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Abstract— Stability of a class of nonlinear systems, called
port-Hamiltonian systems, in the presence of time delay in the
communication between the plant and controller is studied. The
delay parameter is an unknown function which varies with time
and for which the upper bounds on the magnitude and variation
are known. The presence of delay may destroy the port-
Hamiltonian structure of the system. Because of this, stability
of the time delay systems is not obvious. We thus propose a
theory to test the stability of port-Hamiltonian systems with
time delay. The stability problem considered here, relies on the
construction of a Lyapunov-Krasovskii (LK) functional based
on the Hamiltonian of the port-Hamiltonian system. Based on
the LK functional, we derive some sufficient conditions for the
system to be asymptotically stable in presence of uncertain
delays.

I. INTRODUCTION
Port Hamiltonian models are natural candidates to describe

many physical systems [12]. These classes of systems are
basically defined with respect to a power conserving geo-
metric structure capturing the basic interconnection laws and
an Hamiltonian function given by the total stored energy
of the system. A key feature of port-Hamiltonian systems
is that a power conserving interconnection of a number
of port-Hamiltonian systems is again a port-Hamiltonian
system. This concept of interconnection is important from
a control point of view, since implementing a control law or
controlling a system is usually done with an external device
via external port variables. An immediate example is the
control by interconnection of port-Hamiltonian systems [2],
[12], where the plant port-Hamiltonian system is connected
to a controller port-Hamiltonian system via a feedback
loop such that the closed-loop system has desired stability
properties, by using various energy shaping techniques. Since
the interconnection preserves the port-Hamiltonian structure,
the control by interconnection method has some inherent
robustness properties largely due to the structure of the
port-Hamiltonian systems. Now assume that there is some
time delay in the communication between the plant and the
controller. The presence of time delays may often result
in a closed-loop system which is not exactly in the port-
Hamiltonian form. In other words the ”J − R” structure is
actually destroyed and hence does not reveal any information
on the stability of the system.
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Stability of time delay systems, on the other hand, has
been an active area of research since decades. Various exam-
ples studied are those from economics, chemical processes,
mechanics as well as in many Engineering domains. The
stability analysis approaches for LTI systems are either time
domain or frequency domain. Whereas the former is based
on generating various Lyapunov-Krasovskii functionals [3],
[5], [7], the Lyapunov-Razumikhin function approach, the
input-output approach [1]; the later focuses on the small
gain theorem based approach, or deriving stability in terms
of transfer functions [4]. The results included deriving delay
independent and delay dependent stability criteria both for
systems with constant as well as time varying delays. For a
comprehensive review of various stability criterion we refer
to [11]. Significant advances have been made for the case
of linear time-delay systems and according to the authors
best knowledge, time delay nonlinear systems haven’t been
investigated as comprehensively as in the case for linear
systems. Few delay dependent and delay independent criteria
for general nonlinear systems have been reported in [8], [9],
wherein the delay parameter is assumed to be constant.

In this paper we consider nonlinear systems with a specific
structure, the class of which are called port-Hamiltonian
systems. We model nonlinear systems with time varying
delays, in the port-Hamiltonian framework, for which we
know the upper bound on the magnitude of the delay and
its variation. This paper is organized as follows: In Section
II we present the concept of interconnection of two port-
Hamiltonian systems and derive models for port-Hamiltonian
systems in the presence of communication delays. Later in
Sections III and IV we derive some sufficient conditions,
in terms of matrix inequalities, for testing stability of
port-Hamiltonian systems with communication delays.
These conditions are derived based on the construction of
a Lyapunov-Karasovskii functional by making use of the
Hamiltonian of the time-delay port-Hamiltonian system.

Notation: We use symbols R to denote the set of real
numbers, Rn to denote n × 1 real vectors, and Rn×m
to denote n × m real matrices. For b > a, the Banach
space of continuous functions mapping the interval [a, b]
into Rn with topology of uniform convergence is denoted by
C([a, b],Rn). For ψ ∈ C([a, b],Rn), the norm is defined as
‖ψ‖ = supa≤θ≤b|ψ(θ)|, where | · | is the standard Euclidean
norm of Rn. Lastly, Cr([a, b],Rn) := {ψ ∈ C([a, b],Rn) :
‖ψ‖ < r}.

Given a function H(x) : X ⊆ Rn → R, the notations
∇H(x) and ∇2H(x) are used to denote the gradient vector
and the Hessian matrix of H(x) at x, respectively. In this
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paper, it is often that the argument of a function is itself
a function of time. In this case, the corresponding time-
domain function is denoted by the same symbol enclosed
by a pair of square brackets with a subindex t. For example,
[F ]t denotes the functions (of time) F (x(t)). Likewise, when
F is evaluated at x(t − τ), the corresponding time-domain
functions will be denoted as [F ]t−τ .

Given a matrix M , the transposition of M is denoted by
M ′. When M is symmetric, the notation M > 0 is used to
denote positive definiteness. The positive semi-definiteness,
negative definiteness, and negative semi-definiteness are de-
noted using “≥”, “<”, and “≤”, respectively.

Finally, for the sake of notational simplicity, the state
and/or time dependency of a quantity will be dropped when
it is clear from the context.

II. MOTIVATION OF THE PROBLEM AND PROBLEM
FORMULATION

We are interested in nonlinear systems with a specific
structure, called port-Hamiltonian systems, which are of the
form

ẋ(t) = ([J ]t − [R]t) [∇H]t + gu(t)
y(t) = g′[∇H]t

(1)

where x(t) ∈ X ⊆ Rn is the state vector at time t, u(t) ∈
Rm , is the control action, and H : X → R is the total stored
energy. g ∈ Rn×m called the port matrix is assumed to be
a constant matrix in the current analysis. J : X → Rn×n
and R : X → Rn×n are matrix-valued functions, where J
and R satisfy J(x) = −J(x)′ and R(x) = R(x)′ ≥ 0 for
all x ∈ X . J(x) and R(x) are often referred to as “the
natural interconnection matrix” and “ the damping matrix”,
respectively.

Because of the skew symmetry of J(x) and semi-positive
definiteness of R(x), the time derivative of H(x) along the
solution of (1) satisfies

−[∇H]′t[R]t[∇H]t + u(t)′y(t), (2)

which shows that (1) is conservative (or “passive”) if H(x) ≥
0 for all x. Physically, equation (2) corresponds to the fact
that the internal interconnection structure of the system is
power conserving, while u and y are the power-variables of
the ports defined by g and thus u′y is the externally supplied
power and −∇H(x)′R(x)∇H(x) the dissipated energy.

An important corollary of (2) is that, in the absence
of input u, the energy of the autonomous system is non-
increasing and will actually decrease in the presence of
dissipation (the case where R(x) ≥ 0 for all x). Since the
energy function H is bounded from below, the system will
eventually stop at a point of minimum energy.

Interconnection of port-Hamiltonian systems

Consider two port-Hamiltonian systems of the form (1)

ẋi(t) = ([Ji]t − [Ri]t) [∇Hi]t + giui(t)
yi(t) = g′i[∇Hi]t

(3)

i = 1, 2, where J1, R1, H1 are functions of x1, and J2,
R2, H2 are functions of x2. One of the two systems could
be thought as a plant to be controlled and the other the
controller. Interconnecting the two systems in (3) via the
standard (power preserving) feedback interconnection

u2 = y1 + v2, u1 = −y2 + v1, (4)

where v1 and v2 are external signals injected at input ports
of the first and the second Hamiltonian systems, respectively,
we see that the composed system is still of the port-
Hamiltonian form and and can be written as[

ẋ1

ẋ2

]
=
[
[J1 −R1]t −g1g

′
2

g2g
′
1 [J2 −R2]t

] [
[∇H1]t
[∇H2]t

]
+
[
g1 0
0 g2

] [
v1

v2

]
[
y1

y2

]
=
[
g′1 0
0 g′2

] [
[∇H1]t
[∇H2]t

]
with state space given by the product space X1×X2, and the
total Hamiltonian H(x1, x2) = H1(x1) + H2(x2). Assume
that the total Hamiltonian H(x1, x2) ≥ 0 for all x1 and x2.
Since the port-Hamiltonian structure is preserved under the
interconnection, the interconnected system remains passive
and hence, at the absence of v1 and v2, stable in the sense of
Lyapunov. The total Hamiltonian H(x1, x2) is one Lyapunov
function that proves stability of the interconnected system.

Interconnected Hamiltonian systems with communication de-
lays

The feedback interconnection (4) assumes ideal signal
transmission between the two port-Hamiltonian systems,
such that signals y1 and y2 arrive their respective destinations
instantaneously, or with delays that are not significant enough
to be taken into account. This assumption would not be
realistic if the two systems are far apart from each other, or
communicating with each other through channels that have
busy traffic. In such cases, the signal transmission delays
must be taken into account, and the feedback interconnection
relationship shall be modelled as

u2(t) = y1(t− τ1(t)) + v2(t),
u1(t) = −y2(t− τ2(t)) + v1(t),

(5)

where τ1 and τ2 model the forward and backward signal
transmission delays, respectively. The closed-loop system
now takes the following form[

ẋ1(t)
ẋ2(t)

]
=
[
[J1 −R1]t 0

0 [J2 −R2]t

] [
[∇H1]t
[∇H2]t

]
−
[
0 g1g

′
2

0 0

] [
[∇H1]t−τ1
[∇H2]t−τ1

]
+
[

0 0
g2g
′
1 0

] [
[∇H1]t−τ2
[∇H2]t−τ2

]
+
[
g1 0
0 g2

] [
v1(t)
v2(t)

]
.

(6)

Let x :=
[
x′1 x′2

]′
, v :=

[
v′1 v′2

]′
, and H(x) := H1(x1)+

H2(x2). Then equation (6) can be expressed in the form

ẋ(t) = [J −R]t[∇H]t + T1[∇H]t−τ1
+ T2[∇H]t−τ2 + gv(t).

(7)
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The above equation no longer preserves the port-Hamiltonian
structure. The energy balance equation now takes the form

˙[H]t = −[∇H]′t[R]t[∇H]t +
∑
i=1,2

[∇H]′tTi[∇H]t−τi

+ y1(t)′v1(t) + y2(t)′v2(t)
(8)

Since the second term in the right hand side of (8) may not be
negative definite, the total Hamiltonian H(x1, x2) does not
help to reveal any information about the passivity/stability
property of the interconnected system (6). To deduct these
properties, one has to seek for other energy functions.
Furthermore, in certain cases the presence of time delays
may actually destroy these properties of the system – the
feedback interconnection may no longer preserve passivity
and stability.

Problem Formulation

The discussion in the previous session leads us to consider
the following (autonomous) port-Hamiltonian system with
time delays

ẋ(t) = ([J ]t − [R]t)[∇H]t +
m∑
i=1

Ti[∇H]t−τi
(9)

where x ∈ Rn, J : Rn → Rn×n and R : Rn → Rn×n
satisfy J(x) = −J(x)′ and R(x) = R(x)′ ≥ 0 for all
x, Ti ∈ Rn×n are constant matrices, and H : Rn → R+

satisfies H(0) = 0, ∇H(0) = 0, and H(x) > 0 for all
x 6= 0. Note that given the properties of H , x(t) = 0 is
a solution of (9). We are interested in verifying stability
property of this solution of (9). Equation (9) is a functional
differential equation of retarded type. A corner stone for
studying stability property of systems governed by such
equations is the Lyapunov-Krasovskii theorem, by which
the stability criteria presented in this paper will be derived.
The theorem is briefly summarized below. The readers are
referred to [3], [6] for details.

Consider a functional differential equation of retarded type

ẋ(t) = f(xt) (10)

defined on the positive time interval [0,∞), where f : Ω ⊆
C([−ξ, 0],Rn) → Rn and xt ∈ Ω is defined as xt(θ) :=
x(t + θ) for θ ∈ [−ξ, 0]. The initial condition of (10) is
denoted by x0, which is also a function in Ω. We assume
that (10) has a unique solution for any initial condition x0

and that x(t) = 0 is a solution of (10). The concept of
stability of the solution x(t) = 0 is given below.

Definition 1: The solution x(t) = 0 of (10) is called
stable if for any ε > 0 there exists a δ(ε) > 0 such that
for any initial condition x0 which satisfies ‖x0‖ < δ(ε),
the corresponding solution x(t) satisfies |x(t)| < ε for all
t ≥ 0. It is called asymptotically stable if it is stable and
δ(ε) can be chosen such that ‖x0‖ < δ(ε) implies that
limt→∞ x(t)→ 0. It is called globally asymptotically stable
if it is asymptotically stable, and for any initial condition x0

the corresponding solution x(t) approaches to 0 as t → ∞
no matter how large ‖x0‖ is.

Let V : Ω → R. The derivative of V with respect to time
along the solution of (10) initiated at initial condition φ is
defined as

V̇ (φ) :=
d

dt
V (xt) = lim sup

∆t→0

1
∆t

(V (xt+∆t)− V (xt))

where xt := x(t + θ), θ ∈ [−ξ, 0], and x(t) is the solution
of (10) with the initial condition φ. We have the following
theorem for stability of (10).

Theorem 2: (Lyapunov-Krasovskii): Suppose for any
given r, f in (10) maps Cr([−ξ, 0],Rn) into a bounded set
in Rn. Let u, v, w be continuous nonnegative nondecreasing
functions, where u and v satisfy u(0) = v(0) = 0, and
u(s) > 0 v(s) > 0 for s 6= 0. If there exists V : Ω → R
such that V and the derivative of V along the solution of
(10) satisfy

u(|φ(0)|) ≤ V (φ) ≤ v(‖φ‖), and V̇ (φ) ≤ −w(|φ(0)|)

for all φ ∈ Ω, then the solution x(t) = 0 of (10) is stable. If,
in addition, w(s) > 0 for any s 6= 0, then the solution x(t) =
0 of (10) is asymptotically stable. Finally, if lims→∞ u(s) =
∞, then the stability is global.

As usual stability of any nonzero equilibrium x(t) = x∗,
can be studied as the stability of x(t) = 0, by “shifting the
equilibrium” to 0.

We are interested in verifying stability property of systems
in the form of (9) under the following assumptions on the
delay parameter τi:
A1 τi might be time-varying, and the rate of variation is

upper bounded by one; i.e., τ̇i(t) ≤ d < 1 for all t
and all i. In addition, all τi are nonnegative, bounded
above, but the information on the upper bounds are not
available.

A2 All τi satisfy 0 ≤ τi(t) ≤ h and τ̇i(t) ≤ d < 1 for all t
and for all i.

For the sake of clarifying the main idea and simplifying
the presentation, we will consider a simplified version of (9)
in the remaining sections,

ẋ(t) = ([J ]t − [R]t)[∇H]t + T [∇H]t−τ . (11)

where only one delay term is present. Note, however, that
the results we will present in the following sections can be
trivially generalized to the case where there are any finite
number of delay terms in equation (11).

III. STABILITY CRITERIA INDEPENDENT OF THE UPPER
BOUND ON THE DELAY

In this section, we present a stability criterion for verifying
stability property of (11) under the assumption A1.

Proposition 3: Consider a port-Hamiltonian system with
delay in the form of (11). Let

A(x) = ∇2H(x)(J(x)−R(x)), A1(x) = ∇2H(x)T.

The system (11) is globally asymptotically stable if there
exist symmetric real constant matrices P > 0 and S > 0
such that,[

M11(x) M12(x)
M12(x)′ −(1− d)S

]
< 0, ∀x ∈ Rn, (12)
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where

M11(x) = −R(x) + S + PA(x) +A(x)′P
M12(x) = T/2 + PA1(x)

If (12) holds for all x in an open neighborhood of the origin,
say X , then the stability is local.

Proof: To prove stability, consider the following
Lyapunov-Krasovskii functional:

V (xt) = [H]t + [∇H]′tP [∇H]t +
∫ t

t−τ(t)

[∇H]′kS[∇H]kdk,

(13)
where xt(θ) := x(t+θ), θ ∈ [−τ, 0], and x(t) is any solution
of (11). Differentiating (13) along the solution of (11) and
using the fact that d

dt (∇H(x(t))) = ∇2H(x(t))ẋ(t) we have

V̇ =
[

[∇H]t
[∇H]t−τ(t)

]′ [
M11(x(t)) M12(x(t))
M12(x(t))′ −(1− τ̇)S

] [
[∇H]t

[∇H]t−τ(t)

]
≤
[

[∇H]t
[∇H]t−τ(t)

]′ [
M11(x(t)) M12(x(t))
M12(x(t))′ −(1− d)S

] [
[∇H]t

[∇H]t−τ(t)

]
Hence, inequality (12) implies V̇ (xt) < 0 for all non-zero xt,
and hence global asymptotic stability of (11). This concludes
the proof.

IV. DELAY DEPENDANT STABILITY CRITERIA

Next we investigate stability property of system (11) under
assumption A2. To this end, note that one may express
[∇H]t−τ(t) as

[∇H]t−τ(t) = [∇H]t −
∫ t

t−τ(t)

d

ds
[∇H]sds = [∇H]t−∫ t

t−τ(t)

[∇2H]s
(
(J −R)[∇H]s + T [∇H]s−τ(s)

)
ds

Further assume that J(x)−R(x)+T , can be split into a skew
symmetric matrix J̄(x) and a symmetric matrix R̄(x) which
satisfies R̄(x) ≥ 0. We can then write (11) in a transformed
form as

ẋ(t) =(J̄ − R̄)[∇H]t − T
∫ t

t−τ(t)

[∇2H]s×(
(J −R)[∇H]s + T [∇H]s−τ(s)

)
ds,

(14)

where J(x)−R(x)+T = J̄(x)−R̄(x). Since the system (11)
is a special case of the transformed system (14), the stability
of (14) guarantees the stability of (11), but the reverse as
stated in [3] is not necessarily true. This is because the
transformation (14), introduces additional dynamics which
are not a part of the original system and which may become
unstable even before the original system. Before we state
our next result we state the following lemma, which will be
useful in deriving stability condition for the system (14).

Lemma 4: Let w1(t) and w2(t) be defined as follows

w1(t) =
∫ t

t−τ(t)

∫ t

k

f(s)dsdk,

w2(t) =
∫ t

t−τ(t)

∫ t

k−τ(k)

f(s)dsdk.

Then

ẇ1(t) =τ(t)f(t)− (1− τ̇(t))
∫ t

t−τ(t)

f(s)ds, (15)

ẇ2(t) =τ(t)f(t)− (1− τ̇(t))
∫ t

t−τ(t)

f(s− τ(s))ds

+ τ̇(t)
∫ t

t−τ(t)

f(s)ds (16)

Proof: To streamline the readability of the paper we
place the proof in the Appendix.
The stability conditions for time delay system (14) can then
be stated as follows:

Proposition 5: Denote A0(x) = T∇2H(x)(J(x)−R(x))
and A1(x) = T∇2H(x)T . The nonlinear system described
by (14) is globally asymptotically stable if there exist real
symmetric constant matrices P > 0, S0 > 0 and S1 > 0
such that

K =K11
h + S0 + S1 K12 K13

K ′12 −(1− d)S0 + dS1 0
K ′13 0 −(1− d)S1

 < 0

(17)

for all x ∈ Rn, where

K11 =− R̄(x) + P∇2H(x)(J̄(x)− R̄(x))

+ (J̄(x)− R̄(x))′∇2H(x)P

K12 =− 1
2
A0(x)− P∇2H(x)A0(x)

K13 =− 1
2
A1(x)− P∇2H(x)A1(x)

If (17) holds for all x in an open neighborhood of the origin,
say X , then the stability is local.

Proof: Let

V1(x(t)) =[H]t + [∇H]′tP [∇H]t

V2(xt) =
∫ t

t−τ(t)

∫ t

k

[∇H]′sS0[∇H]sdsdk

V3(xt) =
∫ t

t−τ(t)

∫ t

k−τ(k)

[∇H]′sS1[∇H]sdsdk

We then have

d

dt
V1 =∫ t

t−τ(s)

{([∇H]′t
K11

τ(t)
+ [∇H]′sK

′
12 + [∇H]′s−τ(s)K

′
13)[∇H]t

+ [∇H]′tK12[∇H]s + [∇H]′tK13[∇H]s−τ(s)}ds
≤∫ t

t−τ(s)

{([∇H]′t
K11

h
+ [∇H]′sK

′
12 + [∇H]′s−τ(s)K

′
13)[∇H]t

+ [∇H]′tK12[∇H]s + [∇H]′tK13[∇H]s−τ(s)}ds. (18)
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Similarly because of (15) we have,

d

dt
V2 =∫ t

t−τ(t)

{[∇H]′tS0[∇H]t − (1− τ̇)[∇H]′sS0[∇H]s}ds

≤
∫ t

t−τ(t)

{[∇H]′tS0[∇H]t − (1− d)[∇H]′sS0[∇H]s}ds

(19)

and from (16) we have,

d

dt
V3 =

∫ t

t−τ(t)

{[∇H]′tS1[∇H]t

− (1− τ̇)[∇H]′s−τ(s)S1[∇H]s−τ(s)}ds

+ τ̇

∫ t

t−τ(t)

[∇H]sS1[∇H]sds

≤
∫ t

t−τ(t)

{[∇H]′tS1[∇H]t

− (1− d)[∇H]′s−τ(s)S1[∇H]s−τ(s)}ds

+ d

∫ t

t−τ(t)

[∇H]sS1[∇H]sds (20)

Now, choose the following Lyapunov-Krasovskii functional

V (xt) = V1(x(t)) + V2(xt) + V3(xt).

Computing the time derivative, by using the relations (18),
(19) and (20) we get

d

dt
V =

∫ t

t−τ(t)

 [∇H]t
[∇H]s

[∇H]s−τ(s)

′K
 [∇H]

[∇H]s
[∇H]s−τ(s)

 ds
From (17) we have that V̇ (xt) < 0 for all nonzero x(t) ,
which proves global asymptotic stability.

V. EXAMPLES

Example 6: Consider the following time delay port-
Hamiltonian system[

ẋ1

ẋ2

]
=
[
−1 −1
1 −2

] [
∇H1

∇H2

]
+ α

[
0 −2
2 0

] [
[∇H1]t−τ
[∇H2]t−τ

]
,

(21)
where α ≥ 0 and τ > 0. Notice that the interconnection
matrix J and the damping matrix R are constant in this case.
Furthermore, the damping matrix R in this example satisfies
R > 0. Under such cases, where the interconnection and
damping matrices are constant and R > 0, we can simplify
the stability condition (12) by choosing the following L-K
functional (obtained by setting P = 0 in (13)).

V (x(t)) = [H]t +
∫ t

t−τ(t)

[∇H]′kS[∇H]kdk.

This results in the following simplified condition for stability,
which is in the form of an LMI:[

−R+ S T/2
T/2 −(1− d)S

]
< 0. (22)

Using the simplified stability criteria (22), we see that the
system is stable for any τ > 0 as long as 0 < α ≤ 0.7
as long as d = 0, i.e. for constant delays. Observe that the
undelayed system is stable for any α ≥ 0 and hence we can
say that the parameter α to some extent measures the size
of the delayed term. The below table shows values of α for
which the system is stable, for different values of d:

d 0.2 0.4 0.6 0.8 0.9 0.99
α 0.63 0.54 0.44 0.31 0.22 0.07

It is important to note that in this example we have not
specified the structure of the Hamiltonian H which can either
be quadratic in x (linear system) or non quadratic (nonlinear
system). Hence we conclude that the stability criteria (22)
also extends to a class of nonlinear systems, with constant
interconnection and damping matrices which additionally
satisfy R > 0.

Example 7: Consider the mathematical pendulum with
Hamiltonian

H(q, p) =
1
2
p2 + (1− cos q),

actuated by a torque u, with output y = p, the angular
velocity. With b a positive damping constant, the system can
be written in the port-Hamiltonian form as[

q̇
ṗ

]
=
[
0 −1
1 −b

] [
sin q
p

]
+
[
0
1

]
u, y = p.

The system is open-loop stable at the point (0, 0), which is
usually not the point of interest. Lets consider the problem
of stabilization of the pendulum, by interconnecting it with
a controller, at the point (q∗, 0, ξ∗), where ξ is the controller
state. The port-Hamiltonian controller is of the form

ξ̇ = uc; yc = ∇Hc

Interconnecting the plant (the pendulum) and the controller
with the interconnection constraints u = −yc, uc = y, leads
to the following closed-loop systemq̇ṗ

ξ̇

 =

 0 1 0
−1 −b −1
0 1 0

sin q
p
∇Hc


with Hc(ξ) free to be chosen. Usually the closed-loop
Hamiltonian does not have a minimum at the desired equi-
librium and hence does not qualify as a Lyapunov function.
The idea is to generate dynamical invariants called Casimir
functions and construct a Lyapunov function based on the
Hamiltonian of the plant, the controller and the controller
and the corresponding Lyapunov function, given as

Hd(q, p, ξ) = Hp(q, p) +Hc(ξ) + C(q, p, ξ)

This methodology and this example in particular has been
extensively reported in [2], where it has been shown that
the desired stability objectives are obtained by the following
choices of controller Hamiltonian and the Casimir function,

Hc(ξ) =
1
2
β(ξ − ξ∗ −

1
β

sin q)2

C(q, p, ξ) =
1
2
k(q − q∗ − (ξ − ξ∗)−

1
k

sin q∗)2
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The constants β and k are chosen to satisfy

cos q∗ + k > 0, β cos q∗ + k cos q∗ + kβ > 0.

We further add damping in the system of the form ξ̇ =
−z∇Hc, z > 0. Now assume that there is some delay in
communication between the plant and the controller, which
means that the plant and the controller are interconnected
by the interconnection constraints (5). Further we assume in
this example that τ1(t) = τ2(t) = τ(t). This would result in
the following closed-loop time delay system:q̇ṗ

ξ̇

 =

 0 0 1
−1 −b 0
0 0 −z



∂Hd

∂q
∂Hd

∂p
∂Hd

∂ξ


+

0 0 0
0 0 −1
0 1 0


[∂Hd

∂q ]t−τ(t)

[∂Hd

∂p ]t−τ(t)

[∂Hd

∂ξ ]t−τ(t)

 . (23)

We then apply Proposition 5 to study the stability of the
delayed system, having known that the system without delay
has desired stability properties. The stability condition also
requires computing the Hessian of the Lyapunov function of
the system without delay, and is given by

∇2Hd(q, p, ξ) =

cos q +K 0 −K
0 1 0
−K 0 β +K

 . (24)

Suppose we want to study the stability of the pendulum at
the upright position q = π, then to satisfy the conditions
for stability of the system without delay we choose, K =
2, β = 3. We further choose z = k = 1. To verify stability
in the presence of delay, we use the stability condition (17).
The below table shows allowable time delays h for various
values of d ∈ [0, 1), for which the system (23) is globally
asymptotically stable.

d 0 0.2 0.4 0.6 0.8 0.9
h 0.132 0.112 0.089 0.064 0.036 0.02

Remark 8: Contrast to stability criterion for linear time
delay systems which can be formulated as LMIs, the con-
ditions (12,17) for nonlinear systems involve matrix-valued
functions. In general to compute the feasibility of these
matrix inequalities is nontrivial, especially when the bounds
on the state dependent terms are unknown or if they are
unbounded. In the case of the nonlinear pendulum we
observe that the only state dependant term is cos q (see (24)),
which is always bounded and takes values between [−1, 1].
Since we know the bounds on the state dependent term we
solve the matrix inequality (17) iteratively for values of cos q
ranging between [−1, 1] and look for values of h which are
valid ∀q.

VI. CONCLUSIONS

In this paper we presented a methodology to construct
Lyapunov-Krasovskii functionals for nonlinear time delay
systems, in the port-Hamiltonian framework. Sufficient con-
ditions for stability, based on matrix inequalities, are de-
rived. The advantage of this approach is the construction

of the Lyapunov-Krasovskii functional by making use of the
Hamiltonian (or the total energy) of the given system. A few
issues however remain open, namely the solvability of matrix
inequalities when the state variables are unbounded, or do not
lie within a specified range. An answer to this problem could
be found by using SOS tools [10], whose applicability in the
present context, remains to be investigated.

APPENDIX: PROOF OF LEMMA 4
Let

F (t) =
∫ t

−∞
f(s)ds

Then,
d

dt
w1(t) =

d

dt

∫ t

t−τ(k)

∫ t

k

f(s)dsdk

=
d

dt

∫ t

t−τ(t)

(∫ t

−∞
f(s)ds−

∫ k

−∞
f(s)ds

)
dk

=
d

dt

∫ t

t−τ(t)

(F (t)− F (k)) dk

=
d

dt

∫ t

t−τ(t)

F (t)dk − d

dt

∫ t

t−τ(t)

F (k)dk

=
d

dt
τ(t)F (t)− d

dt

(∫ t

−∞
F (k)dk −

∫ t−τ(t)

−∞
F (k)dk

)
= τ(t)f(t) + τ̇F (t)− F (t) + (1− τ̇)F (t− τ(t)))
= τ(t)f(t)− (1− τ̇)(F (t)− F (t− τ))

= τ(t)f(t)− (1− τ̇)
∫ t

t−τ(t)

f(s)ds

This proves (15). Similarly we can prove (16).
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