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ON STABLE NUMERICAL DIFFERENTIATION

ALEXANDER G. RAMM AND ALEXANDRA B. SMIRNOVA

Abstract. A new approach to the construction of finite-difference methods
is presented. It is shown how the multi-point differentiators can generate reg-

ularizing algorithms with stepsize h being a regularization parameter. The
explicitly computable estimation constants are given. Also an iteratively reg-

ularized scheme for solving the numerical differentiation problem in the form
of Volterra integral equation is developed.

1. Introduction

The problem of numerical differentiation is known to be ill-posed in the sense
that small perturbations of the function to be differentiated may lead to large
errors in the computed derivative. However in many applications it is necessary
to estimate the derivative of a function given the noisy values of this function.
As an example we refer to the analysis of photo-electric response data (see [13],
1970). The goal of this experiment is to determine the relationship between the
intensity of light falling on certain plant cells and their rate of uptake of various
substances, in order to gain further information about photo synthesis. Rather
than measuring the uptake rate directly, the experimenters measure the amount of
each substance not absorbed as a function of time, the uptake rate being defined as
minus the derivative of this function. As for the other example, one can mention
the problem of finding the heat capacity of a gas cp as a function of temperature
T . Experimentally one measures the heat content

q(T ) =

T∫
T0

cp(τ)dτ,

and the heat capacity is determined by numerical differentiation.
A number of techniques have been developed for numerical differentiation. They

fall in three categories: difference methods, interpolation methods and regulariza-
tion methods. The first two categories (see, for instance, [3], [15], [24], [25] and
others), especially the central difference formula that can be related to both of
them, are well-known. They have the advantage of simplicity and are considered
by many authors as the ones which yield satisfactory results when the function to
be differentiated is given very precisely ([9], [2], [4]). In sections 1, 2 of our paper
the other view on these methods, based on the works [16]-[23] and [12], is presented
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(see also [10] where the results and ideas of [16] are used). Namely, it is shown how
the multi-point difference schemes may construct stable regularizing algorithms for
the process of numerical differentiation with a stepsize h being a regularization
parameter. The main points are:

a) h must depend on δ, the level of noise in the initial data,
and
b) one has to take into account a priori information about the specific class, to

which the function to be differentiated belongs.
Most of the regularization procedures [4]-[7], [27], [28] that belong to the third

category make use of the variational ([14], [26]) approach for solving ill-posed prob-
lems. These methods typically involve writing the derivative as the solution to an
integral Volterra equation and then reducing the integral equation to a family of
well-posed problems that depend on a regularization parameter. Once an optimal
value of this parameter is found, the corresponding well-posed problem is solved
to obtain an estimate for the derivative. Unfortunately the determination of the
optimal parameter value is generally a nontrivial task.

In [6] the authors propose the quasisolution method (see [8]) for regularization,
which can be described as follows: find the coefficients of the expansion of fδ in the
Legendre polynomials Pk(x):

bk =
2k + 1

2

1∫
−1

fδ(x)Pk(x)dx, k = 1, 2, ..., n+ 1,(1.1)

”choosing n so that ||qn+1−fδ|| ≤ δ and
∑n+1
k=0

2
2k+1b

2
k > 4δ2”, where the quotation

is from [6]. The function qn+1 here is the approximating polynomial and ||f−fδ|| ≤
δ. Then the estimate of the derivative of f is given by

pδ =
n+1∑
k=1

bk
1 + λk2(1 + k)2

Pk(x).(1.2)

The existence and the uniform convergence of approximation (1.2) is proved in [6].
Apparently it is assumed in [6] that f and fδ are such that the above choice of n is
possible. This is not always so: if ||fδ|| < 2δ, then

4δ2 > ||fδ||2 ≥
n+1∑
k=0

2
2k + 1

b2k

by Parseval’s identity. In this case it is impossible to choose n in such a way that∑n+1
k=0

2
2k+1b

2
k > 4δ2. If n can be chosen, as suggested in [6], then to determine λ

one has to solve the nonlinear equation

n+1∑
k=1

2
2k + 1

b2k
λ2k4(k + 1)4

[1 + λk2(k + 1)2]2
= 4δ2.(1.3)

In [7] the idea proposed by the authors of [6] is generalized to the case of the k-th
order derivative, k > 1. No results of a numerical experiment, based on procedure
(1.2)-(1.3), are given in [6] as well as in [7].

One of the first regularization methods, which performed well in practice (ac-
cording to the experiments illustrated in [2] and [4]) when used with noisy data,
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can be found in [4]. There a variational approach to a regularization is used to
obtain the following family of well-posed optimization problems:

||Af − g||2 +

 1∫
0

f dx

2

+ α(||f ||2 + ||f ′||2) = min
f∈W 2

1

.(1.4)

The norm is understood in L2-sense and Af = g is the initial Volterra equation.
Then (1.4) is reduced to the second kind Fredholm integral equation

αf(x) +

1∫
0

K0(x, u)f(u)du = m(x), 0 ≤ x ≤ 1.(1.5)

The error contributed by variational regularization (1.4) and trapezoidal discretiza-
tion of (1.5) is estimated in [4]. From this estimate it is clear that for a given δ
the regularization parameter α has a nonzero optimal value. Although a way of
choosing the regularization parameter optimally is not offered there, the later paper
[2] describes a spectral interpretation of method [4] that allows one to obtain an
optimal value of this parameter. However the applicability of that interpretation
is restricted to the cases, when the spectrum of the data shows a clear distinction
between the signal and the noise.

In the literature there were no results which give error estimates for a stable
numerical differentiation algorithm such that the estimate would be suitable for a
fixed δ > 0 and the estimation constants would be given explicitly, so that the error
estimate could be used in practical computations. An exception is the result in [16]
generalized and applied in [17]-[23].

In section 4 we suggest an iteratively regularized scheme for solving a Volterra
equation based on the idea of continuous regularization (see [1]), which is an alter-
native to the variational one. This procedure avoids some of the limitations in a
choice of the regularization parameter mentioned above.

In section 5 the results of the numerical experiment are discussed. The deriva-
tive of the test function f(x) = sin(πx), x ∈ [0, 1], was computed in the presence
of noise, whose maximum value was 10 % of the maximum value of f(x). The
dependence of the actual and estimated errors on the regularization parameters is
considered. The important practical recommendations on stable numerical differ-
entiation with various a priori information are given.

2. Inequalities for the derivatives

2.1. The main result. In this sections we investigate and answer the following
questions (see [22]):

Question 2.1. Given fδ ∈ L∞(R) and f ∈ C1(R) such that inequalities

||fδ − f || ≤ δ, ||f (m)|| ≤Mm <∞, m = 0, 1,

hold with some known δ and unknown (or roughly estimated) Mm, can one compute
f ′ stably?

Here

||f || := ess sup
x∈R

|f(x)|.(2.1)
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In other words, does there exist an operator T such that

sup
f∈K(δ,Mm)

‖Tfδ − f ′‖ ≤ η(δ) −→ 0 as δ → 0,(2.2)

where

K(δ,Mm) :=
{
f : f ∈ C1(R), ||f (m)|| ≤Mm <∞, ||fδ − f || ≤ δ

}
,(2.3)

m = 0 or m = 1?

Question 2.2. It is similar to Question 1 but now it is assumed that m = 1 + a,
0 < a ≤ 1.

||f (1+a)|| := M1+a <∞,(2.4)

where

||f (1+a)|| := ess sup
x,y∈R

|f ′(x)− f ′(y)|
|x− y|a

.

The basic results of this section are summerized in Theorem 2.1 below.

Theorem 2.1. There does not exist an operator T : L∞(R) → L∞(R) such that
inequality (2.2) holds if m = 0 or m = 1. There exists such an operator if m > 1.
This operator is given by (2.11) with h = h1+a(δ) defined in (2.13). The error of
the corresponding differentiation formula (2.11) is presented in (2.13).

Proof. Consider

f1(x) := −M
2
x(x− 2h), 0 ≤ x ≤ 2h.(2.5)

Extend f1(x) to the whole real axis in such a way that the norms ||f (m)
1 ||, m =

0, 1, 2, are preserved. Define f2(x) := −f1(x). Note that

sup
x∈R
|fk(x)| = Mh2

2
, k = 1, 2.(2.6)

Take
Mh2

2
= δ,(2.7)

then for fδ(x) ≡ 0 it follows the estimate ||fk − fδ|| ≤ δ, k = 1, 2. Let (Tfδ)(0) =
(T0)(0) := b. If ||f (m)

k || ≤Mm, k = 1, 2 one has

γm(δ) := inf
T

sup
f∈K(δ,Mm)

||Tfδ − f ′|| ≥ inf
T

max
k=1,2

||Tfδ − f ′k||

≥ inf
T

max
k=1,2

||Tfδ(0)− f ′k(0)|| = inf
b∈R

max {|b−Mh| , |b+Mh|} = Mh.(2.8)

By (2.7) h =
√

2δ
M , Mh =

√
2δM.

If m = 0, then (2.6) implies that fk ∈ K(δ,M0), k = 1, 2, with M0 := Mh2

2 = δ.
Since for any fixed δ > 0 and M0 = δ the constant M in (2.5) can be chosen
arbitrary, inequality (2.8) proves that (2.2) is false in the class K(δ,M0) and in fact
γ0(δ)→∞ as M →∞.

Estimate (2.2) is also false in the class K(δ,M1). Indeed,

||f ′1|| = ||f ′2|| = sup
0≤x≤2h

|M(x− h)| = Mh =
√

2δM.(2.9)



ON STABLE NUMERICAL DIFFERENTIATION 5

Thus, for given δ, M1 > 0 one can find M such that (2.7) holds and M1 =
√

2δM .
For this M the functions fk ∈ K(δ,M1), k = 1, 2. By (2.8) one obtains:

γ1(δ) ≥M1 > 0 as δ → 0,(2.10)

so that (2.2) is false.
Let us assume now that (2.4) holds. Take

Thfδ :=
fδ(x+ h)− fδ(x− h)

2h
, h > 0.(2.11)

One gets, using the Lagrange formula,

‖Thfδ − f ′‖ = ‖Th(fδ − f)‖+ ‖Thf − f ′‖

≤ δ

h
+
∥∥∥∥f(x+ h)− f(x− h)− 2hf ′(x)

2h

∥∥∥∥
≤ δ

h
+
∥∥∥∥ [f ′(y)− f ′(x)]h+ [f ′(z)− f ′(x)]h

2h

∥∥∥∥
≤ δ

h
+M1+ah

a := ε1+a(δ, h).(2.12)

where y and z are the intermediate points in the Lagrange formula.
Minimizing the right-hand side of (2.12) with respect to h ∈ (0,∞) yields

h1+a(δ) =
(

δ

aM1+a

) 1
1+a

, ε1+a(δ) =
a+ 1
a

a
1+a

M
1

1+a
1+a δ

a
1+a , 0 < a ≤ 1.(2.13)

Theorem 2.1 is proved.

Remark 2.2. By formula (2.12) one can see that if M1+a is not known a priori then
one chooses h(δ) = O (δγ), 0 < γ < 1, where γ is a constant and ε1+a(δ, δγ) → 0
as δ → 0. However, since in most cases in practice δ > 0 is fixed, and the choice
of h = O(δγ) is not quite determined (it gives only asymptotics of h as δ → 0 and
does not determine the constant factor), this choice does not yield a practically
computable error estimate for the formula of stable numerical differentiation. This
is in sharp contrast with the practically computable error estimate given in (2.13).

2.2. The best estimate for m = 2. It is significant to mention that ε1+a(δ)
obtained in (2.13) can be improved if a = 1 (m = 2). In this subsection we will
give the optimal error estimate for functions of one or several variables in the class
Kn(δ,M2), n ≥ 1 defined as follows:

Kn(δ,M2) :=
{
f : f ∈ C2(Rn), |(d2f(x)k, k)| ≤M2|k|2,

∀x, k ∈ Rn, ||fδ − f || ≤ δ} ,(2.14)

where

(d2f(x)k, k) =
n∑

i,j=1

fxixj (x)kikj ,(2.15)

|k|2 =
n∑
i=1

|ki|2, ||f || := ess sup
x∈Rn

|f(x)|.
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We want to approximate the directional derivative Dvf(x) = ∇f(x) · v, where v is
a unit vector. Define

Thfδ :=
fδ(x+ hv)− fδ(x− hv)

2h
, h > 0.(2.16)

Theorem 2.3. [17] If h2(δ) =
(

2δ
M2

) 1
2

and ε2(δ) = (2δM2)
1
2 then

||Th2(δ)fδ −Dvf || ≤ ε2(δ)(2.17)

and

γ2(δ) := inf
T∈A

sup
f∈Kn(δ,M2)

||Tfδ −Dvf || = ε2(δ).(2.18)

Here A is the set of all operators T : L∞(Rn)→ L∞(Rn).

Proof. For any x ∈ Rn and h > 0

||Thfδ −Dvf || ≤ ||Thfδ − Thf ||+ ||Thf −Dvf ||

≤ ||Th(fδ − f)||+ M2h

2

≤ δ

h
+
M2h

2
.(2.19)

Consider the right-hand side of (2.19) as a function of h. As before, this function
has an absolute minimum ε2(δ) at h = h2(δ). Thus ||Th2(δ)fδ −Dvf || ≤ ε2(δ). Let

f1(x) =
1
2
M2

n∑
i=1

x2
i −M2h2(δ)

n∑
i=1

vixi

for x inside the ball centered at (h2(δ)v1, ..., h2(δ)vn) with radius h2(δ). Note that
f1(x) = 0 on the boundary of this ball, f1 has an absolute minimum value −δ at
x = (h2(δ)v1, ..., h2(δ)vn) and |(d2f1(x)k, k)| = M2|k|2. Also one gets

Dvf1(0) = −M2h2(δ)
n∑
i=1

v2
i = −M2h2(δ)

= − (2δM2)
1
2 = −ε2(δ).

Continue f1 on Rn in such a way that

|(d2f1(x)k, k)| = M2|k|2, ||f1|| ≤ δ ∀x ∈ Rn.(2.20)

The continuation is possible since in the above ball conditions (2.20) are satisfied.
Set f2 = −f1, fδ = 0. Following the proof of Theorem 2.1 (formula (2.8)) one
obtains

ε2(δ) ≤ γ2(δ).(2.21)

On the other hand,

γ2(δ) ≤ sup
f∈Kn(δ,M2)

||Thfδ −Dvf || ≤ ε2(δ).(2.22)

From (2.21) and (2.22) one gets (2.18).
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3. Multi-point finite difference formulas

3.1. Finite-difference methods in the class K(δ,Mm), m > 2. Assume that
f(x) has derivatives up to order m and ||f (m)|| ≤Mm, m > 2. Let fδ ∈ L∞(R) be
given such that ||f − fδ|| ≤ δ, where the norm is calculated by (2.1). Suppose that
m > 2 is odd and define (see [17], [19])

TQh fδ := h−1

Q∑
j=−Q

AQj fδ

(
x+

jh

Q

)
,(3.1)

where the numbers AQj (j = −Q, ..., Q) are to be determined. One has:

∣∣∣TQh fδ − f ′∣∣∣ ≤ ∣∣∣TQh (fδ − f)
∣∣∣+
∣∣∣TQh f − f ′∣∣∣ ≤ δ

h

Q∑
j=−Q

∣∣∣AQj ∣∣∣+

∣∣∣∣∣∣f(x)
h

Q∑
j=−Q

AQj

+f ′(x)

 Q∑
j=−Q

(
j

Q

)
AQj − 1

+
m−1∑
p=2

f (p)(x)hp−1

p!

Q∑
j=−Q

(
j

Q

)p
AQj

+
hm−1

m!

Q∑
j=−Q

f (m)(ξ)
(
j

Q

)m
AQj

∣∣∣∣∣∣ , m > 2.(3.2)

If one requires the order of smallness (as h→∞) for
∥∥∥TQh fδ − f ′∥∥∥ to be minimal

one gets the following system of equations for the coefficients AQj :

Q∑
j=−Q

(
j

Q

)l
AQj = δ1l, 0 ≤ l ≤ 2Q, δ1l :=

{
0, if l 6= 1,
1, if l = 1.(3.3)

This is a linear system of m equations with 2Q+ 1 unknowns. When m = 2Q+ 1
system (3.3) has a nonsingular (Vandermonde) matrix. So it is uniquely solvable
for AQj . For the first few values of Q one obtains (see [19] and [12]):

A1
0 = 0, A1

±1 = ±1
2
,

A2
0 = 0, A2

±1 = ±4
3
, A2

±2 = ∓1
6
,

A3
0 = 0, A3

±1 = ±9
4
, A3

±2 = ∓ 9
20
, A3

±3 = ± 1
20
,

A4
0 = 0, A4

±1 = ±16
5
, A4

±2 = ∓4
5
, A4

±3 = ± 16
105

, A4
±4 = ∓ 1

70
.(3.4)

With this choice of the coefficients AQj , from (3.2) one gets∣∣∣TQh fδ − f ′∣∣∣ ≤ δ

h

Q∑
j=−Q

∣∣∣AQj ∣∣∣+ hm−1Mm

m!

Q∑
j=−Q

∣∣∣∣( j

Q

)m
AQj

∣∣∣∣
≡ δ

h
αm + hm−1Mmβm.(3.5)
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The right-hand side of (3.5) as a function of h has an absolute minimum εm(δ)
when

h = hm(δ) =
[

αmδ

(m− 1)Mmβm

] 1
m

,(3.6)

the coefficients αm, βm are defined in (3.5) and

ε = εm(δ) = m

[
αm−1
m Mmβmδ

m−1

(m− 1)m−1

] 1
m

.(3.7)

Remark 3.1. In [19] and [12] multi-point formulas for two-dimensional case are also
investigated.

3.1.1. Best possible estimates of f ′ and f ′′ in the class K(δ,M3). It is shown above
that the minimal order of smallness for the approximation error

∥∥∥TQh fδ − f ′∥∥∥ is

attained when m = 2Q + 1 and AQj are the solutions to (3.3). According to (3.1),
(3.4) and (3.6) for m = 3 one gets the central difference derivative.

T 1
h3(δ)fδ =

fδ(x+ h3(δ))− fδ(x− h3(δ))
2h

(3.8)

with

h3(δ) =
(

3δ
M3

) 1
3

.(3.9)

As a simple consequence of this observation we state the following proposition.

Proposition 3.2. Among all linear and nonlinear operators T : L∞(R)→ L∞(R)
the operator T 1

h3(δ) defined by (3.8), (3.9) gives the best possible estimate of f ′ in
the class of all functions f ∈ K(δ,M3) (see (2.3)) and

γ3(δ) := inf
T

sup
f∈K(δ,M3)

‖Tfδ − f ′‖ =
3
2

2
3

M
1
3

3 δ
2
3 = ε3(δ).(3.10)

Proof. By (3.5)-(3.7) one obtains γ3(δ) ≤ ε3(δ). To prove that

γ3(δ) ≥ ε3(δ)(3.11)

take

f1(t) := −M3

6
t3 + ε3(δ)t, t ∈

[
0,
(

6ε3(δ)
M3

) 1
2
]
.(3.12)

It is clear that f1(0) = f1

((
6ε3(δ)
M3

) 1
2
)

= 0 and

|f (3)
1 (t)| = M3, f ′1(0) = ε3(δ), |f1(t)| ≤ δ.(3.13)

Continue f1(t) on R in such a way that (3.13) are satisfied for any t ∈ R. Let
f2(t) = f1(t), fδ = 0. Thus, following the proof of Theorem 2.1 once again (formula
(2.8)) one derives (3.11) and completes the proof.

Similar result can be proved for the second derivative operator in the class
K(δ,M3). Introduce

Rδfδ :=
fδ(x− g3(δ))− 2fδ(x) + fδ(x+ g3(δ))

g2
3(δ)

,(3.14)
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g3(δ) := 2
(

3δ
M3

) 1
3

.(3.15)

Proposition 3.3. Among all linear and nonlinear operators T : L∞(R)→ L∞(R)
the operator Rδ, defined by (3.14)-(3.15), gives the best possible estimate of f ′′ in
the class K(δ,M3) and

β3(δ) := inf
T

sup
f∈K(δ,M3)

‖Tfδ − f ′′‖ = 3
1
3M

2
3

3 δ
1
3 := α3(δ).(3.16)

Proof. Using the Taylor formula one gets:

‖Rδfδ − f ′′‖ ≤
4δ
g2

3(δ)
+
M3g3(δ)

3
.(3.17)

The function G(g) := 4δ
g2 + M3g

3 has an absolute minimum α3(δ) if g = g3(δ)
(see formulas (3.16), (3.15) respectively). Therefore β3(δ) ≤ α3(δ). To obtain the
inequality

β3(δ) ≥ α3(δ)(3.18)

we consider the following function

f(t) = −M3

6
t3 +

α3(δ)
2

t2 − δ.

This function has three real roots: t1 < 0 < t2 < t3. One can also check that on
the interval [t1, t3]

|f (3)(t)| = M3, f ′′(0) = α3(δ), |f(t)| ≤ δ.(3.19)

The last inequality is true because f(t) attains its global maximum on the interval
[t1, t3] at t̂ = 2α3(δ)

M3
, its global minimum on the above interval at t̃ = 0 and |f(t̂)| =

|f(t̃)| = δ.
Suppose that f1(t) = f(t) for t ∈ [t1, t3] and continue f1(t) on R so that (3.19)

holds for any t ∈ R. Let f2(t) = −f1(t), fδ(t) ≡ 0. If one estimates β3(δ) from
below following the idea used in (2.8) then one arrives at (3.18) and the proof is
completed.

3.2. Finite difference methods in the class K(σ,M2). Here we consider the
family of the operators (see [17], [19] and [23])

TQh fσ := h−1

Q∑
j=−Q

AQj fσ

(
x+

jh

Q

)
(3.20)

under the assumption that f is twice differentiable and ||f ′′|| ≤M2. We assume also
that the approximation fσ(x) = f(x) + eσ(x), where the error eσ(x) is independent
and identically distributed with zero mean value and variance σ2. We will call the
class of functions f ∈ C2(R) with the above properties K(σ,M2).

We wish to determine the coefficients AQj which minimize the mean square error:

E

[(
TQh fσ − f

′
)2
]

= min(3.21)

and

E
[
TQh fσ

]
= f ′,(3.22)
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where E denotes the mean value. By Taylor’s formula one gets:

TQh fσ − f
′ = h−1

Q∑
j=−Q

AQj

[
fσ

(
x+

jh

Q

)
− f

(
x+

jh

Q

)]

+
f(x)
h

Q∑
j=−Q

AQj + f ′(x)

 Q∑
j=−Q

(
j

Q

)
AQj − 1

+ h

Q∑
j=−Q

f ′′(ξj)
2

(
j

Q

)2

AQj .

(3.23)

It follows from (3.21)-(3.23) (see [19] and [23]) that
Q∑

j=−Q
AQj = 0,

Q∑
j=−Q

(
j

Q

)
AQj = 1,(3.24)

σ2

h2

Q∑
j=−Q

(
AQj

)2

+ h2

 Q∑
j=−Q

∣∣∣AQj ∣∣∣ ( j

Q

)2
M2

2

2

= min .(3.25)

Let us find AQj satisfying conditions (3.24) and the condition

Q∑
j=−Q

(
AQj

)2

= min .

Then we will minimize (3.25) with respect to h. Using Lagrange multipliers λ and
ν, one has:

2AQj − λ− ν
(
j

Q

)
= 0, −Q ≤ j ≤ Q.(3.26)

System (3.26) together with (3.24) imply

λ = 0, ν =
6Q

(Q+ 1)(2Q+ 1)
.

So,

AQj =
νj

2Q
=

3j
(Q+ 1)(2Q+ 1)

(3.27)

and
Q∑

j=−Q

(
AQj

)2

=
18

[(Q+ 1)(2Q+ 1)]2

Q∑
j=1

j2 =
3Q

(Q+ 1)(2Q+ 1)
.(3.28)

Thus (3.25) becomes

ϕ(h) :=
σ2aQ
h2

+ h2M2
2 bQ = min,(3.29)

aQ :=
3Q

(Q+ 1)(2Q+ 1)
,(3.30)

bQ :=
9

Q4(Q+ 1)2(2Q+ 1)2

 Q∑
j=1

j3

2

=
9(Q+ 1)2

16(2Q+ 1)2
.(3.31)
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Minimizing with respect to h, we find:

−2σ2aQh
−3 + 2h2M2

2 bQ = 0, h(σ) =
(
σ

M2

) 1
2
(
aQ
bQ

) 1
4

.(3.32)

Let ϕ(h(σ)) = ε2
2(σ). Then

ε2
2(σ) = σ2aQ

M2

σ

(
bQ
aQ

) 1
2

+M2
2 bQ

σ

M2

(
aQ
bQ

) 1
2

= 2σM2

√
aQbQ.(3.33)

Thus the standard deviation of the optimal estimate is√
E

[(
TQh fσ − f ′

)2
]
≤
√

2σM2(aQbQ)
1
4 .(3.34)

Note that

(aQbQ)
1
4 =

(
27Q(Q+ 1)
16(2Q+ 1)3

) 1
4

≈ 0.67
Q

1
4
, Q→∞.(3.35)

Let Q be 16. Then ε2(σ) ≤
√

2σM2 · 0.34. Therefore there is a gain in accuracy
compared with (2.17). Estimates (3.34) and (3.35) show that, in principle, it is pos-
sible to attain an arbitrary accuracy of the approximation by taking Q sufficiently
large.

Remark 3.4. It follows from (3.20), (3.27) that the multi-point differentiator can
be written as:

TQh fσ :=
3

h(Q+ 1)(2Q+ 1)

Q∑
j=−Q

jfσ

(
x+

jh

Q

)
,(3.36)

or in the equivalent form:

TQ
h̃
fσ :=

∑Q
j=−Q jfσ(x+ jh̃)

2h̃
∑Q
j=−Q j

2
, h̃ :=

h

Q
,(3.37)

which coincides with the least squares differentiator derived by Lanczos ([11]) and
also investigated by Anderssen and de Hoog ([3]). However, neither in [11] nor in
[3] the special choice of h by formula (3.32) was proposed to guarantee a better
accuracy of the approximations.

3.2.1. Construction of finite-difference methods without using the a priori estimate
of M2. To calculate h by formula (3.32) one needs to know σ2 and M2. If the
constants σ2 and M2 cannot be found a priori then one can use the following
considerations. By (3.29), (3.30) and (3.31) for small h and large Q ≥ 1 one has

E

[(
TQh fσ − f

′
)2
]
≤ 3σ2Q

h2(Q+ 1)(2Q+ 1)
+
h2M2

2

2
∼ 3σ2

2h2Q
,(3.38)

which means that the right-hand side of (3.38) is bounded if

h2Q −→∞ as h→ 0.(3.39)

The condition h → 0 guarantees that the term h2M2
2

2 neglected in (3.38) is small.
If it is assumed that Q = h−p, then (3.39) holds if p > 2. Therefore the simple
strategy in the case when σ2 and M2 are not available, is to ignore the choice of
h by (3.32), to take h sufficiently small and then to choose Q in such a way that
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(3.39) holds. There is no efficient error estimate (with explicitly given estimation
constants as in (2.12)-(2.13)) in this case.

4. Continuous regularization and numerical

differentiation in the class G(δ)

4.1. Statement of the problem. Suppose that f is the function to be differ-
entiated and z is its unknown derivative. Then z satisfies the following Volterra
equation

x∫
a

z(s) ds = f(x), a ≤ x ≤ b <∞, z ∈ L2[a, b].(4.1)

Below we assume that f(a) = 0. If f(a) 6= 0, then (4.1) is inconsistent, but the
problem is essentially unchanged, since the derivative of a constant is zero.

In this section we make use of the approach developed in [1] for solving nonlinear
operator equations

A(z) = f, A : H → H,(4.2)

where H is a Hilbert space and the Fréchet derivative of A is not assumed to be
boundedly invertible. To deal with the ill-posedness of (4.2) the following Cauchy
problem

ż(t) :=
dz

dt
= Φ(z(t), t), z(0) = z0 ∈ H, Φ : H × [0,+∞)→ H,(4.3)

is considered and a general theorem on a continuous regularization in form (4.3) is
proved (see Theorem 2.4, [1]). As a consequence of this theorem different types of
the operators Φ are investigated in [1]. In particular, it is shown that for monotone
operators A one can write Φ as follows:

Φ(z(t), t) := −[A(z(t))− f + ε(t)(z(t)− z0)], ε(t) > 0.(4.4)

Let ⇀ denote weak convergence in a Hilbert space H. To state the main asymptotic
property of the solution to (4.3)-(4.4) we will need the following definition.

Definition 4.1. The operator A in a Hilbert space H is said to be monotone if
(A(z)−A(y), z − y) ≥ 0 for all z and y in the domain of definition of A.

Theorem 4.2. ([1]) If
1. problem (4.2) has a unique solution y ∈ H;
2. A is monotone;
3. A is continuously Fréchet differentiable and

||A′(x)|| ≤ N1, ∀x ∈ H;(4.5)

4. ε(t) > 0 is continuously differentiable and tends to zero monotonically as
t→ +∞, and limt→+∞

ε̇(t)
ε2(t) = 0.

Then Cauchy problem (4.3)-(4.4) has a unique solution z(t) for all t ∈ [0,+∞) and

lim
t→+∞

||z(t)− y|| = 0(4.6)

in the norm of a Hilbert space H.
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Remark 4.3. One can see that for linear operator

A(z) :=

x∫
a

z(s) ds, H = L2[a, b],(4.7)

conditions 2 and 3 of Theorem 4.2 hold. Indeed,

(Ah, h) =

b∫
a

 x∫
a

h(τ)dτ

h(x)dx =
1
2

b∫
a


 x∫
a

h(τ)dτ

2

′

dx ≥ 0.

Here ( , ) denotes the inner product in a real Hilbert space L2[a, b]. Also since
A is bounded the constant N1 = ||A|| ≤ (b− a)/

√
2. The proof is immediate:

||A||2 =

b∫
a

 x∫
a

z(s)ds

2

dx ≤
b∫
a

x∫
a

z2(s)ds

x∫
a

ds dx ≤ ||z||2 (b− a)2

2
.

Finally note that equation (4.1) is uniquely solvable if f is absolutely continuous
and f ′ ∈ L2[a, b] and it is not solvable otherwise.

Let us use Euler’s method to solve Cauchy problem (4.3)-(4.4) numerically.

pn+1 = pn − hn[A(pn)− fδ + εn(pn − z0)], n = 0, 1, 2, ...,(4.8)

p0 := z0, εn := ε(tn), tn :=
n∑
i=1

hi, hn > 0,(4.9)

where fδ ∈ H and ||f − fδ|| ≤ δ in H-norm.

4.2. Convergence and stability analysis. The goal of this subsection is to prove
that under the assumptions of Theorem 4.2 and under the assumptions on hn, εn
and δ, listed in Theorem 4.5, one gets

lim
δ→0
||pn(δ) − z(tn(δ))|| = 0.(4.10)

The steps of the proof are:
1) we prove inequality (4.18) below,
2) we prove (4.22) for the solution to a difference inequality (4.20),
3) we apply (4.20) and (4.22) to (4.18).

The limit in (4.10) is understood in the sense of H-norm and n(δ) → ∞ as δ →
0. Equalities (4.6) and (4.10) together imply that (4.8)-(4.9) generate a stable
numerical scheme for solving (4.2), which in particular can be applied in the case
of equation (4.1) if f ∈ G(δ), where

G(δ) :=
{
f : f is absolutely continuous, f ′ ∈ L2[a, b], ||f − fδ|| ≤ δ

}
.(4.11)

In (4.11) L2-norm is taken. Note that if the function z(t) satisfies (4.3)-(4.4) one
has

z(tn+1) = z(tn) + hnż(tn) +
h2
n

2
z̈(ξn) = z(tn)− hn[A(z(tn))− f

+ε(tn)(z(tn)− z0)]− h2
n

2

{
[A′(z(ξn)) + ε(ξn)I] · [A(z(ξn))− f
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+ε(ξn)(z(ξn)− z0)] + ε̇(ξn)(z(ξn)− z0)
}
.(4.12)

Denote

zn := z(tn), z̃n := z(ξn), ε̃n := ε(ξn).(4.13)

Then

||zn+1 − pn+1|| ≤ ||zn − pn − hn[A(zn)−A(pn) + εn(zn − pn)]||

+hnδ +
h2
n

2

{
||A′(z̃n) + ε̃nI|| · ||A(z̃n)− f + ε̃n(z̃n − z0)||

+|ε̇(ξn)| · ||z̃n − z0||
}
.(4.14)

Suppose that conditions of Theorem 4.2 are fulfilled. Introduce the notation

λn := (N1 + ε̃n)||A(z̃n)− f + ε̃n(z̃n − z0)||+ |ε̇(ξn)| · ||z̃n − z0||.(4.15)

Since A(y) = f , by Theorem 4.2 one gets

lim
n→∞

λn ≤ lim
n→∞

{(N1 + ε̃n)(N1||z̃n − y||+ ε̃n||z̃n − z0||)

+|ε̇(ξn)| · ||z̃n − z0||} = 0.(4.16)

If hnεn ≤ 1 then from the monotonicity of A one obtains:

||zn+1− pn+1|| ≤
{
||zn− pn||2(1−hnεn)2− 2hn(1−hnεn)(A(zn)−A(pn), zn− pn)

+h2
n||A(zn)−A(pn)||2

} 1
2

+ hnδ +
h2
nλn
2
≤
{
||zn − pn||2 (1− 2hnεn

+h2
nε

2
n + h2

nN
2
1

)} 1
2

+ hnδ +
h2
nλn
2

.(4.17)

Applying the elementary estimate

(a+ b)2 ≤ (1 + hnεn)a2 +
(

1 +
1

hnεn

)
b2

to the right-hand side of (4.17) with

a :=
{
||zn − pn||2

(
1− 2hnεn + h2

nε
2
n + h2

nN
2
1

)} 1
2

and

b := hnδ +
h2
nλn
2

,

one gets:

||zn+1 − pn+1||2 ≤
(
1− hnεn + ch2

n

)
||zn − pn||2 + d

hn(δ + hn)2

εn
.(4.18)

Here we assume that hn tends to zero monotonically as n→∞,

c := (1 + h0ε0)
(
ε2

0 +N2
1

)
, d :=

[
max

{
1,

1
2

sup
n
λn

}]2

(1 + h0ε0).(4.19)

To state the result we need the following lemma on recursive numerical sequences.
To make the paper self-contained we include the proof.
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Lemma 4.4. Let the sequence of positive numbers νn satisfy the inequality

νn+1 ≤ (1− αn)νn + βn,(4.20)

where

0 < αn ≤ 1,
∞∑
n=0

αn =∞, lim
n→∞

βn
αn

= 0.(4.21)

Then

lim
n→∞

νn = 0.(4.22)

Proof. Inequality (4.20) yields

νn+1 ≤ (1− αn)(1− αn−1)νn−1 + (1− αn)βn−1 + βn

≤ ... ≤
n∏
j=0

(1− αj)ν0 +
n−1∑
i=0

βi

n∏
j=i+1

(1− αj) + βn.(4.23)

By (4.21) limn→∞
∏n
j=0(1 − αj) = 0 and limn→∞ βn = 0. Thus we have to show

that

lim
n→∞

n−1∑
i=0

βi

n∏
j=i+1

(1− αj) = 0.(4.24)

Without loss of generality one may assume that βn ≥ 0 for any n: if βn < 0 then
(4.20) holds with |βn| replacing βn. To get (4.24) we will use the representation:

n−1∑
i=0

βi

n∏
j=i+1

(1− αj) =
m∑
i=0

βi

n∏
j=i+1

(1− αj) +
n−1∑

i=m+1

βi

n∏
j=i+1

(1− αj).(4.25)

Here m is an arbitrary integer less than n. The first term in the right-hand side of
(4.25) can be estimated as follows

m∑
i=0

βi

n∏
j=i+1

(1− αj) =
m∑
i=0

βi
αi

 n∏
j=i+1

(1− αj)−
n∏
j=i

(1− αj)



≤ ζ

 n∏
j=m+1

(1− αj)−
n∏
j=0

(1− αj)

 ≤ ζ exp

− n∑
j=m+1

αj

 ,(4.26)

where βi
αi
≤ ζ, i = 0, 1, 2, ... . Introduce the notation %m,n := maxm+1≤i≤n−1

βi
αi

.
For the second term in (4.25) one obtains

n−1∑
i=m+1

βi

n∏
j=i+1

(1− αj) ≤ %m,n
n−1∑

i=m+1

 n∏
j=i+1

(1− αj)−
n∏
j=i

(1− αj)



= %m,n

1− αn −
n∏

j=m+1

(1− αj)

 ≤ %m,n.(4.27)
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Therefore

lim
n→∞

n−1∑
i=0

βi

n∏
j=i+1

(1− αj) ≤ lim sup
m→∞

 lim
n→∞

ζ exp

− n∑
j=ñ+1

αj

+ %m,n


≤ lim sup

m→∞

(
0 + sup

m+1≤n

βn
αn

)
= lim sup

n→∞

βn
αn

= 0.(4.28)

The last conclusion is a consequence of the last assumption in (4.21). From (4.28),
(4.24) and (4.23) one concludes that (4.22) holds.

Finally we present the convergence theorem.

Theorem 4.5. Assume that conditions of Theorem 4.2 hold. Let
1. δ be the level of noise in (4.8): ||f − fδ|| ≤ δ;
2. n = n(δ) be chosen in such a way that limδ→0 n(δ) =∞;
3. hn(δ) tend to zero monotonically as δ → 0, 0 < hn(δ)εn(δ) − ch2

n(δ) ≤ 1 with c
defined by (4.19);

4.
∑∞
n=1 hnεn =∞, limδ→0

hn(δ)

εn(δ)
= 0, limδ→0

δ
εn(δ)

= 0.

Then

lim
δ→0
||pn(δ) − y|| = 0(4.29)

in the norm of a Hilbert space H, where {pn(δ)} is defined by (4.8)-(4.9) and y is
the solution to (4.2).

Proof. Let us take νn := ||zn − pn||2 , αn := hnεn − ch2
n and βn := dhn(δ+hn)2

εn
.

Inequality (4.29) is an immediate consequence of (4.18) and Lemma 4.4.

Thus it is shown that under the assumptions of Theorem 4.5 procedure (4.8)-
(4.9) can be used for stable numerical differentiation of a function from the class
G(δ), which is defined in (4.11).

5. Numerical aspects

5.1. Multi-point formulas in the class K(δ,Mm), m > 2. MATLAB programs
were written to investigate the practicability of the methods described above. The
derivative of the function f(x) = sin(πx), x ∈ [0, 1], was computed in the presence
of noise functions

e1(x) = δx, e2(x) = δcos(3πx), e3(x) = δcos(7πx)(5.1)

and their combinations. The constant δ in (5.1) changes from 0.01 to 0.1.
Our first experiment makes use of formulas (3.1), (3.6) with the numbers AQj

(j = −Q, ..., Q) defined by (3.4) and m = 2Q + 1. The goals of the test are the
following ones:

1. To compare numerical results obtained by (3.1), (3.6) with Q = 1, 2, 3, 4; to
consider the dependence of estimated error (3.7) and of the computed error
on Q (on m). Note that Q = 1, 2, 3, 4 correspond to m = 3, 5, 7, 9 respectively.

2. To evaluate the dependence of the computed and estimated errors on the
perturbations of Mm (see (3.5)-(3.7)), since in practice only the approximate
bounds on L∞-norm of f (m) might be available.
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3. To study the dependence of the results on δ, because the optimal stepsize
hm(δ) and the estimated error εm(δ) are the functions of δ.

Figures 1 and 2 represent the errors obtained in the process of numerical differ-
entiation by formula (3.1) with Q = 1 and h = h3(δ) being chosen by (3.6). The
function to be differentiated is fδ(x) = f(x) + e3(x). The upper surface on Figure
2 is the estimated error. Note that f(x) = sin(πx) belongs to the class K(δ,M3)
for M3 ≥ π3 ≈ 31.0063. So if one uses 20 ≤ M3 < π3, then h3(δ) found by (3.6)
is not optimal and cannot guarantee error (3.7). Therefore the computed error in
some regions, where 20 ≤M3 < π3, is greater then the estimated one.

Figures 3 and 4 illustrate the same experiment with Q = 2. There is a little gain
in accuracy for both estimated and computed errors. The optimal stepsize h5(δ) is
approximately three times as big as h3(δ).

One can see on Figures 5-8 that for Q = 3 (m = 7) and Q = 4 (m = 9) the
results are not accurate. The reason is that the constant βm (see (3.5)), which does
not depend on f , decreases very fast as m = 2Q+ 1 changes from 5 to 9:

β5 ≈ 3.47 · 10−3, β7 ≈ 3.07 · 10−5, β9 ≈ 1.50 · 10−7.

Since βm appears in the denominator of (3.6), one has to take Mm large, otherwise
hm(δ) becomes so big that it cannot be used on the interval [0, 1]. Namely, for
M7 = π7, M9 = π9 and δ = 0.01 one gets

h7 ≈ 0.7185, h9 ≈ 1.0985.

For the same M7, M9 and δ = 0.1

h7 ≈ 0.9986, h9 ≈ 1.4188.

The ratio αm
m−1 (see (3.6)) also grows as m increases:

α5

4
≈ 0.75,

α7

6
≈ 0.92,

α9

8
≈ 1.042.

Thus to obtain h7(δ) and h9(δ) approximately at the same level as h3(δ) for 20 ≤
M3 ≤ 40 one needs M7 ∼ 108 and M9 ∼ 1010. The estimated errors ε7(δ), ε9(δ)
for these M7 and M9 are much greater then ε3(δ) : one can compare the upper
surfaces on Figures 6, 8 and 2. The computed errors are less then the estimated
ones, but even they are almost 100 % for δ = 0.1. Figures 5 and 7 show the errors
for fδ(x) = f(x) + e2(x). On Figures 6 and 8 the lower surfaces correspond to
fδ(x) = f(x) + e2(x) and fδ(x) = f(x) + e2(x) + e3(x).

The conclusion is: practically one does not have a good reason to use formulas
(3.1), (3.6) for m > 5 in many cases. Besides even for m = 5 sometimes the best
possible constant M5 is rather small and together with small β5 they make h5(δ)
larger then it is appropriate on a specific interval. Therefore one has to increase
the constant M5, which in turn increases ε5(δ) in (3.7). Then one can compare
ε5(δ) with ε3(δ) and make a choice between (3.1), (3.6) for m = 3 and (3.1), (3.6)
for m = 5.
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5.2. Multi-point formulas in the class K(δ,M2). In our second experiment
we investigate multi-point differentiator (3.20) with h satisfying (3.32). Here we
use the statistical nature of noise assuming zero mean value and varance σ2. The
perturbated function fσ(x) = sin(πx) +

√
2σ cos(2πx), x ∈ [0, 1], is to be differ-

entiated. The goal is to consider the dependence of the computed and estimated
errors on Q, M2 and σ.

Figures 9 and 10 illustrate the results obtained with Q = 1. The function
f(x) = sin(πx) belongs to the class K(σ,M2) for M2 ≥ π2 ≈ 9.8696. That is the
reason why the computed errors on Figures 10, 12, 14 and 16 are greater then the
estimated ones in some areas, where 0.1 ≤M2 < π2.

Figures 11 and 12 correspond to the case Q = 7. One can see that both the
estimated and the computed errors are less then for Q = 1.

Theoretically by formula (3.34) one can attain an arbitrary accuracy of the ap-
proximation by taking Q sufficiently large. However in practice we do not recom-
mend using Q > 50. Indeed, denote µ(Q) :=

√
2σM2(aQbQ)

1
4 , where aQ and bQ

satisfy (3.30) and (3.31) respectively. Then for σ = 0.1, M2 = 20 one has:

µ(50) ≈ 0.50843, µ(75) ≈ 0.45981, µ(100) ≈ 0.42808, µ(150) ≈ 0.38698.

Thus the accuracy decreases slowly as Q grows. The estimated errors for Q = 75
(see Figure 13) and Q = 150 (see Figure 15) are almost identical because of the
roundoff error. For Q = 200 the estimated error is even bigger then the one for
Q = 150.

5.3. Numerical solution of regularized Volterra equation. Our last numeri-
cal experiment on reconstruction of the derivative is based on Euler’s method (4.8)-
(4.9) for solving Cauchy problem (4.3)-(4.4). The operator A in (4.4) is defined by
(4.7) with a = 0 and b = 1. We assume that the function to be differentiated is

fδ(x) = sin(πx) + δcos(3πx).

As in the previous subsections we take δ ∈ [0.01, 0.1], which corresponds to the
level of noise 1% – 10% of the maximum value of f(x) = sin(πx). The choice of
the parameters hn and εn in (4.8)-(4.4) is dictated by condition 4 of Theorem 4.2
and by condition 4 of Theorem 4.5. Therefore we use

hn = h0 (n+ 1)−0.5, εn = ε0 (n+ 1)−0.4.

Figures 17-20 contain the exact derivative f ′(x) = πcos(πx) and the derivatives
computed by (4.8)-(4.9) with δ = 0.01, 0.05 and 0.1. The argument x changes from
0 to 1 along the horizontal axis, epsn on Figures 17-20 denotes εn. The results
in these figures correspond to the initial guess p0 = 0, the number of iterations
N = 10 and h0 = 100. Actually any h0 ∈ [0.5, 100] provides convergence for
δ ∈ [0.01, 0.1], the difference is in its rate. If h0 = 100 and δ = 0.01 then the
discrepancy after 10 iterations is ∼ 10−17. As one can see from Figures 17 and 18
for the levels of noise 1% and 5% the computed derivatives are found with ε0 = 0.
The use of ε0 6= 0 does not give any gain in accuracy here. The reason for such a
phenomenon is probably the self-regularization of Volterra equations in the process
of their discrete approximation. This means that Volterra integral equations allow
one to generate stable numerical methods by application of quadrature formula
directly to the initial equation and the following theorem holds.
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Theorem 5.1. ([29]) Let
x∫
a

K(x, s)z(s) ds = fδ(x), ||fδ − f ||C[a,b] ≤ δ, a ≤ x ≤ b,(5.2)

and assume
1. mina≤x≤b |K(x, x)| > 0, K ′x(x, s) ∈ C(∆), K ′′xs(x, s) ∈ C(∆), where

∆ :=
{
x, s : a ≤ s ≤ x ≤ b

}
;

2. f(x) ∈ C(1)[a, b], fδ(x) ∈ C[a, b], f(a) = fδ(a) = 0.
Then

max
1≤i≤k

|ŷ(xi)− ỹi| ≤ c1τ + c2
δ

τ
.(5.3)

Here ŷ(x) is the unique solution to (5.2); ỹ = (ỹ1, ỹ2, ..., ỹk) is a unique solution
to the linear system

τ
i∑

j=1

K(xi, xj)z(xj) = fδ(xi), i = 1, 2, ..., k,(5.4)

xi = a+ iτ, τ = b−a
k ; the constants c1, c2 do not depend on τ and δ.

The right-hand side of (5.3) tends to 0 as δ → 0 if h(δ) = cδγ , 0 < γ < 1. Note
that in our case the functions f(x) and fδ(x) satisfy condition 2 of Theorem 5.1.
The fact that the assumption f(a) = fδ(a) = 0 is natural is briefly explained below
formula (4.1).

For δ = 0.1 the result obtained with ε0 = 0 is worse then the result obtained with
ε0 ∈ [10−3, 10−2]. One can compare Figures 19 and 20. The main difficulty occurs
in the neighborhood of 0, and ε0 ∈ [10−3, 10−2] helps to get better approximation.

Scheme (4.8)-(4.9) can be realized without knowledge (and even existence) of
the constants Mm, since the regularization parameter εn is the function of δ only.
This is an advantage of the approach based on (4.8)-(4.9). However this approach
does not give the explicitly computable estimation constants. Such estimates can be
found under the additional assumptions on p0 (see [1]).
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