo

Wlo = UloRlo (9)

where the first m columns of Wlo are used as the low-variance subspace components of the m between-set 666

association modes. If qX ≥ m > pX − qX (and analogously for Y ) the dimensionality of the low-variance 667

subspace is not large enough to get a component for all m modes in this way, so that only for the first m 668

modes a low-variance subspace component will be used. 669

The rotation matrix Rlo is found as the Q-factor of a QR-decomposition of a pX − qX × pX − qX 670

(analogously for Y ) matrix with elements drawn from a standard normal distribution. 671

Weight vector components of the high-variance subspace are selected in the following way (see Fig. S4).

First, 10000 attempts are made to find them in the same way as the low-variance component, i.e. as the first

m columns of

Whi = UhiRhi (10)

where the columns of Uhi are the basis vectors for the high-variance subspace, and Rhi is found as the 672

Q-factor of a QR-decomposition of a qX × qX (analogously for Y ) matrix with elements drawn from a 673

standard normal distribution. In case this fails (i. e. if one of the two constraints is not satisfied for all 10000 674

attempts), another 10000 attempts are made in which the coefficient c is not chosen randomly between 0 and 675

1, but the lower bound is increased stepwise from 0.5 to 1 to make it more likely that the first constraint is 676
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satisfied. 677

If this also fails (which tends to happen for large ground truth correlations rtrue and large dimensionalities 678

pX and pY ), and if m = 1, a differential evolution algorithm [71] is used to maximize the minimum 679

eigenvalue of Σ, in order to encourage the second constraint to be satisfied. Specifically, qX coefficients ~cX 680

and qY coefficients ~cY are optimized such that the weights ~wX = UX,hi~cX and ~wY = UY,hi~cY satisfy the 681

constraints. As soon as the minimum eigenvalue of a resulting Σ matrix is above 10−5 the optimization is 682

stopped. 10000 attempts are made to add a low-variance component to the optimized high-variance 683

component in this way, and if unsuccessful, another 10000 attempts are made in which the coefficient c is not 684

chosen randomly between 0 and 1, but the lower bound is increased stepwise from 0.5 to 1. 685

If this also fails, and if m = 1, the high-variance components of the weight vectors are chosen as the first 686

principal component axes as a fallback approach. To see why this works, recall that we have assumed to work 687

in the principal component coordinate system so that ~wX,hi,1 = (1, 0, . . . , 0)T, ~wY,hi,1 = (1, 0, . . . , 0)T and 688

ΣXX as well as ΣY Y are diagonal. In addition, we assume that the principal component variances are 689

normalized such that the highest (i. e. the top-left entry in ΣXX and ΣY Y ) is 1. We are seeking weight 690

vectors that result in a positive definite covariance matrix Σ and Σ is positive definite if and only if both 691

ΣY Y and the Schur complement of Σ, i. e. ΣXX − ΣXY ΣY Y Σ
T

XY , are positive definite. ΣY Y is positive 692

definite by construction. The between-set covariance matrix here is ΣXY = σXY,1 ~wX,hi,1 ~w
T

Y,hi,1. For CCA, 693

σXY,1 is the canonical correlation rtrue < 1. For PLS, σXY,1 = rtrue
√
varX ~wX varY ~wY , which, with the 694

specific choices of ΣXX ,ΣY Y , ~wX and ~wY just described, also simplifies to σXY,1 = rtrue. Thus, 695

ΣXY ΣY Y Σ
T

XY = r2true(1, 0, . . . , 0)
T(1, 0, . . . , 0) and consequently the diagonal entries of 696

ΣXX − ΣXY ΣY Y Σ
T

XY are all greater than 0. That shows that Σ is positive definite if the weights are chosen 697

as the first principal component axes. To not end up with the pure principal component axes in all cases, we 698

add a low-variance subspace component as before, i. e. we make 10000 attempts to add a low-variance 699

component with weight c chosen uniformly at random between 0 and 1, and, if unsuccessful, another 10000 700

attempts in which the lower bound for c is increased stepwise from 0.5 to 1. 701

Summary 702

Thus, to generate simulated data for CCA and PLS, we vary the assumed between-set correlation strengths 703

~ρXY , setting them to select levels, while choosing random weights WX and WY . The columns of the weight 704

matrices WX and WY must be mutually orthonormal for PLS, while for CCA they must satisfy 705

WT

XΣXXWX = WT

Y ΣY Y WY = 1m. In addition, we assume that the weight vectors are contained within a 706
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subspace of, respectively, qX and qY dominant principal components. 707

Performed simulations 708

For Figs. 2, 3C-D, the colored curves in Fig. 6A, Figs. S10E-F, 7, S8A-D, and the left 3 columns of Fig. S5, 709

we ran simulations for m = 1 between-set association mode assuming true correlations of 0.1, 0.3, 0.5, 0.7 710

and 0.9, used dimensionalities pX = pY of 2, 4, 8, 16, 32, and 64 as well as 25 different covariance matrices. 711

aX + aY was fixed at -2. 100 synthetic datasets were drawn from each instantiated normal distribution. 712

Where not specified otherwise, null distributions were computed with 1000 permutations. Due to 713

computational expense, some simulations did not finish and are reported as blank spaces in heatmaps. 714

Similar parameters were used for other figures, except for the following deviations. 715

For Fig. 3A-B pX was 100, rtrue = 0.3, aX = aY = −1 and we used 1 covariance matrix for CCA and 716

PLS. 717

For Fig. 3E-F pX was 100, rtrue = 0.3 and we used 100 different covariance matrices. 718

For Fig. 3G-H, pX was 2, rtrue = 0.3, aX = aY = −1 and we used 10000 different covariance matrices for 719

CCA and PLS. 720

For Fig. 3I-L, we used 2, 4, 8, 16, 32 and 64 for pX , 0.1, 0.3 and 0.5 for rtrue, 10 different covariance 721

matrices for CCA and PLS, and 10 permutations. A subset of these, namely pX = 64 and rtrue = 0.3 was 722

used for Fig. 3I-J. 723

For Fig. 6, we varied rtrue from 0 to 0.99 in steps of 0.01 for each combination of pX and pY for which we 724

have a study in our database of reported CCAs, assumed aX = aY = 0, and generated 1 covariance matrix 725

for each rtrue. 726

For the right 3 columns in Fig. S5 pX + pY was fixed at 64 and for pX we used 2, 4, 8, 16, 32. 727

In Fig. S8O-P, for pX we used 4, 8, 16, 32, 64, we generated 10 different covariance matrices for both 728

CCA and PLS and varied rtrue from 0 to 0.99 in steps 0.01. 729

For Fig. S9A-F we used 2, 4, 8, 16 and 32 for pX , and 10 different covariance matrices for both CCA and 730

PLS. 731

For Fig. S9G-N we used 2, 4, 8, 16, 32 and 64 for pX , 5 different covariance matrices for both CCA and 732

PLS, 100 bootstrap iterations and did not run simulations for rtrue = 0.1. 733

For Fig. S8E-L, Fig. S11, and Fig. S12 we used 75 different covariance matrices. For each instantiated 734

joint covariance matrix, aX + aY was chosen uniformly at random between -3 and 0 and aX was set to a 735

random fraction of the sum, drawn uniformly between 0 and 1. 736
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In Fig. S8M-N we used 0.3, 0.5, 0.7 and 0.9 for rtrue, 4, 8, 16, 32 and 64 for pX , 6 different covariance 737

matrices and 100 permutations. 738

Meta-analysis of prior literature 739

A PubMed search was conducted on December 23, 2019 using the query ("Journal Article"[Publication 740

Type]) AND (fmri[MeSH Terms] AND brain[MeSH Terms]) AND ("canonical correlation 741

analysis") with filters requiring full text availability and studies in humans. In addition, studies known to 742

the authors were considered. CCA results were included in the meta-analysis if they related a neuroimaging 743

derived measures (e. g. structural or functional MRI, . . . ) to behavioral or demographic measures (e. g. 744

questionnaires, clinical assessments . . . ) across subjects, if they reported the number of subjects and the 745

number of features of the data entering the CCA analysis, and if they reported the observed canonical 746

correlation. This resulted in 100 CCA analyses reported in 31 publications , which are summarized in SI 747

Dataset 1. 748

The gemmr software package 749

We provide an open-source Python package, called gemmr, that implements the generative modeling 750

framework presented in this paper https://github.com/murraylab/gemmr. Among other functionality, it 751

provides estimators for CCA, PLS and sparse CCA; it can generate synthetic datasets for use with CCA and 752

PLS using the algorithm laid out above; it provides convenience functions to perform sweeps of the 753

parameters on which the generative model depends; it calculates required sample sizes to bound power and 754

other error metrics as described above. For a full description, we refer to the package’s documentation. 755

Statistical Analysis 756

Evaluation of sampling error 757

We use five metrics to evaluate the effects of sampling error on CCA and PLS analyses. 758

Statistical power. Power measures the capability to detect an existing association. It is calculated when 759

the true correlation is greater than 0 as the probability across 100 repeated draws of synthetic datasets from 760

the same normal distribution that the observed association strength (i. e. correlation for CCA, covariance for 761

PLS) of a dataset is statistically significant. Significance is declared if the p-value is below α = 0.05. The 762
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p-value is evaluated as the probability that association strengths are greater in the null-distribution of 763

association strengths. The corresponding null-distribution is obtained from performing CCA or PLS on 1000 764

datasets where the rows of Y were permuted randomly. Power is bounded between 0 and 1 and, unlike for 765

the other metrics (see below), higher values are better. 766

Relative error in between-set covariance. The relative error of the between-set association strength is

calculated as

∆r =
r̂ − r

r
(11)

where r is the true between-set association strength and r̂ is its estimate in a given dataset. 767

Weight error. Weight error ∆w is calculated as 1 - absolute value of cosine similarity between observed

( ~̂w) and true (~w) weights, separately for data sets X and Y , and the greater of the two errors is taken:

∆w = max
s∈{X,Y }

(

1− | cossim( ~̂ws, ~ws)|
)

(12)

where

cossim( ~̂ws, ~ws) =
~̂ws · ~ws

‖ ~̂ws‖‖~ws‖
. (13)

The absolute value of the cosine-similarity is used due to the sign ambiguity of CCA and PLS. 768

This error metric is bounded between 0 and 1 and measures the cosine of the angle between the two unit 769

vectors ~̂ws and ~ws. 770

Score error. Score error ∆t is calculated as 1 – absolute value of Spearman correlation between observed

and true scores. The absolute value of the correlation is used due to the sign ambiguity of CCA and PLS. As

for weights, the maximum over datasets X and Y is selected:

∆t = max
s∈X,Y

(

1− | rankcorr
i

(

t̂
(test)
s,i , t

(test)
si

)

|
)

(14)

Each element of the score vector represents a sample (subject). Thus, to be able to compute the 771

correlation between estimated (~̂t) and true (~t) score vectors, corresponding elements must represent the same 772

sample, despite the fact that in each repetition new data matrices are drawn in which the samples have 773

completely different identities. To overcome this problem and to obtain scores, which are comparable across 774
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repetitions (denoted ~̂t(test) and ~t(test)), each time a set of data matrices is drawn from a given distribution 775

N (0,Σ) and a CCA or PLS model is estimated, the resulting model (i. e. the resulting weight vectors) is also 776

applied to a “test” set of data matrices, X(test) and Y (test) (of the same size as X and Y ) obtained from 777

N (0,Σ) and common across repeated dataset draws. 778

The score error metric ∆t is bounded between 0 and 1 and reflects the idea that samples (subjects) might 779

be selected on the basis of how extreme they score and that the ordering of samples (subjects) is more 780

important than the somewhat abstract value of their scores. 781

Loading error. Loading error ∆ℓ is calculated as (1 − absolute value of Pearson correlation) between

observed and true loadings. The absolute value of the correlation is used due to the sign ambiguity of CCA

and PLS. As for weights, the maximum over datasets X and Y is selected:

∆ℓ = max
s∈X,Y

(

1− | corr
i

(

ℓ̂
(test)
s,i , ℓ

(test)
s,i

)

|
)

(15)

True loadings are calculated with (??) (replacing the sample covariance matrix in the formula with its 782

population value). Estimated loadings are obtained by correlating data matrices with score vectors ((??)). 783

Thus, the same problem as for scores occurs: the elements of estimated and true loadings must represent the 784

same sample. Therefore, we calculate loading errors with loadings obtained from test data (X(test) and 785

Y (test)) and test scores (~̂t(test) and ~t(test)) that were also used to calculate score errors. 786

The loading error metric ∆ℓ is bounded between 0 and 1 and reflects the idea that loadings measure the 787

contribution of original data variables to the between-set association mode uncovered by CCA and PLS. 788

Loadings are calculated by correlating scores with data matrices. Of note, all synthetic data matrices in 789

this study are based in the principal component coordinate system. In practice, however, this is not generally 790

the case. Nonetheless, as the transformation between principal component and original coordinate system 791

cannot be constrained, we here do not consider this effect. 792

Weight similarity to principal component axes 793

The directional means µ in Figs. 4A-B are obtained via

R =
1

nα

nα
∑

j

e2iαj (16)

as µ = arg(R)/2. 794
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To interpret the distribution of cosine similarities between weights and the first principal component axis

we compare this distribution to a reference, namely to the distribution of cosine-similarities between a

random n-dimensional unit vector and an arbitrary other unit vector ~e. This distribution f is given by:

fn(x) =
dP (X ≤ x)

dx
(17)

where P denotes the cumulative distribution function for the probability that a random unit-vector has

cosine-similarity with ~e (or, equivalently, projection onto ~e) ≤ x. For −1 ≤ x ≤ 0, P can be expressed in

terms of the surface area An(h) of the n-dimensional hyperspherical cap of radius 1 and height h (i. e.

x− h = −1)

P (X ≤ x) =
An(h)

An(2)
(18)

where An(2) is the complete surface area of the hypersphere and

An(h) =
1

2
An(2)I

(

h(2− h);
n− 1

2
,
1

2

)

(19)

and I is the regularized incomplete beta function. Thus,

fn(x) =
1

2

d I

dx

(

(x+ 1)(1− x);
n− 1

2
,
1

2

)

(20)

=
1

2

1

B(n−1
2 , 1

2 )
(1− x2)

n−3

2

(

x2
)−1/2

(−2x) (21)

=
1

B(n−1
2 , 1

2 )
(1− x2)

n−3

2 (22)

where B is a beta function and

fn(2x̃− 1) ∝ (2− 2x̃)
n−1

2
−1(2x̃)

n−1

2
−1 (23)

∝ fβ

(

x̃;
n− 1

2
,
n− 1

2

)

(24)

where fβ is the probability density function for the beta distribution. Hence, 2X̃ − 1 with 795

X̃ ∼ Beta(n−1
2 , n−1

2 ) is a random variable representing the cosine similarity between 2 random vectors (or, 796

equivalently, the projection of a random unit-vector onto another). 797
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CCA/PLS analysis of empirical data 798

Permutation-based p-values in Fig. 5 and S2 were calculated as the probability that the CCA or PLS 799

association strength of permuted datasets was at least as high as in the original, unpermuted data. 800

Specifically, to obtain the p-value, rows of the behavioral data matrix were permuted and each resulting 801

permuted data matrix together with the unpermuted neuroimaging data matrix were subjected to the same 802

analysis as the original, unpermuted data, in order to obtain a null-distribution of between-set associations. 803

1000 permutations were used. 804

Due to familial relationships between HCP subjects they are not exchangeable so that not all possible 805

permutations of subjects are appropriate [72]. To account for that, in the analysis of HCP fMRI vs behavioral 806

data, we have calculated the permutation-based p-value as well as the confidence interval for the whole-data 807

(but not the subsampled data) analysis using only permutations that respect familial relationships. Allowed 808

permutations were calculated using the functions hpc2blocks and palm quickperms with default options as 809

described in https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/ExchangeabilityBlocks (accessed May 810

18, 2020). No permutation indices were returned for 3 subjects that were therefore excluded from the 811

functional connectivity vs behavior analysis. 812

Subsampled analyses (Fig. 5) were performed for 5 logarithmically spaced subsample-sizes between 202 813

and 50% of the total subject number. For each subsample size 100 pairs of non-overlapping data matrices 814

were used. 815

Cross-validated analyses were performed with 5-fold cross-validation. 816

Principal component spectrum decay constants 817

The decay constant of a principal component spectrum (Fig. S1A-J) was estimated as the slope of a linear 818

regression (including an intercept term)̊a of log(explained variance of a principal component) on 819

log(principal component number). For each dataset in Fig. S1A-J we included as many principal 820

components into the linear regression as necessary to explain either 30% or 90% of the variance. 821

Determination of required sample size 822

As all evaluation metrics change approximately monotonically with sample per feature, we fit splines of 823

degree 3 to interpolate and to determine the number of samples per feature that approximately results in a 824

given target level for the evaluation metric. For power (higher values are better) we target 0.9, for all the 825
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other metrics (lower values are better) we target 0.1. Before fitting the splines, all samples-per-feature are 826

log-transformed and metrics are averaged across repeated datasets from the same covariance matrix. 827

Sometimes the evaluation metrics show non-monotonic behavior and in case the cubic spline results in 828

multiple roots we filter those for which the spline fluctuates strongly in the vicinity of the root (suggesting 829

noise), and select the smallest remaining root ñ for which the interpolated metric remains within the allowed 830

error margin for all simulated n > ñ, or discard the synthetic dataset if all roots are filtered out. In case a 831

metric falls within the allowed error margin for all simulated n (i. e. even the smallest simulated n0) we pick 832

n0. 833

We suggest, in particular, a combined criterion to determine an appropriate sample size. This is obtained 834

by first calculating sample-per-feature sizes with the interpolation procedure just described separately for the 835

metrics power, relative error of association strength, weight error, score error and loading error. Then, for 836

each parameter set, the maximum is taken across these five metrics. 837

Sample-size calculator for CCA and PLS 838

Estimating an appropriate sample size via the approach described in the previous section is computationally 839

expensive as multiple potentially large datasets have to be generated and analyzed. To abbreviate this 840

process (see also Fig. S11A) we do use the approach from the previous section to obtain sample-size 841

estimates for rtrue ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, px ∈ {2, 4, 8, 16, 32, 64, 128}, py = px, and ax + ay ∼ U(−3, 0), 842

ax = c(ax + ay), and c ∼ U(0, 1), where U denotes a uniform distribution. We then fit a linear model to the 843

logarithms of the sample size, with predictors log(rtrue), log(px + py), |ax + ay|, and including an intercept 844

term. 845

We tested the predictions of linear model using a split-half approach (Fig. S11B-F), i. e. we refitted the 846

model using either only sample-size estimates for rtrue ∈ {0.1, 0.3} and half the values for rtrue = 0.5, or the 847

other half of the data, and tested the resulting refitted model on the remaining data in each case. 848
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Table 1. Considerations and recommendations for using CCA and PLS in practice.

# Keyword Recommendation

1. Importance of
sample size
and number of
features

Sample size and the number of features in the dataset are of critical importance
for the stability of CCA and PLS. Dimensionality reduction (e. g. PCA) is a useful
preprocessing step, as long as it does not remove components correlated between
sets. Methods for selecting number of components that take into account the
correlation between sets have ben proposed, e. g. [25].

2. Significance test-
ing

A significant non-zero association does not necessarily indicate that estimated
weights are reliable.

3. Association
strength error

In-sample estimates for association strengths are too high, cross-validated estimates
too low, their average tended to be better.

4. Weights & load-
ings

Weights and loadings estimated with too few samples are unreliable. For PLS,
estimation of cross-loadings required fewer samples than loadings.

5. PC1 similarity In PLS, weights can appear consistently similar to the first principal component
axis.

6. Deceptive weight
stability

For PLS, weights can appear stable, scattering around the first principal component
axis, and converge to their true values only for very large sample sizes.

7. Subsampling Subsampling can be used to check stability of estimated association strengths in
empirical data: similar results for varying subsample sizes indicate stability.

8. Bootstrap Bootstrapped estimates were useful to assess the variability of weights, but not
for obtaining accurate estimates of association strengths or weights.

9. Reporting Number of samples, number of features (after dimensionality reduction) and
obtained association strength should be reported. The within-set variance spectrum
is useful as well.

10. Required sample
size

Generally, we recommend at least 50 samples per feature for CCA, more for PLS
(depending on the variance spectrum). The accompanying Python package can be
used to calculate recommended sample sizes for given dataset characteristics.
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Figure S1. Supplementary analyses of empirical data. (Caption follows)
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Figure S1. Supplementary results related to analysis of empirical data. A-J) Decay constants of 849

principal component spectra in empirical data. Decay constants are estimated as the slope in a linear 850

regression for the logarithm of the explained variance on the logarithm of the associated principal component 851

number. We include enough components into the linear regression as necessary to explain either 30% (red) 852

or 90% (yellow) of the variance. Where the two resulting slopes coincide only one is shown. Shown are decay 853

constants for the following data matrices: A) HCP functional connectivity and B) HCP functional 854

connectivity after preprocessing for CCA / PLS (as described in subsection ), both based on 951 subjects. 855

C) HCP functional connectivity for 877 subjects where global signal was not regressed out (cf. subsection ) 856

and D) HCP functional connectivity of 877 subjects where global signal was not regressed out after 857

preprocessing for CCA / PLS. E) HCP global brain connectivity (GBC), i. e. the sum across rows of the 858

parcel × parcel functional connectivity matrix (951 subjects) and F) HCP GBC where global signal was not 859

regressed out (877 subjects). G) HCP behavioral data of 951 subjects after preprocessing for CCA / PLS H) 860

HCP diffusion MRI of 1020 subjects after preprocessing for CCA / PLS. I) UK Biobank fMRI of 20000 861

subjects after preprocessing for CCA / PLS, J) UK Biobank behavioral measures of 20000 subjects after 862

preprocessing for CCA / PLS. K) HCP data analysis workflow. Resting-state functional connectivity data 863

and behavioral and demographic data from corresponding subjects were separately deconfounded, reduced to 864

100 principal components and then analyzed with CCA and PLS. 865
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Figure S2. Additional CCA and PLS analyses of HCP data. Layout is similar to first row in
Fig. 5. A-D HCP dMRI data was related to behavioral and demographic data. Overall, CCA and PLS
behave similarly using dMRI compared to fMRI data (Fig. 5A-D). p-values in A and C were 0.001 and
0.001, respectively. E-H) Re-analysis of HCP fMRI vs behavior data with optimized number of principal
components. Format is identical to Fig. 5. The only difference is the number of principal components retained
for analysis: whereas in Fig. 5 100 principal components were used for both datasets, in agreement with
previous studies of HCP data [3,20–24], here we chose the number of principal component with the “max-min
detector” from [25]. As the algorithm provided multiple values for the optimal number of components pX
(neuroimaging data) and pY (behavioral and demographic data), we selected here the pair that minimized
pX + pY . The optimized values were pX = 68 and pY = 32, along with 13 between-set modes (we only
consider the first one here). p-values for CCA and PLS were, respectively, 0.001 and 0.004. While the results
are very similar to Fig. 5, (i) the observed correlations in E) appear to have stabilized more and are lower
than in Fig. 5A, (ii) in-sample and cross-validated association strengths are more similar here in panels A)
and C) than in Fig. 5, and (iii) weight similarities in B) and D) are higher than in Fig. 5. Altogether
results seem to have converged more with the same sample size. This demonstrates the potential benefit of
dimensionality reduction for CCA and PLS.
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Figure S3. CCA and PLS association strength in UKB depending on retained number of
principal components. A) In-sample and B) cross-validated association strength for CCA, measured as
between-set correlation. C) In-sample and D) cross-validated association strength for PLS, measured as
between-set covariance.
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Figure S4. Algorithm for choosing weight vectors. (Caption follows)
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Figure S4. Algorithm for choosing weight vectors. The flowchart illustrates the main logic of the 866

algorithm. We require weight vectors (i) to be orthonormal within each set, (ii) to result in scores that 867

explain at least a given fraction of variance, and (iii) to result in a proper, i. e. positive definite, joint 868

covariance matrix Σ. Orthonormality is imposed directly when candidate weight vectors are proposed, and if 869

the other two conditions are satisfied we say the weights are emphadmissible. In the first stage of the 870

algorithm random weight vectors are generated as the Q factor of a QR-factorization of a matrix whose 871

elements are drawn independently from a standard normal distribution. If this fails, an optimization 872

algorithm is used to find weight vectors resulting in a positive definite matrix Σ. If this also fails the, the 873

first principal component is used as first part of the weight vectors. In all three cases, after having found 874

weight vectors in one of these ways, a component from the low-variance subspace is added, referred to in the 875

flowchart as “noise”. 876
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Figure S5. Samples per feature is a key effective parameter. (Caption follows)
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Figure S5. Samples per feature is a key effective parameter. Throughout the manuscript we 877

have presented results in terms of the parameter “samples per feature”. Here, we demonstrate that this is, 878

approximately, a good parameterization. Color hue represents true between-set correlation rtrue, saturated 879

colors are used for pX = 2, and fainter colors for higher pX . We fixed pX = pY in the left 3 columns, whereas 880

we fixed pX + pY = 64 (and thus had pX 6= pY ) in the right 3 columns. In CCA (first column), for a given 881

rtrue, power and error metric curves for various number of features are very similar when parameterized as 882

“samples per feature”. In PLS (second column), the same tendency can be observed, albeit the overlap 883

between curves of the same hue (i. e. with same rtrue but different number of features) is worse. When 884

“samples / (number of features)1.5” is used instead (third column), the curves overlap more. The same trends 885

can be seen in the right 3 columns, where pX 6= pY . 886
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Figure S6. Supplementary results related to analysis of prior literature. (Caption follows)
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Figure S6. Supplementary results related to analysis of prior literature. A) Typical number of 887

samples per feature in brain-behavior CCAs. Studies using CCA to analyze brain-behavior relationships 888

often used less than 5 samples per feature. Note that we here considered the number of features that entered 889

into the CCA analysis, which, after preprocessing, can be considerably less than the “raw” number of 890

features. B) Distance from null in subjects-per-feature vs observed correlation plot predicts weight error. A 891

linear model was fit to the simulated, permuted data shown in Fig. 6A and for each reported CCA the 892

orthogonal distance to the fit-line was measured and is shown here on the x-axis, with positive values 893

indicating deviations towards the top-right corner of Fig. 6A. The mean estimated weight error for the 894

reported CCAs is the smaller the farther away from the permuted data the CCA lies in the top-right part of 895

the plot. C) Schematic for estimating weight errors for published CCA results. For each CCA from the 896

literature in our database, synthetic data for CCA is generated with matching number of samples and 897

features. Separate datasets are generated for assumed ground-truth between-set correlations rtrue varying 898

between 0 and 0.99. In each generated dataset the canonical correlation is estimated and if it is close to the 899

value in the reported CCA, the weight error for the synthetic dataset is recorded. The distribution of 900

recorded weight errors across assumed ground-truth correlations and repetitions of the whole process is 901

shown in Fig. 6B and its mean in Fig. 6A. 902
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Figure S7. Weights vs loadings in real data. Using 180 fMRI-GBC features and the 5 dominant
behavioral principal components as input to CCA / PLS we here illustrate GBC weights and loadings. A
CCA weights, B PLS weights, C CCA loadings, and D PLS loadings. Note the relative noisiness of CCA
weights. E-F shows a decomposition of weights and loadings into principal components, illustrating that
CCA weights overlap more with low-variance PC-axes, while CCA loadings, as well as PLS weights and
loadings overlap more with dominant PC-axes.
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Figure S8. Parameter dependencies of required sample sizes. (Caption follows)
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Figure S8. Parameter dependencies of required sample sizes. A-B) Required sample sizes based 903

on the combined criterion increase with number of features and for low true between-set correlations rtrue. 904

Due to computational expense values for some parameter sets were not available (white). C-D) Scaling of 905

sample-size dependence on number of features, shown here for rtrue = 0.3, for different metrics. E-H) 906

Sample-size dependence of CCA and I-L) PLS on within-set variances. Simulated parameter sets were 907

averaged across subsets having indicated values for the between-set correlation rtrue and for ax + ay (the sum 908

of within-set power-law decay constants) ±0.5. The closer ax + ay was to 0 (i. e. the “whiter” the data) the 909

fewer samples were required. M-N) Required sample size for sparse CCA. We determined required sample 910

sizes with our analysis pipeline, for the sparse CCA variant PMD [27]. Due to the computational expense we 911

ran only 6 repetitions per cell, 5 and 4, respectively, for the 2 right-most cells on the bottom. A) Required 912

sample sizes increased with the number of features and with decreasing between-set correlation rtrue. Layout 913

is analogous to Fig. S8A-B. B) When the number of features was large and the true correlation rtrue low, 914

sparse CCA required somewhat less samples than CCA. For large rtrue, in particular, we found the opposite. 915

O-P) A wide range of true association strengths is compatible with a given observed association strength. 916

Synthetic datasets were generated where the true correlation was varied from 0 to 0.99 in steps of 0.01 and 917

analyzed with O) CCA, P) PLS. We investigated 4, 8, 16, 32, 64 and 128 features per set, set up 10 different 918

covariance matrices with differing true weight vectors for each number of features and true correlation, and 919

drew 100 repeated datasets from each corresponding normal distribution. For every CCA and PLS we 920

recorded the observed association and binned them in bins with width 0.01. The plots show 95% confidence 921

intervals of the true association strength that were associated with a given observed association strength. 922

Notably, apart from the very strongest observed association strengths which indicate an almost equally 923

strong true correlation, compatible true association strengths can be markedly lower, down to essentially 0, 924

when the number of used samples per feature is low. 925
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Figure S9. Cross-validated and bootstrapped estimation of association strength. (Caption
follows)
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Figure S9. Cross-validated and bootstrapped estimation of association strength. In contrast to 926

in-sample estimates, cross-validated estimates (left 2 columns) of between-set association strengths 927

underestimate the true value rtrue. We tested two different cross-validation strategies here with very similar 928

results (curves overlap): 5-fold cross-validation (dash-dotted line) and a strategy where the data were 929

randomly split 20 times into 80% train and 20% test (“20×5-fold CV”, dotted line). C-D) The absolute 930

value of the relative estimation error is similar for in-sample and cross-validated estimates. E-F) Using the 931

average of the in-sample and cross-validated estimates results in a better estimate than either of those, so 932

that less samples are required to reach a target error level (here: 10%). Bootstrapping (right 2 columns) 933

affects CCA (3rd column) and PLS (4th column) in a similar manner. G-H) Bootstrapped association 934

strengths averaged across 100 bootstrap iterations and repeated draws from a given normal distribution 935

(dashed lines) are somewhat worse than estimates obtained from the full samples (solid lines) averaged across 936

repetitions. Likewise, I-J) average weight errors and K-L) the number of samples required to obtain less 937

than 10% weight error are somewhat worse when estimated by bootstrapping. M-N) On the other hand, 938

the variability of the bootstrap estimates, assessed as the interquartile range (IQR) across bootstrap 939

iterations (and averaged across repetitions) of elements of the estimated weight vectors, match the IQR 940

across repetitions. For each combination of the true between-set correlation rtrue ∈ {0.3, 0.5, 0.7, 0.9}, 941

px ∈ {2, 4, 8, 16, 32, 64} (py = px) and 5 different covariance matrices (with different true weight vectors), the 942

scatter-plots show one dot for each element of the weight vector. 943
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D

Figure S10. Loadings and cross-loadings. (Caption follows)
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Figure S10. Loadings and cross-loadings. A-B) Loadings are defined as Pearson correlations across 944

subjects of a feature with the CCA/PLS scores. The loadings vector contains these correlations for all 945

variables. Apart from the illustrated loadings, cross-loadings in which scores of one set are correlated with 946

the original features of the other set can also be computed. C-D)True loadings and cross-loadings were 947

calculated with equations (??) and (??), respectively. C) In CCA, true loadings and true cross-loadings were 948

collinear (as predicted by eq. (??)). D) For PLS, they were strongly correlated. The shown correlations were 949

averaged across 25 covariance matrices with different true weight vectors. ax + ay was constrained to -2. 950

E-F) For PLS cross-loadings provide more stable estimates of feature profiles than loadings. 951

Samples-per-feature required to obtain less than 10% error in either loadings or cross-loadings are compared. 952

Shown here is their relative difference, i. e. the required sample-per-features for cross-loadings minus for 953

loadings, divided by the required samples-per-feature for loadings. E) Relative differences were small for 954

CCA. F) However, for PLS less samples were required with cross-loadings than with loadings to obtain the 955

same error level. rtrue indicates the true between-set correlations used in each respective simulation. 956
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Figure S11. Sample-size calculator. (Caption follows)
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Figure S11. Sample-size calculator. A) Algorithm for sample-size calculation. Sample sizes can, in 957

principle, be calculated directly with GEMMR, as shown in Fig. 7. However, this is computationally 958

expensive. To quickly obtain sample-size estimates, we developed the algorithm illustrated here. B-G) 959

Especially for low assumed ground-truth correlations and a high number of features it is computationally 960

expensive to estimate the required number of samples by generating synthetic datasets and searching the 961

sample size such that error bounds are satisfied. To abbreviate this process we pre-calculate required sample 962

sizes using the generative model approach for certain parameter values, fit a linear model to log(nrequired) 963

and then use it to quickly interpolate for parameter values not in the pre-calculated database. Predictors for 964

the linear model are − log(rtrue), log(px + py) and, for PLS only, |ax + ay|, where rtrue indicates the true 965

between-set correlation, px and py are the number of features in datasets X and Y , respectively, and ax and 966

ay are the power-law decay constants for the within-set principal component spectrum, respectively. Shown 967

here are linear model estimates for the required sample size based on the combined criterion, i. e. the sample 968

sizes required to obtain 90% power and at most 10% error for the between-set association strength, weight, 969

score and loading error. B) Linear model coefficients for CCA and PLS. C-D) The pre-calculated database 970

was split in half where one half corresponded to true between-set correlations of rtrue = 0.1 and 0.3, the other 971

to rtrue = 0.7 and 0.9 and entries for rtrue = 0.5 were divided between the two halves. The linear model was 972

re-estimated separately for each half, and used to predict the other half. We obtained good predictions for 973

CCA (C)) and PLS D). E, F) Solving the linear model for rtrue, we aim to predict correlations. We train 974

the model using either simulation outcomes for rtrue ∈ {0.1, 0.3}}, or rtrue ∈ {0.7, 0.9}} and testing the 975

predictions on the remaining rtrues. E) Good predictions can be obtained in this way for CCA, F) but not 976

for PLS. 977
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Figure S12. Required sample size for CCA vs PLS. (Caption follows)
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Figure S12. Required sample size for CCA vs PLS. We instantiated joint covariance matrices 978

(assuming 1 between-set association mode), drew samples from the associated normal distributions, and 979

analyzed the resulting datasets with both CCA and PLS. The CCA and PLS estimations were then 980

compared, respectively, to the true CCA and PLS solutions, which were derived from the joint covariance 981

matrices. Panels A)-G show for various error metrics how resulting deviations from the truth compare 982

between CCA and PLS. PLS errors for a given dataset tend to be larger than CCA errors in many, but not 983

all, datasets. H-N) For various error metrics, when PLS has a smaller error than CCA, this tends to happen 984

preferentially when the true PLS weight overlaps strongly with the PC1 axis. Datasets were included in these 985

analyses if the CCA or PLS error were below 0.5. 986
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