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On Stabilization of Linear Systems With
Limited Information

Daniel Liberzon

Abstract—We consider the problem of stabilizing a linear time-invariant
system using sampled encoded measurements of its state or output. We de-
rive a relationship between the number of values taken by the encoder and
the norm of the transition matrix of the open-loop system over one sam-
pling period, which guarantees that global asymptotic stabilization can be
achieved. A coding scheme and a stabilizing control strategy are described
explicitly.

Index Terms—Asymptotic stabilization, coding, limited information,
linear system, sampling.

I. INTRODUCTION

Suppose that we are given a stabilizable linear time-invariant system

_x = Ax +Bu; x 2 n
: (1)

In this note we study the problem of designing a controller that asymp-
totically stabilizes the system (1) using limited information about its
statex. This problem arises, for example, when the state measurements
are to be passed to the controller via a limited capacity communication
channel. We specify what we mean by limited information as follows.

Sampling:The measurements are to be received by the controller
at discrete times0; �; 2�; . . ., where� > 0 is a fixedsampling
period.
Encoding: At each of the aforementioned times, the measure-
ment received by the controller must be a number in the set
f1; 2; . . . ; Ng, whereN is a fixed positive integer.

In other words, the data available to the controller consists of the
stream of integers

q0(x(0)); q1(x(�)); q2(x(2�)); . . .

whereqk(�) : n ! f1; 2; . . . ; Ng is, for eachk, someencoding
function. For different values ofk we can use different encoding func-
tions. As we will see, it is natural to use the previous valuesqi(x(i� )),
i = 0; . . . ; k� 1 to define the functionqk(�). We assume that the con-
troller knows the initial encoding functionq0(�) as well as the rule that
definesqk(�) on the basis of the previously received encoded measure-
ments, so that for eachk the functionqk is known to the controller.
In other words, there is a communication protocol satisfying the above
constraints upon which the process (encoder) and the controller (de-
coder) agree in advance.

Instead of sending to the controller the sampled and encoded mea-
surements of the entire statex, we can work with an outputy = Cx 2
p, p � n. In this case, the data available to the controller will consist

of the stream of integers

q0(y(0)); q1(y(�)); q2(y(2�)); . . .
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Here the matrixC can be viewed either as a design choice or as a given
constraint in the problem. Of course, we need to ensure that the output
contains enough information for the controller to be able to stabilize
the system. Since the system (1) is assumed to be stabilizable by state
feedback—but not assumed to be stabilizable by output feedback for
any particular output—a reasonable requirement to impose in this re-
gard is that(C;A) be an observable pair. Transmitting fewer variables
over the limited capacity communication channel, one reduces the er-
rors introduced by the encoder. The price to pay, however, is that the
decoder needs to recover state information. The resulting overall state
estimation error is a product of the output encoding error and a quantity
that characterizes observability of the system.

To summarize, we are given system (1) and three numbers: a positive
real number� (the sampling period), a positive integerN (the number
of values of each encoding function), and a positive integerp � n (the
dimension of the transmitted output). The problem under consideration
is to choose a communication protocol of the kind previously described
and a controller so that the closed-loop system is globally asymptoti-
cally stable. Our main goal is to derive precise relationships between� ,
N , andpwhich guarantee that this task can be accomplished. Solutions
in situations where some of these quantities are fixed, while others need
to be minimized or maximized, are then easy to obtain.

To solve the aforementioned problem, we build on ideas from the
work on quantized feedback stabilization reported in [1] and [2] (the
latter reference essentially contains in implicit form some of the re-
sults given here). Recent references that describe related developments
(although in settings different from ours) include [3]–[8] and the arti-
cles in [9]. Loosely speaking, we will show that if the amount by which
the open-loop system can expand during one sampling period is not too
large compared toN , then it is possible to obtain an asymptotically cor-
rect estimate ofx and use it to stabilize the system. More precisely, we
will give a constructive proof of the following statement (the notation
is clarified at the beginning of Section II).

Theorem 1: In the state encoding case, global asymptotic stabiliza-
tion is possible ifN � 2n and

max
0�t��

keAtk1 < b
p
Nc: (2)

In the output encoding case, global asymptotic stabilization is possible
if N � 2p and

kW yk1kCk1 max
0�t��

keAtk2��1
1 < b

p
Nc (3)

where� is the observability index of the pair(C; eA� ) andW y is a left
inverse of the matrix

W :=

C

CeA�

...
CeA(��1)�

: (4)

Note that in this note we are only concerned with sufficient condi-
tions for stabilization. The paper [3], which studies asymptotic stabi-
lization of discrete-time linear systems with encoded state measure-
ments and a known bound on the initial state, shows that a similar con-
dition is necessary and sufficient for stabilization in that context (pro-
vided that the system matrixA is diagonalizable).
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II. SEMIGLOBAL ASYMPTOTIC STABILIZATION

In what follows, we find it convenient to use the normkxk1 :=
maxfjxij : 1 � i � ng on n and the induced matrix normkAk1 :=
maxf n

j=1 jAij j : 1 � i � ng on n�n. We define

� := max
0�t��

keAtk1 � 1: (5)

The largest integer smaller than or equal to a given numberz is denoted
by bzc. We letBn

1(x0; r) denote the square box inn centered atx0
with edges2r, i.e.,

Bn
1(x0; r) := fx 2 n : kx� x0k1 � rg:

Assume for the moment that an upper bound on the size of the initial
state is known. Namely, let us assume that for some known constant
E0 > 0 we have

kx(0)k1 � E0: (6)

Such a bound may be given to us in advance or may be obtained on
the basis of prior measurements (see Section III). The purpose of this
section is to describe a coding scheme and a dynamic feedback control
law that achieve asymptotic stabilization for this situation.

A. State Encoding

We begin by considering the case when sampled encoded measure-
ments of the entire statex are transmitted. The inequality (6) means that
the state of the system at timet = 0 lies inBn

1(0; E0). Assume for
notational convenience that

p
N is an integer, so thatb pNc = p

N .
(Otherwise, replaceN by the largest integerN 0 � N such that

p
N 0

is an integer.) We also require that
p
N � 2. Let us define the en-

coding functionq0 as follows: divideBn
1(0; E0) intoN equal square

boxes, numbered from 1 toN in some specific way, and letq0(x) be
the number of the box that containsx. In casex lies on the boundary
of several boxes, the valueq0(x) can be chosen arbitrarily among the
candidates.

We have thus singled out a square box with edges at most2E0=
p
N

which containsx(0). Denoting the center of this box bŷx(0), we obtain

kx(0)� x̂(0)k1 � E0p
N
: (7)

For t 2 [0; �), let

u(t) = Kx̂(t) (8)

where

x̂(t) := e(A+BK)tx̂(0)

andK is chosen so that the eigenvalues ofA+BK have negative real
parts. From the equations_̂x = Ax̂ + Bu and _x = Ax + Bu, and (5)
and (7), we conclude that

kx(t)� x̂(t)k1 � �kx(0)� x̂(0)k1 � �E0p
N
; 0 � t < �:

This means that for0 � t < � , the statex(t) belongs to
Bn
1(x̂(t);�E0=

p
N).

Let x̂(��) := limt!� x̂(t). At the time � we divide
Bn
1(x̂(��);�E0=

p
N) into N equal square boxes and letq1(x) be

the number of the box that containsx. Denoting the center of this box
by x̂(�), we have

kx(�)� x̂(�)k1 � �E0

(
p
N)2

:

Fig. 1. Closed-loop system.

For t 2 [�; 2�), define the control by (8), where

x̂(t) := e(A+BK)(t��)x̂(�):

We have

kx(t)� x̂(t)k1 ��kx(�)� x̂(�)k1 � �2E0

(
p
N)2

� � t < 2�:

Continuing this process, we obtain a system that can be represented
by the block diagram in Fig. 1. We see that the upper bound onkx(t)�
x̂(t)k1 is divided by

p
N at the times�; 2�; . . . and grows by a factor

of � on every interval between these times. This clearly implies that if
� <

p
N , which is equivalent to (2) since

p
N is taken to be an in-

teger, thenkx(t)� x̂(t)k1 converges to 0 ast!1. We assume from
now on that (2) holds. The closed-loop system can, thus, be written as

_x = (A+BK)x+ e (9)

wheree := BK(x̂ � x) ! 0. It follows at once thatx(t) ! 0 as
t ! 0.

Having established asymptotic convergence to the origin, we only
need to show stability in the sense of Lyapunov. In the following argu-
ment, we assume that [n]N is odd so that the equilibrium at the origin
is preserved; to have Lyapunov stability when[n]N is even, a slight
modification to the above strategy is needed. LetV (x) = xTPx be
a quadratic Lyapunov function for the system_x = (A + BK)x, and
denote by�min(P ) and�max(P ) the smallest and the largest eigen-
value ofP , respectively. Take an arbitrary" > 0. It is straightforward
to show that there exists a > 0 such that solutions of the system (9)
starting in the region

R := fx : V (x) � "2�min(P )g

remain in this region as long askek1 � . Choose a sufficiently large
integerk � 0 such that

kBKk1E0
�p
N

k+1

� :

Then, our previous analysis implies thatke(t)k1 �  for all t � k� .
Now, choose a sufficiently small� > 0 such that

�k� < min
E0�

k�1

(
p
N)k

;
"p
n

�min(P )

�max(P )
:

This inequality ensures that if

kx(0)k1 � � (10)

thenx̂(t) � 0 on the time interval[0; k�) and

kx(t)k1 <
"p
n

�min(P )

�max(P )
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on the same time interval. This implies thatV (x(t)) � "2�min(P ) for
all t 2 [0; k� ]. In light of the analysis given before fort � k� , we
conclude thatR is an invariant region for the system (9) with initial
conditions satisfying (10). It remains to notice thatR is contained in
the ballfx : jxj � "g. We proved the following result.

Proposition 2: If the inequalities (2) andN � 2n hold, then the
previous state coding/feedback strategy makes the origin an asymptot-
ically stable equilibrium of the closed-loop system, with a region of
attraction containing all initial conditions that satisfy the bound (6).

The inequality (2) characterizes the tradeoff between the amount of
information provided by the encoder at each sampling time and the
required sampling frequency. This relationship depends explicitly on a
measure of instability of the open-loop system, expressed by� which
is defined via (5). We see, for instance, that if� is given, thenN needs
to be sufficiently large for asymptotic stabilization to be possible.

Remark 1: It is not hard to see from the above proof that the state of
the system actually converges to zero exponentially fast. This follows
from the fact that the evolution ofx is described by the system (9),
in which the autonomous part is exponentially stable and the rate of
convergence of the error signale to zero is exponential.

B. Output Encoding

We now turn to the case when sampled encoded measurements of the
outputy = Cx are transmitted, whereC is somep�nmatrix such that
the pair(C;A) is observable. There is no loss of generality in assuming
that the pair(C; eA� ) is also observable (see, e.g, [10, Ch. 6]). Denote
by� the corresponding observability index (the largest integer between
1 andn for which the matrix (4) has rankn).

Assume again that the initial state satisfies the bound (6). This im-
plies thatky(0)k1 � kCk1E0, i.e.,y(0) 2 Bp

1
(0; kCk1E0). For

t 2 [0; ��), let u(t) � 0. Then, we have

y(k�) 2 Bp
1
(0; kCk1�kE0); k = 0; 1; . . . ; � � 1

where� is defined by (5) as before. Let us suppose for convenience
that

p
N is an integer, which is required to be greater than or equal

to 2 (cf. the remarks at the beginning of Section II-A). For each
k 2 f0; 1; . . . ; � � 1g, defineqk(y(k�)) in the following way: divide
Bp
1
(0; kCk1�kE0) into N equal square boxes, and letqk(y(k�))

be the number of the box that containsy. Denote the center of this box
by ŷ(k�). We have

ky(k�)� ŷ(k�)k1 � kCk1�kE0p
N

; k = 0; 1; . . . ; ��1: (11)

We know that

x(0) = W y

y(0)
...

y((� � 1)�)

whereW y is a left inverse1 of the matrixW defined by (4). Let

x̂(��) := eA��W y

ŷ(0)
...

ŷ((� � 1)�)

:

In view of (11) and the equalityx(��) = eA��x(0), we obtain

kx(��)� x̂(��)k1 � kW yk1kCk1�2��1E0p
N

:

1This can be defined asW := (W W ) W .

For t 2 [��; 2��), let u(t) = Kx̂(t), where

x̂(t) := e(A+BK)(t���)x̂(��)

andK is chosen so that the eigenvalues ofA+BK have negative real
parts. Using the same arguments as before, we can show that

y(k�) 2Bp
1 Cx̂(k�);

kW yk1kCk21���1+kE0p
N

k =�; � + 1; . . . ; 2� � 1:

For each k 2 f�; � + 1; . . . ; 2� � 1g, divide
Bp
1(Cx̂(k�); kW yk1kCk21���1+kE0=

p
N) into N equal square

boxes, and letqk(y(k�)) be the number of the box that containsy.
Denoting the center of that box bŷy(k�), we obtain

ky(k�)� ŷ(k�)k1 �kW
yk1kCk21���1+kE0

(
p
N)2

k =�; � + 1; . . . ; 2� � 1:

Now, we know that

x(��) = W y

y(��)
...

y((2�� 1)�)

+ v

wherev is a known vector (computed from the variation of constants
formula). Thus, we define

x̂(2��) :=eA��W y

ŷ(��)
...

ŷ((2�� 1)�)

+ eA��v +
2��

��

eA(2���t)Bu(t)dt

which leads to the inequality

kx(2��)� x̂(2��)k1 � kW yk21kCk21�4��2E0

(
p
N)2

:

Repeating this procedure, we arrive at an upper bound onkKx(t)�
u(t)k1 which is multiplied bykW yk1kCk1���1=

p
N at the times

��; 2��; . . . and grows by a factor of�� on every interval between
these times. Thus, if the inequality (3) is satisfied, then asymptotic
stability follows as in the state encoding case. We established the fol-
lowing result.

Proposition 3: If the inequalities (3) andN � 2p hold, then the
previous output coding/feedback strategy makes the origin an asymp-
totically stable equilibrium of the closed-loop system, with a region of
attraction containing all initial conditions that satisfy the bound (6).

Note that in the generic case whenA is a cyclic matrix, i.e., a matrix
with exactly one Jordan block for each distinct eigenvalue, it is pos-
sible to find a scalar output through which the system is observable
(see, e.g., [10, Ch. 8]). An interesting optimization problem, directly
motivated by the previous result, consists in minimizing the left-hand
side of (3) over all integersp between 1 andn and allp�n matricesC
(observability is needed to ensure that this expression is well defined).
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This problem can be studied numerically using tools from semidefinite
programming.

III. OBTAINING A STATE BOUND

The developments of Section II relied on an upper bound on the size
of the state. We now explain how such a bound can be obtained, for
an arbitrary initial state. It turns out thatN = 2 (binary encoding)
is sufficient for this task. Since the requirementN � 2 is already
incorporated in the hypotheses of Propositions 2 and 3, no additional
assumptions need to be imposed. This will therefore complete the proof
of Theorem 1.

We consider the state encoding case first. Set the controlu equal to 0.
Pick a sequence�0; �1; �2; . . . that increases fast enough to dominate
the rate of growth ofkeAtk1 at the times0; �; 2�; . . .; for example,
we can let�0 = 1, �1 = �e2kAk � , �2 = 2�e2kAk 2� , and so on.
Then there exists an integerk0 � 0 such thatkx(k0�)k1 � �k . For
k = 0; 1; . . ., define the encoding functionqk by the formula

qk(x) :=
0; if x 2 Bn

1(0; �k)

1; otherwise.

We haveqk (x(k0�)) = 0, so thatk0 can be determined on the basis
of the encoded state measurements. Therefore, the procedure described
in Section II-A can be applied starting at the timet = (k0 + 1)� with
E0 := ��k .

Let us now turn to the output encoding case. Setu equal to 0, and
take the same sequencef�kg as before. There exists an integer�k0 � 0
such that we have

kx(k�)k1 � �k; k = �k0; �k0 + 1; �k0 + � � 1:

Fork = 0; 1; . . ., define the encoding functionqk by the formula

qk(y) :=
0; if y 2 Bp

1(0; kCk1�k)

1; otherwise.

We have

qk(y(k�)) = 0; k = �k0; �k0 + 1; �k0 + � � 1 (12)

so that �k0 can be determined on the basis of the encoded
output measurements. Formula (12) implies thatkx(�k0�)k1 �
kW yk1kCk1��k +��1. Therefore, the procedure described in
Section II-B can be applied starting at the timet = (�k0 + �)� with
E0 := kW yk1kCk1����k +��1.

Finally, it is not hard to see that stability in the sense of Lyapunov is
preserved when the two stages (obtaining a state bound and achieving
asymptotic convergence) are combined.

IV. CONCLUDING REMARKS

We studied the problem of stabilizing a linear system using sampled
encoded measurements of its state or output. Our main result (Theorem
1) describes a relationship between the number of values taken by the
encoder and the norm of the transition matrix of the open-loop system
over one sampling period, which is sufficient for global asymptotic
stabilization. The stabilizing control law takes the form of a “certainty
equivalence” feedback.

Theorem 1 provides a sufficient but not necessary condition for sta-
bilizability. Although very simple, our encoding scheme is not claimed

to be optimal in any sense. Without proper modifications, it is also not
robust with respect to disturbances or modeling errors.

From conditions (2) and (3), it is not clear whether in the present
context there is any advantage to be gained by takingp < n. However,
the additional flexibility of working with an output may be useful in
applications where some sensors are more reliable than others.

It is of interest to extend the techniques presented here to nonlinear
systems. One ingredient in achieving this goal is the requirement of
input-to-state stabilizability of the given system with respect to mea-
surement errors (cf. [2] and [11]).
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