On stable processes with boundary conditions

By Shinzo WATANABE

(Received Aug. 31, 1961)

§ 0. Introduction.

Let $x_t(w)$, $t \ge 0$, be the symmetric stable process with exponent α and I be the open interval (-1,1). For any right continuous path function $x_t(w)$ starting at some point $x \in I$, let $\sigma(w)$ be the first time $x_t(w)$ leaves I. The absorbing barrier stable process with exponent α is derived from $x_t(w)$ by killing it at time $\sigma(w)$. This process, which proves to be Markovian, was investigated by M. Kac [9] and J. Elliott [3]. Kac discovered the formal expression of the infinitesimal generator of the semi-group attached to this process and Elliott determined the domain of the generator in case $0 < \alpha < 1$. The first purpose of this paper is to determine this generator for every α $(0 < \alpha < 2)$, and this will be done in §§ 1-2.

In §3 we shall compute the distribution of the first exit place x_{σ} and shall obtain the following results

$$P_x(x_{\sigma} \in [1, \infty)) = 2^{1-\alpha} \frac{\Gamma(\alpha)}{\left[\Gamma\left(\frac{\alpha}{2}\right)\right]^2} \int_{-1}^{x} (1-y^2)^{\frac{\alpha}{2}-1} dy$$

$$P_x(x_{\sigma} \in d\xi) = \frac{\sin\frac{\alpha\pi}{2}}{\pi} \left(\frac{1-x^2}{\xi^2-1}\right)^{\frac{\alpha}{2}} \frac{d\xi}{|\xi-x|}, \quad |\xi| > 1.$$

These results have been obtained recently by H. Widom [14] in a somewhat different way. Our method consists in deriving the integro-differential equations governing these quantities and solving them.

In § 4 we shall determine the generator of the semi-group of the stable process on the space of continuous functions and shall also determine the generator of the absorbing barrier stable process on $I^-=(-\infty,0)$.

Elliott [2] determined the most general boundary conditions by which the operator

$$\tilde{\Omega}u(x) = P \int_{-1}^{1} \frac{u'(y)}{y-x} dy$$

becomes a generator of a Markov process on [-1,1]. In §5 we extend this result to the case with general α . Our boundary conditions are obtained immediately from Feller's boundary conditions for the one-dimensional diffusion

by replacing $u^+(-1)$ and $u^-(1)$ with

$$\delta_{-1}u = \lim_{\varepsilon \downarrow 0} \frac{u(-1+\varepsilon)-u(-1)}{\varepsilon^{\frac{\alpha}{2}}},$$

$$\delta_1 u = \lim_{\varepsilon \downarrow 0} \frac{u(1) - u(1 - \varepsilon)}{\varepsilon^{\frac{\alpha}{2}}}$$

respectively. We have the same boundary conditions at x=0 for the stable process on the half line $\tilde{I}^-=(-\infty,0]$. Now path functions of these processes can be constructed from those of the ordinary stable process. The local time of the "reflecting barrier process" on \tilde{I}^- at x=0 is defined and its inverse function is a one-sided stable process of exponent $-\frac{1}{2}$ for any α .

In §6 we shall discuss the properties of the path functions of the stable process. In particular, we shall prove that if $\mathbf{Z}(w)$ denotes the set of zero points of the path function $x_t(w)$, then, with probability one, $\mathbf{Z}(w) \cap (0,t]$ is empty if $0 < \alpha \le 1$, while a non-countable Borel set of the Hausdorff-Besicovitch dimension $1 - \frac{1}{\alpha}$ if $1 < \alpha \le 2$.

The auther wishes to express his hearty thanks to Prof. K. Ito and Prof. N. Ikeda for their kind suggestions and encouragement.

§ 1. The semi-group on L^1 .

The symmetric stable process with exponent α ($0 < \alpha \le 2$) is a temporally homogeneous Lévy process $x_l(w)$ ($x_0 = 0$) with the characteristic function

$$(1.1) E(e^{i\xi x_t}) = e^{-t|\xi|^{\alpha}}.$$

In the sequel, we shall assume that all path functions are right continuous, as we can by taking an appropriate version. A stable process induces a Markov process if we define the probability law governing the path starting at x by

$$(1.2) P_x(B) = P(x + x.(w) \in B)^{1}.$$

Its semi-group is

(1.3)
$$T_{t}f(x) = E_{x}(f(x_{t})) = \int_{-\infty}^{\infty} f(y)p(t, x-y)dy \qquad (t \ge 0)$$

with

$$(1.4) p(t,x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ix\xi} e^{-t|\xi|^{\alpha}} d\xi = \frac{1}{\pi} \int_{0}^{\infty} \cos x \xi e^{-t\xi^{\alpha}} d\xi.$$

Its resolvent operator is

¹⁾ Here B denotes a subset of the space of path functions.

(1.5)
$$G_{\lambda}f(x) = \int_{0}^{\infty} e^{-\lambda t} T_{t}f(x)dt = \int_{-\infty}^{\infty} f(y)g_{\lambda}(x-y)dy \qquad (\lambda > 0),$$

with

(1.6)
$$g_{\lambda}(x) = \int_0^\infty e^{-\lambda t} p(t, x) dt = \frac{1}{\pi} \int_0^\infty \frac{\cos x \xi}{\lambda + \xi^{\alpha}} d\xi \qquad (x \neq 0, \lambda > 0).$$

Hereafter we shall consider T_t as the semi-group of integral operators (1.3) acting on L^1 , and shall determine its infinitesimal generator.

First, if $f \in L^1$, then $T_t f \in L^1$ and

$$||T_t f||_1 \leq ||f||_1$$

(1.8)
$$||T_t f - f||_1 \to 0 \qquad (t \to 0).$$

(1.7) is obvious and so we shall check (1.8) only. Estimating $||T_t f - f||_1$ as

$$|| T_{t}f - f ||_{1} = \int_{-\infty}^{\infty} |\int_{-\infty}^{\infty} p(t, z)(f(x+z) - f(x)) dz | dx$$

$$\leq \int_{-\infty}^{\infty} p(t, z) \int_{-\infty}^{\infty} |f(x+z) - f(x)| dx \cdot dz$$

$$\leq \int_{|z| \leq \delta} p(t, z) \int |f(x+z) - f(x)| dx \cdot dz + 2||f||_{1} \int_{|z| > \delta} p(t, z) dz,$$

taking δ sufficiently small and then letting $t \downarrow 0$, we obtain (1.8). Hence T_t is a semi-group on L^1 in the Hille-Yosida sense.

Theorem 1.1. The infinitesimal generator Ω_1 of T_t is given as follows.

(1.9)
$$\Omega_{1}u(x) = \frac{c(\alpha)}{\alpha(\alpha - 1)} \frac{d^{2}}{dx^{2}} \int_{-\infty}^{\infty} u(y) \frac{1}{|x - y|^{\alpha - 1}} dy \qquad 1 < \alpha < 2$$

$$= \lim_{N \to \infty} \frac{1}{\pi} \frac{d^{2}}{dx^{2}} \int_{-N}^{N} u(y) \log \frac{1}{|x - y|} dy \qquad \alpha = 1$$

$$= \frac{c(\alpha)}{\alpha} \frac{d}{dx} \int_{-\infty}^{\infty} u(y) \frac{\operatorname{sgn}(y - x)}{|x - y|^{\alpha}} dy \qquad 0 < \alpha < 1,$$

where

(1.10)
$$c(\alpha) = \frac{1}{\pi} \Gamma(\alpha + 1) \sin \frac{\alpha \pi}{2},$$

with the domain

(1.11)
$$D(\Omega_1) = \{u \; ; \; u \in L^1, \; \Omega_1 u \in L^1 \} \;, \qquad 0 < \alpha < 2 \qquad \alpha \neq 1$$

$$= \{u \; ; \; u \in L^1, \; {}^{3}f \in L^1 \; \lim_{N \to \infty} \frac{1}{\pi} \; \frac{d^2}{dx^2} \int_{-N}^{N} u(y) \log \frac{1}{|x - y|} dy = f(x) \;$$
in the distribution sense \}, \quad \alpha = 1.

REMARK. If $u \in L^1$, $\int_{-\infty}^{\infty} \frac{u(y)}{|x-y|^{\beta}} dy$, $0 < \beta < 1$ is the sum of a bounded function and a function in L^1 . So we can define $\frac{d^n}{dx^n} \int_{-\infty}^{\infty} \frac{u(y)}{|x-y|^{\beta}} dy$ in the distri-

bution sense. Hence $\Omega_1 u$ is always defined if $u \in L^1$, $\alpha \neq 1$.

PROOF. Suppose $1 < \alpha < 2$, the proof of the other cases being similar. Put $u(x) = G_{\lambda}f(x)$ for $f \in L^{1}$. Taking the Fourier transforms of both sides, we have

(1.12)
$$\hat{a}(\sigma) = \frac{\hat{f}(\sigma)}{\lambda + |\sigma|^{\alpha}}.$$

Put
$$T_1(x) = \frac{1}{|x|^{\alpha-1}}$$
, and $T_2(x) = \frac{1}{|x|^{\alpha+1}}$.

Then
$$\frac{1}{\alpha(\alpha-1)} \frac{d^2}{dx^2} T_1 * u = T_2 * u$$
 (*: convolution).

Using the fact that $\hat{T}_2(\sigma) = -\frac{1}{c(\alpha)} |\sigma|^{\alpha}$, we get

$$(\widehat{T_2*u}, \psi(\sigma)) = (T_2*u(x), \widehat{\psi}(x))^{2})$$

$$= (u(x), T_{2,y}(\widehat{\psi}(x+y))) = (u(x), T_{2,y}(e^{-ix\sigma}\psi(y)))$$

$$= (u(x), \widehat{T}_{2,\sigma}(e^{-ix\sigma}\psi(\sigma))) = (u(x), -\frac{1}{c(\alpha)}\int |\sigma|^{\alpha}\psi(\sigma)e^{-ix\sigma}d\sigma)$$

$$= \left(-\frac{1}{c(\alpha)}\widehat{u}(\sigma)|\sigma|^{\alpha}, \psi(\sigma)\right).$$

This, combined with (1.12), implies

$$\lambda u - \frac{c(\alpha)}{\alpha(\alpha - 1)} \frac{d^2}{dx^2} T_1 * u = \hat{f},$$

namely

$$\lambda u - \frac{c(\alpha)}{\alpha(\alpha-1)} \frac{d^2}{dx^2} T_1 * u = f.$$

Thus we have $\Omega_1 u = \lambda u - f \in L^1$, so that u belongs to $D(\Omega_1)$ by (1.11).

Conversely let u belong to $D(\Omega_1)$ defined by (1.11). Then $f = \lambda u - \Omega_1 u$ belongs to L^1 and if we define v(x) by $v = G_{\lambda} f$, we have $\lambda v - \Omega_1 v = f$ from the fact obtained above. Put w = u - v. Then $w \in L^1$ and $\lambda w - \Omega_1 w = 0$. Taking the Fourier transforms, we have as above

$$\lambda \widehat{w} - \widehat{\Omega}_1 \widehat{w}(\sigma) = (\lambda + |\sigma|^{\alpha}) \widehat{w}(\sigma) = 0.$$

Hence $\hat{w}(\sigma) = 0$ i. e. w = 0, this means that $u = G_{\lambda}f$. This proves the theorem.

2. The absorbing barrier process.

Let I be the open interval (-1,1). We consider the symmetric stable pro-

²⁾ $(T, \psi) \equiv T(\psi)$ is the value of the functional T for a testing function $\psi \in (S)$, and $\hat{\psi}$ is the Fourier transform of ψ i.e. $\hat{\psi}(x) = \int_{-\infty}^{\infty} e^{-ix\sigma} \psi(\sigma) d\sigma$.

cess starting at $x \in I$ which is killed as soon as it leaves I. Then we have a Markov process on I. We define $\sigma(w)$ by

(2.1)
$$\sigma(w) = \inf(t; x(w) \in I).$$

Then transition probability of this process is given by

(2.2)
$$\bar{P}(t, x, E) = P_x(x_t(w) \in E, \sigma(w) > t)$$
 $x \in I, E \subset I.$

 $\bar{P}(t, x, E)$ is absolutely continuous with respect to Lebesgue measure:

(2.3)
$$\bar{P}(t, x, E) = \int_{\mathbb{R}^2} \bar{p}(t, x, y) \, dy^{3} \qquad E \subset I$$

Define $\bar{g}_{i}(x, y)$ by

(2.4)
$$\bar{g}_{\lambda}(x,y) = \int_0^\infty e^{-\lambda t} \bar{p}(t,x,y) dt \qquad x \in I.$$

We often use the following lemma due to Pólya-Szegö [11].

LEMMA 2.1 (Pólya-Szegö). Let $P_n(x)$ be the ultra-spherical polynomials defined by

$$\frac{1}{(1-2xw+w^2)^{\nu}} = P_0^{(\nu)}(x) + P_1^{(\nu)}(x)w + P_2^{(\nu)}(x)w^2 + \cdots + P_n^{(\nu)}(x)w^n + \cdots.$$

Then if $0 < \alpha < 2$, $\alpha \neq 1$, $x \in I$

(2.5)
$$\int_{-1}^{1} |x-y|^{1-\alpha} P_{m}^{\left(\frac{\alpha-1}{2}\right)}(y) (1-y^{2})^{\frac{\alpha}{2}-1} dy = \lambda_{m} P_{m}^{\left(\frac{\alpha-1}{2}\right)}(x), \qquad m = 0, 1, 2, \dots$$

where

(2.6)
$$\lambda_m = \frac{\Gamma\left(\frac{\alpha}{2}\right)\Gamma\left(1-\frac{\alpha}{2}\right)}{\Gamma(\alpha-1)} \cdot \frac{\Gamma(m+\alpha-1)}{\Gamma(m+1)}.$$

In particular, taking m=0

(2.7)
$$\int_{-1}^{1} |x-y|^{1-\alpha} (1-y^2)^{-\frac{\alpha}{2}-1} dy = \frac{\pi}{\sin \frac{\alpha \pi}{2}} \qquad x \in I.$$

First we prove the following theorem which was proved by Elliott [3] in case $0 < \alpha < 1$.

Theorem 2.1. If σ is defined by (2.1), then

(2.8)
$$E_x(\sigma) = \frac{(1-x^2)^{\frac{\alpha}{2}}}{\Gamma(\alpha+1)}, \qquad x \in I, \quad 0 < \alpha \le 2.$$

PROOF.4) Define u(x) by

³⁾ $\bar{p}(t, x, y)$ is defined to be zero if $y \notin I$.

⁴⁾ In case $\alpha = 2$, the above proof does not apply but in this case the result is well known.

(2.9)
$$u(x) = \frac{(1-x^2)^{-\frac{\alpha}{2}}}{\Gamma(\alpha+1)} \qquad |x| < 1$$
$$= 0 \qquad |x| \ge 1$$

From (2.7), we have

while it is obvious that

$$(2.11) \quad \frac{c(\alpha)}{\alpha(\alpha-1)} \frac{d^2}{dx^2} \int_{-1}^{1} \frac{u(y)}{|x-y|^{\alpha-1}} dy = c(\alpha) \int_{-1}^{1} \frac{u(y)}{|x-y|^{\alpha+1}} dy \qquad (|x| > 1).$$

Let F(x) be equal to -1 if |x| < 1 and to the right side of (2.11) if |x| > 1. Then F(x) is in L^1 and in order to prove that $\Omega_1 u = F$ in the distribution sense, it is enough to prove that $\frac{d}{dx} \int_{-1}^{1} \frac{u(y)}{|x-y|^{\alpha-1}} dy$ is continuous at $x = \pm 1$. This can be done by simple calculations so $u \in D(\Omega_1)$. Then we have [7]

$$u(x) = G_{\lambda} [\lambda u - F](x) = E_{x} \Big(\int_{0}^{\infty} e^{-\lambda t} [\lambda u(x_{t}) - F(x_{t})] dt \Big)$$

$$= E_{x} \Big(\int_{0}^{\sigma} e^{-\lambda t} [\lambda u(x_{t}) - F(x_{t})] dt \Big) + E_{x} (e^{-\lambda \sigma} u(x_{\sigma}))$$

$$= E_{x} \Big(\int_{0}^{\sigma} e^{-\lambda t} [\lambda u(x_{t}) + 1] dt \Big)$$

since $x_t \in I$ for $t < \sigma$, and $x_{\sigma} \notin I$.

Now

$$E_x\left(\int_0^{\sigma} e^{-\lambda t} dt\right) \leq E_x\left(\int_0^{\sigma} e^{-\lambda t} \left[\lambda u(x_t) + 1\right] dt\right) \leq (\lambda \|u\|_{\infty} + 1) E_x(\sigma).$$

Letting $\lambda \downarrow 0$, we have $u(x) = E_x(\sigma)$.

LEMMA 2.2.

$$\bar{p}(t, x, y) = \bar{p}(t, y, x)$$
 $\bar{g}_{\lambda}(x, y) = \bar{g}_{\lambda}(y, x)$

PROOF. We prove this lemma by using the method of Hunt [4] and Bochner's theory of subordination.

Let $W_1(\boldsymbol{B}_1, P_1)$, $W_2(\boldsymbol{B}_2, P_2)$ be two probability spaces and $W(\boldsymbol{B}, P)$ be their product probability space. Let $\theta_i(w_1)$, $w_1 \in W_1$, be a temporally homogeneous Lévy process $(\theta_0(w_1) \equiv 0)$ with increasing paths given by

$$E_1(e^{-\xi\theta t}) = e^{-t\xi^{-\frac{\alpha}{2}}}, \qquad \qquad \xi > 0, \quad t \ge 0.$$

Let $B_t(w_2)$, $w_2 \in W_2$, be a Wiener process given by

$$E_2(e^{-i\frac{\epsilon}{2}Bt}) = e^{-t|\xi|^2}$$
, $\xi \in R$, $t \ge 0$.

Then $x_t(w) = B_{\theta_t(w_1)}(w_2)$, $w = (w_1, w_2) \in W$, gives a version of the symmetric stable

process with exponent α .

Define $\bar{B}_s(w_2)$, $0 \le s \le t$, by

$$\bar{B}_s(w_2) = B_s(w_2) - \frac{s}{t} B_t(w_2) \qquad 0 \le s \le t.$$

Then [4]

- (i) the process $\{\bar{B}_s(w_2)\}\$ is independent of $B_t(w_2)$,
- (ii) the process $\{\bar{B}_s'(w_2)\}\$ defined by

$$\vec{B}_s'(w_2) = \vec{B}_{t-s}(w_2), \quad 0 \le s \le t$$

is a version of $\{\bar{B}_s(w_2)\}.$

Now5)

$$P_{x}(x_{t} \in E, \sigma > t) = P(x + x_{s}(w) \in I, \ 0 \leq s \leq t, \ x_{t}(w) \in E - x)$$

$$= P_{1} \times P_{2}(x + B_{\theta_{s}(w_{1})}(w_{2}) \in I, \ 0 \leq s \leq t, \ B_{\theta_{t}(w_{1})}(w_{2}) \in E - x)$$

$$= \int_{W_{1}} P_{2}(x + B_{\theta_{s}(w_{1})}(w_{2}) \in I, \ 0 \leq s \leq t, \ B_{\theta_{t}(w_{1})}(w_{2}) \in E - x) P_{1}(dw_{1})$$

$$= \int_{W_{1}} \cdot \int_{E} P_{2}(x + B_{\theta_{s}(w_{1})}(w_{2}) \in I, \ 0 \leq s \leq t, \ |B_{\theta_{t}(w_{1})}(w_{2}) = y - x) p_{B}(\theta_{t}(w_{1}), x, y) \, dy \cdot P_{1}(dw_{1})$$

$$= \int_{E} \cdot \int_{W_{1}} P_{2}(x + B_{\theta_{s}(w_{1})}(w_{2}) \in I, \ 0 \leq s \leq t, \ |B_{\theta_{t}(w_{1})}(w_{2}) = y - x) p_{B}(\theta_{t}(w_{1}), x, y) P_{1}(dw_{1}) \cdot dy$$

where $p_B(t, x, y) = \frac{1}{2\sqrt{\pi t}}e^{-\frac{(x-y)^2}{4t}}$.

Hence we have by the definition of $\vec{p}(t, x, y)$

$$\bar{p}(t, x, y) = \int_{W_1} P_2(x + B_{\theta_s} \in I, \ 0 \le s \le t \mid B_{\theta_t} = y - x) p_B(\theta_t, x, y) P_1(dw_1)$$

Now using (i) and (ii), we get

$$P_{2}(x+B_{\theta_{s}} \in I, \ 0 \leq s \leq t \mid B_{\theta_{t}} = y-x)$$

$$= P_{2}(x+\bar{B}_{\theta_{s}} + \frac{\theta_{s}}{\theta_{t}} \mid B_{\theta_{t}} \in I, \ 0 \leq s \leq t \mid B_{\theta_{t}} = y-x)$$

$$= P_{2}(x+\bar{B}_{\theta_{s}} + \frac{\theta_{s}}{\theta_{t}} \mid (y-x) \in I, \ 0 \leq s \leq t \mid B_{\theta_{t}} = y-x)$$

$$= P_{2}(x+\bar{B}_{\theta_{s}} + \frac{\theta_{s}}{\theta_{t}} \mid (y-x) \in I, \ 0 \leq s \leq t)$$

$$= P_{2}(x+\bar{B}_{\theta_{t}-\theta_{s}} + \frac{\theta_{s}}{\theta_{t}} \mid (y-x) \in I, \ 0 \leq s \leq t)$$

$$= P_{2}(y+\bar{B}_{\theta_{t}-\theta_{s}} + \frac{\theta_{t}-\theta_{s}}{\theta_{t}} \mid (x-y) \in I, \ 0 \leq s \leq t)$$

$$= P_{2}(y+B_{\theta_{t}-\theta_{s}} \in I, \ 0 \leq s \leq t \mid B_{\theta_{t}} = x-y).$$

⁵⁾ $E-x = \{y : y = z-x, z \in E\}.$

But the following equality holds in general⁶⁾;

(2.12)
$$E_1(f[\theta_t(w_1) - \theta_s(w_1); 0 \le s \le t])$$
$$= E_1(f[\theta_{t-s}(w_1); 0 \le s \le t]).$$

Thus we have

$$\begin{split} \bar{p}(t,x,y) &= \int_{W_1} P_2(x + B_{\theta_8} \in I, \ 0 \leq s \leq t \mid B_{\theta_t} = y - x) p_B(\theta_t, x, y) P_1(dw_1) \\ &= \int_{W_1} P_2(y + B_{\theta_t - \theta_8} \in I, \ 0 \leq s \leq t \mid B_{\theta_t} = x - y) p_B(\theta_t, x, y) P_1(dw_1) \\ &= \int_{W_1} P_2(y + B_{\theta_t - s} \in I, \ 0 \leq s \leq t \mid B_{\theta_t} = x - y) p_B(\theta_t, y, x) P_1(dw_1) \\ &= \bar{p}(t, y, x). \end{split}$$

LEMMA 2.3.

(2.13)
$$E_x(e^{-\lambda\sigma}; x_{\sigma} \in E) = c(\alpha) \int_{E} \int_{I} \frac{\bar{g}_{\lambda}(x, y)}{|y - \xi|^{\alpha+1}} dy d\xi \qquad E \subset I^c.$$

PROOF. Put $\pi_{\lambda}(x, E) = E_x(e^{-\lambda \sigma}; x_{\sigma} \in E)$. We first prove that $\pi_{\lambda}(x, E)$ is absolutely continuous with respect to the Lebesgue measure.

The function u(x) in (2.9) belongs to $D(\Omega_1)$, as we have seen above, and satisfies $u(x) = \int_{-1}^{1} \bar{g}_{\lambda}(x, y) (\lambda u(y) + 1) dy$. Now

$$g_{\lambda}(x-y) = \bar{g}_{\lambda}(x,y) + \int_{T^c} \pi_{\lambda}(x,d\xi) g_{\lambda}(\xi-y)$$

holds for every $x \in I$ and almost every y. Then noting the symmetry of $\bar{g}_{\lambda}(x, y)$, we have

$$u(y) = \int_{-1}^{1} \bar{g}_{\lambda}(x, y) (\lambda u(x) + 1) dx$$

= $\int_{-1}^{1} g_{\lambda}(x - y) (\lambda u(x) + 1) dx - \int_{-1}^{1} \left\{ \int_{I_{c}} \pi_{\lambda}(x, d\xi) g_{\lambda}(\xi - y) \right\} (\lambda u(x) + 1) dx.$

On the other hand

$$u(y) = \int_{-\infty}^{\infty} g_{\lambda}(x-y)(\lambda u(x) - \Omega_1 u(x)) dx.$$

Comparing these two equations, we get

$$\int_{I_c} g_{\lambda}(\xi-y)(\lambda u(\xi)-\Omega_1 u(\xi)) d\xi = \int_{I_c} g_{\lambda}(\xi-y) \int_{-1}^1 (\lambda u(x)+1) \pi_{\lambda}(x,d\xi) dx.$$

Since the potential determines its measure uniquely, we have

⁶⁾ It is easy to prove (2.12) if f is a tame function and then taking limits we have (2.12).

$$(\lambda u(\xi) - \Omega_1 u(\xi)) d\xi = \int_{\Gamma} (\lambda u(x) + 1) \pi_{\lambda}(x, d\xi) dx.$$

Taking λ to be $-\lambda \|u\|_{\infty} + 1 > 0$, we see that $\pi_{\lambda}(x, d\xi)$ is absolutely continuous with respect to Lebesgue measure $d\xi$. Hence we can wright

$$\pi_{\lambda}(x, d\xi) = \pi_{\lambda}(x, \xi) d\xi$$
.

Now it is easy to see that if $u \in \mathcal{D}^2 = \{u \in C^2, \text{ with compact support}\}\$ then

$$\Omega_1 u(x) = \frac{c(\alpha)}{\alpha(\alpha - 1)} \frac{d^2}{dx^2} \int_{-\infty}^{\infty} \frac{u(y)}{|x - y|^{\alpha - 1}} dy$$

$$= \int_{-\infty}^{\infty} \left[u(y) - u(x) - (y - x)u'(x) \right] c(\alpha) \frac{dy}{|x - y|^{\alpha + 1}}.$$

For any element u of \mathcal{D}^2 such that $u(x) \equiv 0$ for $x \in \overline{I}$, we have

$$u(x) = \int_{-1}^{1} \bar{g}_{\lambda}(x, y) (\lambda u(y) - \Omega_{1}u(y)) dy + \int_{1e} \pi_{\lambda}(x, \xi) u(\xi) d\xi$$
$$= -\int_{-1}^{1} \bar{g}_{\lambda}(x, y) \Omega_{1}u(y) dy + \int_{1e} \pi_{\lambda}(x, \xi) u(\xi) d\xi.$$

Hence if $x \in I$,

$$0 = -\int_{-1}^{1} \bar{g}_{\lambda}(x,y) \Omega_{1} u(y) dy + \int_{10}^{10} \pi_{\lambda}(x,\xi) u(\xi) d\xi.$$

So we have

$$\int_{I_c} \pi_{\lambda}(x,\xi) u(\xi) d\xi = \int_{-1}^{1} \bar{g}_{\lambda}(x,y) \Omega_1 u(y) dy$$

$$= \int_{I} \bar{g}_{\lambda}(x,y) \int_{-\infty}^{\infty} \left[u(\xi) - u(y) - (\xi - y) u'(y) \right] \frac{c(\alpha)}{|y - \xi|^{\alpha + 1}} d\xi dy$$

$$= \int_{I} \bar{g}_{\lambda}(x,y) \int_{I_c} u(\xi) \frac{c(\alpha)}{|y - \xi|^{\alpha + 1}} d\xi dy$$

$$= \int_{I_c} u(\xi) c(\alpha) \int_{I} \frac{\bar{g}_{\lambda}(x,y)}{|y - \xi|^{\alpha + 1}} dy d\xi,$$

i.e.

$$\pi_{\lambda}(x,\xi) = c(\alpha) \int_{I} \frac{\bar{g}_{\lambda}(x,y)}{|y-\xi|^{\alpha+1}} dy.$$

REMARK. It is natural to conjecture that if we put $x_{\sigma-} = \lim_{n \to \infty} x_{\sigma-\frac{1}{n}}$ then $E_x(e^{-\lambda\sigma}; x_{\sigma-} \in E, x_{\sigma} \in F) = \int_F \cdot \int_E c(\alpha) \frac{\bar{g}_{\lambda}(x,y)}{|y-\xi|^{\alpha+1}} dy d\xi$. In fact this is true and we can see from this that σ and x_{σ} are independent under the condition that $x_{\sigma-}$ be given.

LEMMA 2.4. Let $f \in \mathcal{B}(I)^{8}$, then

⁷⁾ The following argument is due to N. Ikeda.

⁸⁾ $\mathcal{D}(I) = \{u : \text{ bounded and measurable on } I\}.$

$$u(x) = \overline{G}_{\lambda} f(x) \equiv \int_{I} \overline{g}_{\lambda}(x, y) f(y) dy$$

belongs to C(I)99 and satisfies

$$\lambda u(x) - \bar{\Omega}u(x) = f(x)$$

where

(2.14)
$$\bar{\Omega}u(x) = \frac{c(\alpha)}{\alpha(\alpha - 1)} \frac{d^{2}}{dx^{2}} \int_{-1}^{1} \frac{u(y)}{|x - y|^{\alpha - 1}} dy^{10}, \qquad 1 < \alpha < 2$$

$$= \frac{1}{\pi} \frac{d^{2}}{dx^{2}} \int_{-1}^{1} u(y) \log \frac{1}{|x - y|} dy$$

$$\left(= \frac{1}{\pi} \frac{d}{dx} P \int_{-1}^{1} u(y) \frac{1}{y - x} dy \right), \qquad \alpha = 1$$

$$= \frac{c(\alpha)}{\alpha(\alpha - 1)} \frac{d^{2}}{dx^{2}} \int_{-1}^{1} \frac{u(y)}{|x - y|^{\alpha - 1}} dy$$

$$\left(= \frac{c(\alpha)}{\alpha} \frac{d}{dx} \int_{-1}^{1} u(y) \frac{\operatorname{sgn}(y - x)}{|x - y|^{\alpha}} dy \right), \qquad 0 < \alpha < 1.$$

PROOF. From Lemmas 2.2 and 2.3, we have

$$u(y) = \overline{G}_{\lambda} f(y) = \int_{-1}^{1} \overline{g}_{\lambda}(x, y) f(x) dx$$

$$= \int_{-1}^{1} g_{\lambda}(x - y) f(x) dx - \int_{-1}^{1} c(\alpha) \int_{|z| > 1} \int_{|u| < 1} \frac{\overline{g}_{\lambda}(x, u)}{|z - u|^{\alpha + 1}} g_{\lambda}(z - y) du dz f(x) dx$$

$$= \int_{-1}^{1} g_{\lambda}(x - y) f(x) dx - c(\alpha) \int_{|z| > 1} g_{\lambda}(z - y) \int_{|u| < 1} \frac{\overline{G}_{\lambda} f(u)}{|z - u|^{\alpha + 1}} du dz.$$

The first term is continuous in y since f is bounded and g_{λ} is in L^{1} . As for the second term, we have, by Theorem 2.1,

$$|\overline{G}_{\lambda}f(u)| \leq \frac{\|f\|_{\infty}}{\Gamma(\alpha+1)} (1-u^2)^{\frac{\alpha}{2}}$$

so if we put $F(z) = c(\alpha) \int_{|u| < 1} \frac{\overline{G}_{\lambda} f(u)}{|z - u|^{\alpha + 1}} du$, |z| > 1 then

$$F(z) = 0\left(\frac{1}{(|z|-1)^{\frac{\alpha}{2}}}\right) \quad \text{near} \quad |z| = 1$$

$$=0\left(\frac{1}{|z|^{\alpha+1}}\right)$$
 near $|z|=\infty$.

Now let $y \in I$ and y_n tend to y. We may assume $|y_n| < 1 - \varepsilon$ for some $\varepsilon > 0$. Then, since $g_{\lambda}(x)$ is bounded and continuous in $|x| > \varepsilon$,

⁹⁾ $C(I) = \{u : \text{ bounded and continuous on } I\}.$

¹⁰⁾ The second derivative is understood in the Radon-Nikodyum sense or what is the same in the distribution sense.

$$\lim_{n \to \infty} \int_{|z| > 1} g_{\lambda}(z - y_n) F(z) dz = \int_{|z| > 1} g_{\lambda}(z - y) F(z) dz$$

by Lebesgue convergence theorem. This proves that u(y) is continuous on I. Now $u(y) = \overline{G}_{\lambda} f(y) = G_{\lambda} \varphi(y)$, where

$$\varphi(x) = f(x) \qquad x \in I$$

$$= -c(\alpha) \int_{|u| < 1} \frac{\overline{G}_{\lambda} f(u)}{|x - u|^{\alpha + 1}} du \qquad x \in I^{c}.$$

This equality holds for all y if we define u(y) to be 0 for $y \in I$. Since $\varphi \in L^1$, it follows from Theorem 1.1 that $u \in D(\Omega_1)$ and satisfies

$$\lambda u(x) - \Omega_1 u(x) = \varphi(x)$$
.

In particular, we have on I

$$\lambda u(x) - \bar{\Omega}u(x) = f(x)$$
.

LEMMA 2.5. Let $u \in C(I)$ and $\bar{\Omega}u = 0$ a.e. on I. Then $u \equiv 0$ on I.

PROOF.¹¹⁾ (i) Let $\mathcal{L}^2 = L^2(I, dm)$ where $dm(y) = (1-y^2)^{\frac{\alpha}{2}-1} dy$. For $f \in \mathcal{L}^2$, define Kf by

$$Kf(x) = \int_{-1}^{1} \frac{f(y)}{|x-y|^{\alpha-1}} dm(y) = \int_{-1}^{1} \frac{f(y)}{|x-y|^{\alpha-1}} (1-y^2)^{\frac{\alpha}{2}-1} dy.$$

Lemma 2.1 means that $P_m^{\left(\frac{\alpha-1}{2}\right)}(x)$ $m=0,1,2,\cdots$, form in \mathcal{L}^2 a complete orthogonal system of eigenfunctions of the operator K. Since the eigenvalues are bounded, K is a bounded symmetric operator on \mathcal{L}^2 .

(ii) Let $f \in \mathcal{L}^2$ and Kf = 0 in \mathcal{L}^2 . Then¹²⁾

$$Kf = \sum_{m=0}^{\infty} (Kf, \vec{P}_m) \vec{P}_m = \sum_{m=0}^{\infty} (f, K\vec{P}_m) \vec{P}_m = \sum_{m=0}^{\infty} \lambda_m (f, \vec{P}_m) \vec{P}_m = 0.$$

Since $\lambda_m \neq 0$, $(f, \bar{P}_m) = 0$, $m = 0, 1, 2, \cdots$. This means f = 0 in \mathcal{L}^2 .

(iii) Let u be such that $u(x)(1-x^2)^{1-\frac{\alpha}{2}} \in \mathcal{L}^2$ and $\int_{-1}^1 \frac{u(y)}{|x-y|^{\alpha-1}} dy = 0$ on I. Then u(x) = 0 a.e. on I.

If we put $f(x) = u(x)(1-x^2)^{1-\frac{\alpha}{2}}$, then $f \in \mathcal{L}^2$ and

$$Kf(x) = \int_{-1}^{1} \frac{u(y)}{|x-y|^{\alpha-1}} dy = 0 \ x \in I.$$
 From (ii) $u(x)(1-x^2)^{1-\frac{\alpha}{2}} = 0$ a. e.

on I. Hence u(x) = 0 a. e. on I.

12)
$$\bar{P}_m = \frac{P_m^{\left(\frac{\alpha-1}{2}\right)}}{\left\|P_m^{\left(\frac{\alpha-1}{2}\right)}\right\|}$$

¹¹⁾ We prove this lemma only in the case $\alpha \neq 1$. If $\alpha = 1$, this lemma can be proved easily using the theory of finite Hilbert transforms [13, pp. 178-179].

(iv) Let $u \in C(I)$ be such that for some a and b

$$\int_{-1}^{1} \frac{u(y)}{|x-y|^{\alpha-1}} \, dy = ax + b \quad \text{a. e. on } I.$$

Then $u \equiv 0$ on I.

From Lemma 2.1 we can take some a', b' such that $v(y) = (1-y^2)^{\frac{a}{2}-1}(a'y+b')$ satisfies $\int_{-1}^{1} \frac{v(y)}{|y-x|^{\alpha-1}} dy = ax+b$.

Then if we put w(x) = u(x) - v(x), $w(x)(1-x^2)^{1-\frac{\alpha}{2}} \in \mathcal{L}^2$ and

$$\int_{-1}^{1} \frac{w(y)}{|y-x|^{\alpha-1}} \, dy = 0.$$

Hence from (iii), w(x) = 0 on I: that is u(x) = v(x) on I. On the other hand, v(x) is bounded only when a' = b' = 0 and u(x) is bounded by assumption. So we have a' = b' = 0, $u(x) \equiv 0$ and a = b = 0.

Now the lemma follows immediately from (iv).

LEMMA 2.6. Let $u \in C(I)$. If $\lambda u - \bar{\Omega}u = 0$ on I then $u \equiv 0$.

PROOF. Put $F(x) = \sum_{n=0}^{\infty} (-\lambda)^n \overline{G}_{\lambda}^n u(x)$. Since $\|\overline{G}_{\lambda} u\|_{\infty} < \frac{1}{\lambda} \|u\|_{\infty}$, this series converges uniformly on any compact set in I. Hence F is bounded and continuous on I, and satisfies $F(x) - \lambda \overline{G}_{\lambda} F(x) = u(x)$. Then, from Lemma 2.4, $\overline{\Omega} F = 0$. This, in view of Lemma 2.5, implies $F \equiv 0$ on I. Hence $u \equiv 0$ on I.

Now we can determine the generator (§) in the sense of [7] of the absorbing barrier stable process:

$$\mathfrak{G} = (\lambda - \overline{G}_{\lambda}^{-1}) : D(\mathfrak{G}) \equiv \overline{G}_{\lambda}(\mathfrak{G}(I)) \longrightarrow \mathfrak{G}(I)/\mathfrak{N}$$

where $\mathfrak{N} = \{f ; \overline{G}_{\lambda}f = 0\} \lceil 7 \rceil$.

Theorem 2.2. The generator \S of the absorbing barrier stable process is given by

$$\mathfrak{S}u(x) = \bar{\Omega}u(x)$$

where $\bar{\Omega}u(x)$ is defined in (2.14) with the domain

$$D(\mathfrak{G}) = D\bar{\Omega} \equiv \{u : u \in C(I), \bar{\Omega}u \in \mathfrak{B}(I)\}$$

and

$$\mathfrak{R} = \{f; f = 0 \ a. e. \ on \ I\}.$$

PROOF. Let $u(x) = \overline{G}_{\lambda} f(x)$ for $f \in \mathcal{B}(I)$. From Lemma 2.4, $u \in C(I)$ and $\lambda u - \overline{\Omega} u = f$.

On the other hand, if $u \in D(\bar{\Omega})$ we put $v = \bar{G}_{\lambda}(\lambda u - \bar{\Omega}u)$. Then from Lemma 2.4, $v \in C(I)$ and $\lambda v - \bar{\Omega}v = \lambda u - \bar{\Omega}u$. This means that w = u - v satisfies $\bar{\Omega}w = \lambda w$ and from Lemma 2.6, $w \equiv 0$ on I: that is $u = v = \bar{G}_{\lambda}(\lambda u - \bar{\Omega}u)$.

Finally if $\bar{G}_{\lambda}f = 0$, then $f = \lambda \bar{G}_{\lambda}f - \bar{\Omega}\bar{G}_{\lambda}f = 0$ a.e. on *I*.

Corollary. If $u \in D(\bar{\Omega})$, then for some constant M > 0

$$|u(x)| < M(1-x^2)^{\frac{\alpha}{2}} \qquad x \in I.$$

This follows immediately from Theorems 2.1 and 2.2.

§ 3. Integro-differential equations for some quantities.

Definition 3.1.

$$\xi_1^{\lambda}(x) = E_x(e^{-\lambda\sigma}; x_{\sigma} \in [1, \infty))$$

$$\xi_{-1}^{\lambda}(x) = E_x(e^{-\lambda\sigma}; x_{\sigma} \in (-\infty, -1]).$$

Definition 3.2.

$$\widetilde{\Omega}u(x) = \overline{\Omega}u(x) + \frac{c(\alpha)}{\alpha} \frac{u(1)}{(1-x)^{\alpha}} + \frac{c(\alpha)}{\alpha} \frac{u(-1)}{(1+x)^{\alpha}}.$$

$$D(\widetilde{\Omega}) = \{ u \in C(\overline{I})^{13}, \widetilde{\Omega}u(x) \in \mathcal{B}(I) \}.$$

REMARK. If $u \in C(\overline{I})$ and u' exists such that $u' \in L^1(I)$, then

$$\widetilde{\Omega}u(x) = \frac{c}{\alpha(\alpha - 1)} \frac{d}{dx} \int_{-1}^{1} \frac{u'(y)}{|x - y|^{\alpha - 1}} dy \qquad \alpha \neq 1$$

$$= \frac{1}{\pi} P \int_{-1}^{1} \frac{u'(y)}{y - x} dy \qquad \alpha = 1.$$

THEOREM 3.1. $\xi_1^{\lambda}(x)$, (resp. $\xi_{-1}^{\lambda}(x)$), is the unique solution of

$$(3.1) \lambda u - \tilde{\Omega}u = 0$$

with the boundary conditions u(-1)=0, u(1)=1, (resp. u(-1)=1, u(1)=0).

PROOF. It is easy to check that $\xi_1^{\lambda}(x)$ is continuous on \bar{I} and $\xi_1^{\lambda}(-1) = 0$, $\xi_1^{\lambda}(1) = 1$. We now prove that $\xi_1^{\lambda}(x)$ is the weak solution of the equation (3.1). From Lemma 2.3, we have

$$\xi_1^{\lambda}(x) = \int_1^{\infty} \pi_{\lambda}(x,\xi) d\xi = \frac{c(\alpha)}{\alpha} \int_{-1}^1 \frac{\bar{g}_{\lambda}(x,y)}{(1-y)^{\alpha}} dy.$$

Denoting by T(x) the function $\frac{c(\alpha)}{\alpha(\alpha-1)} \frac{1}{|x|^{\alpha-1}}$ in case $\alpha \neq 1$, we have for every $\varphi \in \mathcal{D}(I)^{14}$,

$$(\bar{\Omega}\xi_{1}^{\lambda}(x),\varphi(x)) = \left(\frac{d^{2}}{dx^{2}}T*[\xi_{1}^{\lambda}],\varphi\right) = (T*[\xi_{1}^{\lambda}],\varphi'') = (\xi_{1}^{\lambda},T*\varphi'')$$

$$= (\xi_{1}^{\lambda},(T*\varphi)'') = (\xi_{1}^{\lambda},\bar{\Omega}\varphi) = \left(\frac{c(\alpha)}{\alpha}\int_{-1}^{1}\frac{\bar{g}_{\lambda}(x,y)}{(1-y)^{\alpha}}dy,\bar{\Omega}\varphi(x)\right)$$

$$[f] = f$$
 on I
= 0 on I^c

¹³⁾ $C(\overline{I}) = \{u : \text{bounded and continuous on } \overline{I} = [-1, 1]\}.$

¹⁴⁾ $\mathcal{D}\{(I) = \{\varphi : \varphi \in C^{\infty} \text{ and } S(\varphi) \subset I\}$. Note that $\mathcal{D}(I) \subset D(\overline{\Omega})$. For $f \in C(\overline{I})$, we define $[f] \in L^1(R^1)$ by

$$\begin{split} &= \left(\frac{c(\alpha)}{\alpha} \frac{1}{(1-y)^{\alpha}}, \overline{G}_{\lambda} \overline{\Omega} \varphi(y)\right) = \left(\frac{c(\alpha)}{\alpha} \frac{1}{(1-y)^{\alpha}}, \lambda \overline{G}_{\lambda} \varphi(y) - \varphi(y)\right) \\ &= \left(\frac{c(\alpha)}{\alpha} \frac{1}{(1-y)^{\alpha}}, \lambda \overline{G}_{\lambda} \varphi(y)\right) - \left(\frac{c(\alpha)}{\alpha} \frac{1}{(1-y)^{\alpha}}, \varphi(y)\right) \\ &= (\lambda \xi_{\lambda}^{\lambda}(x), \varphi(x)) - \left(\frac{c(\alpha)}{\alpha} \frac{1}{(1-x)^{\alpha}}, \varphi(x)\right). \end{split}$$

This proves that

$$\begin{split} \bar{\mathcal{Q}}\xi_{1}^{\lambda}(x) &= \lambda \xi_{1}^{\lambda}(x) - \frac{c(\alpha)}{\alpha} \frac{1}{(1-x)^{\alpha}} \\ &= \lambda \xi_{1}^{\lambda}(x) - \frac{c(\alpha)}{\alpha} \frac{\xi_{1}^{\lambda}(1)}{(1-x)^{\alpha}} - \frac{c(\alpha)}{\alpha} \frac{\xi_{1}^{\lambda}(-1)}{(1+x)^{\alpha}}, \end{split}$$

i. e. $\tilde{\Omega}\xi_{1}^{\lambda}(x) = \lambda \xi_{1}^{\lambda}(x)$.

The Uniqueness follows immediately from Lemma 2.6.

COROLLARY.

$$(3.2) \xi_1(x) = P_x(x_\sigma \in [1, \infty)) = 2^{1-\alpha} \frac{\Gamma(\alpha)}{\left[\Gamma\left(\frac{\alpha}{2}\right)\right]^2} \int_{-1}^x (1-y^2)^{\frac{\alpha}{2}-1} dy.$$

(3.3)
$$\xi_{-1}(x) = P_x(x_{\sigma} \in (-\infty, -1]) = 1 - \xi_1(x).$$

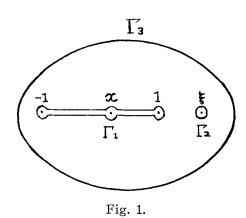
PROOF. $\xi_1(x)$ is the unique solution in $D(\tilde{\Omega})$ of $\tilde{\Omega}u = 0$, with boundary conditions u(-1) = 0, u(1) = 1. We can easily solve this equation using (2.7) and obtain (3.2).

It is, in fact, possible to do more than the corollary and we can obtain the density $\pi(x, \xi)$ of the measure $P_x(x_{\sigma} \in d\xi)$.

THEOREM 3.2.

(3.4)
$$\pi(x,\xi) = \frac{\sin\frac{\alpha\pi}{2}}{\pi} \left(\frac{1-x^2}{\xi^2-1}\right)^{\frac{\alpha}{2}} \frac{1}{|\xi-x|} \qquad x \in I, \quad \xi \notin I.$$

PROOF. From Lemma 2.3, $\pi(x,\xi) = c(\alpha) \int_I \frac{\bar{g}_0(x,y)}{|y-\xi|^{\alpha+1}} dy$. Hence $\pi(\cdot,\xi)$ is the unique solution in C(I) of


$$\bar{\Omega}u(x) = -c(\alpha) \frac{1}{|x-\xi|^{\alpha+1}}.$$

Take, for instance, $\xi > 1$ and applying Cauchy's theorem to the function

$$f(z) = \frac{(z^2 - 1)^{\frac{\alpha}{2}}}{\xi - z} \frac{1}{(z - x)^{\alpha - 1}}$$
 (real if $z > 1$)

which is holomorphic in the domain bounded by Γ_1 , Γ_2 and Γ_3 (Fig. 1), we have

$$\int_{\Gamma_1} f(z)dz + \int_{\Gamma_2} f(z)dz = \int_{\Gamma_3} f(z)dz,$$

and also

$$\frac{1}{2\pi i} \int_{\Gamma_1} f(z) dz = -\frac{\sin\frac{\alpha\pi}{2}}{\pi} \int_{-1}^{1} \frac{(1-y^2)^{\frac{\alpha}{2}}}{|y-x|^{\alpha-1}} \frac{dy}{\xi-y}$$

$$\frac{1}{2\pi i} \int_{\Gamma_2} f(z) dz = -\frac{(\xi^2 - 1)^{\frac{\alpha}{2}}}{(\xi - x)^{\alpha-1}}$$

$$\frac{1}{2\pi i} \int_{\Gamma_2} f(z) dz = -(\xi + (\alpha - 1)x).$$

From this we have

$$\frac{c(\alpha)}{\alpha(\alpha-1)} \frac{d^2}{dx^2} \int_{-1}^{1} \left\{ \frac{\sin \frac{\alpha \pi}{2}}{\pi} \left(\frac{1-y^2}{\xi^2-1} \right)^{\frac{\alpha}{2}} \frac{1}{\xi-y} \right\} \frac{1}{|x-y|^{\alpha-1}} dy = -c(\alpha) \frac{1}{(\xi-x)^{\alpha+1}}$$

Using (3.4), we can prove the following theorem which has been proved recently by H. Widom [14].

Theorem 3.3. The 0-th order Green function $\bar{g}_0(x, y)$ is given by

$$\bar{g}_0(x,y) = F(|x-y|) - \int_{|\xi|>1} \pi(x,\xi) F(|\xi-y|) d\xi$$

where

$$F(\eta) = rac{1}{2\cosrac{\pilpha}{2} \Gamma(lpha)} \eta^{lpha-1} \qquad 0 < lpha < 2$$
 , $\quad lpha \neq 1$ $= rac{1}{\pi}\lograc{1}{\eta} \qquad \qquad lpha = 1$.

DEFINITION 3.3.

(3.5)
$$\eta_1(x) = \frac{2^{1-\frac{\alpha}{2}}}{\alpha \left[\Gamma\left(\frac{\alpha}{2}\right)\right]^2} \frac{(1+x)^{\frac{\alpha}{2}}}{(1-x)^{1-\frac{\alpha}{2}}}$$

(3.6)
$$\eta_{-1}(x) = \eta_1(-x)$$

(3.7)
$$\eta_1^{\lambda}(x) = \eta_1(x) - \lambda \int_{-1}^{1} \bar{g}_{\lambda}(x, y) \, \eta_1(y) \, dy$$

(3.8)
$$\eta_{-1}^{\lambda}(x) = \eta_{-1}(x) - \lambda \int_{-1}^{1} \bar{g}_{\lambda}(x, y) \eta_{-1}(y) \, dy.$$

Theorem 3.4. For $\lambda \ge 0$

(i)
$$\lim_{\varepsilon \downarrow 0} \frac{\bar{g}_{\lambda}(x, 1-\varepsilon)}{\varepsilon^{\frac{\alpha}{2}}} = \eta_{1}^{\lambda}(x)$$

$$\lim_{\varepsilon \downarrow 0} \frac{\bar{g}_{\lambda}(x, \varepsilon-1)}{\varepsilon^{\frac{\alpha}{2}}} = \eta_{-1}^{\lambda}(x).$$

(ii) If
$$u(x) = \int_{-1}^{1} \tilde{g}_{\lambda}(x, y) f(y) dy$$
, then
$$\delta_{1} u = \lim_{\varepsilon \downarrow 0} \frac{u(1) - u(1 - \varepsilon)}{\varepsilon^{\frac{\alpha}{2}}} \text{ exists and is given by}$$

$$\delta_{1} u = -\int_{-1}^{1} \eta_{\lambda}(y) f(y) dy.$$

Similarly

$$\delta_{-1}u = \lim_{\varepsilon \downarrow 0} \frac{u(\varepsilon - 1) - u(-1)}{\varepsilon^{\frac{\alpha}{2}}} = \int_{-1}^{1} \eta^{\lambda}_{-1}(y) f(y) dy.$$

We can prove this theorem by deriving the integro-differential equation for $\int_{-1}^{x} \eta_{1}^{\lambda}(y) dy$ and also even more directly by using a recent result of H. Kesten.¹⁵⁾

$\S 4$. The generator of the semi-group on $C(R^1)$ and the half interval case.

In this section we consider the case of the half interval $I^-=(-\infty,0)$. First of all, we determine the generator of the semi-group (1.3) of the symmetric stable process acting on $C(R^1)$. It is easy to see that if $f \in C(R^1)$, then $T_t f \in C(R^1)$. Here the generator is the operator $\lambda - G_{\lambda}^{-1}$.

THEOREM 4.1. The generator is given as follows:

$$\Omega u(x) = \lim_{A \downarrow \infty} \frac{c(\alpha)}{\alpha(\alpha - 1)} \frac{d^2}{dx^2} \int_{-A}^{A} \frac{u(y)}{|x - y|^{\alpha - 1}} dy, \quad u \in D(\Omega),$$

where

$$D(\mathcal{Q}) = \{ u \in C(R^1); \forall A > 0, \int_{-A}^{A} \frac{u(y)}{|x-y|^{\alpha-1}} dy \in C^2(-A, A) \text{ and } \frac{c(\alpha)}{\alpha(\alpha-1)} \frac{d^2}{dx^2} \int_{-A}^{A} \frac{u(y)}{|x-y|^{\alpha-1}} dy \text{ converges at every point } x \text{ to } a \text{ function } f(x) \in C(R^1) \text{ when } A \uparrow \infty, \}$$

and

$$\mathfrak{N} \equiv \{f; G_{\lambda}f = 0\} = \{0\}$$
.

PROOF

Let $u = G_{\lambda}f$, $f \in C(R^{1})$. We have for every A > 0 and $x \in I_{A} = (-A, A)^{17}$

¹⁵⁾ H. Kesten, Random walks with absorbing barriers and Toeplitz forms, Illinois J. Math., 5 (1961), 267-290.

¹⁶⁾ $C(R^1) = \{f : \text{ bounded and continuous on } R^1.\}$

¹⁷⁾ If we consider the absorbing barrier process on I_A , we denote the generator, green function, etc. as $\overline{\Omega}_A$, $\overline{g}_A^A(x,y)$, etc.

$$u(x) = \int_{-\infty}^{\infty} g_{\lambda}(x-y)f(y)dy$$

$$= \int_{|y| < A} \bar{g}_{\lambda}^{A}(x,y)f(y)dy + \int_{|\xi| > A} \pi_{\lambda}^{A}(x,\xi)u(\xi)d\xi$$

$$= \int_{|y| < A} \bar{g}_{\lambda}^{A}(x,y)f(y)dy + \int_{|\xi| > A} c(\alpha) \int_{|y| < A} \frac{\bar{g}_{\lambda}^{A}(x,y)}{|y-\bar{\xi}|^{\alpha+1}}dy \cdot u(\xi)d\xi$$

$$= \int_{|y| < A} \bar{g}_{\lambda}^{A}(x,y) \Big(f(y) + c(\alpha) \int_{|\xi| > A} \frac{u(\xi)}{|y-\bar{\xi}|^{\alpha+1}}d\xi \Big)dy.$$

Just as the proof of Theorem 3.1, we can show

(4.1)
$$\lambda u(x) - \bar{\Omega}_A u(x) = f(x) + c(\alpha) \int_{|\xi| > A} \frac{u(\xi)}{|x - \xi|^{\alpha + 1}} d\xi, \quad x \in I_A.$$

Hence $\int_{-A}^{A} \frac{u(y)}{|x-y|^{\alpha-1}} dy \in C^{2}(A, A) \text{ and}$

$$\lim_{A \downarrow \infty} \bar{\mathcal{Q}}_A u(x) = \lim_{A \downarrow \infty} \frac{c(\alpha)}{\alpha(\alpha - 1)} \frac{d^2}{dx^2} \int_{-A}^A \frac{u(y)}{|x - y|^{\alpha - 1}} dy = \lambda u(x) - f(x).$$

This proves that $u \in D(\Omega)$ and $\lambda u - \Omega u = f$. In particular, if $u = G_{\lambda}f = 0$ then $f = \lambda u - \Omega u = 0$.

Conversely let $u \in D(\Omega)$ and put $f = \lambda u - \Omega u$. We first show that u satisfies (4.1). If B > A and $x \in I_A$

$$\lambda u(x) - \bar{\Omega}_B u(x) = \lambda u(x) - \frac{c(\alpha)}{\alpha(\alpha - 1)} \frac{d^2}{dx^2} \int_{-B}^{B} \frac{u(y)}{|x - y|^{\alpha - 1}} dy$$

$$= \lambda u(x) - \frac{c(\alpha)}{\alpha(\alpha - 1)} \frac{d^2}{dx^2} \int_{-A}^{A} \frac{u(y)}{|x - y|^{\alpha - 1}} dy$$

$$-c(\alpha) \int_{A \le |y| \le B} \frac{u(y)}{|x - y|^{\alpha + 1}} dy,$$

letting $B \uparrow \infty$, we have (4.1). Put

$$v(x) = \int_{-A}^{A} \bar{g}_{\lambda}^{A}(x, y) \Big(f(y) + c(\alpha) \int_{|\xi| > A} \frac{u(\xi)}{|y - \xi|^{\alpha + 1}} d\xi \Big) dy \qquad x \in I_{A}.$$

Then it is easy to see that v(x) is bounded and continuous on (-A, A). Also it satisfies

$$\lambda v(x) - \bar{\Omega}_A v(x) = f(x) - c(\alpha) \int_{|\xi| > A} \frac{u(\xi)}{|x - \xi|^{\alpha + 1}} d\xi \quad \text{on} \quad I_A.$$

Hence if we put w=u-v, we have $\lambda w-\bar{\Omega}_A w=0$ and in view of Lemma 2.6, it follows that $w\equiv 0$, i.e.

$$u(x) = v(x) = \int_{-A}^{A} \bar{g}_{\lambda}^{A}(x, y) \left\{ f(y) + c(\alpha) \int_{|\xi| > A} \frac{u(\xi)}{|y - \xi|^{\alpha + 1}} d\xi \right\} dy \quad \text{for} \quad x \in I_{A}.$$

Now if we put $\tilde{u}(x) = \int_{-\infty}^{\infty} g_{\lambda}(x-y)f(y)dy$, then \tilde{u} satisfies

$$\tilde{u}(x) = \int_{-A}^{A} \bar{g}_{\lambda}^{A}(x, y) \left\{ f(y) + c(\alpha) \int_{|\xi| > A} \frac{\tilde{u}(\xi)}{|y - \xi|^{\alpha + 1}} d\xi \right\} dy.$$

Hence putting $\tilde{w} = u - \tilde{u}$, we have

$$\widetilde{w}(x) = c(\alpha) \int_{-A}^{A} \overline{g}_{\lambda}^{A}(x, y) \int_{|\xi| > A} \frac{\widetilde{w}(\xi)}{|y - \xi|^{\alpha + 1}} d\xi.$$

Then

$$|\tilde{w}(x)| \leq |\tilde{w}|_{\infty} c(\alpha) \int_{-A}^{A} \bar{g}_{\lambda}^{A}(x,y) \int_{|A| > \xi} \frac{1}{|y - \bar{\xi}|^{\alpha+1}} d\xi = |\tilde{w}|_{\infty} E_{x}(e^{-\lambda \sigma_{A}})^{18}$$

Letting $A \uparrow \infty$, we have $E_x(e^{-\lambda \sigma_A}) \to 0$, proving $\tilde{w} = 0$, namely

$$u(x) = \tilde{u}(x) = \int_{-\infty}^{\infty} g_{\lambda}(x-y) f(y) dy.$$

This proves the theorem.

LEMMA 4.1. Let u and f be in $C(R^1)$. Then $u \in D(\Omega)$ and $\Omega u = f$ if and only if

(4.2)
$$\left(u(x), \frac{c(\alpha)}{\alpha(\alpha - 1)} \int_{-\infty}^{\infty} \frac{\varphi''(y)}{|x - y|^{\alpha - 1}} dy \right) = (f(x), \varphi(x))$$

for every $\varphi \in \mathcal{Q}^{19}$.

PROOF. First suppose that (4.2) holds for u and f in $C(R^i)$. Then by simple caluculations, we have for every $\varphi \in \mathcal{L}(-A, A)$

$$\left(\frac{c(\alpha)}{\alpha(\alpha-1)}\int_{-A}^{A}\frac{u(x)}{|x-y|^{\alpha-1}}dx,\varphi''(y)\right) = (f(y),\varphi(y)) - \left(c(\alpha)\int_{|x|>A}\frac{u(x)}{|x-y|^{\alpha+1}}dx,\varphi(y)\right).$$

We see at once from this that

$$\frac{c(\alpha)}{\alpha(\alpha-1)} \int_{-A}^{A} \frac{u(y)}{|x-y|^{\alpha-1}} dy \in C^{2}(-A, A) \quad \text{and}$$

$$\lim_{A \downarrow \infty} \frac{c(\alpha)}{\alpha(\alpha-1)} \frac{d^{2}}{dx^{2}} \int_{-A}^{A} \frac{u(y)}{|x-y|^{\alpha-1}} dy = f(x).$$

Conversely suppose $u \in D(\Omega)$ and $\Omega u = f$. Then we have just as the proof of Theorem 4.1,

$$\frac{c(\alpha)}{\alpha(\alpha-1)} \frac{d^2}{dy^2} \int_{-A}^{A} \frac{u(x)}{|x-y|^{\alpha-1}} dx = f(y) + c(\alpha) \int_{|x|>A} \frac{u(x)}{|y-x|^{\alpha+1}} dx \quad y \in (-A, A).$$

Hence for $\varphi \in \mathfrak{D}(-A', A')$, A' < A

$$\left(\frac{c(\alpha)}{\alpha(\alpha-1)}\int_{-4}^{A}\frac{u(x)}{|x-y|^{\alpha-1}}dx,\varphi''(y)\right) = (f,\varphi) + \left(c(\alpha)\int_{|x|>4}\frac{u(x)}{|y-x|^{\alpha+1}}dx,\varphi(y)\right)$$

Letting $A \uparrow +\infty$

$$\left(u(x), \frac{c(\alpha)}{\alpha(\alpha-1)} \int_{-\infty}^{\infty} \frac{\varphi''(y)}{|x-y|^{\alpha-1}} dy\right) = (f, \varphi)$$

¹⁸⁾ $\sigma_A(w) = \inf\{t ; x_t \notin I_A\}.$

¹⁹⁾ $\mathcal{D} = \{ \varphi ; \varphi \in \mathbb{C}^{\infty}, \text{ with compact support} \}.$

and since A' is arbitrary we have (4.2).

Now let I^- be the half line $(-\infty, 0)$ and consider the absorbing barrier process on I^- . Then we can prove quite similarly as above the following:

Theorem 4.2. The generator of the semi-group on $C(I^-)$ of the absorbing barrier process on I^- derived from the symmetric stable process is given as follows:

$$\bar{\Omega}^{-}u(x) = \lim_{A \downarrow \infty} \frac{c(\alpha)}{\alpha(\alpha - 1)} \frac{d^{2}}{dx^{2}} \int_{-A}^{0} \frac{u(y)}{|x - y|^{\alpha - 1}} dy \qquad u \in D(\bar{\Omega}^{-})$$

where

$$D(\overline{\Omega}^{-}) = \{u \in C(I^{-}); \forall A > 0, \int_{-A}^{0} \frac{u(y)}{|x-y|^{\alpha-1}} dy \in C^{2}(-A, 0) \text{ and }$$

$$\frac{c(\alpha)}{\alpha(\alpha-1)} \frac{d^{2}}{dx^{2}} \int_{-A}^{0} \frac{u(y)}{|x-y|^{\alpha-1}} dy \text{ converges to a function } f(x)$$

$$\in C(I^{-}) \text{ at every point } x \in I^{-}\},$$

and

$$\mathfrak{R} \equiv \{f; \overline{G}_{\lambda}f = 0\} = \{f = 0\}.$$

In particular, it follows from this theorem that if $u \in D(\bar{\Omega}^-)$ and $\lambda u - \bar{\Omega}^- u = 0$ then $u \equiv 0$.

Corresponding to the Lemma 4.1, we have

LEMMA 4.2. Let u and f be in $C(I^-)$. Then $u \in D(\bar{\Omega}^-)$ and $\bar{\Omega}^-u = f$ if and only if

(4.3)
$$\left(u(x), \frac{c(\alpha)}{\alpha(\alpha - 1)} \int_{-\infty}^{0} \frac{\varphi''(y)}{|x - y|^{\alpha - 1}} dy \right) = (f, \varphi)$$

for every $\varphi \in \mathcal{L}(I^-)$.

Now define $D(\tilde{\Omega}^-)$ by

$$D(\tilde{Q}^{-}) = \{ u \in C(\bar{I}^{-}); \forall A > 0, \int_{-A}^{0} \frac{u(y)}{|x-y|^{\alpha-1}} dy \in C^{2}(-A, 0) \text{ and } \frac{c(\alpha)}{\alpha(\alpha-1)} \frac{d^{2}}{dx^{2}} \int_{-A}^{0} \frac{u(y)}{|x-y|^{\alpha-1}} dy + \frac{c(\alpha)}{\alpha} \frac{u(0)}{(-x)^{\alpha}} \text{ converges to a function } f(x) \in C(\bar{I}^{-}) \text{ on } \bar{I}^{-}, \}$$

and for $u \in D(\tilde{\Omega}^-)$, define $\tilde{\Omega}^-u$ by

$$\widetilde{Q}^{-}u(x) = \lim_{A \to \infty} \frac{c(\alpha)}{\alpha(\alpha - 1)} \frac{d^{2}}{dx^{2}} \int_{-A}^{0} \frac{u(y)}{|x - y|^{\alpha - 1}} dy + \frac{c(\alpha)}{\alpha} \frac{u(0)}{(-x)^{\alpha}}.$$

Theorem 4.3. Define $\sigma^-(w)$ by

$$\sigma^{-}(w) = \inf \left\{ t \; ; \; x_t(w) \in I^{-} \right\} \; .$$

Then

(4.5)
$$\xi_{\lambda}(x) = E_x(e^{-\lambda \sigma})$$

is the unique solution in $D(\tilde{\Omega}^-)$ of

$$\lambda u - \tilde{\Omega}^- u = 0$$

with boundary condition u(0) = 1.

The explicit formula of the 0-th order green function is obtained by D. Ray [12]:

(4.7)
$$\bar{g}_{0}(x,y) = \frac{1}{\left[\Gamma\left(\frac{\alpha}{2}\right)\right]^{2}} \int_{0}^{(-y)\wedge(-x)} \xi^{\frac{\alpha}{2}-1} (\xi+|y-x|)^{\frac{\alpha}{2}-1} d\xi.$$

Put

(4.8)
$$\eta_{\lambda}(x) = \eta(x) - \lambda \int_{0}^{x} \bar{g}_{\lambda}(x, y) \eta(y) dy$$

where

(4.9)
$$\eta(x) = \frac{1}{\Gamma(\frac{\alpha}{2})\Gamma(\frac{\alpha}{2}+1)} (-x)^{\frac{\alpha}{2}-1}.$$

THEOREM 4.4.

(i)
$$\lim_{\varepsilon \downarrow 0} \frac{\bar{g}_{\lambda}(-\varepsilon, y)}{\varepsilon^{\frac{\alpha}{2}}} = \eta_{\lambda}(y) \quad \lambda \geq 0$$

(ii) If $f \in C(I^-)$ and $u = \overline{G}_{\lambda}f$,

$$\delta u \equiv \lim_{\epsilon \downarrow 0} \frac{u(0) - u(-\epsilon)}{\epsilon^{\frac{\alpha}{2}}} = -\int_{-\infty}^{0} f(y) \eta_{\lambda}(y) dy \qquad \lambda > 0.$$

§ 5. The boundary conditions for $\tilde{\Omega}$ and $\tilde{\Omega}^-$.

We determine the most general boundary conditions for $\tilde{\varOmega}$ and $\tilde{\varOmega}^-$ under which these operators become the infinitesimal generators of Markov processes. Elliott [2] determined them in the case $\alpha = 1$ and obtained the corresponding resolvent operators. This can be extended to the case with general α in the same way. We consider also the construction of the path functions of these processes.

For simplicity we assume the left boundary condition u(-1) = 0.

DEFINITION 5.1.20,21) For given constants $\sigma \ge 0$, $p \ge 0$, $r \ge 0$, and a given measure $n(dx) \ge 0$ such that $\int_{-1}^{1} (1-x)^{\frac{d}{2}} n(dx) < +\infty$, define Σ as the set of all $\boldsymbol{u} \in D_0(\tilde{\Omega})$ for which

(5.1)
$$pu(1) = \int_{\Gamma} [u(x) - u(1)] n(dx) - \sigma \tilde{\Omega} u(1) - \gamma \delta_1 u.$$

Theorem 5.1. The operator $\tilde{\Omega}$ with the domain Σ is the infinitesimal generator of a contraction semi-group with range dense in $C_0(\bar{I})$ or in the subspace defined by

²⁰⁾ $C_0(\vec{I}) = \{u \in C(\vec{I}), u(-1) = 0\}.$ 21) $D_0(\widetilde{\Omega}) = \{u \in C_0(\vec{I}), \widetilde{\Omega}u \in C_0(\vec{I})\}.$

$$pu(1) = \int [u(x) - u(1)] n(dx)$$

according as $\sigma + \gamma > 0$ or $\sigma + \gamma = 0$.

Its resolvent is given by

(5.2)
$$u(x) = \int_{-1}^{1} \bar{g}_{\lambda}(x, y) f(y) dy + \xi_{1}^{\lambda}(x) Q(f) \qquad \lambda > 0$$

where

$$Q(f) = \frac{\int_{-1}^{1} \overline{G}_{\lambda} f(x) n(dx) + \sigma f(1) + \gamma \int_{-1}^{1} f(x) \eta_{1}^{\lambda}(x) dx}{p + \int_{-1}^{1} (1 - \xi_{\lambda}(x)) n(dx) + \lambda \sigma + \gamma \cdot \delta_{1} \xi_{1}^{\lambda}}.$$

PROOF. Using Theorems 3.1, 3.4 and Lemma 2.1, proof can be done in the same way as [2].

Similarly for the interval $\tilde{I}^-=(-\infty,0]$ we have the following boundary condition for the operator $\tilde{\Omega}^-$:

$$(5.3) pu(0) = \int_{-\infty}^{0} [u(x) - u(0)] n(dx) - \sigma \tilde{\Omega}^{-} u(0) - \gamma \delta u$$

where

 $p \ge 0$, $\sigma \ge 0$, $\gamma \ge 0$ and n(dx) is a positive measure such that

$$\int_{-1}^{0} (-x)^{\frac{\alpha}{2}} n(dx) < +\infty \quad \text{and} \quad \int_{-\infty}^{-1} n(dx) < +\infty.$$

The corresponding resolvent is given by the similar formula as (5.2). In particular, if the boundary condition is reflecting, i. e.

$$\delta u = 0$$

its resolvent is given by

(5.5)
$$u(x) \equiv \widetilde{G}_{\lambda} f(x) = \overline{G}_{\lambda} f(x) + \frac{\xi_{\lambda}(x)}{\delta \xi_{\lambda}} \int_{-\infty}^{0} f(y) \eta_{\lambda}(y) dy, \quad \lambda > 0.$$

Now²²⁾ the path functions of this process can be constructed from those of the ordinary symmetric stable process. Let $\mathbf{M} = (W, P_x, R^1)$ be the symmetric stable process defined in § 1. For any path function $x_l(w)$, $w \in W$, define $\tilde{x}_l(w)$ by

$$\tilde{x}_t(w) = x_t(w) \qquad t < \sigma^-(w)
= x_t(w) - \sup_{\sigma^- \le s \le t} x_s(w) \qquad t \ge \sigma^-(w)$$

where $\sigma^-(w)$ is defined in (4.4).

Put

$$\widetilde{P}_x(B) = P_x(w; \widetilde{x}.(w) \in B)^{23}$$
 for $x \in \overline{I}^-$.

²²⁾ This was suggested to me by Prof. K. Ito.

²³⁾ B is a (Borel) subset of the space of path functions.

THEOREM 5.2. The process $\tilde{\mathbf{M}} = (W, \tilde{P}_x, \tilde{I}^-)$ obtained in this way is a strict Markov process and its resolvent coincides with (5.5), i. e. the process $\tilde{\mathbf{M}}$ is the reflecting barrier process on \tilde{I}^- determined by $\tilde{\Omega}^-$ and (5.4).

PROOF. We can easily check the strict Markov property of $\widetilde{\pmb{M}}$ and so we have only to prove that

$$\begin{split} \widetilde{E}_x\Big(\int_0^\infty e^{-\lambda t}f(x_t)\,dt\Big) &\equiv E_x\Big(\int_0^\infty e^{-\lambda t}f(\widetilde{x}_t(w))dt\Big) \\ &= \overline{G}_\lambda f(x) + \frac{\xi_\lambda(x)}{\delta \xi_\lambda} \int_{-\infty}^0 f(y)\,\eta_\lambda(y)\,dy\,. \end{split}$$

Now

$$E_{x}\left(\int_{0}^{\infty} e^{-\lambda t} f(\tilde{x}_{t}(w)) = E_{x}\left(\int_{0}^{\sigma^{-}} e^{-\lambda t} f(\tilde{x}_{t}(w)) dt\right) + E_{x}\left(\int_{\sigma^{-}}^{\infty} e^{-\lambda t} f(\tilde{x}_{t}(w)) dt\right)$$

$$= \overline{G}_{\lambda}^{-} f(x) + E_{x}\left(e^{-\lambda \sigma^{-}} \int_{0}^{\infty} e^{-\lambda t} f(\tilde{x}_{t+\sigma^{-}}) dt\right)$$

$$= \overline{G}_{\lambda}^{-} f(x) + E_{x}\left(e^{-\lambda \sigma^{-}} E_{x\sigma^{-}}\left(\int_{0}^{\infty} e^{-\lambda t} f(\tilde{x}_{t}) dt\right)\right)$$

$$= \overline{G}_{\lambda}^{-} f(x) + E_{x}\left(e^{-\lambda \sigma^{-}}\right) E_{0}\left(\int_{0}^{\infty} e^{-\lambda t} f(\tilde{x}_{t}) dt\right)$$

since if $a \ge 0$ the probability law of \tilde{x}_t with respect to P_a is the same as that with respect to P_0 . Hence it is enough to prove that

$$E_0\left(\int_0^\infty e^{-\lambda t} f(\tilde{x}_t) dt\right) = \int_{-\infty}^0 \frac{\eta_\lambda(y)}{\delta \xi} f(y) dy.$$

Now

$$ar{P}^-(t,x,E) \equiv P_x(x_t \in E, \sigma^- > t)$$

$$= P_x(x_t \in E, \sup_{0 \le s \le t} x_s < 0).^{24)}$$

We have from this and the spatial homogeneity of the stable process, that

$$P_{0}(x_{t} \in E, \sup_{0 \le s \le t} x_{s} < a) = P_{-a}(x_{t} \in E - a, \sup_{0 \le s \le t} x_{s} < 0)$$

$$= \bar{P}^{-}(t, -a, E - a)$$

$$= \int_{r} \bar{p}^{-}(t, -a, y - a) dy.$$

Hence, using the symmetry of $\bar{p}^-(t, x, y)^{25}$

²⁴⁾ For the rigorous justification, we may use Theorem 6.4 below.

²⁵⁾ This can be proved in the same way as Lemma 2.2.

$$P_0(\tilde{x}_t > b) = P_0(x_t - \sup_{0 \le s \le t} x_s > b)$$

$$= P_0(\sup_{0 \le s \le t} x_s < x_t - b)$$

$$= \int_b^\infty \bar{p}^-(t, b - \xi, b) d\xi$$

$$= \int_{-\infty}^0 \bar{p}^-(t, b, \xi) d\xi.$$

Now if $\chi_{(b,0)}(x)$ is the characteristic function of the interval (b,0), b<0, then we have

$$E_0\left(\int_0^\infty e^{-\lambda t}\chi_{(b,0)}(\tilde{x}_t)dt\right) = \int_{-\infty}^0 \tilde{g}_{\lambda}(b,\xi)d\xi.$$

By Theorem 4.2, this function of b is the unique solution in $D(\bar{\Omega}^-)$ of

$$\lambda u - \bar{\Omega}^- u = 1$$

On the other hand, putting $u_{\epsilon}(x) = \frac{1}{e^{\frac{\alpha}{2}}} \int_{x}^{0} \bar{g}_{\bar{\lambda}}(-\epsilon, y) dy$ for $\epsilon > 0$ we have, for any testing function φ in $\mathcal{D}(I^{-})$, that

since $\psi(x) \equiv \int_{x}^{0} \varphi(y) dy \in D(\bar{\Omega}^{-}).$

By an integration by parts, the last expression is equal to

$$-\frac{\lambda}{\varepsilon^{\frac{\alpha}{2}}}\int_{-\infty}^{0}\bar{g}_{\lambda}(-\varepsilon,y)dy\cdot\int_{-\infty}^{0}\varphi(y)dy+\lambda\int_{-\infty}^{0}\frac{1}{\varepsilon^{\frac{\alpha}{2}}}\int_{x}^{0}\bar{g}_{\lambda}(-\varepsilon,y)dy\varphi(x)dx+\frac{\psi(-\varepsilon)}{\varepsilon^{\frac{\alpha}{2}}}.$$

Putting $u(x) = \lim_{\epsilon \downarrow 0} u_{\epsilon}(x) = \int_{x}^{0} \eta_{\lambda}(y) dy$

and noting

$$\int_{-\infty}^{0} \bar{g}_{\lambda}(-\epsilon, y) dy = \frac{1 - \xi_{\lambda}(-\epsilon)}{\lambda},$$

we have, by letting $\varepsilon \downarrow 0$, that

$$\left(u(x), \frac{c(\alpha)}{\alpha(\alpha-1)} \int_{-\infty}^{0} \frac{\varphi''(y)}{|x-y|^{\alpha-1}} dy\right) = -\delta \xi_{\lambda} \cdot \int_{-\infty}^{0} \varphi(y) dy + \lambda \int_{-\infty}^{0} u(x) \varphi(x) dx.$$

In view of Lemma 4.2, it follows that $u(x) \in D(\bar{\Omega}^-)$ and satisfies

$$\lambda u - \bar{\Omega}^- u = \delta \xi_{\lambda}$$
.

Hence we have

(5.6)
$$\int_{-\infty}^{0} \bar{g}_{\lambda}^{-}(b,y) dy = \frac{1}{\delta \xi_{\lambda}} \int_{b}^{0} \eta_{\lambda}(y) dy, \quad \text{i. e.}$$

$$E_{0} \left(\int_{0}^{\infty} e^{-\lambda t} \chi_{(b,0)}(\tilde{x}_{t}) dt \right) = \frac{1}{\delta \xi_{\lambda}} \int_{-\infty}^{0} \eta_{\lambda}(y) \cdot \chi_{(b,0)}(y) dy.$$

Now from this we have for every bounded function f

$$E_0\left(\int_0^\infty e^{-\lambda t} f(\tilde{x}_t) dt\right) = \frac{1}{\delta \xi_1} \int_{-\infty}^0 \eta_{\lambda}(y) f(y) dy$$

and the proof is complete.

Now we can define the local time at x = 0 of this process. First we require the following lemma.

LEMMA 5.1. If $\lambda > 0$, then

$$\lim_{\varepsilon \downarrow 0} \varepsilon^{1-\frac{\alpha}{2}} \int_{-\infty}^{0} \bar{g}_{\lambda}(-\varepsilon, y) \eta(y) dy = 0.$$

PROOF. Suppose $\alpha \ge \frac{2}{3}$, then

$$\int_{-\infty}^{0} \bar{g}_{\lambda}(-\varepsilon, y) \eta(y) dy = \int_{-\infty}^{-1} \bar{g}_{\lambda}(-\varepsilon, y) \eta(y) dy + \int_{-1}^{0} \bar{g}_{\lambda}(-\varepsilon, y) \eta(y) dy$$

and the first term is bounded in $\varepsilon > 0$.

As for the second we have

$$\int_{-1}^{0} \overline{g}_{\lambda}(-\varepsilon, y) \eta(y) dy = k \cdot \int_{-1}^{0} \frac{\overline{g}_{\lambda}(-\varepsilon, y)}{(-y)^{\alpha}} (-y)^{\frac{3}{2}\alpha - 1} dy$$

and this is also bounded in $\varepsilon > 0$, since

$$\frac{c(\alpha)}{\alpha} \int_{-\infty}^{0} \frac{\bar{g}_{\lambda}(-\varepsilon, y)}{(-y)^{\alpha}} dy = E_{-\varepsilon}(e^{-\lambda \sigma^{-}}) \leq 1.$$

The proof of the case of $\alpha < \frac{2}{3}$ is omitted.

From (4.8), (4.9) and this lemma we have

(5.7)
$$\lim_{y \downarrow 0} \eta_{\lambda}(y)(-y)^{1-\frac{\alpha}{2}} = \lim_{y \downarrow 0} \eta(y)(-y)^{1-\frac{\alpha}{2}} = \frac{1}{\Gamma(\frac{\alpha}{2})\Gamma(\frac{\alpha}{2}+1)}$$

(5.8)
$$\lim_{\varepsilon \downarrow 0} \frac{\int_{-\varepsilon}^{0} \eta_{\lambda}(y) dy}{\varepsilon^{\frac{\alpha}{2}}} = \lim_{\varepsilon \downarrow 0} \frac{\int_{-\varepsilon}^{0} \eta(y) dy}{\varepsilon^{\frac{\alpha}{2}}} = \frac{1}{\left[\Gamma(\frac{\alpha}{2} + 1)\right]^{2}}.$$

Let $\tilde{g}_{\lambda}(x,y)$ be the density of the resolvent kernel $\tilde{G}_{\lambda}(x,dy)$ with respect to the measure

(5.9)
$$dm(y) = \frac{\alpha}{2} (-y)^{\frac{\alpha}{2} - 1} dy.^{26}$$

Then we have from (5.5), (5.7) and (5.8)

(5.10)
$$\widetilde{g}_{\lambda}(x,0) = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon^{\frac{\alpha}{2}}} \int_{-\varepsilon}^{0} \widetilde{G}_{\lambda}(x,dy) = \frac{1}{\left[\Gamma\left(\frac{\alpha}{2} + 1\right)\right]^{2}} \frac{\xi_{\lambda}(x)}{\delta \xi_{\lambda}} .$$

 $\tilde{g}_{\lambda}(x,0)$ is a λ -excessive function and also bounded and continuous. Hence from a theorem of H. Tanaka [6],²⁷⁾ there exists an additive functional s(t,w) such that

- (i) s(t, w) is continuous and increasing in $t \ge 0$
- (ii) s(t, w) = 0 if $t < \sigma^{-}(w)$

(iii)
$$\widetilde{E}_x\left(\int_0^\infty e^{-\lambda t}ds(t,w)\right) = \widetilde{g}_{\lambda}(x,0).$$

Now the inverse function $t(u, w) = \max\{t; u = s(t, w)\}$ is a Lévy process with respect to \widetilde{P}_0 .

Theorem 5.3. t(u, w) is a one-sided stable process of exponent $\frac{1}{2}$ given by

$$\widetilde{E}_0(e^{-\lambda t(u,w)}) = e^{-\Gamma(\frac{\alpha}{2}+1)\sqrt{\lambda}u}$$

PROOF. We have from (iii)

$$\widetilde{E}_0(e^{-\lambda t(u,w)}) = e^{-\frac{1}{\widehat{g}_{\lambda}(0,0)}u}.$$

On the other hand, by (5.6)

$$\int_{-\infty}^{0} \bar{g}_{\lambda}^{-}(-\varepsilon, y) dy = \frac{1 - E_{-\varepsilon}(e^{-\lambda \sigma^{-}})}{\lambda} = \frac{1}{\delta \xi_{\lambda}} \int_{-\varepsilon}^{0} \eta_{\lambda}(y) dy.$$

Using (5.8) we have

$$\frac{1}{\lambda} \delta \xi_{\lambda} = \lim_{\epsilon \downarrow 0} \frac{1 - E_{-\epsilon}(e^{-\lambda \sigma^{-}})}{\lambda \epsilon^{\frac{\alpha}{2}}} = \frac{1}{\delta \xi_{\lambda}} \frac{1}{\left[\Gamma(\frac{\alpha}{2} + 1)\right]^{2}}.$$

Hence $\delta \xi_{\lambda} = \sqrt{\lambda} \cdot \frac{1}{\Gamma(\frac{\alpha}{2} + 1)}$, this, in view of (5.10), implies

²⁶⁾ This is the invariant measure of the process \widetilde{M} .

²⁷⁾ Also cf. H. P. McKean & H. Tanaka, Additive functionals of the Brownian path. Mem. Fac. Sci. Univ. Kyoto Ser. A. Math., (1961).

$$\tilde{g}_{\lambda}(0,0) = \frac{1}{\Gamma(\frac{\alpha}{2}+1)\sqrt{\lambda}}.$$

We can construct, for instance, the process determined by \tilde{Q}^- and the boundary condition $\delta u = -\frac{\gamma u(0)}{\left[\Gamma\left(\frac{\alpha}{2}+1\right)\right]^2}$ by random killing defined by the

multiplicative functional $e^{-r_{s(t,w)}}$ $(\gamma > 0)$, cf. [8].

REMARK 1. We can construct the paths of the reflecting barrier process on \overline{I} just as the case of Brownian motion but we do not discuss of it here. We remark also that

$$2^{1-\alpha} \frac{\Gamma(\alpha)}{\left[\Gamma\left(\frac{\alpha}{2}\right)\right]^2} (1-x^2)^{\frac{\alpha}{2}-1} dx$$

is the invariant distribution of this process.

REMARK 2. There is another kind of the reflecting barrier process on \overline{I}^- whose paths are defined as $-|x_t(w)|$ from the paths of the symmetric stable process. This process, which is of course Markovian, has, as its invariant measure, Lebesgue measure dx and local time at x=0 can be defined only in the case $1<\alpha\leq 2$ whose inverse function is a one-sided stable process with exponent $1-\frac{1}{\alpha}$.

§ 6. Some properties of the path functions of the stable process.

Define for a closed set F,

$$\sigma_F(w) = \inf\{t > 0 ; x_t(w) \in F\}$$
.

THEOREM 6.1. For $x \in I_A = (-A, A)^{800}$

$$(6.1) P_x(\sigma_{(y)} < \sigma_A) = 0 0 < \alpha \le 1$$

(6.2)
$$P_{x}(\sigma_{(y)} < \sigma_{A}) = \frac{\bar{g}_{0}^{A}(x, y)}{\bar{g}_{0}^{A}(y, y)} \qquad 1 < \alpha \leq 2.$$

PROOF. Noting $\bar{g}_0^A(y,y) < +\infty$ if and only if $1 < \alpha \le 2$, this theorem can be proved using Hunt's potential theory [5] and details are omitted.

It is known [10] that if $1 \le \alpha \le 2$, the process is recurrent. Using this fact and letting $A \uparrow \infty$ we have the following:

Theorem 6.2. For $x, y \in R^1$

²⁸⁾ It is well known that if $\alpha = 2$ these two processes coincide.

²⁹⁾ Cf. Theorem 6.3 below.

³⁰⁾ $\sigma_A = \inf\{t ; x_t \in I_A\}.$

$$(6.3) P_x(\sigma_{(y)} < +\infty) = 0 0 < \alpha \le 1$$

$$(6.4) P_x(\sigma_{(y)} < +\infty) = 1 1 < \alpha \leq 2.$$

(6.3) was proved by H. P. McKean $\lceil 10 \rceil$.

Now consider a path $x_t(w)$ of the symmetric stable process and let Z(w) be the set of the zero points of $x_t(w)$.

Theorem 6.2 means that for T > 0

$$P_0(\mathbf{Z}(w) \cap (0, T] = \phi) = 1 \qquad 0 < \alpha \leq 1$$

$$P_0(\mathbf{Z}(w) \cap (0, T] \neq \phi) = 1$$
 $1 < \alpha \leq 2$.

Theorem 6.3. With probability one, $\mathbf{Z}(w) \cap (0, T]$ is a non-countable Borel set of Hausdorff-Besicovitch dimension $1 - \frac{1}{\alpha}$ in the case $1 < \alpha \le 2$.

PROOF. We define the local time of the symmetric stable process at x=0. Put $s_{\epsilon}(t,w)=\frac{1}{\varepsilon}\int_{0}^{t}\chi_{(0,\varepsilon)}(x_{t})dt$ for $\varepsilon>0$, then we can show that there exists some sequence $\{\varepsilon_{m}\}$ tending to zero and a function s(t,w) such that

(6.5) $P_0(s_{\varepsilon_m}(t,w) \to s(t,w))$ uniformly on any compact in $[0,+\infty)=1$. We give here the outline of the proof only.³¹⁾ Put

$$e_m(t,x) = E_x(s_{\varepsilon_m}(t,w)) = \frac{1}{\varepsilon_m} \int_0^{\varepsilon_m} \int_0^t p(s,x-y) ds dy$$
.

Then, noting the fact $p(t, x) < Kt^{-\frac{1}{\alpha}}$, we can show that

$$|e_m(t,x)-e(t,x)| \rightarrow 0$$
 $m \uparrow \infty$, uniformly on any compact

set in
$$R^1 \times [0, \infty)$$
 where $e(t, x) = \int_0^t p(s, x) ds$.

Using this we can prove that $s_{\varepsilon_m}(t,w)$ converges in the mean, i.e. there exists s(t,w) such that $E \mid s_{\varepsilon_m}(t,w) - s(t,w) \mid^2 \to 0$ $m \uparrow \infty$. Next, noting $E_x(s_{\varepsilon_m}(T,w) \mid B_t)$ is a martingale, we can obtain (6.5).

s(t,w) is continuous and non-decreasing in t>0 and we can easily check that if $x_t(w) \neq 0$, then there exist t', t < t' such that s(t,w) = s(t',w). Hence if we put

$$t(u, w) = \max\{t : u = s(t, w)\}\$$

then $x_{t(u,w)}(w) = 0$. We can prove from this and the fact that s(t,w) is a additive functional that t(u,w) is a Lévy process with respect to P_0 . Its characteristic function is given by

$$E_0(e^{-\lambda t(u,w)}) = e^{-\frac{u}{g_{\lambda}(0,0)}}$$

³¹⁾ The following method was given by K. Sato in the case of the multi-dimensional diffusion [6].

where

$$g_{\lambda}(0,0) = \frac{1}{\pi} \int_0^{\infty} \frac{d\xi}{\lambda + \xi^{\alpha}} = \frac{1}{\lambda^{1 - \frac{1}{\alpha}}} \frac{1}{\pi} \int_0^{\infty} \frac{d\eta}{1 + \eta^{\alpha}}.$$

Hence t(u,w) is a one-sided stable process with exponent $1-\frac{1}{\alpha}$. Now we can also check that (with probability one) if $(t',t'') \cap \mathbf{Z}(w)$ is not empty then s(t',w) < s(t'',w), and from this we have

$$P_0(\mathbf{Z}(w) \subset \{t; t = t(u, w) \text{ or } t = t(u-, w) \text{ for some } u \ge 0\}) = 1.$$

The theorem follows now from a theorem of Blumenthal-Getoor [1, Theorem 3.2]. Now consider the interval $I^- = (-\infty, 0)$ and $\sigma^-(w)$ be defined by (4.4).

THEOREM 6.4. For $0 < \alpha < 2$ $x \in I^{-1}$

$$P_x(\exists t \leq \sigma^-, x_{t^-} = 0) = 0$$
.

PROOF. The function $\eta(x) = \lim_{\varepsilon \downarrow 0} \frac{\bar{g}_0^-(x, -\varepsilon)}{\varepsilon^{\alpha}}$ in (4.9) is an exessive function for the absorbing barrier stable process on I^- and

$$\eta(0) = +\infty$$
.

Since $\eta(x_t)$ is a lower semi-martingale it is bounded on any interval $0 \le t \le T$ with probability one and the theorem follows immediately from this.

This theorem means that, though in the case $1 < \alpha < 2$ particles of the symmetric stable process hit a given point almost surely, they can not remain in one of the half lines cut by the point up to this hitting time.

University of Kyoto

References

- [1] R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc., 95 (1960), 263-273.
- [2] J. Elliott, The boundary value problems and semi-groups associated with certain integro-differential operators, Trans. Amer. Math. Soc., 76 (1954), 300-331.
- [3] J. Elliott, Absorbing barrier processes connected with the symmetric stable densities, Illinois J. Math., 3 (1959), 200-216.
- [4] G. A. Hunt, Some theorems concerning Brownian motion, Trans. Amer. Math. Soc., 81 (1956), 294-319.
- [5] G. A. Hunt, Markov processes and potentials, Illinois J. Math., 1 (1957), 44-93.
- [6] N. Ikeda, T. Ueno, H. Tanaka and K. Sato, On the boundary problems of multidimensional diffusions (Japanese), Seminar on Prob., vol. 6.
- [7] K. Ito, Stochastic process, Tata Institute notes, to appear.
- [8] K. Ito and H. P. McKean, Diffusion, to appear.
- [9] M. Kac, On some connections between probability theory and differential and integral equations, Proceedings of the second Berkeley symposium, Berkeley, 1950, 189-215.

- [10] H. P. McKean, Sample functions of stable processes, Annals of Math., 61 (1955), 564-579.
- [11] G. Pólya and G. Szegö, Über den transfiniten Durchmesser (Kapzitätskonstante) von ebenen und räumlichen Punktmengen, J. Reine Angew. Math., 165 (1931), 4-49.
- [12] D. Ray, Stable processes with an absorbing barrier, Trans. Amer. Math. Soc. 87 (1958), 187-197.
- [13] F.G. Tricomi, Integral equations, New York, 1957.
- [14] H. Widom, Stable processes and integral equations, Trans. Amer. Math. Soc., 98 (1961), 430-448.