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1. Introduction. The stability of a layer of liquid flow down an inclined plane
under gravity has been investigated by many authors on account of its importance in
science and technology. Benjamin [1] and Yih [2] used a linear governing equation, the
so-called Orr-Sommerfeld equation, to study the stability and showed that there are
long surface waves that propagate downstream at about twice the mean fluid speed on
the free surface. These waves are insensitive to the velocity profile and only weakly
dependent on the surface tension. Their analysis is valid for small wave numbers and
the waves are surface waves. However, if the steady state of the velocity is a parabola,
there is another type of waves which may cause instability, in which the mean shear in
the fluid is important. These are periodic waves with not very long wave-length. Lin
[3] first identified such waves and made the first calculation of its neutral curves. Then
De Bruin [4] calculated the neutral curves again using a corrected linearized governing
equation without surface tension and Floryan et al. [5] obtained the neutral curves with
surface tension. They both find that for the linearized equation, or the Orr-Sommerfeld
equation, some periodic waves have lower critical Reynolds number than the long surface
waves do when the inclination to the horizontal is small. The waves have wave length
comparable to the mean depth of the fluid and travel more slowly than the mean speed
of the fluid on the surface. The neutral curves give the stability boundary in terms of
Reynolds number and wave number for the linearized equation.

In general physical situations, it is very hard to obtain any meaningful quantitative
information from a direct analysis of nonlinear problems. Therefore, much of the liter-
ature on hydrodynamic stability is devoted to an analysis of the linearized problem [6,
7]. However, since the problem is in fact nonlinear, it is important to answer whether
the stability or instability of the linearized problem implies the stability or instability
of the full nonlinear problem. That question has not been answered mathematically for
the problem considered in this paper although it is generally believed that the so-called
linearization principle applies to this problem, that is, the linear stability or instability
implies the nonlinear stability or instability.
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The linearization principle was first started by Lyapunov, who studied it for nonlinear
ordinary differential equations. This was later called Lyapunov's first method. Then Sat-
tinger [8] applied this method to study hydrodynamic stability for viscous incompressible
flow in a bounded region in a three-dimensional space. He showed that if such flow is
disturbed slightly from any given steady state, whether the perturbations grow or decay
depends upon the stability of the linearized problem with respect to the steady state,
and proved rigorously that the linearization principle for the problem holds. Yudovich
[9] applied semigroup theory to the problem and showed that the linearization principle
holds for a wide class of partial differential equations, which includes the Navier-Stokes
equations in a bounded domain as a special case. A global stability analysis for fluids
in a small region was given by Serrin [10]. However, there are still very few studies that
have dealt with the linearization principle for fluids with a free surface.

This paper considers the linearization principle for periodic waves, rather than the
most general class of waves in the infinite domain, in a layer of fluid flow down an inclined
plane with surface tension on the free surface. It has been shown formally by Benney
[11] and many others that there exist long traveling waves with small amplitude under a
weakly nonlinear approximation even when the linear operator has no eigenvalues with
positive real part. Shen et al. [12] derived a nonlinear model equation for long waves in
a layer of magnetic fluid flow down an inclined plane under the influence of a magnetic
field, which also has traveling wave solutions. Therefore, one cannot expect that such
solutions in an infinite domain will decay for a large time. A rigorous proof of existence
of long-wave solutions of the linearized Navier-Stokes equations for fluid flow down an
inclined plane was given by Shih and Shen [13] using a long-wave approximation. Beale
[14] first gave an existence proof of solutions of the fully nonlinear Navier-Stokes equations
with small initial data for a three-dimensional horizontal region bounded by an arbitrary
rigid bottom and a free surface above. These solutions become smoother as the time
tends to infinity. Then Beale and Nishida [15] showed that such solutions decay as time
goes to infinity with rate i-1/2 for the free surface and tfor the velocity field. The
slow decay rate is attributed to the existence of the eigenvalue zero of the corresponding
linear operator. Joseph [16] investigated stability and instability in many situations for
fluids with rigid boundaries by the energy method, and the stability of two-layer parallel
shear flow with density stratification bounded by two fixed horizontal moving plates
was studied rigorously by Renardy and Joseph [17]. Recently, Teramoto [18] considered
a viscous fluid flow down an inclined plane in an infinite region and showed that for
an arbitrary fixed T and sufficiently small Reynolds number, there exists a solution of
the governing equations for 0 < t < T if the initial condition is sufficiently close to a
steady state. Then Nishida et al. [19] studied the same problem with a two-dimensional
periodic motion. They obtained existence and exponential decay of solutions when the
initial conditions are close to the steady state, under the assumption that the Reynolds
number and the inclination angle are sufficiently small.

The present investigation explores the stability of two-dimensional periodic waves in
a layer of fluid flow down an inclined plane using ideas introduced by Beale [14]. The
domain of the fluid is unknown since the free surface is part of the solution. The governing
equations are transformed in several steps to equations in a fixed strip domain with
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simplified linear part of the equations. Then we define appropriate Banach spaces and
show that the linear operator corresponding to the linearized equations has only discrete
eigenvalues. By applying a similar argument as in [14] and general elliptic operator
theory, and by overcoming the difficulties arising from the unknown free surface, we
show that the linear operator generates an analytic semigroup and obtain the regularity
of the solutions of the linearized equations. This leads to a proof that the nonlinear
terms are small compared to the linear terms on account of the form of the nonlinear
terms in some carefully chosen Banach spaces: By using estimates of the solutions of
the linearized equations and by the contraction mapping theorem, we show that the
stability of solutions of the governing Navier-Stokes equations with small perturbations
from the steady state is determined by the spectrum of the corresponding linear operator
associated with the nonlinear problem. If the spectrum of the linear operator is in the
complex plane with negative real part, then the perturbation decays to zero exponentially.
If some of the spectrum has positive real part, however, then the perturbation grows for
some initial data when time becomes large. Floryan et al. [5] have given the neutral
curves of the linear operator to determine whether it has eigenvalues with positive real
part. Our results show that the steady solutions of the nonlinear equations are also
stable (or unstable) if the parameters are in the stable region (or unstable region) for the
linear equation. For sufficiently small Reynolds number or inclination angle, it can be
shown that the corresponding linear operator has no eigenvalues with nonnegative real
part. Therefore, the results proved here also imply the ones in [19].

We note that the results proved here are not straightforward applications of the stan-
dard theory of evolution equations. The main difficulties are the unknown free surface
and the nonstandard boundary conditions on the free surface, which involve also the time
derivative of the shape of the free surface. Although the basic idea of the proof sketched
in the preceding paragraph seems to be relatively simple, the actual proof is quite in-
volved and the treatment given here is technically different from the standard stability
theory. Finally, we wish to emphasize a comment by Sattinger [8]: The results may
not be sufficient in actual physical cases. We have shown that if solutions of the linear
problem are stable, then the steady state is stable relative to small disturbances for the
nonlinear problem. In any real physical situations, the disturbances are inevitable and
the question then arises whether the magnitude of the disturbances exceeds the extent
of stability of the steady state. Instability might be observed in a situation where the
linearized problem is stable; in such cases, a global stability analysis like the one in [10]
is needed.

This paper is organized as follows. In Sec. 2, the governing Navier-Stokes equations
with proper boundary conditions are given. Then these equations are transformed into
a simplified form in a domain with fixed boundaries. Some Banach spaces are defined.
In Sec. 3, estimates of the solutions of the time-independent linear equations are given.
In Sec. 4, the existence of solutions of the modified governing equations is obtained. The
stability result is given in Sec. 5 and the instability result is given in Sec. 6.

2. Formulation. We consider two-dimensional nonlinear wave motions of an incom-
pressible, viscous fluid of uniform density on a straight, inclined plane. A rectangular
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coordinate system (xl,xZ,) = (x*,z*) is chosen so that z* = x2=0 coincides with the
steady free surface of the liquid and 2* = —h* is the equation of the rigid bottom. If
a surface wave is generated by some initial disturbance, then the motion of the flow is
governed by the two-dimensional Navier-Stokes equations,

v*-r = 0, (i)
nn* =-Vy+p*r+M(v*)2r, (2)
Dt*

subject to the boundary conditions at £* = —z* + (~*(x*,t*) = 0,

DC

and that z* = —h*.

Df =»• (3>
2

^2a:knl=T(R^ +R^)nu i = 1,2, (4)
k=1

9* = (0,0), (5)

where V* = (d/dx*, d/dz*), D/Dt* = d/dt* +q* ■ V*, q* = (#,<£) = (u*,v*) is the
velocity vector, p* the density of the fluid, p* the pressure, g* = (gsin#, — gcosd) the
constant gravity with gravitational acceleration constant g > 0 and the inclination angle
0 < 9 < 7r/2, p the constant viscosity coefficient, cr*k = p{dq*/dx*k + dq^/dx*) - p*6ik
the stress tensor, (n^n^) = {d(*/dx*, —1) the normal vector at the free surface £* = 0,
T the constant coefficient of surface tension, and

R^ + R^ =C.,.(1 + (C)2)"3/2- (6)

Now we nondimensionalize the equations by measuring Q* ,x*,z* in units of h*,q* in
units of (g/1*)1/2, p* in units of p*gh*,t* in units of {h*/g)1^, and define

R = p-1p*gl'2{h*f/2, t = Tp~1g-1/2{h*)-1/2, (7)

where R is referred to as the Reynolds number of the fluid. Thus the equations (1) to
(5) are transformed to

V • U = 0, (8)

Ut + U-VU = -Vp + R~1(V2U) + H, (9)

with boundary conditions at z — rj(x,t),

{Rp 2u\x^jTjx ~t~ U\£ ~t~ ̂2x — R2 1 (10)

Rp - 2U2z + {uu + U2x)Vi = -r(Ri"1 + R21)' (n)

Vt + ui-rji - u2 = 0, (12)
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at z = — 1,
ui=u2= 0, (13)

where V = (d/dx,d/dz),U = (tti, U2), (x, z), r), and p are nondimensional variables for
gradient, velocity, independent variables, displacement of the free surface from z — 0,
and pressure, respectively, and H = (sin0, — cos 9),

R\ 1 + R-2 1 ~ VxxO- + (Vx)2) 3^2-

Equations (8) to (13) have a steady state

U0 = ((i?sin6»/2)(l - z2),0), p0 = —zcos6>, r/o = 0. (14)

In the following, we shall consider the existence and stability of solutions of (8) to (13),
where the initial values of U,p, and 77 are close to (14). Let

U = (ui,u2) = U - U0, P = P~Po, (15)

and r](x,t) be the perturbation from the steady state (14). Equations (8) to (13) are
then transformed to

V • U = 0, (16)

Ut + Uo • VC7 + U ■ Wo + U • Vt7 = -Vp + R~l(V)2U, (17)

with boundary conditions at z = r](x,t),

(Rp - Rrjcos6 — 2uli)r)± + uu + u2x ~ Rr)sm6 = -t(R^ 1 + R^Vx, (18)

Rp - Rricos9 — 2u2i + (mii — Rr/sinO + U2x)Vx — -t(Ri1 + R2"1), (19)

Vt + (Rsin9/2)ii£ + (Hi — (Rsm9/2)ri2)r]S; - u2 = 0, (20)

at z = — 1,
U = 0. (21)

Then we let
(x,z) = (x +(Rsin6/2)t,z) (22)

to remover (R sin 9/2)r]x in (20) for the sake of convenience, which will be seen later.
Equations (17) and 20 are changed to

ut + u0 ■ viz + u • w0 + u • vc7 = -vp + ir1 (v)2t/, (23)
T]t + (ui - (Rsm.9/2)rj2)rt& - u2 - 0, (24)

and other equations are the same except for changing (x,z) to (x,z), where Uq =
( — (Rsm9/2)z2,0). Since we are only interested in the periodic solutions of (16) to
(21) in x, the change of variables (22) will not affect the function spaces defined later.
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Since z = rj(x,t) for the free surface is part of the solutions of (16) to (21) and the
domain of the fluid is unknown, in the following we use a transform introduced in [1]
to reduce the unknown domain to a fixed strip domain. Given r](x,t), let rj(x,z,t) be
an extension to — 1 < z < 0 such that rj(x,0,t) = rj(x,t). Such an extension in certain
Banach spaces will be introduced at the end of this section. Now let 6(x,z,t) be a
transformation that maps the domain bounded by— 1 < z < 0 to a domain bounded by
— 1 < z < r](x,t), such that

0(x,z,t) = (x,z) = (xux2) = (x,rj(x,z,t) + 2(1 + rj(x,z,t))), (25)

and denote the Jacobi matrix

~ d(x1,x2) d(x,z) z s
D — -W7Z Z T — -s — (Oij 2X2-d(x1,x2) o(x,z)

Since (16) does not hold under such a transformation, we change U to V — (v\,v2) by

U= (ui,u2) = (1 +rj + rjz(l + z))_1({5i,7)irjx(l + z) + (1 + rj + rjz(l + z))v2)

= AV — (dijVj),

where

A = (1 + fj + rjz(l + z))-1 ( (1 1+Jj + °{1 + Z)fjz ) = (5y)2x2. (27)

Prom (16), (23), (18), (19), (24), and (21), we have

V • V = 0, (28)

AVt + AtV + A{b2jdjV){ 1 + z)fjt + t/0(1) • (BV)(AV)

+ (AV) • ((BV)U^) + (AV) ■ (BV)(AV) (29)
- -(BV)p+ R~l(BV)2(AV),

with boundary conditions at z = 0,

Vt -v2- (R sin 9/2)r]2 rjx = 0, (30)

(31)
(R(p - 77 cos 0) - 2budi(dijVj))T]x + b2i(aijVj)

+ b\idi(a2jVj) - Rr) sin 9 = -t(R[1 + R2l)r]x,

(32)
R(p - r]cos9) - 2b2idi(a2jVj) + (b2idi(dijVj)

budi(a2jVj) - Rrjsm0)r]x = -r(i?5"1 + R2X),

at 2 = —1,
V = 0, (33)
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where V = (d/dx,d/dz) and UqX\Uq^ are the corresponding functions of Uq and Uo
under the transformation and

-ftf1 + R2"1 = Vxx( 1 + ??x)"3/2-

We note that (28) to (33) are equivalent to (16), (23), (18), (19), (24), and (21) if A, B
are invertible in some spaces and the transformation (22) makes (30) a simple form. We
multiply both sides of (29) by the inverse of A and move all the linear terms to the
left-hand sides of (28) to (33) and the nonlinear terms to the right except (30). In order
to remove the nonlinear term in (30), we use the transformation

V = U - Ui

where

(i?sin0/2)(l + rj + rjz(l + z))(z2 - (rj + z( 1 + fj))2) + Rsm9(z + l)zrj\
' (Rsm0/2)r)x(l +z)({rj +z(l + r]))2 - z2) J '

It is easy to check that V • U\ =0 and U\ = 0 at z — — 1. Since U\ has only nonlinear
terms in 77, it has no contributions to the linear terms in (28) to (33). Finally (28) to
(33) are transformed to

V • U = 0, (34)

Ut + Uo • VU + U ■ VU0 + Vp - R'1V2U = F(U, r),p), (35)

at z = 0,

R~l(uiz + u2x) -r]sm6 = fi(U,r/,p), (36)

2R~1u2z + Pvxx -tjcosO = fa(U,r),p), (37)
tjt U2 — 0, (38)

at z = — 1,
U = 0, (39)

where U0 = (~(Rsmd/2)z2,0), U0 = ((RsmO/2)(l - z2),0),/3 = t/R, and F,f1,f2
are nonlinear functions of U,r],p and their derivatives. If the temporal derivative of a
function is considered as a second-order derivative of spatial variables, then the highest
derivative in F is third for fj, second for U, and first for p. while the highest derivative
in fx, /2 is second for r7, first for U, and zeroth for p.

Before we show the proof of the existence and stability of solutions of (34) to (39),
the following Banach spaces have to be defined. Let

ft = [0, 2-kk\ x [—1,0] = T x [—1,0] = {(x, z) | 0 < x < 2ttk, —1<z< 0},

be the usual Sobolev space of periodic functions in x with derivatives in
L2(n)(L2(T)) to the order r if r is a nonnegative integer, or the usual generalization
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otherwise, where k is a fixed positive constant. In the following, the functions are always
periodic with period 2ttk. If r, s are nonnegative real numbers, define

Hr/(n x [0,71) = Ho((0,T);Hrpm n H*((0, T); /7p°(0)),

with a similar definition for H^'s( F x [0, T]). For / G HpS, the norm is defined as

I Hi Jo \\f(-,s)\\2Hrds + J \\f{xr)\\Hs(0,T)dx,

where it should be clear from the context whether scalar or vector-valued functions are
meant. Let Kr(tt x [0,T]) = Hr//2(9, x [0,T]) and x [0,T]) = {u G A'r(ft x
[0,T] | dfu(-,0) — 0 for 2k < r — 1} with corresponding definitions for Ar(r x [0,T])
and A0r(r x [0, T]). Also denote R = (—oo,+oo) and R+ = [0, +oo). Now define
rj(x,z,t) from r](x,t) as follows. If r/(x,t) G Hp(T) for each t > 0, then r](x,t) =

T.n=-aoCnitfexpiinx/K) where J2t=-oo M*)|2(M2r + 1) < +00- Let
+oo

r)(x,z,t) = £ c„,(t) exp(|n|z + inx/n), for — 1 < z < 0,
n= — oo

which implies rj(x,0,t) — r/(x,t) and rj G Hp+l^~(fl) for each t.

3. Estimates for solutions of linear equations. In this section, we shall obtain
estimates of solutions of the following time-independent linear equations: in fi = I x

(-1,0),

V • U = 0, (40)
XU + Uo-S/U + U- VC/0 + Vp - R~lV2U = G{x, z)\ (41)

at r = I x {z = 0},

A r)-u2=go(x), (42)

R~X{u\z + u2x) - r/sin6 = gi{x), (43)

p - 2R~1u2z + PVxx - rjcos9 = g2(x)\ (44)

at B = I x {z = —1},
m = u2 = 0, (45)

where A is a complex parameter. By (40), it is natural to project the function U onto a
subspace of L2(rj) whose functions satisfy (40) and (45). From the identity

f [U • V0 + CV • U)<p] dn = [ (U • ri)4>ds, (46)
Jn Jon

where n is the normal vector of dU, we have that a vector field U G Hp (ft) satisfies (40)
and U • n = 0 on B if and only if U is L2-orthogonal to V</> for any 4> G Hp (f2) and <fi — 0
on F. Therefore, we define the projection P on L2(fl) orthogonal to

{V(f>: 4> G J7p(0), 4, = OonF}.
For the sake of convenience, we first let g\{x) = g2{x) — 0 in (43) and (44). By the
definition of P, we have



LIQUID FLOW DOWN AN INCLINED PLANE 383

Lemma 1. P is a bounded operator on and on Kr(Q, x R+) for r > 0. If
<t> £ i7p1(f2),P(V0) = Vtti where

V27Ti = 0 in Q, 7Ti = 4> on T, and ttz — 0 on B.

The proof of the lemma can be found in [1]. We apply P to Eq. (41) to have

XU + P(U0 -VU + U- VU0) + Vpi + Vp2 - i?_1P(V2[/) = PG, (47)

where V2pi = 0,piz — 0 on B, i = 1,2, and pi = 2R~1U2Z,P2 = ijcosO — (3r]xx on T. Let
E be an operator from a scalar-valued function on T to PL2(fi, R2) such that if h is a
function on T, Eh — Vq where q satisfies

V2q = 0 in f], g = h on T, and qz = 0 on B. (48)

We note that U2|r is well defined if U E for r > 1/2. Now let us define linear
operators A, B as follows:

BU = P{U0-VU + U • VC/0),
AU = R~lP{V2U) - E(2R~lu2z).

Then (47) becomes

XU + BU — AU + E(rj cos 6 — (3r)xx) = PG. (49)

By (42), we have
At? - u2|r = 9o{x)- (50)

In the following we study the operator defined by

AfU\ = (AU~ BU-E(r, cos 6-/3r,xx)\ (gl)

with domain

V(A) {u=(Uv) u £ PL2(n) <1 H2(ty,ri e Hp/2{T),

R + U2x) ~ rysin(? = 0 on T, U = 0 on B | .

Obviously V(A) is dense and closed in L2(fi) x L2(T). Define a Hilbert space

H = {U =

with inner product

U e PL2(tt), r)€H. ;m},

(■U,V)h= [ U-V*dn+ [ (r)C COS 0 + pVxCx ) dT,
Jq J r
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where /* is the complex conjugate of /. Thus (40) to (45) are transformed to

(\I-A)U = (PgG^j = G. (52)

By assuming G E H, we try to find a solution U of (52) so that U E ~D(A) for some
A G C. Thus we have to solve the following equations:

AU - (AU -BU- E(r]cos 0 - 0ijxx)) = PG, (53)
At? - u2\r = 9o, (54)

with G = (PG,go)T E H where T denotes the transpose of a matrix. To have a solution
of (52), we introduce an identity. If U, V E Hp (CI), p € Hp(fl), and V • U = 0, then

((-R~lV2U+ Vp)-V* d,Q. = (U,V) + f S(U,p)V*ds- [ p(V-V*)dft, (55)
Jn Jon Jn

where
r 2

(U, V) = (2R-1) / £ (uitj + «j,i)(w<j + «;,i) dn
Jn :n • ■ i*.j=i

and
2

S(U,p)i = pni - i?_1 ^(^ + Ujj)rij for i = 1,2,
j=i

with n the normal vector on dCl. Therefore from (55) if V • V = 0 in fi and V\b = 0,
(51) can be written as

(A U - (AU -BU- E(r, cos 9- pVxx)),V)LHn)

= f (\U + BU)-V*dn + (U,V)
" . (56)

+ / (-VV* sin 6+ rjV2+ /3r)xv|a) c?r
J n

= {PG,V)L2(n).

By Xrj — U2 — go on F, we have rj = (u2 + ffo)/A if A ̂  0. Therefore, the solution of (53)
and (54) satisfies

[ (\U + BU) 'V* <m + (U,V) + A"1 [ (-u2vf sin 0 + u2v*2 cos 0 + 0u2tvT2x) dT
Jn J r

= f PG • V* dfl + \~l f (gov{ sin d — gov^ cos 6 — Pgoxv2x) dT
Jn Jn

(57)
for all V G Hp(Q.) with V- V = 0 and V\b =0. We call the solution of (57) a generalized
solution of (53) and (54). In order to find a solution of (57), we denote C\(U,V) as the
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form of the left-hand side of (57) and 7i.(G, V) as the right-hand side of (57). Then (57)
becomes C\(U, V) = H(G, V). If we use the inner product

(U, v) = fnH dn + jJWs + u2,v*2x) dr
i=l,2

to define a Hilbert space S, then £\(U, V) is a bounded bilinear form in <5. Since G € H,
Ti(G, V) is a bounded functional in S. If V = U in (57),

CX{U, U) = [ {X\U\2 + (BU) • U*) dfi + (U, V)
Jn

+ A-1 J(—u2u\ sin# -(- \u2\2 cosO + (3\u2x\2) dr.

However, because (U,U) + is equivalent to the //'-norm in fi,

/Jn
(.bu) • u* <m<(1/4)(U,U) + C0\\U\\2LHQ),

where Co is a fixed constant. Let A be a positive real number such that

•/<-
A / (—u2u\ sin#) dr < (1/4)(C/, C7) +

Thus there exists a Ao > 0 such that for all Re A > Ao

. 2 \

[ X! 7T7 dd+ f (|u2|2 + |«2x|2) dr
Jn ^ dXj Jr

Re(C\(U, U)) > C
3=0,\

\ »=1,2

where C is a small positive number. Therefore C\(U,U) is coercive in S. By the Lax-
Milgram Theorem, there exists a unique solution U satisfying (57) and U £ H]p (Cl)
and u2\y £ Hp(T) with its norm bounded by ||PG||L2(n) + ||<7o||#i(r), which implies
that r] = (u2 + go)/\ G Hp(F). Therefore, given G in (52) with G € H, there exists a
generalized solution for (52) and for Re A > Ao, (XI—A) is invertible in H, i.e., (AI—-4)_1
exists and (AI — A)~lG = U, and U is bounded in H by G. Here U also has first-order
derivatives in Lp(fi).

Now we study the spectrum of A. Let B = (A0/ - .A)""1 be a bounded operator from
H to H. We shall prove the following lemma.

Lemma 2. The operator B is a compact operator from H to H.
Proof. First we need the following identity. If U = (U,rj)T — BG, then

[(A0U + BU) -V* dfi + (U, V) + Aq 1 f (-u2v{ sin 9 + u2v2 cos9 + (J(u2x + g2x)v2x) dT
Jn Jr

= f PG -V* d£l - Aq1 f (~gov{ sin 6 + g0v2 cos 9) dr,
Jn Jr

(58)
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where G = (PG,g0)T E H and V E H$({2) with V-V = 0, V\B = 0. Let Gn = (Gn,gn)T,
n = 1,2,3,, be a bounded sequence in H and Un = (Un,r]n)T = BGn. Let V = Un
in (58). By the choice of Ao, Un and the first-order derivatives of Un are bounded
in Lp(Q) and un^, (un^)x are bounded in L2(r). From the definition of B, we have
fin = (9n +U2,n)/\>- Thus rjn and (r)n)x are bounded in L2(T). Therefore, there exists a

subsequence Unk such that UHk is convergent in Lp(Ct) and r/nk is convergent in Hp(T).
Next we need to prove r)nk is convergent in Hp(T). We rewrite (58) as

/? f r)xv*2x dT = -([/, V) - f (AQU + BU - PG) ■ V* dfl
Jn Jn ^

— Aq 1 / (—U2v{ sin 6 + U2V2 cos 0 — govl sin 9 + <70^2 cos

By applying (59) for Unk ~ Umk = B(GUk - GmJ, we have

P [ (Vnk -Vmk)xV2XdT = J(Unk,Umk,V,Gnk,Gmk). (60)
Jn

1/2We choose V = (v\,v2) as follows. For a function h(x) E Hp (F) and

+ 00

h(x) — cn exp(inx/n),
n= — 00

let
+ OO

Vi (x,z) = - £ cn(ip'(z) + ip(z)\n\)(K/in) exp(|n|z + «/k),
n= — oc

+r («D
V2 (x,z) = cn<p(z) exp(|n|z = inx/n),

n=—00
n^O

for — 1 < z < 0 and 0 < x < 2ttk, where ip(z) = 1 for z near zero and ip(z) = 0 for z near
— 1 with (p € C°°([—1,0]). Thus V € Hp(fl) and V • V = 0 with

i r/t

v2(x,0) = h(x) - — J h(s) ds and \\V\\Hi{n) < C\\h{x)\\Hy2{r). (62)

Now let h(x) = r]„k — ,qrnk. Since r/nk E Hp(T), h(x) & Hp(T) and Vk(x,z) in (61) belong
to Hp^2(£l). By the Trace Theorem, i^lr E Hxp (T) and V2X\r is well defined and equals
(r]nk — Vmk)x on T. However, on the right-hand side of (60), Urtlk,Urik are bounded in
Hp(£l), Gn is bounded in H and the highest derivative of Vk is the first-order derivative,

1 / 2which is uniformly bounded by ||rjnk - r)mk ||Hi/2(r) ■ Since r]nk is convergent in Hp' (T),

Vk goes to zero in Hp (CI) as n&, rrik —► +oo. By using the Holder inequality to the
terms of the right-hand side of (60), we have that fr \ (rj,lk — r)mk)x|2 dT does to zero as
nkitrik —» +oo. Thus IJrik = (Unk,'qnk)n[ is convergent in H. Therefore B is compact.

From Lemma 2, we see that the spectrum of B consists of discrete eigenvalues and
zero only, and the only possible limit point is zero. By the relation between A and B, we
have
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Theorem 1. The spectrum of A consists of discrete eigenvalues only and lies on the
left-hand side of the line Re A = Ao-

In the following, we shall show that A is an infinitesimal generator of an analytic
semigroup in H. Let Re A > Ao- Then (AI — -4)"1 exists. For G G H, (A/ — A)~lG = U
satisfies (56) with Ary = u2\r + go- By choosing V — U, we have

I dT

i dr.
(63)

f (XU + BU) • U* dn + (U,U) + f (— r]ul sin# + A[ry|2 cosO + \/3\r]x\2)
Jvt J r

= (PG, U)L2(r2) + J {rjga cos 6 + /3rjxg0x)

By using the Trace Theorem and taking A0 large, the real part of (63) becomes

Re(A - A0) \U\2 cM + ^(cos%|2 + (3\r)x\2) dT^j

+ (1/4)«t/, U) + \\U\\lm + |M&i(r)) < ||G||*.
Thus

PUtf < (Re(A - Ao))_1||G||if and ||J7||Hi(n) + |M|„i(r) < C||G||«, (65)
which implies that A is an infinitesimal generator of a Co-semigroup since it is clear that
A is closed and T>(A) is dense in H. Also, the imaginary part of (63) takes the form

(64)

(ImA) ( f \U\2d£l + f (\ri\2 cos 6 + P\r]x\2) dV
\Jq Jr j

J BU-U*dn- J -qui sin 9 dr\ (66)

+ lm(^PG,U)Ll((l) + L (r]g0 cos 0 + /3r]xg0x) dT

= — Im

However, the right-hand side of (66) is less than

C({U,U) + \\U\\2L2(Q) + ||»7l| jfi(r) + IIGIIz^n) + ll5o||^(r)),
for some C > 0. By (64), for Re A > Ao (66) becomes

where C is a constant independent of A. Therefore A is an infinitesimal generator of
an analytic semigroup T(t). For Re A > A0, (49) and (50) can be solved if we use the
generalized solutions in H for Re A > Ao. By using a smoothing process similar to elliptic
equations, we can have

Theorem 2. Assume that Re A > Ao in (53) and (54). If G e H''p(^l) and g0 G Hp+°^2(T)
with r > 0, then (53) and (54) have a unique solution U = (U,r])T with U = PL2(Q)
satisfying

ll^ll/f;+2(n) + |A|(7"+2)/2||C/||jL2(f2) + ||r?||ffr+5/2 (F) + |A|(r+5/2)/2||?7||L2(r)

< C(||PG||/fr(n) + |A|r/2||PG||L2(n) + ||0o||H£+5f5t(r) + |A|('+j/2,/"2||3o||L2(r)).

Since an analogous proof can be found in the proof of Theorem 1 in [1], we omit the
proof here.
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4. Existence of solutions. In this section, we consider the modified linear problem
of (34) to (39): in f2,

V • U = 0, (67)

Ut+ fiU + UQ-VU + U • W0 + Vp - R-1V2U = G{x, z, t); (68)

at z = 0,

r/t + i^r] - u2 = 0, (69)

R~\uiz+u2x) - risinO = gi(x,t), (70)

P - (2/R)u2z + /3t]xx - rycos# = g2(x,t); (71)

U = 0; (72)

= 77 = ry0; (73)

where U°, r]° satisfy the compatibility conditions for (67) to (72) and /i is a fixed real num-
ber, G(x,z,t) £ Kr(n x R+), gi{x,t) and g2(x,t) £ Kr+1'2{Y x R+), U° £ i/;+3/2(Q),
and 770 e h;+2{T).

First we can construct two functions U\(x,z,t) £ Kr+2(Q, x R+),pi(x, z, t) £
Kr+1(Q, x R+), and r?i(M) € Kr+5/2(r x R+) such that V • Ux = 0, f/j |B = 0,ui2|r = 0
for all t £ R+ and Ui(x, z,0) = U° and 771 (a:, 0) = r)° for 1 < r < 3/2 with

at z — — 1,

at t = 0,

ll^ilU'-+2(nxR+) + ll7?i|I.K'-+5/2(rxR+) + lbill/sT'-1(nxR+)
< c(Wu°\\h;+3/2(Q) + llr?°ll/cj+2(r))' (74)

and the following conditions are satisfied. If we let

U = Ui+Vi, 77 = 771 + Ci, P = Pi+Qi, (75)

so that (67) to (73) become

V • Vi = 0, (76)

Vlt + iiV, + U0 • VVi + Vy • V/7o + vqi - R-1V2Vi = Gl (x, z, t), (77)

then at z = 0,

Cit + mCi ~~ vn = 0, (78)
#_1((wii)z + (vi2)x) - Ci sin# = 9u(x,t), (79)

qi - (2/R)(v12)z + PCixx -Cicos6 = gi2{x,t); (80)

at z = — 1,
V! = 0; (81)



LIQUID FLOW DOWN AN INCLINED PLANE 389

and at t = 0,
Vi - 0, Ci = 0, (82)

where V\ = {v\\,vi2), then Gi(x,z,t) G x R+) and gn(x,t), gi2(x,t) €
Kr0+1/2(T x R+). Such construction can be done in a fashion similar to Lemma 6.1 in
[1] by using the compatibility conditions and choosing appropriate pi € Kr+1(fl x R+).
Next we further reduce (76) to (82) to equations with gn = g12 = 0. Let Z(x,z,t) be
(wz,—wx) where w(x,0,t) = wz(x,0,t) = 0, wzz(x,0,t) = Rgn(x,t) with w = 0 near
z = —1 and w is periodic in x. Such w(x, z,t) always exists and Z £ Kq+2(£1 x R+) with
HzllKj+2(nxR+) ̂  Cllffn llxo+1/2(rxR+)- Also let Po(x,z,t) satisfy

V2p0(x,z,t) = 0 in ft, p0z = 0 on B, p0 — gi2(x, t) on T.

Prom the theory of elliptic equations, we know that po can always be found and

llpo(^) Z, 0ll/fJ+1(QxR) — (^ll5,12ll/4'J+1/2(rxR)-

Let
V = V1 - Z, q = qi-po, C = Ci- (83)

Then V, q, and £ satisfy
V • V = 0, (84)

vt + nv + u0 • vv + v • wu0 + Vg - r~1v2v
= Gxix^t) - Zt- fiZ -Uo-VZ - Z • VC/0 - Vp0 + R~lV2Z (85)
= G2{x,z,t)\

at z = 0,

at z = —1,

at t — 0,

Ct + MC - v2 = 0, (86)
R~1{viz + V2x) - Csin0 = 0, (87)

q - (2/R)v2z + PCxx ~ C cos 6 = 0; (88)

V = 0; (89)

V = 0, C = 0, (90)

where G2 £ Kq(Q x R+) satisfies

\\G2(x, Z,f)||/fr(nxR+)

< C(\\Gi(x, M)||/cj(nxR+) + Hfn(;E^)llKj+1/2(rxR+) + llfi20M)llKj+i/:2(rxR+))
^ C{\\G(x, z,t)\\Kr^xTi+} + 1151(^10ll^r+1/2(rxR+)

+ llff2(z,i)||/f+i/2(rxR+) + (lit "Hff;+3/2(n) + H7?°llff;+2(r))2)'
(91)



390 S. M. SUN

since the linear terms for f/°,r70 are canceled by the compatibility conditions on U°,ri0.
After applying the projection P defined in Sec. 2 to (85), equations (84) to (90) can be
rewritten into an operator form:

t
v\
(J VO at t = 0. (93)

However, if /.t = Ao, the spectrum of Ao/ — A is strictly on the left side of the plane and
the proof of the existence of solutions for (92) and (93) can be obtained from Theorem
2 in a similar way to the proof of Theorem 2 from Theorem 1 in [1]. Thus we have

Theorem 3. If = Ao and G2(x,z,t) G ATJ(Q x R+) for r > 0 and not a half-integer,
then (84) to (90) have a unique solution (V, C,q), with

l/fJ+2(nxR+) + IKHif£+5/2(rxR+) + A'0r+1(!lxR+) — 11^2 || /CJ(OxFt+) -

Now let us consider (67) to (73) with G, 51,32 substituted by

F(U,V,p), fi{U,rj,p), f2(U,V,p)

in (35) to (37). By using the algebraic properties of the space Kr(Sl x R+) or Kr(T x R+)
and the properties for composite functions in Kr(T x R+) (see Lemmas 5.1 and 5.2 in
[1]), we have that if U G Kr+2{n x R+), p G A"r+1(ft x R+), 77 G Ar+5/2(r x R+), then
F € Kr(fl x R+) and /1, fi £ A'r+1/2(fi x R+) for r > 1 with nonlinearity larger than or
equal to the order of two with respect to C/, 77,p. Then by using (75), (83), (91), Theorem
3, and the contraction mapping theorem, we can prove the existence of a unique solution
for (67) to (73) with G,gi,gi replaced by F, f\, f-2 in (35) to (37), 71 = Ao, and small
initial conditions. Also we note that the solution for t > 0 is smoother than the initial
conditions. Actually the solution can have derivatives up to any finite order. Now we
state the existence theorem.

Theorem 4. If r, k, and T are given with 1 < r < 3/2, T > 0, and k a positive integer,
then there is a 6q > 0 such that for initial values 77°, U° satisfying

6 = llr7°ll/f£+2(r) + IIU°\\Hrp+3/2(n) - 6o,

and the compatibility conditions for (67) to (72) with G, 31,32 replaced by F, /i,/2 in
(35) to (37) and 74 = Ao, there exists a unique solution (U,r},p) of (67) to (72) with the
following properties:

(1) U G Kr+2(n x R+), 77 G Ar+5/2(r x R+), and p G Kr+1{fl x R+) with

l/C'+2(nxR+) + IMlK'-+5/2(rxR+) + llp|l-K"''+1(nxR+) < C6,

where C is a constant independent of 6.
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(2) The solution satisfies 77 € Kr+k+5/2(T x (T,oo)),u € Kr+k+2(fl x (T,+00)),
p G Kr+k+1(fl x (T, +00)), and the sum of these corresponding norms is less than C\S
where C\ is a constant and may depend upon T.

Since the proof of this theorem is similar to Sec. 5 in [1], we shall omit it here. We note
that the situation considered here is simpler than the one in [1] since the spectrum of the
operator in [1] contains zero while we have no such difficulty here. Also the domain is
bounded here, which makes the proof easier to carry over by using Fourier series rather
than Fourier integrals in [1].

Remark.
(1). The condition fx = Ao is not necessary. This condition assures that fxl — A has its

spectrum lying on the left half-plane. If the spectrum of fil — A is in the left half-plane
for smaller /x, Theorem 4 still holds for such /j. For /i, = 0, (67) to (72) become (34) to

(39).
(2). If we are only interested in the existence of solutions of (34) to (39) up to a

fixed finite time To, then we can use the transformation U = e^W, r/ = p = e^ps,
multiply a smooth function ip(t) with ip(t) = 1 for |£| < 2T0 and ip(t) = 0 for \t\ > 3To+10,
and transform (34) to (39) into (67) to (72), which implies the existence of solutions in
0 < t < Tq. Therefore for small initial data, the existence of solutions of (34) to (39) up
to a fixed finite time is a consequence of Theorem 4.

5. Stability of the motion of the fluid. In this section, we shall show that the
solutions of (34) to (39) with small initial conditions are stable under some conditions
on the spectrum of A. The assumption is that A has no eigenvalue /j, with Re^t > 0.
This can be verified easily by numerical computation, and it has been done in [5] using
normal mode analysis and finding the neutral curves for the linear operator A. We note
here that we need to use (22) to transform the results in [5] into the conditions on the
spectrum of A. Since the spectrum cr(A) is closed and A is an infinitesimal generator of
an analytic semigroup, we can find two positive constants u>, 6 such that

<t(A) 6 Aj = {z | | arg(,z — 2lo)\ > S + 7r/2}.

Now we use the following change of variables in (34) to (39):

U = e~utUw, r} = e-wtip = e-a,V1>> (94)

with some initial conditions. (34) to (39) then become (67) to (73) with fi = —u> and

G{x, z,t)

92{x,t)

F
fi
h

(e_aJt [/(1\e-"yi),e-uV1)), (95)

where U, rj,p are replaced by U^\r)^1',p^l\ respectively. First, we need a theorem similar
to Theorem 2 in this case:

Theorem 5. If G(x,z) £ Hp(£l) and go(x) G H7p+0,/~(T) with r > 0, then for Re A > 0,
the equation

,n-(PG\-n
9o

(XI — (ivl — A))U = ( „ J = G



392 S. M. SUN

has a unique solution U = (U,r))T and the solution satisfies

llc/ll/fj+2(n) + lAl(r+2)/2Hc/llL|(n) + IMI#;+5/2(r) + | A| (t"+5/2)/2 ||r7|| ̂2 (r)

< C(\\PG\\Hr(ci) + |A|r/2||PG||L,(n) + ||5o||//-+5/2(r) + |A|<T~+5/2)/21|c?01|^2(r)).

Proof. We just show very briefly how to obtain the estimates since the majority of
the proof is the same as the one for Theorem 2 and also can be found in [1]. Because
XI — (col + A) is invertible for Re A > 0 and u>I + A is an infinitesimal generator of an
analytic semigroup, we have

\\U\\H = ||(A/ - (col + A^GWh < (C/( 1 + |A|))||G||*. (96)

Therefore, U in L2(f2) and 77 in H1(r) are bounded by ||G||#. If |A| is large, by (96) the
proof of Theorem 2 can be carried over and the theorem can be proved. Thus we only
have to prove the case when |A| is bounded. Prom (56), we let V — U and use (96) and
u^\t £ Hp(r) to have a bounded estimate of ||C^||//1 (o)• Denote

Kfi*.*) = (£:) (^) I2*")'11 (=£) ta.

Then construct a function V = (vi(x,z),v2(x,z)) with V • V = 0 and V2\z=o = Ar\ry and
V = 0 near z — — 1. Such a function has been obtained in (61) and (62). Also V £ Hp(U)

if Alnr] £ H^2(T) and ||V||#i(Q) < C||A^?7||^1/2^^. We substitute V into (56) to obtain

j^\(K!2n)x\2 dT = j faMrildr

< Ci(||i7||ffi(n)||V||jfi(n) + H^IIhi^) + Ihlln^r) + II^IIh)
<m)\Kv\\aHr^+C2maH-

However, since A\1~tj has only finite terms,

l|A^||2^/2(r) < IKA^III^ +C3||r?||^(r).

Thus we have
||(Ay2?7)x|||2(r) < C4||G||2h.

Let n —> +00 and obtain

\\ilx\\2Hi/2^ < C$\\G\\2h,

which implies that 77 € Hp^2(T) and ||ry||2 3/2,< G5||G||^. Then by (56) again, wehp (r)
choose V = A* (£/) and by the estimates on 77 and using the same procedure in the proof
of Theorem 1 in [1], we have U £ Hp/2(n) and 11^11^3/2^ < G(||G||// 4- ll0o||H3/2^).
By using the same argument to obtain 77 £ Hp^2(T), we have 77 £ Hp(T) and then
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U € Hp(£l). Finally 7? 6 H^2(F) with the estimate stated in the theorem for r = 0. The
case for r > 0 is a simple extension to the case r = 0 by using (96). Thus we prove the
theorem.

After we have Theorem 5 and notice that F, f\, /2 contain all nonlinear terms so that
at least one factor of exp(—cut) appears in G or g 1 or 52, the existence of solutions of (67)
to (73) with [i = — to and G, <71,52 defined in (95) with small initial conditions can be
established in a way similar to the proof of Theorem 4 from Theorem 2. Therefore, we
also have Theorem 4 for the solutions of (67) to (73) with fi = — u> and G,gi,g2 in (95).
By (2) of Theorem 4, we choose k large enough such that for t € [T, +00) with a fixed
integer kx > 0, 6 small and T > 0, € tf£+fcl+5/2(F), € H;+k>+2(n),
p(1)(-,0 e H;+ki+\n), and

||?7(1)||Hr+fc1+5/2(r) + l|£/(1)llH;+fcl+2(n) + llp(1)llff;+fci+1(fi) ^

if ll??0||//j+2(r) + ll^°llKr+(3/2)(n) = ^ 7?° anc^ satisfying the compatibility
condition and 1 < r < 3/2. Then by the definition of r/1), we have

IMIff;+*i+5/2(r) + ||^||ff-+'=i+2(n) + Ibll//;+*!+l(n) ^ C6exv(-U)t),

for t £ [T, +00). When t —> +00, IMI^r+kj+s/a^ + ||?7||Hr+fc1+2^^ + IIpII^+^i+^q-, goes
to zero exponentially. If we transform (34) to (39) back to equations (1) to (5), we
can see that all the transformations are invertible, (1) to (5) have solutions if the initial
conditions satisfy the compatibility conditions and are very close to the steady state (14),
and the solutions approach the steady state exponentially. Thus we have the following
stability theorem.

Theorem 6. Assume that

fi* = r x (-1,0, Uq = ((-Rsin#/2)(1 — (z*//i*)2), 0), p*0 = -(z*/(h* cos*)),

and the initial conditions £o, q^ of £*, q* satisfy the compatibility conditions. Define
Hp{Vt*) and Kr(fi* x (0,T)) in a way similar to Hp(Q) and Kr(fl x (0,T)). Let r\ > 1
be any fixed integer and 1 < r < 3/2. If A in (51) has only eigenvalues with negative
real part, then there exists a So > 0 and to > 0 such that for ||Coll/fr+2(r) + Iko ~~

= S < S0 the equations (1) to (7) have a solution with

IIC*llA''-+5/2(rx(o,+oo)) + Ik* ~ ^0 llA'-+2(n*x(o,+oo)) + lb* _PollA,-+1(n*x(o,+oo)) < C6,

and for t large, C*(">*) £ Hp1+1/2(T), q*(-,t) £ and

IIC(-,0llff;i+i/2(r) + ||£*(-,<) - C^o llz/p1 (o-) + lb(*-0 -Pollf/;1"1^') ^ Cexp(-wt),

where C is a constant independent of t and 6.
Obviously Theorem 6 implies the global existence of solutions for small initial data.
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6. Instability of the motion of the fluid. Here we assume that A has eigenvalues
with Re A > 0. Since A has only discrete eigenvalues and the only limit point of the
eigenvalues is —oo, there are only finite eigenvalues with positive real part. Let Si,
i = 1, 2, 3,..., n be the eigenvalues with Re<5t = max(Recr(A)) = So for i = 1,2,n.
Since A generates an analytic semigroup in H, the identity map

I = (2tti)~1 f (XI - A)~l dX,
J-7

where a(A) lies on the left-hand side of the curve 7 which goes from +ooe1^ to +oo-*^
with (p > (it/2) in the complex plane. Let 7^ be a curve with real part less than 6q—uj > 0
for some small u> > 0 and let a (A) be on the left-hand side of 7" with distance to 7"
larger than u> except {<5j}™=1. Then define

P_ = (2m)-1 f (X -A)~1dX, P+ = I~P_,

A — A+ + A- with A+ = P+A, A- = P-A.

The space H is decomposed into a direct sum of H+ = P+(H) and H = P-(H). The
subspaces H+ and H- are invariant relative to A■ They contain dense linear spaces
P+(V(A)) and P-(V(A)), respectively. Note that P+ is a projection onto a finite-
dimensional space spanned by the eigenfunctions corresponding to Si, i = 1, 2,..., n and
these eigenfunctions are infinitely differentiable by a usual regularity argument.

Let
'U\ / C/(1>
77 ) = exp((<50 - u)t) I 7?(1)

,P \ P(
Then (34) to (39) become (67) to (72) with fj, = <5q — 10, and

^e(«5o-^)tC/(l) j e(«o-^)tr7(l)5 e(«o-^)*p(l)) (97)
G(x, z, t)
g\(x,t)
92(x,t) _

= e^^a^uS>t

F
fi
h

Let
V± = u£)-Z±, C±=v±\ (98)

where Z is constructed in (83) to make <71,32 be zero. If we denote G in (97) by G after
the change of variables using (98), (67) to (72) become

However, (60 — w)P_ — A- is an infinitesimal generator of an analytic semigroup on
H- and its spectrum <r((<5o — u>)P_ — A~) lies entirely on the left half-plane. Consider

(V-)t + ((S0 - u)I - ^^)^_ = P_ U(i)

F|t=_oo -0,

PG'^
0 ) J ' (99)
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in the space H- where V- = (V_,C_)T and ip(t) € C°°(—oo,+oo) with <p(t) = 1 for
t < 5, ip(t) = 0 for t > 10. Since (<50 — lj)I — has eigenvalues on the left half-plane,
we can have the same estimates as (96) in H-. Then by using arguments similar to
Theorem 5, (AI — ((<50 — lo)I — .4-)) V_ = P_((PG, 0)T) will have solutions for Re A > 0
satisfying the inequality in Theorem 5. Note here that although the scalar component of
(PG, 0)T is zero, the scalar component of P_((PG, 0)T) may not be zero. However,

and P+((PG, 0)r) is finite-dimensional and the basis has bounded derivatives up to any
finite order. Thus the scalar component of P+((PG, 0)T) is controlled by the L2-norm of
P_((PG, 0)T), which yields that the derivatives of the scalar component of P_((PG, 0)T)
are bounded by the L2-norm of P_((PG, 0)T). From the similar inequality in Theorem
5 and the note we just stated, we can obtain results similar to Theorem 4 for (99) if
(V"+,C+) is small and smooth and satisfies the compatibility condition (V + ,C+) —> 0 as
t —> —oo. We note that the situation here is much easier than the one in Theorem 4
since (V + , (+) is in a finite-dimensional space and the basis is smooth in (x,z), which
implies that the conditions on (V^, £4.) can be imposed on the coefficients of its linear
representation. Also we remark that if V+ € Kr+2(£l x R), £+ 6 ivr+5/2(r x R), then
V- 6 Kr+2(Q, x R) and £_ e Xr+5/2(r x R). Therefore, we have

||V_||Kr+2(axR) + ||C-||jf+S/2(nXR) + lb-|U'' + 1(OxR) < C6, (100)

if ll^+llKr+2(axR) + IIC+llif+5/2({}xR) ̂  ^ f°r small 15, where we have used the fact that
p is exclusively determined by V and (. Since G is nonlinear with order at least two,
(100) yields the inequality

11^- |liC-+2(fixR) + IIC-|liC'-+5/2(rxR) + Ib-lk-'+HQxR) < C\6~. (101)

Therefore (V_,£_,p_) is determined by (V+,£+,p+). However, (V+,£+) is in a finite-
dimensional space and the solution of the ordinary differential equation

£=0

can be rewritten as

c+y ~ vco/ L' 'Tv 0
V+\ = e-((io-^)P+-^+)t/K)\ + e-{{t>0-u)P+-A+){t-r)p (PG\dT

The eigenvalues of (So — w)P+ — A- are on Re A = -co <0. As t —> 00, the operator
exp((—(<5q — uj)P+ — A + )i) tends to infinity. Thus we consider the following modified
equation:

^+) =<p(t)exp(-((60-u)P+ - -4+)n ( 'M
C+7 , VW - (102)

ft / pc\ v '
+ if^jo exp(~^° ~^P+ -r)Mr)p+( 0 J dT>
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where ip(t) is defined in (99). (102) is a finite-dimensional integral equation. If (V+,C+)T
has (r/2)-derivatives with respect to t in the L2-norm, PG has (r — 2)/2-derivatives in
the L2-norm for r > 2 by using (101). Also G only consists of nonlinear terms with order
at least two. Thus from (101) and routing arguments in nonlinear ordinary differential
equations, the right-hand side of (102) is a contraction in a small ball of Hr'2{R) with
independent variable t if (Vo,Co)T is small. By the contraction mapping theorem, for
a fixed r > 2, (102) has a solution in Hr/2{R) for small initial conditions. Next we
choose r large such that for a given ry > 0, V_(*,t) G Hp1+2(fl), £_(-,t) G Hp1+5^2(F),

G Hpl+1(£l), and for (eR,

Il^-('i0ll//£i+2(fi) + IIC—(•>H^+b/2(r)
< CldlV+ll/f+s^xR) + IIC+ll/f+5/2(rxR) + Ib+ll/C+^fixR))2 (103)
< C282,

if ||(Vo,Co)|| = 8, where C\,C2 are independent of 6 and ||(Vo, Co)II can be any norm for
(Vo, Co) since the norms are equivalent in a finite-dimensional space. Thus

is a classical solution of (67) to (72) with G — G and g\ — g2 = 0 in t G (—oo, 1] if n is
chosen in (103). Prom (98), and have the same properties as V± and C± since

Z± only has nonlinear terms of U±~* and the implicit function theorem can be used to

obtain U± . Since by definition

= exp((<50 - ui)t)

(U, rj) —> 0 as t —> —oo with G Hp+2(tt) and G Hp+o/2(T). However

U™
VT7(1)4=0 \V+

u(y
t=o v t=o

Then (103) yields

||^(-,0)||Hn+2(fi) + ||r?(-,0)||/fr1+5/2(r)

> II OK), %) || - (||Vl1)(-,0)||Hr1+2(n) + ||r?_(-,0)||H,1+5/2(r))

>8-C282 = 8{l-C26).

If 8 > 0 is chosen so small that 1 — C2S > 1/2, then

r(-,0)||^1+2(fi) +r?||(.,0)||^1+s/2(r) > 8/2 # 0.

However, U and 77 —> 0 as t —> —00. By the translation invariant of (34) to (39) in t, we
obtain the instability of the solutions of (34) to (39), i.e., the solutions will exit a small
neighborhood of zero no matter how small the initial conditions are. After transforming
(34) to (39) back to (1) to (5), we can see that the solutions will eventually leave the
neighborhood of the steady state although the initial conditions are very close to the
steady state. Thus we have the following instability results.
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Theorem 7. Let Q*, Hp (fi*), Uq , and Pq be the same ones defined in Theorem 6. If A
in (51) has eigenvalues with positive real part, then there is a fixed number 8\ > 0 and
an integer k > 1 such that for any sufficiently small e > 0 there exists a Ts > 0 and an
initial condition (£*0, q\,Pto) satisfying the compatibility conditions and

IIColl//£+i/2(r) + lk*0 - tfol*;(n.) + Ibeo ~PoWh^1^*) - e-

Moreover, there is a solution (Q,q*,p*) of the equations (1) to (5) for t G (0, T),
satisfying the initial condition at t = 0 and

||C(-,T£)||„5/2(r) + ||£(.,Te) -U5\\h}W) + IIPme(;Te)-p*0||«i(n-) >
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