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ON STABLE LAWS FOR ESTIMATING FUNCTIONS AND DERIVED ESTIMATORS *
BY PRANAB KIMAR SEN
University of North Carolina, Chapel Hill

Stable laws for M-estimators, maximum likelihood and other esti-
mators are obtained through parallel results for the estimating functions
and relative campactness of same related estimating functional processes.

1. Introduction. Let {P }, - be a family of probability measures on (3€,4),
indexed by the parameter € € O, where the parameter space © is a subset of the
p-dimensional Euclidean space R, for same p > 1. Let {Xi,i > 1}be a sequence
of independent randam vectors (r.v.) [not necessarily identically distributed
(i.d.)], such that under Py X, has a probability density function (p.d.f.)

£, (x,0), for i > 1. Let ni(x;e), i > 1 be RP-valued functions on Y€x 0. Then,
an estimating function (p-vector) may be defined [ viz., Huber (1967), Ha/jek

(1970) , Inagaki(1970,1973), and others] as
_ ¢n

and if Tn = T(Xl,...,xn) be a RP-valued r.v., such that for some given o > 0,

1.2) n & Sn( Tn ) > 0, in probability, as n + « ,

then, Tn is termed a derived estimator of 6 ; the maximum likelihood estimator
(MLE), Huber's M-estimator and same others all belong to this class of estimators
derived fram suitable estimating functions. In the literature, the specific

case of o = % has been treated in detail [see the references cited above ],

-1
where the asymptotic normality of n 1Sn (6) plays a vital role. It is quite
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conceivable that in a general setup, for same o >4, n'o‘sn(e) may have ‘
(asymptotically) a (multivariate) stable distribution ( note that the
characteristic exponent of the stable law in our notation corresponds to oc-l,

and the particular cases of normal and Cauchy distributions correspond to a = .
% and 1, respectively) . In the normal case, the asymptotic (multi-)normality

of the estimating function n-lisn (8) and of the derived estimator (i.e.,

n;i(Tn - 0) ) are equivalent. The question may therefore arise whether a similar
equivalence result holds when, in general, n-O‘Sn (6) has asymptotically a stable
law, for same o > % , and the present note provides a (distributional-) invariance
result in this direction. It is shown that under suitable regularity conditions,
an asymptotic stable law for n S (6) ,for same o e€[%,1], ensures an equ:.valent
stable law for n™ (T -6 ).

Along with the preliminary notions, the main theorem is presented in

*

Section 2, and its proof is outlined in Section 3. The last section deals with '

M-estimators of location in the general multivariate case.

2. The main theorem. In the regular case of o = 4 (i.e., asymptotically normal

law), it has been assumed [ c.f. Inagaki (1973)] that Eni(xi,e), i>1all
exist and are continuously differentiable (with respect to 6); the differential
coefficient matrices play the daminant role in the asymptotic equivalence
results. In the general case, though E| |ni(Xi,6) | ]k may exist for every.k < a—l,
we may not be in a position to assume that Eni(Xi,e)b is finite ( particularly,
when o = 1) or the variance of ni(xi,e) - ni(Xi,e') is finite ( when o> 4).

Hence, to justify (1.2), in the general case, we assume that

(2.1) n—OLSn (6) has asymptotically a stable law G with centering parameter 0,

where we confine ourselves to

(2.2) ¥ < a < 1. .
We may note that for o >1, nl-a converges to 0 as n + », so that even if




nl_a( Tn - 0) has asymptotically a non-degenerate distribution, Tn may fail to

be a consistent estimator of 6 , and hence, we may not have much interest in
the asymptotic properties of {Tn} .
For every d ¢ RP y We let

(2.3) Ui(Xi, 8,d) = n,X

i e 14 6"'d)"'r’li(}(ile)Iiil'

For an arbitrary block B = (u,v] ( where u < v and both belong to RP ), we

define the <nerement functions as

Pl Jg .
(2.4) U @) = (5 =0,151ckep) (1) U (X,,0, u+ Jw-w), i> 1,

where J = Diag(jl,...,jp), and let A(B) be the Lebesgue measure of B. Then,
we assume that for every campact set OCC 0 , there exists positive numbers
do,Dandanr ( > 1), such that for every i>1,

r r .
o5 Boll Uy &%;,00,a1 (1" < Dllal[*, Ya: [la]] <a_,
Egll u;® 1" < px®NT , ¥ wv :|lul|<d_, |[v]| <4, -

Let us also denote by

(2.6)  T; = Limgy o {d'Bglu; (x,,6,de,), .., U; %;,0,0e ) 13, 5> 1,

where the ej are p~vectors and ej has 1 in the jth position and 0 elsewhere,
for j=1,...,p. Let then
-1l .n

(2.7) I, =n I, I, n>1

We assume that there exists a positive integer ng such that
(2.8) fn is nonsingular (ns) for every n >n .

Note that if in (2.2), a = 1, nl—a is also equal to 1. In this case, we may
need to assume that (2.5) holds for every do > 0, and this will be referred to
as (2.5'). Also, in this case, we may need to strengthen (2.6)-(2.8) to :

. -l.n - .
(2.9)  lim  |n 75 EU; ;,0,d) +Td || = 0, V(fixed) d e R,

where Fn does not depend on d and it satisfies (2.8). Then, we have the following.



Theorem 1 . If in (2,2),0 € [%,1) , then under (2.1), (2.5), (2.6) and (2.8)

(2.10) nl™ @ fn(‘ T, = 8 ) has asymptotically the stable law G ,

where G is defined in (2.1). For o =1 , under (2.1), (2.5') and (2.9),
(2.11) fn(Tn - 0) has asymptotically the stable law G .

The proof of the theorem is provided in the next section. Note that for
=% , in (2.5), we may take r = 2, although the second moment may not exist
- for a > % ; for our purpose, r > 1 suffices. Also, our (2.5) is more easily

verifiable than the sup-norm moment condition in Inagaki(1973) or others.

3. Proof of the main theorem. First, we proceed to construct a sequence of

estimating functional processes and establish its tightness ( or relative
compactness ); these are then incorporated in the proof of the main theorem.

For same arbitrary positive K(< =), let C = I—K,K]p be a compact subset
of RP . For every n( > 1) and (fixed) 6 € 0, we consider a (vector-valued)
stochastic process w o= { Wj;uec } ( belonging to the space DP[C] ,
endowed with the (extended) Skorokhod J 1"topology ) , where

-0, o-1 -1
(3.1) W =n" 5[0 &,8n" v - EU, X,06n* W], wuec.

Then, we have the following.

Lerma 3.1, For every a € [%,1), under (2.5) , or under (2.5') for a =1,

uecC

(3.2) 5% |le ][] + 0, in probability, as n » = .

Proof. Without any loss of generality, in (2.5) [or (2.5')], we let r ¢ (1,2].
Note that by (2.3) and (3.1), for every (fixed) u e C, Wn(u) involves ( n)
independent summands. Thus, using a version of the Lp—convergence theorem [ viz.,
Chatterjee (1969)], we have, for every r ¢ (1,2],

g r -ro, N -1 r
(3.3} Egl|w @] < 4n azi=l Eellu.l(xi,e,n“ u || .

Now, by (2.5) (for o < 1), for evexydo > 0, there exists an n s such that




' no‘-J‘HUH Xd,,foreveryueCandn>n_; for a =1, (2,5') ensures the
same. Hence, for nino , the right hand side (rhs) of (3.3) is bounded fram
above by

(3.4) 4p n T pTE) [ Jul |® < c;Krn-(r_l) ,

where c (< ©) is a positive number independent of u € C. Since the rhs of (3. 4)
converges to 0 as n ~ ® , by using the Markov inequality, we obtain that for
finitely many ( say, m) (arbitrary) points Upreessdy ( all belonging to C ),
(3.5) [ W (ul),...,W (u )] » (0,...,0) , in probability, as n > o ,

Thus, to establish (3,2), it suffices to verify the tightness of {wn} .
Towards this, we define a block B = (u,v] ( for u,v € C) as in before (2.4),

so that as in (2.4), the increment of W, over the block B is given by

_ P~ Iy Jx
(3.6) Wn(B) =Z k__o 1 lf_kip} (=1) Wn(u +J (v—-u) )

{j"l;

-0 n P-rxj
= T . I -1 kg,
P n oL {Jk=0,l;l_<_kfp} 1)

[ U, (x,,6,n" L g v—a)) - EeUi(Xi,e,na_l(uH(v—u))]

n> U, B) - B L@ ], say,

where the U . (B) are independent r.v., so that proceeding as in (3.3) and (3. 4),
we obtain that under (2.5) (for n > no) (when a <1) or (2.5') (when a = 1),

3.7)  Eyl|w @) ] I* < c: n~ ) eyt , for same r > 1,and every BC C.

This in accordance with the multiparameter version of the classical Billingsley
(1968) inequality ensure the tightness of Wn . Q.E.D,
Next, we note that by (2.5), (2.6) and (2.7), for every o ¢ B,1),

E U. (X. ,6, n®L

(38)||n Z i=l 7071 L

u) + fnu||+ 0,asn-»w,

uniformly in u ¢ C, while, (2.9) is just the same result for o = 1. Therefore,

fram (3.2) and (3.8) (or (2.9) for a = 1), we obtain that as n » « '



sup -Q a-1 = . ‘o
3.9 oo | In i=1l Ny &, 6m7 0 - ni()(i,e) + T u|| + 0, in probability. ‘

Now, by (2.1), n &

i=lni('xi'e) = n‘-msn (6) has asymptotically a stable law G
(with centering parameter 0) , and without any loss of generality, we assume
that G is nondegenerate ( otherwise, the results will be trivial). For nondege-
nerate G , n‘“sn(e) is Op(l) and is nondegenerate too., On the other hand, using
(2.8) and (2.9), we claim that for every € >0 , there exists a campact set Ce

(in ) such that on writing T_= 6 + n~ ™

u, ( with T, defined as in (1.2)),
(3.10) P{ u € C€>|9}_>_ l-¢, foreveryn>n_.
It may be noted that by virtue of (2.8), though u, may not be unique, all such
solutions are convergent-equivalent , in probability, and hence, for the asymp-
totic distribution of Tn « any one of these would be usable. Consequently, from
(3.9) and (3.10), we obtain that as n + = ,

- -0, l-0 = . .o
(3.11) n7S_(T) -n 'S (6) +n o T (@ -6) >0, in probability,

so that using (1.2) and (3.11), we arrive at (2.10) and (2.11). This campletes

the proof of the theorem.

We may note that the asymptotic linearity result in (3.9) has been used as
the main tool in the proof of the asymptotic normality of n%(Tn - 0) for the
regular case of a = %; it plays the same role in the general case of a ¢ [%,1].
One of the advantages of using the estimating function in (1.1) (instead of the
usual likelihood function ) is that it may be used to study the asymptotic
behaviour of the MLE when the model may be incorrect. For example, if hi(.x,e) ’

i > 1 be the assumed p.d.f.'s for the r.v.'s Xi’ i > 1, while the true p.d.f.'s
are the £, (x,6), i > 1, the ni(.,e) will be defined in terms of the hi(.,e)
whereas (2.5) through (2.9) can be verified with respect to the ture p.d.f.'s
fi(. ¢8) . This will reveal the robustness of the MLE for departures from the
assumed model, A classical case relates to normal hi (.,8) against Cauchy fi(.,e) ’

i_>_l,where,wewouldhavea=landastablelawoftheCauchytype. .



_7_

t .
ip) ;1> 1}

be a sequence of independent i.d.r.v. having a p(> 1l)-variate continuous

4. Stable laws for M-estimators of location., Let £Xi = KjqreeerX

distribution function (d.f.) F, such that the jth marginal d.f. is symmetric
about a location Oj , for 3 =1,...,pp 6 = (61,...,6p) is the location vector.
To estimate 6 , we use a vector ¥ of score functions wj(u), ueR, i=l,...,p,
where we assume that for each j, le is nondecreasing and skew-symmetric . Then,
we have the set of estimating functions

(4.1 S0 = I [V Ky =) e, Y0 - t) ], EE R

Note that marginally, each z?=le ;4 - 6;) has a distribution symetric about
0, and sn(t) is nonincreasing in each of its p arguments., Hence, for (1.2), we
may locate a closed rectangle for which Sn (t) = 0, and the centre of gravilty
of this closed rectangle may be taken as the M-estimator of 6 . The sample mean,
median and MLE (vectors) are all particular cases of these M-estimators.
Whenever the wj are continuous and satisfy a Lipschitz condition, it is
easy to verify that (2.5) holds; we do not need the v.pj to be bounded in this
context. Moreover, if the q;j have continuous first order derivatives almost
everywhere (a.e.) (i.e., the set of points for the discontinuities of the
derivatives is of measure 0) or if the q)j are continuous while the marginal
densities have all finite Fisher information, then (2.6} holds; we do not need
(2.7)-(2.8) [as we are dealing with i.i.d.r.v.'s here]. (2.9) is of course more
restrictive and demands same sort of linearity of the expected values of
by 065050 = U5 Ky - 05 ). Thus, (2.10) holds under quite general regularity
conditions, while for (2.11), we need a more precise linearity result on the
expected score—differences. In this context, it may not be necessary to assume
that the wj are monotone, But, then one needs to assume that Sn (p) has location
0 (in same meaningful way), and one needs to verify (1.2) also ( as there may
be multiple (non-equivalent) roots). Finally, for a <3/4, one may also allow

jump discontinuities for the \PJ ( finitely often).For same related linearity



results, we may refer to Jureckovd and Sen (1981 a,b). ‘
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