ON STABLE SOLUTIONS OF THE FRACTIONAL HENON-LANE-EMDEN EQUATION

MOSTAFA FAZLY, JUNCHENG WEI

ABSTRACT. We derive a monotonicity formula for solutions of the fractional Hénon-Lane-Emden equation
(~A)'u = [zl P R

where 0 < s < 2, a > 0 and p > 1. Then we apply this formula to classify stable solutions of the above equation.

1. INTRODUCTION AND MAIN RESULTS
We study the classification stable solutions of the following equation
(1.1) (—A)u = |z|*uff~tu R
where (—A)? is the fractional Laplacian operator for 0 < s < 2. Here is what we mean by stability.

Definition 1.1. We say that a solution u of (1.1) is stable if

_ 2
(12) | [ iy —p [ el 2 0

for any ¢ € C(R™).

For the local cases s = 1 and s = 2, the classification of stable solutions is completely known for a > 0. We
refer the interested readers to Farina [14] for the case of s = 1 and a = 0 and to Cowan-Fazly [6], Wang-Ye [31],
Dancer-Du-Guo [7], Du-Guo-Wang [11] for the case s = 1 and a > —2. Also, for the fourth order Lane-Emden
equation that is when s = 2 we refer to Davila-Dupaigne-Wang-Wei [10] where a = 0 and to Hu [20] where
a > 0. In this note, we focus on the case of fractional Laplacian operator.

It is by now standard that the fractional Laplacian can be seen as a Dirichlet-to-Neumann operator for a
degenerate but local diffusion operator in the higher-dimensional half-space RT‘l. For the case of 0 < s < 1 this
in fact can be seen as the following theorem given by Caffarelli-Silvestre [2]. See also [27].

Theorem 1.1. Take s € (0,1), o > s and u € C**(R™) N LY(R™, (1 + [¢])"+?dt). For X = (z,y) € R}, let

e (X) = / P(X tyult) dt,

where
P(Xv t) = DPn,s tQS‘X _ t|*(n+2s)

and py, s is chosen so that [,, P(X,t) dt = 1. Then, u. € C*(RT) n CRIY), y' =20 u. € C(RTH") and

V- (¥ Vu.) =0 in R,
Ue = U on 8]1%’_?1,

. 1—2: _ : +1

— g;li%y *0¢ue = Ks(—A)°u on ORI,
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where
I'(1—s)

(1.3) ks = 51T (s)’

From this theorem for a solution of the fractional Henon-Lane-Emden equation, we get the following equation
in the higher-dimensional half-space R?jl,

—V - (¥ Vu,) =0 in R+
(14) im0, = kool e i R
y—0

There are different ways of defining the fractional operator (—A)® where 1 < s < 2, just like the case of 0 < s < 1.
Applying the Fourier transform one can define the fractional Laplacian by

(CA)u(0) = [¢P*a(C)

or equivalently define this operator inductively by (—A)® = (—=A)*"lo(—A), see [26]. Recently, Yang in [29)
gave a characterization of the fractional Laplacian (—A)®, where s is any positive, noninteger number as the
Dirichlet-to-Neumann map for a function u, satisfying a higher order elliptic equation in the upper half space
with one extra spatial dimension. This is a generalization of the work of Caffarelli and Silvestre in [2] for the
case of 0 < s < 1. We first fix the following notation then we present the Yang’s characterization. See also
Case-Chang [3] and Chang-Gonzales [4] for higher order fractional operators.

Notation 1.1. Throughout this note set b := 3 — 2s and define the operator
- bbb
Apyw := Aw + —wy, =y~ div(y’Vw).
Y
for a function w € W22(R"+1 ¢).

As it is shown by Yang in [29], if u(z) is a solution of (1.1) then the extended function u.(z,y) where z € R”
and y € RT satisfies

Ay, = 0 in R},
(1.5) limy 0 y°0yue = 0 in IR,
limy_mybﬁyAbue = Chslz|*luP™ u in R

Moreover,
/ €17 u(€)2de = Cy s / Y| Apue (e, y) [P dzdy
R~ Ry

Note that u(x) = uc(x,0) in R™.
On the other hand, Herbst in [19] (see also [30]), shoed that when n > 2s the following Hardy inequality holds

JRGRE T
R™ R™

for any ¢ € C°(R™) where the optimal constant given by

2
A B 223 (’I’LJZ 3)2
n,s —

F( nz2s )2 :
Here we fix a constant that plays an important role in the classification of solutions of (1.1)
+oo ifn<2s

(1.6) ps(n,a) = ¢ n+2s+2a

if n>2
n—9s IIrn S
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Remark 1.1. Note that for p > ps(n,a) the function

(1.7) us(z) = Alz|” 7+
where
a1y n—2s 2s+a
2 p—1

for constant

F( n+22+2a )F( n+2i—2a)
F( n—22—2a )P(n_2i+2a )

is a singular solution of (1.1) where 0 < s < 2. For details, we refer the interested readers to [13] for the case
of 0 < s <1 and to [16] for the case of 1 < s < 2.

(1.8) AMa) = 2%

Here is our main result

Theorem 1.2. Assume thatn > 1 and 0 < s < o < 2. Let u € C?*?(R™) N LY(R", (1 + |y|)"*2?*dy) be a stable
solution to (1.1).

e If1 <p<psg(n,a) orif ps(n,a) <p and

n s+9 s+3 n+2s

F(§ T op—1 )F(S + p—1 ) F( 22 )2

(19) p s+ _9 s+ > n—=2s\2"’
PE)r(ngz - 25 - T5™)

then u = 0;
o If p=ps(n,a), then u has finite energy i.e.

ey = [ Jalul?* < oc.

If in addition u is stable, then in fact u = 0.

Note that the classification of finite Morse index solutions of (1.1) when a = 0 is given by Davila-Dupaigne-Wei
in [9] when 0 < s < 1 and by Fazly-Wei in [16] 1 < s < 2.

Note also that in the absence of stability it is expected that the only nonnegative bounded solution of (1.1)
must be zero for the subcritical exponents 1 < p < pg(n,a) where a > 0. To our knowledge not much is known
about the classification of solutions when a # 0 even for the standard case s = 1. For the case of s = 1,
Phan-Souplet in [23] proved that the only nonnegative bounded solution of (1.1) in three dimensions must be
zero for the case of 1 < p < pg(n,a) and a > —2. Some partial results are given in [17].

2. THE MONOTONICITY FORMULA

Here is the monotonicity formula for the case of 0 < s < 1.

Theorem 2.1. Suppose that 0 < s < 1. Let u. € C*(R}™) N C(RY™) be a solution of (1.1) such that
Yy =2 0,u. € C(RY). For zg € ORTT, X >0, let

2s(p+1)+2a _ 1

E(ug,\) = X o1 " 7/ y' 72| Vue|? do dy — fs / 2| |ue P da
2 R7H1NB, p+1 oR"+1NB,

25(p+ )42, S+ 2 _
+)\ =T n—1 2/ yl 25ug do.
p+1 dBANRH!

Then, E is a nondecreasing function of X. Furthermore,

AE  sapinia (Oue 2 )’
ﬁ = )\2 ;;tlJr _"+1/ y1—25 ( 3u + S +1au) do
dB(zo,\) MR} r p—1r
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Proof. Let
| Vuel? s
(2.1) I(ue, N) = A2 / y1_2“"7| el dr dy — r / || e [PT da
R"+1NBy 2 p+1 OR+1NB,

Now for X € RQL_H, define
(2.2) WMX) = AT ug (AX).
Then, u) solves (1.5) and in addition
(2.3) I(ue, N) = I(ug,1).
Taking partial derivatives we get

2
(2.4) Noyu) = ilaug‘ + ropu.

p—

Differentiating the operator (2.1) w.r.t. A, we find

O (e, \) = /

RYYINB,

Integrating by parts and then using (2.4),

onI(u ) = [

oB1NRYH!

= )\/ y' 72 (O\up)?do
B MR}

1-2 A\2
/ y 7 (Oaug) do
B MR}

y' 7220l ud do

A

Scaling finishes the proof.

ylfz‘ung\ . V@,\u;\dm dy — K /

2] Ju) [P~ Ozl da.
R} NBy

2s+a
p—1

/ ylf%ué‘a)\ui‘da
B MR

O / T (T
B MR}

s+ 3

p—1

O

We now consider the case of 1 < s < 2 and a > 0. Note that a monotonicity formula is given for the case of
a=0and s =2 and 1 < s < 2 by Davila-Dupaigne-Wang-Wei in [10] and Fazly-Wei in [16], respectively. We

define the energy functional

1
E(ue,r) — 7“25%771 / §y3—23|Abue|2 _
RYTINB,
s+5 (p+2s+a—1
— -n
p—1 p—1
s+5 (p+2s+a—1
— —n—>
p—1 p—1 dr

1 gd | ast2a 5, 3 _
_|_77,37 rope1 +2s5s—3—n y3 2s
2 d?’z Ri+lmaBr

1d | 2set)+2a ou |?
+§% , prl ’fl/ ) y3—2s Vue|2_‘ae
R} NoB, r
1 2s(+v)42a ou 2
+§T pp7,1 n 1/’ ) y3—2s ‘V’Uze|2 _ ‘ 5 e
R} T'NOB, r

n,s

p+1

o
ORYTINB, ¢

_ 4s+2a _
o b> r 3+2s+ =1 n/ y3 2su§
R NOB,

d

4s+2a _9_ Q_
|"f‘ p—1 +2s—2 n/ yd 25’[1%]
nt1
R} NIB,
2
25 +a 8ue) ]

-1
r
p—1

or
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> p+4s+2a—1 4 2s

Theorem 2.2. Assume that n +1a —b. Then, E(ue,\) is a nondecreasing function of A > 0.

p+2s+a—1 p—
Furthermore,
2
(2.5) BB te) 5 o, 5,p) AT H20-2m / y'mR ( 25401y 87“‘6)
dA R+1N9B, p—1 or
where C(n, s,p) is independent from X.
Proof: Set,
_ s(pt1)+2a 1 Ch,s
(2.6) Blue, \) = A" 51 / ~ P | Ay |2dzdy — =25 / R
R*+1NB, 2 p+1 OR"H1NB,

2s+a

Define v, := Apue, u) (X) := /\%ue()\X), and v} (X) := A1 T20e(AX) where X = (z,7) € Ri'H. Therefore,
Apud (X) = v)(X) and

Ap) = 0 in R},
(2.7) limy 0 y*9yu} = 0 in IR
lim, 0 y*9,v) = Cn,s|x|a(ug‘)p in R"

In addition, differentiating with respect to A we have

du)  dv}
2.8 Ap—= = —=.
(28) AN T dA
Note that ) o
Bluo ) = B 1) = [ SyrdPdedy - S [ e
R*HNB, p+1Jornt1np,
Taking derivate of the energy with respect to A, we have
dE(ul, 1 do du
29) Bl [ PR ddy -G [ lalp
d)\ Ri+lmBl d}\ 8R1+lﬁBl d)\
Using (2.7) we end up with
Eut. 1 A A
(2.10) dB(ug, 1) :/ yPu) dv, dxdy —/ lim "9, v du
d\ RIHNB, dA oR? B, Y0 d\
From (2.8) and by integration by parts we have
dv} du
/ ybvé\ Ve — / ybAbUé\Ab Ue
RIHNB, dX R71NB, d\
du) du)
Lo S L 2 (3]
RIHNB, dA OR™1NB;) dA
Note that
du) du) du)
—/ VAyu, -V te o= / div(VAyudy®) Ye —/ yP 0, (Apud) Ye
RYT'NB, dX RITINB, dX ARYTINBy) dX
du du
bA2,, A e b A e
= Yy Ajul —/ y Oy (Apul
/MﬂnBl PdN Jowrrng,) ( )
du?
- / PO (Apud)
ORLT'NBy)
Therefore,

A A A
[ = awdvte. (G2) - | 0, (Ayd) e
wring, - dX oE;0By) ) Jowytins) A
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Boundary of Riﬂ N By consists of GRTFI N By and Riﬂ N 0B;. Therefore,

dv du)
by X iy o/

—vg lim 40
/Ri“mBl 7Y /aRi“mBl AU ( dX )

du)‘ du?
b, A bg .\ GUe

+ Oy Oy
/R"“maBl yle < dA > vt dA

where 7 = [X|, X = (z,y) € R}7™ and 0, = V- £ is the corresponding radial derivative. Note that the first
integral in the right-hand side vanishes since 9, (T)?) =0 on 6R7fr+1. From (2.10) we obtain

A dug\
¢ dX

dE(u, 1) v [ du) W dud
2.11 e ) o ==<) —a, d
( ) d}\ /Ri*lﬂaBl y Ue d}\ (Ue) d)\
Now note that from the definition of u2 and v} and by differentiating in A we get the following for X € ]Ri“
du (X) 1 /2s5+a
2.12 . = A 0
(212) = 5 (e e
dv) (X) 1/2(p+s—1)+a A
1 e = ST Jrte
(2.13) Y 3 b1 MX) + 00} (X)

Therefore, differentiating with respect to A\ we get

)\dzug\(X) n dud(X)  2s+adu)(X) +ro du (X)
a2 A p—1 _dx " "UTan
So, for all X € R N 0B,
du)(X) 2s+a
A _ e o A
(2.14) O (ue(X)) = A= P (X)
dud (X) dud(X) p—1-2s—adu)(X)
21 € — € €
(2.15) 6T< d\ ) Ao T dA
A _
(2.16) 0. (20x)) = AT HPEZ DT

Substituting (2.15) and (2.16) in (2.11) we get

dé(u)‘ 1) b [(dPu)  p—1-—2s—adu)
2.1 e’ = A € e _
( X /RiﬂmBl vre \Mpe )

p—1 A =1 ¢)

/ o e + 3v due )\dvé‘ dug
RiﬂmaBl ¢ d)\2 ) dXx dA

Taking derivative of (2.12) in r we get
0%u)  Ou) 9 (du) 2s + a Ju)
r—2t+ % =\ =) — :
or? or or p—1 Or

So, from (2.15) for all X € R N 9By we have

b (/\dvé‘ 2(pts—1)+a /\> du)

(2.18) 0?u) _ 8<du2‘>_p+28+a—18ug\
or? or p—1 or
_ )\(AdQué\_’_p—Qs—l—adué‘)_p—l—?s—l—a—l(Adu 2s+a /\>
dN\? p—1 dA p—1 dA p—1

o d?u 45+2a>\dué‘ (2s+a)(p+2s+a—1) ,
a2 p—1 " dx (p—1)2 te




ON STABLE SOLUTIONS OF THE FRACTIONAL HENON-LANE-EMDEN EQUATION 7

Note that
= Ayu) =y U div(y’Vu))
and on RQL_H N 0B1, we have
div(y®Vud) = (tpyr + (n + b)u,)0° + divsn (05 V gnu)
where ¢ = £. From the above, (2.14) and (2.18) we get

d?u) du 4s + 2a 2s+a,.,p+2s+a—1
A 2 _ A —n—07 9—1) Ven eb . A
v, A e ( +b P )—|—ue(p_1)( b1 n—>5b) + 07" dive (0] Vgnuy)
From this and (2.17) we get
dE(u, 1) d?u) d d?u)
2.19 —e = oM [ A2 3
(2.19) d\ /meaBl ! < he T dA\2
d2u’\ du u)
2.20
(220) ornon® (PG ) D
du) d d?u) d A
2.21 ~ 4N — [ A\?
(2:21) /R,LHWB VAN dA ( e + pu >
d2
(2.22) + / NEZC 0, divsn (02V gnu?)
R?t'N9B; dA
du)
2.23 36° 00V 5n
(223) * foren B CAZTY
(2.24) / 9”)\— (67" diven (00 V gnu)) dug
’ "+1|’783 1 € d\
where o :=n+b — ‘liffia and 3 := 25*“ (% —n— b). Simplifying the integrals we get

d%’sw 1) d?u) d?u du) dur\?
9 e _ 9 3 4 2 e e _ e
=57 /Rn+1maBla (A (dXZ) TR o T2 6)/\<d)\>
2
b (B oy L4 (ed (du B
+/Ri+1ﬂaBl o (2 oz Q) s\ Ma L) | am )’

dug du) d
+/Rn+1m631 A A2 dlvsn(elvsnu )+3d1vsn(91VSnu ) 0

du
d\

(lesn (91 Vsnu ))

Note that from the assumptions we have o — § — 1 > 0, therefore the first term in the RHS of (2.25) is positive
that is

d?u) 2 d?u) du) du) 2 v} du) 2 du) 2
2/\3<d)\2) 4 4)\? 5 D (a—ﬁ)A(dA) :2)\</\d)\2 dA) +2(a—6—1))\<d>\> >0

From this we have

dE(Ué\,l) B d? A2 1d 3 d du;\ ? Bd, s
> _ - i Z
d\ o /RT-IN)B 0 (2 d\2 ()\(UE) ) 2 d\ A d\ \ dX + 2 d)\ ()

d*up du)  d du
A € d n 9 n 3d n 6 n d n 9 n €
+/1R"“maB e iven (0]Vgnu )+ ivgn (07 Vgnu ) 0\ d)\( ivgn (07V gnu )) 0

=: Ry + Rs.
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Note that the terms appeared in R; are of the following form

d2 d2 4s42a
0 —5 (\u2)?) = —5 (AT e / yiug
/Riﬂmagl i (M) da? RIT'NoBy
2 2
/ ebi )\3i dué\ = i /\3i )\%*‘25_3_”/ yb 2S+a>\71U +3ue
wrtings, A | A \TdA x| dx Bitimop, Lp—17 C 0 Or
/ P oy = 2 A23’3+45%21“"/ yug
RYT'NOB, dA dA RYT1NOBA

We now apply integration by parts to simplify the terms appeared in Rs.

s /Ri“maBl Acf;;\? diven (0Vsnug) + 3 divse (911)VSWUQ)LZL)? a Adif\ (divsn (6 Vgnup)) d;)\?
- /RTH@BI —0IAVsnuy - Vsn% — 308Vsnu) - Vn dd“f s ‘vsn dduf ’
) _%C%‘QQ (-/Ri“maBl 911)|Vgu2‘|2> - g% </Ri+100131 911)|Veu2|2> +2X /}RTIN)B1 0% VQCZ“;Q i
) 7%;7;2 (A/Ri“ﬁc')Bl 91{|V9u22> B %% </Ri+lﬂ831 911)|V9u2‘|2> + 2 /Ri"’lmaBl 0% |Vo C;U)\é‘ :

> 1 A/ 0%V gu2 |2 _Ld / 0% Voud|?
- 2d}\2 R1+10831 1 ¢ 2d>\ R1+1ﬂ831 L ¢

Note that the two terms that appear as lower bound for R3 are of the form

d2 d2 2s(p+1)+2a ou 2
— [ A BIVeud? | = — [N T —"/ S AT e
d\? ( /Ri“ﬁaBl 1IVouc| d\? ’ Rﬁ*lmaBAy [Vl or

d d 2s(p+1)+2a ou|?

il 01) \V/ 'U,)\ 2 - — | — —n—l/ b Yu P et

d < /RZHWBI i Voucl a |t R 008y Vel =15

O
Remark 2.1. [t is straightforward to show that n > 28@;# implies n > ppT;;faa__ll + 2;1'1“ —b.

3. HOMOGENEOUS SOLUTIONS

Theorem 3.1. Suppose that u = 7“72:%51/1(9) is a stable solution of (1.1) then 1 =0 provided p > "t25£2¢ gpng

[(§ - 590+ 55)  p(nte)?
(31) p S+% L n—2s 51:_% F(n_425)27
F(p—l F( 2 pfl) 4
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Proof. Since u satisfies (1.1), the function 1 satisfies
é+a 2s+4a
2|55 9(0) = Iyl -5 (o)
ol7lal 55 00) = e
2s+a 2s5+a

2s4a
_p71 p— 1t p—1
_ || Y(o) — v(o )|z|”t"*1dtda where |y| =1t

(t24+1—2t <0, a>)”“* |n+2s

= |2 [/ 9(0) (0 )WS t"Ldtdo
(t2+1-2t<0,0>)"z
2s+a

T @0) —P(0)
+/ 1 t" " tdtdo]

+1-2t<6,0>)"5"

2ps+a
We now drop |z|~ T and get

(3-2) Y(0)An,s,a(0) + Kzeia (< 0,0 >)(4(0) —¢(0))do = 4" (0)

S§n—1 p—1

where

> 1—t %1 .
Ap s = / / =zn t" dodt
0 Jsn1 (24+1-2t<0,0>) 2

2s
p—1

and

dt

t —
n+2s

(oo}
K@(<9,0>) ;:/
p=1 0o (BB+1-2t<6,0>)>2

Note that

dt

2s

K%%la(< 0,0 >)

1 y 1— 1 e
/ e+ [ -
0 (t2+1—2t<90>) 1 (BB+1-2t<b0,0>) >

+a

+ tZS 1+

Lo
- G
0 (t2+1_2t<90>)

We now set Ko(< 0,0 >) = fol t%HaH%iliiQS dt. The most important property of the K, is that K, is

(t24+1-2t<0,0>) 2
decreasing in a. This can be seen by the following elementary calculations

1 n—1l—« 2s—14a
—t Int+t Int
604Ka - / net +121§ dt
0o (2+1-2t<0,0>)"3
/1 hlt( th— l—a —|—t2$ 1+a)
—Jo (t24+1-2t< 0,0 >)"2"

n+25+2a
2s

dt <0

For the last part we have used the fact that for p > we have 2s —1+a<n—1—a.

From (3.2) we get the following

(3.3) VO Aot [ Kosa(< 0.0 >)00) ~ vlo) Podo = [ wr*0)a0

§n—1 §n—1 p—1

We set a standard cut-off function 7. € CL(R,) at the origin and at infinity that is n. = 1 for e < r < ¢!

n—2s
2

ne = 0 for either r < €/2 or r > 2/e. We test the stability (1.2) on the function ¢(z) = r~

Note that
( y _ //Sn 1 2 )775( )7 ‘y|7T (ﬂ)+26g(|y|)dad(\y|)

R |a: — \"‘*‘25 r2 +|y|2 —2r|y| < 0,0 >) 2

P(O)ne(r).

and
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Now set |y| = rt then

0@) =) _ g P(O)1e(r) — 2 S(@)ne(rt) g

R7 |$—y|"+25d a / gn—1 t2+1—2t < 9 o >)" v

/ P (0)ne(r) “P(o)ne(r) = (n(r)¥(8) — e (rt) (o))
sn—1 (t241—-2t < 0,0 >)"="

t"Ldtdo

n—2s

= rrserwo/ / ——t"Ldtdo
elry(6) o Jsn-1 (12 4 1—2t<49a>)+

e = (4(60) — (o))
o Ue(T)/ /Sn—l (t2 -|- 1—2t<0,0>)"%" dtdo

I () = () b(o)

(2+1-2t<0,0>)"5

—2s

o [o® 1
Define A,, s := fo Jon—1 i 2;920>),H;2§t" Ldodt. Therefore,

0@) = o), _

xr — y|n+2s = r

*Ne(r)(0)An s

R

_|_7«_%_377 ('r) . Kn_2s 2& (< 9 g >)(¢(9) - ¢(0))d‘7

gn1 t2+1_2t<0 a>)”“‘

Applying the above, we compute the left-hand side of the stability inequality (1.2),

(¢(x) — ¢(y))? _ (¢(x) = ¢(y)) ()
Jo o Srmgtein = 2 [

= 2/ i3 (r )dr/ V2N, dO
0 sn—1

+2/Oor—1 (r)dr [ Kucea (< 0,0 >)(0(0) = (0))*dodd
0 S

(3.4) +2/OOO [/Ooorlne(r)(ne( —ne(rt)) }/S /S L 1_2t<6(;>()2 dododt

n—2s

We now compute the second term in the stability inequality (1.2) for the test function ¢(z) =7r~"2 (0)n.(r)
and u = 7“7%1#(9),

p/ T,a|u|p71¢2 _ p/ 7“a7“7(28+a)7’7(n728)1/)p+177€2(T’)d’)"
0 0
(35) = o[ e [ o

0 n—1

Due to the definition of the 7, we have [;* r~'n?(r)dr = In(2/€) + O(1). Note that this term appears in both
terms of the stability inequality that we computed in (3.4) and (3.6). We now claim that

fu(t) = / T () (e (r) — me(rt))dr = O(In )
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Note that ne(rt) = 1 for £ <7 < i and 7(rt) = 0 for either r < 5; or r > % Now consider various ranges of

value of t € (0,00) to compare the support of 7.(r) and 7(rt). From the definition of 7., we have

aln

£ ::(/Z () (1e(r) — ne(rt))dr

In what follows we consider a few cases to explain the claim. For example when € < § < % then

2

fe(t) = /t rldr + /Et rldr ~ Int

2

Now consider the case % <3< % then t ~ €2. So,

fe(®) z/t 7"*1d7"+/e r~tdr ~Int+Ine~Int

€
2 t

Other cases can be treated similarly. From this one can see that

(3.6) ‘fnUWFW(x( rtmlélénlﬁ+1_4;j;»whmwwawwm

t" g
3.7 ~ / / / —— (o) (0)dtdodd
(37) gn-1 Jgn—1 (241—-2t < 8,0 >)"" ()(6)
(3.8) =
Collecting higher order terms of the stability inequality we get
(3.9) Moo [ 04 [ Kua(< 0,0 >)(0(0) — ¥(0))%do > p / gt
Sn—1 Sn—1 S§n—1

From this and (3.3) we obtain
(o= pAnea) [ 0% [ (e = pEsa)(< 0.0 2)(0(6) — b(0) o 2 0
§n—1 §n—1 -

Note that K, is decreasing in «. This implies K n-2s 20 < K2s+a for p > M So, Kn;Zs — pK2s+a < 0. On
p—1

the other hand the assumption of the theorem 1mphes that An s pAms’a < 0. Therefore, 1) = 0.
O

4. ENERGY ESTIMATES

In this section, we provide some estimates for solutions of (1.1). These estimates are needed in the next
section when we perform a blow-down analysis argument. The methods and ideas provided in this section are
strongly motivated by [9, 10].

Lemma 4.1. Let u be a stable solution to (1.1). Let also n € C°(R™) and for x € R™, define

(4.1) plz) = /n (n(x) = n(y))* d

o — g2
Then,
2
(4.2) / || |u|P T 2dx+/ / yzg)sn(y)l dedy < C | u*pdx
R n n R

Proof. Proof is quite similar to Lemma 2.1 in [9] and we omit it here. O
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Lemma 4.2. Let m >n/2 and x € R™. Set

(43) o) = [ Mdy where n(x) = (1+ [o]?)~"/?

Then there is a constant C' = C(n,s,m) > 0 such that

(4.4) CTH 1+ |2) ™27 < pla) < O(L + Jaf?) /278

Proof. Proof is quite similar to Lemma 2.2 in [9] and we omit it here. O

Corollary 4.1. Suppose that m > n/2, n given by (4.3) and R > 1. Define

xXr)—n 2
(45) pnta) = [ DI 4y where ne) = e/ R)o(a)

|I _y‘n—&-%

where ¢ € C°(R™)N[0,1] is a cut-off function. Then there exists a constant C > 0 such that

PR ( )<C77( ) |x|—n 25+R 2s (E)
R
Lemma 4.3. Suppose that u is a stable solution of (1.1). Consider pr that is defined in Corollary 4.1 for
n/2<m<n/2+ s(p+1)/2. Then there exists a constant C' > 0 such that
25(p+1)+2a
/ u’pr < CR"~ o1
forany R > 1

Proof. Note that

p—1

) 19 ﬁ +1 p+1L
[ wtonde < ([ ettt tagan) ™ ([ ik g )
n R” R

From Lemma 4.1 we get

+1
/ u2p3dw§/ a5l 7 do

Now applying Corollary 4.1 for two different cases |z| > R and |z| < R one can get pr(z) < C(|x|7"72% + R729)
n2/—s
and p(z) < CR-> (14 52) " . This finishes the proof,

Note that O

We are now ready to state the essential estimate on stable solutions. Since the proofs are similar to the ones
given in [9], for the case of 0 < s < 1, and in [16], for the case of 1 < s < 2, we omit them here.

Lemma 4.4. Suppose that p # "t25320 Let u be a stable solution of (1.1) and u. satisfies (1.5). Then there
exists a constant C > 0 such that

(i) for0<s <1
/ y1—2s 2 < CRTH-Q 725(p+1)+2a
Br

and

(ii) forl <s<2

2s(p+1)+2a
p—1

/ y3 2s 2 < ORn+4
Br

Lemma 4.5. Let u be a stable solution of (1.1) and u. satisfies (1.5). Then there exists a positive constant C
such that
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(i) for0<s <1
2s(p+1)+2a
p—1

(4.6) / 2| [ue|P T dae +/ y' 72| Vue|*dedy < CR"™ ™ =
BrNORT ! BrnR}H

and
(ii) forl<s<2

2s(p+1)+2a
T

(4.7) / || e [P da +/ y* 2| Apue|*dady < CR"™ ™ »-
BrNORYT! BrMR} T

5. BLOW-DOWN ANALYSIS

This section is devoted to the proof of Theorem 1.2. The methods and ideas are strongly motivated by the
ones given in [9, 10].
Proof of Theorem 1.2: Let u be a stable solution of (1.1) and let u. be its extension solving (1.5). For the case
1 < p < ps(n,a) the conclusion follows from the Pohozaev identity. Note that for the subcritical case Lemma
4.5 implies that v € H*(R™) N LPT1(R™). Multiplying (1.1) with u and doing integration, we obtain

a, |p+1 __ 2
(5.1) [ el =
in addition multiplying (1.1) with u*(z) = u(\z) yields

[ laleur i = [ oy -y = [
Rn R

R

where w = (—A)*/?u. Following ideas provided in [10, 26] and using the change of variable z = v/Az one can
get the following Pohozaev identity

n+ta al, |p+1 _ 28—n 95  d VA VA g 2s—ny g
S [ ettt = 2w S [ Vet = 2 )

This equality together and (5.1) proves the theorem for the subcritical case.
Now suppose that p > ps(n,a).

Case 1: 0 < s < 1. We perform the proof in a few steps.
Step 1. limy_ ;o0 E(te, A) < +00. From the fact that E is nondecreasing in A, it suffices to show that E(u., \)
is bounded. Write E = I 4+ J, where I is given by (2.1) and

J (e, N) = A S a / y' 20 do
p+1Joap,Arrtt

Note that Lemma 4.5 implies that I is bounded. To show that E is bounded we state the following argument.
The nondecreasing property of E yields

2

1 s(p+1)+2a
E(ue, \) < */ E(u,t)dt <C+ )\2:%—”—1/ y172sug.
)\ A Bg)\ﬂRi+1

From Lemma 4.4 we conclude that E is bounded.
Step 2. There exists a sequence \; — 4oo such that (u)?) converges weakly in HlloC(RiH;yl*zsdydx) to a
function ug®.

This follows from the fact that (u)) is bounded in H} (R y'~2*dzdy) by Lemma 4.5.

Step 3. 12 is homogeneous.
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To see this, apply the scale invariance of F, its finiteness and the monotonicity formula: given Ry > R; > 0,

0 = lim E(UE,AZ'RQ) —E(ue,)\iRl)

n—-+oo

= lim BE(ul, By) — E(ug, By)

i (2 A A\ ?

> liminf/ y125r2‘"+‘2+?< sthaue , Ot > dudy
n—-+oo (BRQ\BRl)ﬂR:;H p—1 r or

N / P <2$+au§° N 3u§°)2d p

z r p=t1 - - xray
(BRQ\BRl)mR1+1 p — 1 T 87“

Note that in the last inequality we only used the weak convergence of (u)?) to u® in H} (R yt=25dady).
So,

2 oo oo
S+l Oue =0 a.e. in Rﬁ“.
p—1 r or

And so, u2° is homogeneous.
Step 4. u2® =0. This is a direct consequence of Theorem 3.1.
Step 5. (u)i) converges strongly to zero in H(Bg \ Be;y'~2*dzdy) and (u*?) converges strongly to zero in
LPYY(Bg \ B.) for all R > € > 0.

From Step 2 and Step 3, we have (u)i) is bounded in Hlloc(RiH;yl’zsdxdy) and converges weakly to 0.
Therefore, (u)?) converges strongly to zero in L? (R"';y'=2°dzdy). By the standard Rellich-Kondrachov
theorem and a diagonal argument, passing to a subsequence, for any Br = Br(0) C R"™! and A of the form

A={(z,t) e R : 0 <t < r/2}, where R,7 > 0 we obtain

lim y 725w | dady — 0.
71— 00 R1+IQ(BR\A)

1—-2s )\i

U

/R”“ B Y e
N r(z)

for any € OR""!, |z| < R, with a uniform constant C. Applying similar arguments as [9] one can get (u)
y + e

converges strongly to 0 in H} (R7T\ {0};y'~2*dzdy) and the convergence also holds in LR\ {0}).
Step 6. u. =0.

By [12, Theorem 1.2],

2 dxdy

2 dxdy < C’rz/ y1_25|Vu2"‘

RYTINB,.(x)

I(ue,N) = I(ué,l)
1
= 5 [ v ey - 2]+ da
2 Jrrting, p+1 Jornting,
1
= 5 [ Ve - 2|} 7+ da
2 Jrrtins, p+1 JorntnB,
1 ) K
[ ey - [ s
R"+1NB;\B. P+ 1 Jorr+inB\B.
25(p+1)+2a 1 K
= I(ue,O,AZ:')—f—*/ y' 2|V Pdrdy — — / 2| |ul [P d
R?H'NB;\B. p+1 OR" 1 NB;\ B,
s(p+1)+2a 1 ;
< e _|_,/ y' 2| Vud | Pdady — s / || [ud P da
2 R?H'NB; \B. p+1 ORI NB;\ B,

Letting A — 400 and then € — 0, we deduce that limy_, o I(ue, A) = 0. Using the monotonicity of E,

1 2\ . )
(5.2) E(ue, )<~ | E)dt< sup I+C>\_n_1+2<pp+%/ 2
A JA A,22] Bax\Ba
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and so limy_, y o F(ue, A) = 0. Since u is smooth, we also have F(u.,0) = 0. Since E is monotone, £ = 0 and
so u, must be homogeneous, a contradiction unless u, = 0.

Case 2: 1 < s < 2. Proof of this case is very similar to Case 1. We perform the proof in a few steps.

Step 1. limy_ o0 F(tte, A) < 00.
From Theorem 2.2, F is nondecreasing. So, we only need to show that F(u.,\) is bounded. Note that

1 2 22
E(ue, A) < X E(ue, t)dt < —/ / E(ue,y)dydt
A

From Lemma 4.5 we conclude that

1 2\ pt+A » 1 n,s
725}%}—71 Y3~ 25|A Ue‘ dydz — & s |x‘aup+1dm dydt < C
A2 2 1 €
A R™HNB, p+1Jory g,

where C' > 0 is independent from A. For the next term in the energy we have

21 A 2x
s+2a 1 s+2a
/ = ,n/ VP2 uldyda | dydt < N t*3+25+4p%217n/ VP22 dydzdt
A Jt R} T'NOB, A Biia\Bt

A

1 2 45+2a
S ﬁ/ t73+25+ p—1 ¥ </ y3_23ugdydx) dt
A B
n4d—2s@t)d2a 1 22 _340g4det2a
< A p—1 F t p—1 dt
< C

where C' > 0 is independent from A. In the above estimates we have applied Lemma 4.4. For the next term we

have
2X 2
/tJr li 29—3—n+—4;ﬁ“/ Y32 <23+av1ue+ Ue) dvdi
2 d an p_l T
]_ 2 43+2a . 25+a au 2
- t A)25— n+-—=7- 3—2s t A -1 . e
2AQ/A 64+ ) [, v (et
L aeiza 2 ue\”
_ g2t A2 / P2 3*"@771“6Jr u Jdt
OB, p-l 87'

2X 2
25717n+% 3—2s 2s+a —1 8“6 drdt
2)\2 / [ /83a,y (p17 Ue + or 2

2
)\72+2s7n+%/ 2 (23 a1y 5%) <c
B3a\Bx p—1 or

IN

where C' > 0 is independent from A. The rest of the terms can be treated similarly.
Step 2. There exists a sequence \; — oo such that (u)?) converges weakly in H} _(R™, y3>~2%dzdy) to a function
ul®.
Note that this is a direct consequence of Lemma 4.5.
Step 3. ug° is homogeneous and therefore ug® = 0.
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To prove this claim, apply the scale invariance of F, its finiteness and the monotonicity formula; given
Ry > Ry > 0,
0 = hm (E(ue, Rg)\i) — E(ue, Rl/\z))
71— 00

= lim (BE(u)',Rs) — E(u}', Ry))

71— 00
2
L. oo, dst2a 0 o o (254+a _, . Oudi
> h_mlnf/ 328y e T2 <7’ Ludi 4+ == > dydzx
11— 00 (BR2\BRl)mR:_+1 p — 1 67‘
>

2
- 4s a 9 25 + a auoo
Y2yt <r1u;§°+ —e ) dyda

/(BRQ\BRl)mR:j—l pP— 1 87‘

In the last inequality we have used the weak convergence of (ui) to u2® in H} (R",y3~2*dydz). This implies
2s+a ou®
p—1 or
Therefore, uS° is homogeneous. Apply Theorem 3.1 we get u>® = 0.

Step 5. (u)i) converges strongly to zero in H'(Bgr \ B.,y> 2?*dydr) and (u)?) converges strongly to zero in
LPTY(Br\ Be) for all R > € > 0.

rhuse 4 =0 ae in R}

Step 6. u, =0.
e = I(1)
1 _ K
— 5/ 1 > 23|Abu;\|2dxdy— Sl/’ ) |x|“|u;\|p+1d3:
RHINB, p+1Jorn+ing,
1 )
= o o APy - [ e
RHINB, P+ 1 Jorm+1nB,
1 X
+3 [ v Pdedy - 2 [ PR
2 Jrn+'0By\B. p+1 Jor1+1nB,\B.
s( ) a 1
= I(ue,)\s)—kf/ Y37 | Ayul |Pdady — fs / || |u [P da
2 Jrn+1nBy\B. p+1Jorm+nBi\B.
< gen-mm 1

Jr*/ y> 2| Aud Pdady — s / || ud [P da
2 Jrr+ 0B \B. P+ 1 Jornt1nB,\B,

Letting A — 400 and then £ — 0, we deduce that limy_, oo I(ue, A) = 0. Using the monotonicity of E,
1 142542 )
(5.3) E(ue, ) < — E(t)dt < sup I+ CA p-1 Uz
AUy A,27] Bax\Ba
and so limy—, oo E(ue, A) = 0. Since u is smooth, we also have E(ue,0) = 0. Since F is monotone, E = 0 and
so u. must be homogeneous, a contradiction unless u. = 0.
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