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In this article, certain indecomposable Virasoro modules are studied. Specifically,
the Virasoro mode L0 is assumed to be nondiagonalizable, possessing Jordan blocks
of rank 2. Moreover, the module is further assumed to have a highest weight
submodule, the “left module,” and that the quotient by this submodule yields an-
other highest weight module, the “right module.” Such modules, which have been
called staggered, have appeared repeatedly in the logarithmic conformal field
theory literature, but their theory has not been explored in full generality. Here,
such a theory is developed for the Virasoro algebra using rather elementary tech-
niques. The focus centers on two different but related questions typically encoun-
tered in practical studies: How can one identify a given staggered module, and how
can one demonstrate the existence of a proposed staggered module. Given just the
values of the highest weights of the left and right modules, themselves subject to
simple necessary conditions, invariants are defined which together with the knowl-
edge of the left and right modules uniquely identify a staggered module. The
possible values of these invariants form a vector space of dimension 0, 1, or 2, and
the structures of the left and right modules limit the isomorphism classes of the
corresponding staggered modules to an affine subspace �possibly empty�. The num-
ber of invariants and affine restrictions is purely determined by the structures of the
left and right modules. Moreover, in order to facilitate applications, the expressions
for the invariants and restrictions are given by formulas as explicit as possible �they
generally rely on expressions for Virasoro singular vectors�. Finally, the text is
liberally peppered throughout with examples illustrating the general concepts.
These have been carefully chosen for their physical relevance or for the novel
features they exhibit. © 2009 American Institute of Physics.
�doi:10.1063/1.3191682�

I. INTRODUCTION

The successes of conformal field theory, in particular, its applications to condensed matter
physics, depended crucially on the theory of highest weight modules of the Virasoro algebra. Such
a theory became available in the early eighties, ultimately due to the work of Kac1 and Feigin and
Fuchs.2 The corresponding conformal field theories, the minimal models of Ref. 3 are constructed
from a certain finite collection of irreducible highest weight Virasoro modules and rightly enjoy
their position as some of the simplest and most useful of conformal field theories.

In spite of this, the past 15 years have witnessed the construction, in varying degrees, of a
different kind of conformal field theory.4,5 These theories are constructed from certain indecom-
posable, rather than irreducible, modules and are collectively known as logarithmic conformal
field theories �LCFT�. Despite a promising beginning, logarithmic theories quickly attained a
reputation for being esoteric and technical. Some impressive examples were constructed, but the
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field suffered from a perceived lack of concrete applications. To be sure, there were many attempts
to use logarithmic theories to explain discrepancies in models of the fractional quantum Hall
effect, Abelian sandpiles, D-brane recoil, and more �see Ref. 6, for references to these�, but none
of these attempts really left an enduring mark upon their intended field. Nevertheless, condensed
matter physicists remained interested in these theories for the simple reason that the standard
minimal model description of many of their favorite models was known to be incomplete or even
entirely missing.

Recently, there has been something of a resurgence in the study of logarithmic conformal field
theories, with the aim of clarifying applications to condensed matter physics and developing the
mathematical properties of logarithmic theories so as to more closely mirror those of standard
theories. One can isolate several different approaches including free field methods and connections
to quantum group theory,7,8 lattice model constructions,9,10 and construction through explicit
fusion.11,12 All of these involve exploring the new features of a theory built from indecomposable
but reducible modules. Intriguingly, recent developments in random conformally invariant fractals,
Schramm–Loewner evolutions �SLE� in particular,13 have started to bridge the gap between the
field-theoretic and probabilistic approaches to the statistical models of condensed matter theory
�see Refs. 14–16 for reviews�. In particular, the kernel of the infinitesimal generator of the
Schramm–Loewner evolution, which consists of local martingales of the stochastic growth process
that builds the fractal curve, carries a representation of the Virasoro algebra,17–19 and it has
recently been observed that in certain cases this representation becomes indecomposable, of the
type found in logarithmic conformal field theory.20 This has led to renewed proposals for some
sort of SLE-LCFT correspondence.21–23

Advances such as these have necessitated a better understanding of the representation theory
of the Virasoro algebra beyond highest weight modules. In the corresponding logarithmic theories,
the Virasoro element L0 acts nondiagonalisably, manifestly demonstrating that more general
classes of modules are required. One such class consists of the so-called staggered modules and it
is these which we will study in what follows. More precisely, we will consider indecomposable
Virasoro modules on which L0 acts nondiagonalizably and which generalize highest weight mod-
ules by having a submodule isomorphic to a highest weight module such that the quotient by this
submodule is again isomorphic to a highest weight module. We refer to the submodule and its
quotient as the left and right modules, respectively �the naturality of this nomenclature will
become evident in Sec. III�. Roughly speaking, these staggered modules can be visualized as two
highest weight modules which have been “glued” together by a nondiagonalizable action of L0.
Such staggered modules were first constructed for the Virasoro algebra in Ref. 24.

We mention that staggered Virasoro modules corresponding to gluing more than two highest
weight modules together have certainly been considered in the literature,11,25 but we shall not do
so here. Similarly, one could try to develop staggered module theories for other algebras which
arise naturally in logarithmic conformal field theories. We will leave such studies for future work,
noting only that we expect that the results we are reporting will provide a very useful guide to the
eventual form of these generalizations. Here, we restrict ourselves to the simplest case, treating it
in as elementary a way as possible. We hope that the resulting clarity will allow the reader to
easily apply our results and to build upon them. Our belief is that this simple case will be a correct
and important step toward a more complete representation theory applicable to general logarithmic
conformal field theories.

No introduction to these representation-theoretic aspects of logarithmic conformal field theory
could be complete without mentioning the seminal contributions of Rohsiepe. These appeared
13 years ago as a preprint,26 which to the best of our knowledge was never published, and a
dissertation in German.27 As far as we are aware, these are the only works which try to system-
atically develop a representation theory for the Virasoro algebra, keeping in mind applications to
logarithmic conformal field theory �specifically the so-called LM�1,q� theories of Ref. 24�. In-
deed, it was Rohsiepe who first introduced the term “staggered module,” although in a setting
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rather more general than we use it here. These references contain crucial insights on how to start
building the theory and treat explicitly a particular subcase of the formalism we construct. We
clearly owe a lot to the ideas and results contained therein.

On the other hand, Rohsiepe’s formulation of the problem in Ref. 26 is somewhat different to
our own, which in our opinion has made applying his results a little bit inconvenient. Moreover, an
unfortunate choice of wording in several of his statements, as well as in the introduction and
conclusions, can lead the casual reader to conclude that the results have been proven in a gener-
ality significantly exceeding the actuality. Finally, the article seems to contain several inaccuracies
and logical gaps which we believe deserve correction and filling �respectively�. We depart some-
what from the notation and terminology of Ref. 26 when we feel that it is important for clarity.

We have organized our article as follows. Section II introduces the necessary basics—the
Virasoro algebra, some generalities about its representations, and most importantly the result of
Feigin and Fuchs describing the structure of highest weight modules. This section also serves to
introduce the notation and conventions that we shall employ throughout. In Sec. III, we then
precisely define our staggered modules and state the question which we are trying to answer. Here
again, we fix notation and conventions. The rest of the section is devoted to observing some
simple but important consequences of our definitions. In particular, we derive some basic neces-
sary conditions that must be satisfied by a staggered module and show how to determine when two
staggered modules are isomorphic. This gives us a kind of uniqueness result.

Section IV then marks the beginning of our study of the far more subtle question of existence.
Here, we prove an existence result by explicitly constructing staggered modules, noting that we
succeed precisely when a certain condition is satisfied. This condition is not yet in a particularly
amenable form, but it does allow us to deduce two useful results which answer the existence
question for certain staggered modules provided that the answer has been found for certain other
staggered modules. These results are crucial to the development that follows. In particular, we
conclude that if a staggered module exists, then the module obtained by replacing its right module
by a Verma module �with the same highest weight� also exists.

We then digress briefly to set up and prove a technical result, the Projection Lemma, which
will be used later to reduce the enormous number of staggered module possibilities to the consid-
eration of a finite number of cases. This is the subject of Sec. V. We then turn in Sec. VI to the
existence question in the case when the right module is a Verma module, knowing that this case is
the least restrictive. Our goal is to reduce the not-so-amenable condition for the existence which
we derived in Sec. IV to a problem in linear algebra. This is an admittedly lengthy exercise, with
four separate cases of varying difficulty to be considered �thanks to the Projection Lemma�. The
result is nevertheless a problem that we can solve, and its solution yields a complete classification
of staggered modules whose right module is Verma. This is completed in Sec. VI D. We then
consider in Sec. VI E how to distinguish different staggered modules within the space of isomor-
phism classes, when their left and right modules are the same. This is achieved by introducing
invariants of the staggered module structure and proving that they completely parametrize this
space.

Having solved the case when the right module is Verma, we attack the general case in Sec.
VII. We first characterize when one can pass from Verma to general right modules in terms of
singular vectors of staggered modules. This characterization is then combined with the Projection
Lemma to deduce the classification of staggered modules in all but a finite number of cases.
Unhappily, our methods do not allow us to completely settle the outstanding cases, but we outline
what we expect in Sec. VII C based on theoretical arguments and studying an extensive collection
of examples. Finally, we present our results in Sec. VIII in a self-contained summary. Throughout,
we attempt to illustrate the formalism that we are developing with relevant examples, many of
which have a physical motivation and are based on explicit constructions in logarithmic conformal
field theory or Schramm–Loewner evolution.
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II. NOTATION, CONVENTIONS, AND BACKGROUND

Our interest lies in the indecomposable modules of the Virasoro algebra, vir. These are
modules which cannot be written as a direct sum of two �nontrivial� submodules, and therefore
generalize the concept of irreducibility. The Virasoro algebra is the infinite-dimensional �complex�
Lie algebra spanned by modes Ln �n�Z� and C, which satisfy

�Lm,Ln� = �m − n�Lm+n + �m+n,0
m3 − m

12
C and �Lm,C� = 0. �2.1�

The mode C is clearly central and, in fact, spans the center of vir. We will assume from the outset
that C can be diagonalized on the modules we consider �this is certainly true of the modules which
have been studied by physicists�. Its eigenvalue c on an indecomposable module is then well
defined and is called the central charge of that module. We will always assume that the central
charge is real. Note that under the adjoint action, vir is itself an indecomposable vir-module with
central charge c=0.

In applications, the central charges of the relevant indecomposable modules usually all coin-
cide. It therefore makes sense to speak of the central charge of a theory. To compare different
theories, it is convenient to parametrize the central charge, and a common parametrization is the
following:

c = 13 − 6�t + t−1� . �2.2�

This is clearly symmetric under t↔ t−1. For c�1, we may take t�1. For c�25, we may take t
�−1. When 1�c�25, t must be taken complex. Many physical applications correspond to t
rational, so we may write t=q / p with gcd�p ,q�=1. In this case, the above parametrization be-
comes

c = 1 −
6�p − q�2

pq
. �2.3�

The Virasoro algebra is moreover graded by the eigenvalue of L0 under the adjoint action.
Note, however, that this action on Ln gives −nLn—the index and the grade are opposite one
another. This is a consequence of the factor �m−n� on the right hand side of Eq. �2.1�. Changing
this to �n−m� by replacing Ln by −Ln would alleviate this problem, and, in fact, this is often done
in the mathematical literature. However, we shall put up with this minor annoyance as it is this
definition which is used, almost universally, by the physics community.

The Virasoro algebra admits a triangular decomposition into subalgebras,

vir = vir−
� vir0

� vir+, �2.4�

in which vir� is spanned by the modes Ln with n positive or negative �as appropriate� and vir0 is
spanned by L0 and C. We note that vir+ is generated as a Lie subalgebra by the modes L1 and L2

�and similarly for vir−�. This follows recursively from the fact that commuting L1 with Ln gives a
nonzero multiple of Ln+1, for n�2. The corresponding Borel subalgebras will be denoted by
vir�0=vir− � vir0 and vir�0=vir0 � vir+. We mention that this triangular decomposition respects
the standard anti-involution of the Virasoro algebra which is given by

Ln
† = L−n and C† = C , �2.5�

extended linearly to the whole algebra. We shall often refer to this as the adjoint.28

We will frequently find it more convenient to work within the universal enveloping algebra of
the Virasoro algebra. As we are assuming that C always acts as c1 on representations, we find it
convenient to make this identification from the outset. In other words, we quotient the universal
enveloping algebra of vir by the ideal generated by C−c1. We denote this quotient by U and will
henceforth abuse terminology by referring to it as the universal enveloping algebra of vir. Simi-
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larly, the universal enveloping algebras of vir−, vir+, vir�, and vir� will be denoted by U−, U+, U�,
and U�, respectively. The latter two are also to be understood as quotients in which C and c1 are
identified.

The universal enveloping algebra is a vir-module under left multiplication. Moreover, it is
also an L0-graded vir-module with central charge 0 under the �induced� adjoint action, and it is
convenient to have a notation for the homogeneous subspaces. We let Un denote the elements U
�U for which

L0U − UL0 = nU . �2.6�

Note that Eq. �2.1� forces Ln�U−n. We moreover remark that the adjoint �2.5� extends to an
adjoint on U in the obvious fashion: �Ln1

¯Lnk
�†=L−nk

¯L−n1
.

The most important fact about universal enveloping algebras is the Poincaré–Birkhoff–Witt
theorem which states, for vir, that the set

� ¯ L−m
a−m

¯ L−1
a−1L0

a0L1
a1
¯ Ln

an
¯ : ai � N with only finitely many ai � 0�

constitutes a basis of U. Similar results are valid for U−, U+, U�, and U� �a proof valid for quite
general universal enveloping algebras may be found in Ref. 32�. Two simple but useful conse-
quences of this are that U and its variants have no zero divisors and that

dim U�n
� = p�n� , �2.7�

where p�n� denotes the number of partitions of n�N.
As we have a triangular decomposition, we can define highest weight vectors and Verma

modules. A highest weight vector for vir is an eigenvector of vir0 which is annihilated by vir+. To
construct a Verma module, we begin with a vector v. We make the space Cv into a vir�0-module
�hence a U�0-module� by requiring that v is an eigenvector of vir0 which is annihilated by vir+ �v
is then a highest weight vector for vir�0�. Finally, the Verma module is then the vir-module,

Cv �

U�0
U ,

in which the Virasoro action is just by left multiplication on the second factor. This is an example
of the induced module construction. Roughly speaking, it just amounts to letting vir− act freely on
the highest weight vector v. In particular, we may identify this Verma module with U−v.

It follows that Verma modules are completely characterized by their central charge c and the
eigenvalue h of L0 on their highest weight vector. We will therefore denote a Verma module by
Vh,c �although we will frequently omit the c-dependence when this is clear from the context�. Its
highest weight vector will be similarly denoted by vh,c �so Vh,c=U−vh,c�. The Poincaré–Birkhoff–
Witt theorem for U− then implies that Vh,c has the following basis:

�L−n1
L−n2

¯ L−nk
vh,c : k � 0 and n1 � n2 � ¯ � nk � 1� .

L0 is thus diagonalizable on Vh,c, so Vh,c may be graded by the L0-eigenvalues relative to that of
the highest weight vector. These eigenvalues are called the conformal dimensions of the corre-
sponding eigenstates. The homogeneous subspaces �Vh,c�n=Ker�L0−h−n� are finite dimensional
and, in fact,

dim�Vh,c�n = p�n� , �2.8�

by Eq. �2.7�. Finally, each Vh,c admits a unique symmetric bilinear form � · , · �Vh,c
, contravariant

with respect to the adjoint �2.5�, �u� ,Uu�= �U†u� ,u�, and normalized by �vh,c ,vh,c�=1 �we will
usually neglect to specify the module with a subscript index when this causes no confusion�. This
is referred to as the Shapovalov form of Vh,c.

29 We will also refer to it as the scalar product. Note
that distinct homogeneous subspaces are orthogonal with respect to this form.
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A useful alternative construction of the Verma module Vh,c is to instead regard it as the
quotient of U �regarded now as a vir-module under left multiplication� by the left ideal �left
submodule� I generated by L0−h1, L1, and L2 �recall that L1 and L2 generate vir+ hence U+�. It is
easy to check that the equivalence class of the unit �1� is a highest weight vector of Vh,c with the
correct conformal dimension and central charge. We will frequently use the consequence that any
element U�U which annihilates the highest weight vector of Vh,c must belong to I: If Uvc,h=0,
then

U = U0�L0 − h1� + U1L1 + U2L2 for some U0,U1,U2 � U . �2.9�

As Verma modules are cyclic �generated by acting upon a single vector�, they are necessarily
indecomposable. However, they need not be irreducible. If the Verma module Vh,c is reducible,
then it can be shown that there exists another L0-eigenvector, not proportional to vh,c, which is
annihilated by vir+. Such vectors are known as singular vectors. If there is a singular vector w
�Vh,c at grade n, then it generates a submodule isomorphic to Vh+n,c. Conversely, every submod-
ule of a Verma module is generated by singular vectors. Any quotient of a Verma module by a
proper submodule is said to be a highest weight module. It follows that such a quotient also has a
cyclic highest weight vector �in fact, this is the usual definition of a highest weight module� with
the same conformal dimension and central charge as that of the Verma module. Moreover, it
inherits the obvious L0-grading. Finally, factoring out the maximal proper submodule gives an
irreducible highest weight module, which we will denote by Lh,c �or Lh when c is contextually
clear�.

We pause here to mention that in the physics literature, the term “singular vector” is often
used to emphasize that the highest weight vector in question is not the one from which the entire
highest weight module is generated �that is, it is not the cyclic highest weight vector�. This is
rather inconvenient from a mathematical point of view, but is natural because of the following
calculation: If w� �Vh,c�n is a singular vector �with n�0�, then for all w�=Uvh,c� �Vh,c�n �so U
�Un

−�, hence for all w��Vh,c,

�w,w�� = �w,Uvh,c� = �U†w,vh,c� = 0, �2.10�

as U†�U−n
+ with n�0. We will, however, follow the definition used in mathematics in which a

singular vector is precisely a highest weight vector, qualifying those which are not generating as
proper. We will also frequently express a singular vector in the form w=Xvh,c, X�U−, in which
case we will also refer to X as being singular.30

Let us further define a descendant of a singular vector w to be an element of U−w. The above
calculation then states that proper singular vectors and their descendants have vanishing scalar
product with all of Vh,c, including themselves.31 It now follows that the maximal proper submod-
ule of Vh,c is precisely the subspace of vectors which are orthogonal to Vh,c. The Shapovalov form
� · , · �Vh,c

therefore descends to a well-defined symmetric bilinear form � · , · �K on any highest
weight module K �also called the Shapovalov form�. It is nondegenerate if and only if K is
irreducible.

Through a cleverly arranged computation,33 it is not hard to show the following facts: In a
Virasoro Verma module, there can only exist one singular vector w=Xvh,c, up to constant multi-
pliers, at any given grade n �that is, with X�Un

−�. Moreover, the coefficient of L−1
n when X is

written in the Poincaré–Birkhoff–Witt-basis is never zero. If this coefficient is unity, we will say
that X is normalized, and by association, that w is also normalized. This particular normalization
is convenient because it does not depend on whether we choose to represent X as a sum of
monomials ordered in our standard Poincaré–Birkhoff–Witt manner or with respect to some other
ordering. We note explicitly that vh,c is a normalized singular vector. This normalization also
extends readily to cover general highest weight modules: A �nonzero� singular vector of such a
module will be said to be normalized if it is the projection of a normalized singular vector of the
corresponding Verma module.
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A far more difficult, but nevertheless fundamental, result in Virasoro algebra representation
theory concerns the explicit evaluation of the determinant of the Shapovalov form, restricted to
�Vh,c�n. The vanishing of this determinant indicates the existence of proper singular vectors �and
their descendants�, so understanding the submodule structure of highest weight modules reduces,
to a large extent, to finding the zeros of the Kac determinant formula,

det	� · , · �	�Vh,c�n
= �n 


r,s�Z+

rs�n

�h − hr,s�p�n−rs�. �2.11�

Here, �n is a nonzero constant independent of h and c, and the hr,s vary with c according to

hr,s =
r2 − 1

4
t −

rs − 1

2
+

s2 − 1

4
t−1 =

�ps − qr�2 − �p − q�2

4pq
, �2.12�

when c is parametrized as in Eqs. �2.2� and �2.3� �respectively�. This determinant vanishes when
h=hr,s for some r ,s�Z+ with rs�n. Given such an h=hr,s, then it can be shown that there exists
a �proper� singular vector at grade rs.

The Kac determinant formula was conjectured by Kac in Ref. 1 and proven by Feigin and
Fuchs in Ref. 2. Reasonably accessible treatments may be found in Refs. 34 and 35. Feigin and
Fuchs then used this formula to find all the homomorphisms between Verma modules, effectively
determining the singular vector structure of any Verma module.36 It turns out to be convenient to
distinguish four different types of structures which we illustrate in Fig. 1. We will refer to these as
“point,” “link,” “chain,” or “braid-type” Verma modules �hopefully this notation is self-
explanatory�. These correspond to the cases I, II0 and II− �point�, II+ �link�, III�

0 and III�
00 �chain�,

and III� �braid�, in the notation of Feigin and Fuchs. We will also say that more general highest
weight modules are of the above types, defined through inheriting their type from the correspond-
ing Verma module.

We take this opportunity to describe when each of these cases occurs �see Ref. 36 for further
details� and to introduce some useful notation for each. Recall that each hr,s depends on t and that
t parametrizes the central charge via Eq. �2.2�.

Point: If t and h are such that h�hr,s for every r ,s�Z+, then Vh is irreducible and there are
no highest weight vectors besides the multiples of the cyclic highest weight vector vh.

Link: Suppose that t�Q �recall that t may be complex� and that there exist r ,s�Z+ �unique

t > 0 t > 0t < 0 t < 0

Point Link Chain Braid

FIG. 1. The singular vector structure �including the highest weight vector�, marked by black circles, of Virasoro Verma
modules. The arrows from one vector to another indicate that the latter is a descendant of the former and not vice versa.
Point and link-type Verma modules occur for all central charges. Chain and braid-type modules occur only when t is
rational and nonzero. Note that t�0 corresponds to c�1 and t�0 corresponds to c�25.
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since t is not rational� such that h=hr,s. Then Vh possesses a singular vector at grade rs which
generates the maximal proper submodule of Vh. This maximal proper submodule, itself isomorphic
to Vh+rs, is then of point type, so there are no other nontrivial singular vectors. We denote the
normalized singular vector at grade rs by X1vh �X1�Urs

− is therefore also normalized�, and for
compatibility with the chain case, we will denote the grade of this singular vector by �1=rs.

Chain: Suppose that t=q / p with p�Z+ and q�Z \ �0� relatively prime, and that h=hr,s for
some r ,s�Z+ with p 	r or q 	s. Then, choosing r and s such that h=hr,s and rs�0 is minimal, Vh

has a singular vector at grade rs which generates the maximal proper submodule, itself isomorphic
to Vh+rs. In contrast to the link case, this maximal proper submodule is also of chain type, except
in the degenerate case where t�0, r� p, and s� 	q	, in which case it is of point type. Thus, we
iteratively find a sequence of singular vectors as in Fig. 1. This sequence is infinite if t is positive
and finite if t is negative �terminating with a degenerate case�. We write the normalized singular
vectors of Vh as vh=X0vh ,X1vh ,X2vh , . . ., and denote their respective grades by 0=�0��1��2

�¯ �so Xk�U�k

− �.
Braid: Suppose that t=q / p with p�Z+ and q�Z \ �0� relatively prime, and that h=hr,s for

some r ,s�Z+ with p 	” r and q 	” s. Choose r, s, r�, and s� such that h=hr,s=hr�,s�, rs�0 is minimal
and r�s��rs is minimal but for rs �such r� ,s� always exist except in certain degenerate cases
which we will describe below�. Then Vh has two singular vectors, X1

−vh and X1
+vh at grades h

+rs and h+r�s�, respectively. Together they generate the maximal proper submodule �not a highest
weight module in this case�. The Verma modules generated by these two singular vectors �sepa-
rately� are again of braid type �except in the degenerate cases�, and their intersection is the
maximal proper submodule of either. One therefore finds a double sequence of singular vectors in
this case, as illustrated in Fig. 1. As in the chain case, these sequences are infinite if t is positive
and finite if t is negative.

The degenerate cases referred to above occur when t�0, r� p, and s� 	q	. Then, there are no
labels r� ,s� to be found, the maximal proper submodule is generated by a single singular vector
and is, in fact, of point type. In the nondegenerate cases, we write the normalized singular vectors
of Vh as vh=X0

+vh ,X1
−vh ,X1

+vh ,X2
−vh ,X2

+vh , . . ., denoting their respective grades by 0=�0
+��1

−

��1
+��2

−��2
+�¯ �so Xk

��U
�k

�
− �. When t�0, the double sequence of singular vectors terminates

because of the above degenerate cases, so for some k, there is no Xk
+ and the singular vector Xk

−vh

generates an irreducible Verma module.
Note that when it comes to the submodule structure, the link case is identical to the degenerate

cases of both the chain and braid cases. However, we emphasize that chain- and braid-type
modules only exist when t is rational. With this proviso in mind, we can �and often will� treat the
link case as a subcase of the chain case.

Suppose that for a �normalized� singular vector w=Xvh,c, we can factor X�U− nontrivially as
X�X�, where X�vh,c is again �normalized and� singular. We will then say that w �and X� is com-
posite. Otherwise, w �and X� is said to be prime. A composite singular vector is then just one
which is a proper descendant of another �proper� singular vector. We can generalize this by further
factoring X as X�1�X�2�

¯X�	�, where X�i�X�i+1�
¯X�	�vh,c is �normalized and� singular for all i. Such

factorizations will not be unique, but when they cannot be further refined, we will say that each
X�i� is prime. Such prime factorizations need not be unique either when the Verma module is of
braid type, but it is easy to check from the above classification that for these factorizations the
number of factors 	 is constant. We will refer to 	 as the rank of the singular vector w=Xvh,c.
Rank-1 singular vectors are therefore prime, and we may regard the cyclic highest weight vector
as the �unique� rank-0 singular vector. In our depiction of Verma modules �Fig. 1�, the singular
vector rank corresponds to the vertical axis �pointing down�.

III. STAGGERED MODULES

The central objects of our study are the so-called staggered modules of Rohsiepe.26 The
simplest nontrivial case, which is all that will concern us, is the following: A staggered module S
is an indecomposable vir-module for which we have a short exact sequence,
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0 → HL→



S→
�

HR → 0, �3.1�

in which it is understood that HL and HR are highest weight modules, 
 and � are module
homomorphisms, and L0 is not diagonalizable on S, possessing instead Jordan cells of rank at
most 2. When we refer to a module as being staggered, we have these restrictions in mind. In
particular, our staggered modules are extensions of one highest weight module by another. As we
are assuming that indecomposable modules such as S have a well-defined central charge, those of
HL and HR must coincide. More generally, one could consider indecomposable modules con-
structed from more than two highest weight modules, and with higher-rank Jordan cells for L0, but
we shall not do so here.

We call HL and HR the left and right modules �of S� and denote their highest weight vectors
by xL and xR, with �real� conformal dimensions hL and hR, respectively. HL is then a submodule of
S �we will frequently forget to distinguish between HL and 
�HL��, whereas HR is not �in general�.
We remark that Rohsiepe uses similar nomenclature in this case, defining “lower” and “upper
modules” such that the latter is the quotient of the staggered module by the former. However, we
stress that these do not, in general, coincide with our left and right modules. In particular,
Rohsiepe defines his lower module to be the submodule of all L0-eigenvectors, which need not be
a highest weight module �a concrete illustration of this will be given in Example 2 and the remark
following it—the general phenomenon will be discussed after Proposition 7.2�.

Our question is the following:
Given two highest weight modules HL and HR, can we classify the (nonisomorphic) staggered
modules S corresponding to the short exact sequence (3.1)?

Abstractly, if we dropped the requirement that L0 has nontrivial Jordan cells, then we would
be asking for a computation of ExtU

1 �HR ,HL� in an appropriate category,37 a difficult task. As we
shall see, however, requiring nondiagonalisability leads to a reasonably tractable problem for
which we do not need the abstract machinery of homological algebra.

An answer to our question will be given in the following sections. For convenience, we
summarize our results in Sec. VIII �Theorem 8.1�. This section is largely self-contained, and so
may be read independently of most of what follows. However, we suggest that an appreciation of
the role of the beta invariants �Secs. III and VI E� represents a minimal prerequisite for this result.

As staggered modules necessarily have vectors which are not L0-eigenvectors, we cannot
grade the module by the eigenvalue of L0 relative to that of some reference vector. However, L0

can still be put in Jordan normal form, so we may decompose it into commuting diagonalizable
and nilpotent operators: L0=L0

d+L0
n. A staggered module may then be consistently graded by the

eigenvalues of its vectors under L0
d, relative to the minimal eigenvalue of L0

d. We will refer to
L0

d-eigenvalues as conformal dimensions, even when the corresponding eigenvector is not an
L0-eigenvector. Note that the maps Lm are still consistent with this more general grading—one
easily checks that Lm�Um maps the L0

d eigenspace of eigenvalue h to that of eigenvalue h−m.
A submodule of a �graded� Virasoro module can be assigned a grading in at least two distinct

ways. First, it can inherit the grading from its parent, so that homogeneous states have the same
grade in both modules. The inclusion map is then a graded homomorphism. Second, a grading
may be defined as the conformal dimension of the states relative to the minimal conformal
dimension of the submodule. Both have their uses, but unless otherwise specified, we will always
assume that a submodule inherits its grading from its parent.

We introduce some more notation. Let x= 
�xL� denote the highest weight vector of the sub-
module 
�HL��S and choose an L0

d-eigenvector y in the preimage �−1�xR��S. The vector x is
then an eigenvector of L0, while y is not �if it were, its descendants would also be, hence L0 would
be diagonalizable on S�. Their conformal dimensions are hL and hR, respectively. We now define
the auxiliary vectors,
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�0 = �L0 − hR�y, �1 = L1y, and �2 = L2y . �3.2�

Since L1 and L2 generate U+, �1, and �2 determine the action of U+ on y.
Proposition 3.1: �0 ,�1 ,�2�HL, and �0 is a nonzero singular vector of HL�S.
Proof: Since L0−hR, L1 and L2 annihilate xR=��y��HR=S /HL, their action on y must yield

elements of HL. If �0 vanished then y would be an eigenvector of L0, hence �0�0. Moreover,

Ln�0 = Ln�L0 − hR�y = �L0 − hR + n�Lny , �3.3�

hence Ln�0=0 for all n�0, as y has L0
d-eigenvalue hR, so Lny�HL has L0-eigenvalue hR−n. �

Define �=hR−hL. It follows that � is then the grade of the singular vector �0 and its Jordan
partner y in the staggered module S. The grades of �1 and �2 are therefore �−1 and �−2,
respectively. One immediate consequence is that � is a non-negative integer. Exact sequences �3.1�
with ��0 certainly exist, but cannot describe staggered modules.38 When �=0, we must have
�0=x up to a nonzero multiplicative constant. When ��0, HL has a proper singular vector, hence
the Kac determinant formula �2.11� has a zero. We thereby obtain our first necessary conditions on
the existence of staggered modules.

Corollary 3.2: A staggered module cannot exist unless ��N. Moreover, if ��0, then hL

=hr,s for some r ,s�Z+ �where hr,s is given in Eq. �2.12��.
We will assume from here on that �0=Xx, where X�U�

− is normalized �and singular�. Since
y is related to the normalized singular vector �0 by Eq. �3.2�, this also serves to normalize y
�equivalently, we rescale ��. However, there is still some residual freedom in the choice of y.
Indeed, y was only chosen to be an L0

d-eigenvector in �−1�xR�, so we are still free to make the
redefinitions,

y → y + u for any u � H�
L, �3.4�

without affecting the defining property �or normalization� of y. Following Ref. 21, we shall refer
to such redefinitions as gauge transformations. These transformations obviously do not change the
abstract structure of the staggered module �for a more formal statement see Proposition 3.6�.

It is natural then to enquire about gauge-invariant quantities as one expects that it is these, and
only these, which characterize the staggered module. When ��0, a simple but important example
is given by12

 = �x,X†y� �recall �0 = Xx� . �3.5�

This  is obviously gauge invariant, as �x ,X†u�= ��0 ,u�=0 for all u�H�
L. In the physics literature,

this has been called the logarithmic coupling for field-theoretic reasons.39 Here, we shall just refer
to it as the beta invariant. Note that since �x ,x�=1 and dim H0

L=1,

X†y = x �� � 0� . �3.6�

We further note that the numerical value of this invariant depends on the chosen normalizations of
�0 and y �which is why we have specified these normalizations explicitly�. It is worth pointing out
that if X were composite, X=X�1�X�2� with both X�j� nontrivial, then

 = �x,�X�2��†�X�1��†y� = �X�2�x,�X�1��†y� = 0 �3.7�

because X�2�x�HL is singular and �X�1��†y�HL. The beta invariant is therefore always trivial in
such cases. Nontrivial invariants can still be defined when X is composite, although their proper-
ties necessarily require a little more background. We will defer a formal discussion of such
invariants until Sec. VI E.

Consider now the right module HR=VhR /J. If J is nontrivial, then it will be generated as a
submodule of VhR by one or two singular vectors of the same rank �Fig. 1�. When one generator

suffices, we denote it by X̄vhR; when two generators are required, they will be denoted by X̄−vhR

123503-10 K. Kytölä and D. Ridout J. Math. Phys. 50, 123503 �2009�

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

150.203.33.181 On: Wed, 06 Nov 2013 22:52:24



and X̄+vhR. As usual, we take all of these to be normalized. The corresponding grades are �̄ or

�̄−� �̄+, respectively. However, unless we are explicitly discussing the case of two independent
generators, we shall suppress the superscript indices for clarity.

We have introduced �0, �1, and �2 to specify the action of U�0 on y. When J is nontrivial,

the action of U− on y will not be free. Instead, we have X̄xR=0 in HR, hence

X̄y = � �in S� �3.8�

defines a vector ��HL �two vectors �� when J is generated by two singular vectors�. The grade

of � is then �+ �̄. Recalling that S as a vector space is just the direct sum of HL and HR, and
considering a vector space basis of VhR that extends a basis for the submodule J, it is easy to see
that the Virasoro module structure of S is completely determined by �0, �1, �2, and �.

The existence of � also leads to the following important structural observation.

Proposition 3.3: When HR is not Verma, so X̄ is defined, we have X̄�0=0.

Proof: Since X̄�U
�̄

−
,

X̄�0 = X̄�L0 − hR�y = �L0 − hR − �̄�X̄y = �L0 − hR − �̄�� = 0, �3.9�

as � is an L0-eigenvector of dimension hR+ �̄. �

We remark that the vanishing of X̄�0 implies that there are no nonzero singular vectors in

H
�+�̄

L
. Indeed, the normalized singular vector of this degree is X̄Xx �which is composite if ��0�.

Thus we may interpret Proposition 3.3 as saying that if a singular vector of VhR is set to zero in
HR, then the singular vector of VhL of the same conformal dimension must also be set to zero in
HL. Otherwise, the module S cannot be staggered. Contrapositively, if HL has a nontrivial singular
vector �of rank greater than that of �0�, then HR must have a nontrivial singular vector of the same
conformal dimension. More formally, there is a module homomorphism HR→HL which maps
xR��0. In particular, if HL is a Verma module, then HR must likewise be Verma.

It turns out that there is some redundancy inherent in describing a staggered module in terms
of the vectors �0, �1, �2, and �.

Proposition 3.4: The vector � is determined by the knowledge of HL, HR, �1, and �2.

Proof: We consider the action of Ln on �= X̄y for n�0, recalling that X̄�U
�̄

−
. First note that

LnX̄�U annihilates vhR �VhR, since X̄vhR is singular. Hence, we may write

LnX̄ = U0�L0 − hR� + U1L1 + U2L2 �3.10�

for some U0, U1, U2�U �depending on n�. Such Uj can clearly be computed, for example, by

Poincaré–Birkhoff–Witt ordering LnX̄ and in each resulting term, rewriting the rightmost Lm �if
m�2� in terms of L1 and L2. It follows that

Ln� = U0�0 + U1�1 + U2�2, �3.11�

so it remains to demonstrate that knowing Ln� for all n�0 is equivalent to knowing ��H
�+�̄

L
.

But, the intersection of the kernels of the Ln with n�0 on H
�+�̄

L
is just the set of singular vectors

of this subspace. The only candidate for such a singular vector is X̄�0, and this vanishes by
Proposition 3.3. �

We recall that �0 is already determined by HL and HR, which is why it was not referred to
explicitly in Proposition 3.4. We will therefore refer to the pair

��1,�2� � H�−1
L

� H�−2
L

as the data of a given staggered module. That is not to say that �0 and the � will not play an
important role in what follows. Rather, it just notes that �1 and �2 are sufficient to describe S
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completely. One simple consequence arises when �=0, for then there is only one possible choice
of data, �1=�2=0.

Corollary 3.5: If �=0, there exists at most one staggered module (up to isomorphism) for any
given choice of left and right modules.

Example 1: In Ref. 20, staggered modules with �=0 were identified in the context of the
Schramm–Loewner evolution curve with parameters �=4t�0 and 	= 1

2 ��−4�.40 More precisely,
at these parameters a staggered module S with hL=hR=h0,1= 1

4 �2− t� is realized as a space of local
martingales of the SLE��	� growth process. The central charge of this module is c=c�t�=c�� /4�.
The computations do not, in general, identify the left and right modules, but from the Feigin–
Fuchs classification, we may, for example, conclude that in the case of irrational �, HL=HR

=Vh0,1
(these Verma modules are of point type). In other words, the short exact sequence has the

form

0 → Vh0,1
→ S → Vh0,1

→ 0 �t � 0,t � Q� . �3.12�

We illustrate these staggered modules in Fig. 2 (left). By Corollary 3.5, such staggered modules
are unique when they exist. But this concrete construction demonstrates existence, so we can
conclude that at least one staggered module exists for any t�R+, hence two for any central charge
−��c�1 �one for c= t=1�.

Example 2: In Ref. 5 it was shown that the logarithmic singularity in a certain c=−2 �t=2�
conformal field theory correlation function implied the existence of a staggered module S with
hL=hR=0. This module was constructed explicitly in Ref. 24 by fusing the irreducible module
L−1/8 with itself. The resulting structure is summarized by the short exact sequence,

0 → V0/V1 → S → V0/V3 → 0, �3.13�

and illustrated in Fig. 2 (right). In fact, this example is also related to the SLE construction of
Example 1. For �=8, the weight h0,1 vanishes and the left and right modules can be computed
explicitly to be those given in �3.13�.20

We remark that in Example 2, the vector L−1y is an eigenvector of L0 which does not belong
to HL. This shows that the submodule of L0-eigenvectors need not coincide with the left module
and, in fact, need not be a highest weight module, in general.

There is one obvious deficiency inherent in describing staggered modules by their data
��1 ,�2�. This is the fact that neither �1 nor �2 are gauge invariant, in general. Under the gauge
transformations �3.4�, the data transform as follows:

c= −2c= c(t) , t ∈ R+ \Q

xx yy

Vh0,1Vh0,1

V0/V3

L0− h0,1 L0
0 0

1

3

V0/V1

FIG. 2. An illustration of the staggered modules of Examples 1 �left� and 2 �right�. We have indicated the singular vector
structure of the respective left and right modules by using black circles for the generating states and singular vectors, and
white circles to indicate singular vectors of the corresponding Verma modules which have been set to zero. The dividing
scale gives the grades. It should be understood that singular vectors of the right module need not “lift” to singular vectors
of the staggered module and are indicated purely to facilitate the discussion. �Technically, these lifts are subsingular
vectors of the staggered module—they become singular upon taking an appropriate quotient.�
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��1,�2� → ��1 + L1u,�2 + L2u� �u � H�
L� . �3.14�

This suggests introducing maps gu for each u�H�
L which take H�−1

L
� H�−2

L into itself via

gu�w1,w2� = �w1 + L1u,w2 + L2u� �u � H�
L� . �3.15�

We will also refer to these maps as gauge transformations. Clearly the composition of gauge
transformations is the vector space addition of H�

L. It is then natural to lift the scalar multiplication
of H�

L to the set of gauge transformations, making the latter into a vector space itself. We denote
this vector space by G= �gu : u�H�

L�. We further note that the kernel of the map u�gu is one
dimensional, spanned by the singular vector �0. Thus, G may be identified with H�

L /C�0. In
particular, its dimension is

dim G = dim H�
L − 1. �3.16�

Because the gauge-transformed data describe the same staggered module as the original data,
we will say that the data ��1 ,�2� and its transforms gu��1 ,�2� are equivalent for all u�H�

L. The
following result now characterizes isomorphic staggered modules completely.

Proposition 3.6: Let S and S� be staggered modules with the same left and right modules HL

and HR and with respective data ��1 ,�2� and ��1� ,�2��. Then, upon identifying the two left mod-
ules via x�=x, we have S��S if and only if the data ��1 ,�2� and ��1� ,�2�� are equivalent.

Proof: If ��1� ,�2��=gu��1 ,�2� for some u�H�
L, then y�=y+u defines the isomorphism S�

�S. Conversely, suppose that � : S�→S is an isomorphism extending the identification of the
respective left modules �that is, such that ��x��=x�. Then,

L0y = hRy + �0 and L0��y�� = ��hRy� + �0�� = hR��y�� + �0, �3.17�

so ��y��−y is an L0-eigenvector of dimension hR. We may therefore take u=��y��−y�H�
L, hence

���i�� = Li��y�� = Li�y + u� = �i + Liu �i = 1,2� , �3.18�

as required. �

This completes the analysis of when two staggered modules are isomorphic. It remains,
however, to study the existence question. The question of which data ��1 ,�2� actually correspond
to staggered modules is quite subtle, and we will address it in the following sections. First,
however, we present two motivating examples from the literature to illustrate this subtlety.

Example 3: In Ref. 24, it was shown that fusing the two c=−2 �t=2� irreducible modules L−1/8
and L3/8 results in a staggered module S given by the short exact sequence,

0 → V0/V3 → S → V1/V6 → 0. �3.19�

We illustrate S in Fig. 3 (left). In our notation, �=1, �0=L−1x, �1=L1y=x, where  is the beta
invariant of Eq. (3.5) and �2=L2y=0. The explicit calculation shows that =−1.

It seems reasonable to suppose that because the data ��1=x ,�2=0� of the staggered module
(3.19) are fixed by the beta invariant, there should exist a continuum of such modules, one for each
value of . This was suggested in Ref. 24, referring to Rohsiepe,27 but we are not aware of any
proof of this fact. Indeed, one of our aims (see Examples 10 and 11 in Sec. VII) is to prove and
understand why this is indeed the case.

Example 4: A c=0 �t= 3
2

� staggered module with the short exact sequence,

0 → V0/V2 → S → V1/V5 → 0, �3.20�

has appeared several times in the physics literature.11,12,41 We again have �=1, �0=L−1x, �1

=x, and �2=0. This time  turns out to be − 1
2 . This module is also illustrated in Fig. 3 (right).

One could be forgiven for thinking that because of the similarity of this example and the last,
there will be a continuum of staggered modules with the exact sequence (3.20), parametrized by .
But surprisingly, this is not the case. It was argued in Ref. 21 that =− 1

2 is the only possible value
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for such a staggered module, and hence that such a staggered module is unique (up to isomor-
phism). We shall prove this in Sec. VII (Examples 10 and 11�.

There are some obvious structural differences between Examples 3 and 4, but it is not imme-
diately clear what causes the observed restriction on the isomorphism classes of staggered mod-
ules. In fact, the desire to understand this mechanism is precisely the original motivation for the
research reported here.

Example 5: The above two examples may, in fact, be regarded as members of another family
of staggered modules parametrized by t. For t�R+ \ �1�, this family can again be realized con-
cretely as a module of local martingales of SLEs, with �=4t and 	=−2.20 Each member has hL

=0 and hR=1, but as in Example 1, determining the precise identity of HL and HR requires
nontrivial calculations, in general. However, when � is irrational, these identities are settled
automatically because then VhL is of link type and VhR is of point type (irreducible). By Proposition
3.1, �0�HL is nonvanishing, so HL=VhL. The exact sequence is therefore

0 → V0 → S → V1 → 0 �t � 0,t � Q� . �3.21�

The beta invariant was computed in Ref. 20 (see also Ref. 21) for all t�R+ \ �1� to be =1− t,
which coincides with the values in Examples 3 and 4 (when t=2 and t= 3

2 , respectively). For these
two rational values, the left and right modules were also computed explicitly in the SLE picture,
finding agreement with the fusion computations above. Thus this family of examples shows an
interesting interplay of continuously varying beta invariant, but discontinuously varying left and
right modules.

IV. CONSTRUCTING STAGGERED MODULES: GENERALITIES

In the previous section, we have introduced staggered modules and determined some simple
necessary conditions for their existence. We now turn to the more subtle question of sufficient
conditions for existence. As we have seen in Example 4, it is not true that given left and right
modules, every possible choice of data ��1 ,�2� describes a staggered module. We are therefore
faced with the task of having to determine which data give rise to staggered modules. Such data
will be termed admissible.

c=−2 c= 0

L0− 1 L0− 1

β−1L1 β−1L1

ω0 ω0

x x
yy

V0/V3

V1/V6

V0/V2

V1/V5

0 0

11

2

3

5

6

7

FIG. 3. An illustration of the staggered modules presented in Examples 3 �left� and 4 �right�. The structure is to be
interpreted as in Fig. 2. We remark that when =0, which is possible for the module on the left, the label −1L1 should be
interpreted as saying that x cannot be obtained from y under the action of L1, that is, L1y=0.
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One simple reason26 why a given set of data ��1 ,�2� might fail to correspond to any staggered
module is that there could exist an element U�U such that42

U = U1L1 = − U2L2, but U1�1 + U2�2 � 0. �4.1�

For then, Uy=U1�1�−U2�2=Uy, a contradiction. We mention that given any U=U1L1=−U2L2

�UL1�UL2, the elements U1 and U2 are uniquely determined because U has no zero divisors.
We therefore define the subset

� = ��w1,w2� � H�−1
L

� H�−2
L : U1w1 + U2w2 = 0 for all U = U1L1 = − U2L2 � UL1 � UL2� .

�4.2�

With this notation, our necessary condition on the data becomes as follows.
Lemma 4.1: If a staggered module with data ��1 ,�2� exists, then ��1 ,�2���.
We can obtain a useful simplification of this condition through Poincaré–Birkhoff–Witt order-

ing the U�UL1�UL2.
Lemma 4.2: UL1�UL2=U�0�U+L1�U+L2�.
Proof: If U�UL1�UL2, we may write U=U1L1=−U2L2 with the Ui Poincaré–Birkhoff–Witt

ordered: Ui=�nUi,n
�0Ui,n

+ , with Ui,n
�0�U�0 and Ui,n

+ �U+. Thus,

U = �
n

U1,n
�0U1,n

+ L1 = − �
n

U2,n
�0U2,n

+ L2. �4.3�

Since similarly ordering U in its entirety will not affect the Ui,n
�0 factors, the linear independence

of Poincaré–Birkhoff–Witt monomials implies that �with an appropriate shuffling of the index n�
we may take U1,n

�0=U2,n
�0. It follows, again from linear independence, that U1,n

+ L1=−U2,n
+ L2. This

proves that UL1�UL2�U�0�U+L1�U+L2� and the reverse inclusion is trivial. �

We apply Lemma 4.2 to the conditions of Eq. �4.1� as follows. The first of these just states that
U�UL1�UL2, hence Lemma 4.2 lets us write U=�nUn

�0U1,n
+ L1=−�nUn

�0U2,n
+ L2 for some Un

�0

�U�0 and Ui,n
+ �U+, where

U1,n
+ L1 + U2,n

+ L2 = 0 �4.4�

for all n. Moreover, the second condition of �4.1� is now �nUn
�0U1,n

+ �1+�nUn
�0U2,n

+ �2�0, which
implies that

U1,n
+ �1 + U2,n

+ �2 � 0 �4.5�

for some n. It follows that in Eq. �4.1�, we may suppose that U1 and U2 belong to U+, without any
loss of generality. In other words, if an element U�UL1�UL2 spoils the admissibility of ��1 ,�2�,
then there is an element spoiling admissibility in U+L1�U+L2.

This somewhat lengthy argument then allows us to conclude that � may be equivalently
defined as

� = ��w1,w2� � H�−1
L

� H�−2
L : U1w1 + U2w2 = 0 for all U = U1L1 = − U2L2 � U+L1 � U+L2� .

�4.6�

The value of this slight simplification lies in the fact that the homogeneous subspaces of
U+L1�U+L2 are finite dimensional.

Lemma 4.3: For m�0, the dimension of �U+L1�U+L2�−m=U1−m
+ L1�U2−m

+ L2 is equal to
d�m�= p�m−1�+ p�m−2�− p�m�. When m=0, this dimension is 0.

Proof: As L1 and L2 generate vir+, we have �U+L1+U+L2�−m=U−m
+ for m�0. Taking dimen-

sions of this equality we get dim U1−m
+ +dim U2−m

+ −dim�U+L1�U+L2�−m=dim U−m
+ , which leads to

the asserted formula. �

As an aside to the advanced reader, we mention that by treating U+ as a Virasoro module with
h=c=0 �we set vir�0 1=0�, U+L1�U+L2 may be identified as the submodule generated by the
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singular vectors at grades −5 and −7.43 Indeed, thinking of U+ as a lowest weight Verma module,
our intersection corresponds to the intersection of the submodules generated by the rank 1 singular
vectors at grades −1 and −2. The Feigin–Fuchs classification for lowest weight Verma modules
states that this is generated by the rank 2 singular vectors, which turn out to have grades −5 and
−7 �as stated�.

We tabulate the first few of these dimensions for convenience:

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ¯

d�m� 0 0 0 0 0 1 1 3 4 7 10 16 21 32 43 60 ¯

Note that if U=U1L1=−U2L2�U1−m
+ L1�U2−m

+ L2 with m��, then U1w1 and U2w2 both vanish for
all �w1 ,w2��H�−1

L
� H�−2

L �for dimensional reasons�. We therefore need ��5 to find examples
where ��H�−1

L
� H�−2

L . We also point out that � is not necessarily equal to the set of admissible
data. Example 4 provides an illustration of this fact: The dimension of � is dim�H0

L
� H−1

L �=1 in
this case, but the set of admissible data is a singleton.

Example 6: A staggered module S with c=0 �t= 3
2

� and short exact sequence,

0 → V1/V5 → S → V7/V15 → 0, �4.7�

was constructed in Ref. 11. Note that �=6. Its beta invariant was shown in Ref. 12 to be =
−10 780 000 /243 (with our normalization for �0), where it was also argued to be the unique such
value. What is interesting here is that the authors noted that this example presents some subtlety
upon trying to “fix the gauge” before computing . It is this subtlety which we want to explain
here.

With our notation, the problem arose when the authors tried to determine �1�H5
L and �2

�H4
L in terms of the (unknown) . Since dim H5

L=6, dim H4
L=4, and there are dim G=dim H6

L

−1=8 independent gauge transformations, they could assume that �1=0 and �2= �aL−4+bL−2
2 �x.

There were therefore two unknowns a and b. The definition of the beta invariant then gave a single
linear relation connecting it with a and b.

While the authors of Ref. 21 were able to divine another linear relation between a and b,
thereby determining them in terms of  and completing the gauge fixing, we can understand this
problem as arising from the existence of nontrivial elements of U+L1�U+L2. Indeed,
�U+L1�U+L2�−5 is spanned by

�L1
2L2 + 6L2

2 − L1L3 + 2L4�L1 = �L1
3 + 6L1L2 + 12L3�L2, �4.8�

and left multiplying by L1 gives a spanning element of �U+L1�U+L2�−6. It follows that the assumed
data ��1=0 ,�2= �aL−4+bL−2

2 �x� are not in � (and hence not admissible) unless

L1�L1
2L2 + 6L2

2 − L1L3 + 2L4��1 = L1�L1
3 + 6L1L2 + 12L3��2. �4.9�

Evaluating this constraint gives the second relation found in Ref. 21 through other, less canonical,
means.

To attack the question of which ��1 ,�2� can arise as the data of a staggered module S, given
left and right modules HL and HR, we consider the following explicit construction �generalizing
that of Rohsiepe26�. We start with the Virasoro module HL � U, where vir is understood to act on
U by left multiplication. We let N be the submodule of HL � U generated by

��0,hR − L0�, ��1,− L1�, ��2,− L2� ,

and ��,− X̄�, or ���,− X̄��, when appropriate. �4.10�

Here, we understand that when required, � �or ��� is deduced from the � j as in the proof of
Proposition 3.4. The idea is that 1�U will project onto y�S upon quotienting by N. More
specifically, we will attempt to construct S as �HL � U� /N, requiring then only a precise analysis
of when this succeeds. Denote by �R : HL � U→U the projection onto the second component.
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The question of whether this construction recovers S turns out to boil down to whether the
submodule N° =N�Ker�R is trivial or not.

Theorem 4.4: Given HL, HR, �1�H�−1
L , and �2�H�−2

L , we have the following.

�i� If N° = �0� then �HL � U� /N is a staggered module with the desired short exact sequence,

0 → HL→

 �HL

� U�
N →

�

HR → 0 �4.11�

and data ��1 ,�2�.
�ii� If N° � �0� then a staggered module with the desired exact sequence and data does not

exist.

Proof: Denote by �N : HL � U→ �HL � U� /N the canonical projection, and assume �at first�
that N° = �0�. We will construct the required homomorphisms 
 and � by imposing commutativity
of the following diagram:

0 → HL →�L HL
� U →� R U → 0

� ↓�N ↓�I

0 → HL →� HL
� U

N →� HR → 0
�4.12�

Here, 
L denotes the obvious injection u� �u ,0� �the top row is therefore exact� and �I denotes
the canonical projection onto the quotient of U by the submodule �left ideal� I generated by L0

−hR, L1, L2, and X̄.
Observe then that 
=�N � 
L has kernel Im 
L�N=N° = �0�, hence is injective. On the other

hand, the map � satisfies � ��N=�I ��R, which, in fact, defines it as �I ��R maps N=Ker �N to
zero by construction. The map � is clearly surjective as both �R and �I are. It remains to check
that the bottom row is exact in the middle. From the exactness of the top row we get

� � 
 = �I � �R � 
L = 0, hence Im 
 � Ker � . �4.13�

On the other hand, if � ��N�w ,U�=0 for some �w ,U��HL � U, then U�I by commutativity of
�4.12�. By definition of I and N, �w ,U�= �w� ,0� �mod N� for some w��HL, hence

�N�w,U� = �N � 
L�w�� = 
�w��, hence Ker � � Im 
 . �4.14�

The module �HL � U� /N is then staggered and the data are correct because

�L0 − hR�y = ��0,0� = 
��0� and Ljy = �� j,0� = 
�� j� �mod N� , �4.15�

where y= �0,1� and x= �xL ,0� �mod N�. This proves �i�.
If N° � �0�, then �given HL� there exists U0 ,U1 ,U2 , Ū�U, such that

U0�L0 − hR� + U1L1 + U2L2 + ŪX̄ = 0, but U0�0 + U1�1 + U2�2 + Ū� � 0. �4.16�

Suppose that S was a staggered module with the desired exact sequence and data, and choose y
�S such that ��y�=xR and Ljy=� j. Now applying the first of these equations to y would give
zero, contradicting the second. This proves �ii�. �

The role that N° plays in this construction of a staggered module is best seen by regarding
N° =N� Im 
L as a submodule of HL. If nontrivial, N° is generated by singular vectors of HL.
The quotient of HL � U by N will then no longer have a left module isomorphic to HL, but will be
some quotient thereof. For example, if x�N°, then all of HL is “quotiented away” and the above
construction gives a highest weight module, not a staggered module. Similarly, if �0�N° but
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x�N°, then the construction results in an indecomposable module on which L0 is diagonalizable.
It is only when N° = �0� that HL is preserved, and then Theorem 4.4 tells us that we do indeed
obtain a staggered module with the correct left and right modules and data.

Before concluding this section, let us first make two brief observations relating to the above
construction arguments. These allow us to answer the question of the existence or nonexistence of
a staggered module, assuming we have already answered the question for another related stag-
gered module. Roughly speaking, the existence becomes easier if we take a smaller left module or
a bigger right module. The precise statement for the left module is as follows.

Proposition 4.5: Suppose that there exists a staggered module S with exact sequence,

0 → HL → S → HR → 0, �4.17�

and data ��1 ,�2��H�−1
L

� H�−2
L . If Ĵ is a submodule of HL not containing �0, then there exists a

staggered module Ŝ with exact sequence,

0 → ĤL → Ŝ → HR → 0 �ĤL = HL/Ĵ� , �4.18�

and data ���1� , ��2���Ĥ�−1
L

� Ĥ�−2
L . Indeed, we may identify Ŝ with S / Ĵ.

This follows from the fact that HL is a submodule of S. We only require �0� Ĵ to ensure that

the quotient S / Ĵ is still staggered.
For the right module we have instead the following, somewhat less trivial, result.
Proposition 4.6: Suppose that there exists a staggered module S with exact sequence,

0 → HL → S → HR → 0, �4.19�

and data ��1 ,�2��H�−1
L

� H�−2
L . If HR is a quotient of the highest weight module ȞR, then there

exists a staggered module Š with exact sequence,

0 → HL → Š → ȞR → 0, �4.20�

and the same data ��1 ,�2��H�−1
L

� H�−2
L . Moreover, we may identify S as a quotient of Š.

Proof. We will show that the submodules of HL � U used in the construction of Theorem 4.4

satisfy Ň�N, so Ň° �N° = �0� �identifying the left modules of Š and S in the obvious way�. As

HR is a �nonzero� quotient of ȞR, ȟR=hR, and we see that �̌0=�0. The proposition states that the

data of Š and S are likewise identified, so the only difference between the generators �4.10� of Ň
and N is that the former includes ��̌ ,−X̌̄�, whereas in the latter we have instead �� ,−X̄�.44 But,

as HR is a quotient of ȞR, we may write X̌̄=�X̄ for some singular ��U−, so if we can show that

�̌=��, then Ň�N follows and we are done. Moreover, this would allow us to write

S =
HL

� U
N =

HL
� U

Ň  N

Ň
=

Š

N/Ň
, �4.21�

realizing S as a quotient of Š.
It remains then to prove that �̌=��. This is a straightforward check based on Proposition 3.4.

To whit, the proof of this proposition tells us that �̌ is completely determined by the conditions
�one for each n�0�,

Ln�̌ = U0�0 + U1�1 + U2�2, where LnX̌̄ = U0�L0 − hR� + U1L1 + U2L2. �4.22�

By hypothesis, S exists, so there is a y�S defining the � j as in Eq. �3.2�. Now, X̌̄=�X̄ implies that
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Ln�̌ = �U0�L0 − hR� + U1L1 + U2L2�y = LnX̌̄y = Ln�� for all n � 0. �4.23�

Since HL has no �nonzero� singular vectors at the grade of �̌ �Proposition 3.3�, we conclude that
�̌=��̌, as required. The proof is therefore complete. �

Corollary 4.7: Every staggered module can be realized as a quotient of a staggered module
whose right module is Verma.

To summarize, Theorem 4.4 shows that the data ��1 ,�2� are admissible if and only if the
module N° �whose definition depends on �1 and �2� is trivial. This construction is therefore
fundamental for the question of the existence of staggered modules, but as such is it not yet
completely transparent. What is missing are easily checked sufficient conditions to guarantee that
N° = �0�. The best way to proceed is to first analyze the case in which the right module HR is a
Verma module. By Proposition 4.6, this case is the least restrictive, and we devote Sec. VI to this
task, which is decidedly nontrivial in itself. The treatment of general HR can then be reduced to
the analysis of certain submodules of the HR Verma case, by Corollary 4.7. This is the subject of
Sec. VII. First, however, we must briefly digress in order to introduce an important auxiliary result
which will be used in both Secs. VI and VII.

V. THE PROJECTION LEMMA

This section is devoted to an auxiliary result which we call the Projection Lemma �Lemma
5.1�. This will be used at several key places in the sequel, in particular, Secs. VI B and VII B, but
in slightly different contexts. We will therefore present it in a somewhat general form. The
relevance to the development thus far should, however, be readily apparent.

Recall that we defined a set � in Eq. �4.6�. We generalize this definition slightly,

�m = ��w1,w2� � Hm−1
L

� Hm−2
L : U1w1 + U2w2 = 0

for all U = U1L1 = − U2L2 � U+L1 � U+L2� . �5.1�

We will always take m to be the grade of a singular vector, m=�r or m=�r
�. Thus � coincides with

��. Similarly, we defined a vector space G that acts on �, in fact, on H�−1
L

� H�−2
L , by Eq. �3.15�.

We also generalize this, defining Gm to be the vector space of transformations gu of Hm−1
L

� Hm−2
L which take the form

gu�w1,w2� = �w1 + L1u,w2 + L2u� �u � Hm
L � . �5.2�

Again, G coincides with G�.
We next define a filtration of �m which is induced by the singular vector structure of HL.

Recall that at the end of Sec. II, we discussed the Feigin–Fuchs classification of Virasoro Verma
modules and introduced notation for their singular vectors. The structure and notation differed
according to whether the Verma module was of chain �and link� or braid type, and so the explicit
forms of our filtration must also differ according to these two cases.

Chain case: Define subspaces of �m in which both wi are descendants of the singular vector
Xkx,

�m
�k� = ��w1,w2� � �m : w1,w2 � UXkx� . �5.3�

When m=�r, this gives a filtration of �m, of the form

�m = �m
�0� � �m

�1� � �m
�2� � ¯ � �m

�r−2� � �m
�r−1�. �5.4�

Clearly, �m
�k�= �0� for all k�r. An obvious remark that is nevertheless worth keeping in mind is

that the spaces �m
�k� may be trivial even when k�r, for example, if Xkx=0.

Braid case: We define subspaces of �m similarly,45

�m
�k;+� = ��w1,w2� � �m	wj � UXk

+x� , �5.5a�
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�m
�k;−� = ��w1,w2� � �m	wj � UXk

−x + UXk
+x� . �5.5b�

When m is the grade of a rank r singular vector �m=�r
��, these subspaces are nested as

�m = �m
�0;+� � �m

�1;−� � �m
�1;+� � �m

�2;−� � ¯ � �m
�r−2;+� � �m

�r−1;−�. �5.6�

We note again that if HL contains no �nonzero� singular vectors of rank k, then �m
�k;��= �0�.

However, this case differs from the chain case in that there is the possibility that for a certain rank,
one of the singular vectors of HL is present while the other is not.

Lemma 5.1: �The Projection Lemma� Let m=�r �m=�r
�� be the grade of a singular vector.

Then for any �w1 ,w2���m, there exists a gu�Gm, such that gu�w1 ,w2� belongs to the subspace
�m

�r−1� ��m
�r−1;−��.

Before presenting the proof, let us pause to first describe the idea behind it �in nonrigorous
terms�. We will prove the required result iteratively. In the chain case, we will show how to take
an element of �m

�k� and make a gauge transformation so as to get an �equivalent� element of �m
�k+1�.

In the braid case, we will do two slightly different alternating steps, showing how to go from �m
�k;−�

to �m
�k;+� and from �m

�k;+� to �m
�k+1;−�. Composing all of these transformations then gives the required

result in each case.
The way in which we transform from one subspace to the next is most transparent when we

assume that we are working within a genuine staggered module, with data given by � j =Ljy for
j=1,2. Under this hypothesis, we will outline the steps required, assuming the chain case for
notational simplicity. Suppose then that ��1 ,�2���m

�k�, with m=�. We first note that we can
obtain Xkx from �1 or �2 by acting with U if and only if we can obtain it from y. Thus, we take
a basis �Z�� of U− at grade m−�k and consider the complex numbers �� defined by Z�

† y=��Xkx. By
gauge transforming y→y�=y+z appropriately, it turns out that we can tune all of the �� to zero.
It then follows that we cannot obtain Xkx from y� by acting with U, hence we cannot obtain it from
the corresponding � j�=Ljy�, j=1,2. �1� and �2� must therefore generate a proper submodule of
UXkx, and so must be descendants of Xk+1x.

Of course, we cannot assume from the outset that we are working in a staggered module
because we want to apply the Projection Lemma to the study of when staggered modules exist!
Nevertheless, the outline above serves to motivate the steps in the general proof below. There are
a few technicalities to work through, most of which arise because we must make sure that our
constructions are well defined in the absence of y. Moreover, we also have to account for the
structural, and therefore notational, differences which delineate the chain and braid cases.

Proof. As already stated, there are two cases leading to three steps to consider. The construc-
tions are similar in all three, but because of structural variations, we must split the considerations
accordingly. However, we will only provide full details in the chain case, limiting ourselves to
describing what is different in the braid cases �Fig. 4�.

Chain case �m
�k�→�m

�k+1�: We assume that �w1 ,w2���m
�k� with k�r−1, so m��k+1. To find a

gauge transformation gz�Gm, such that gz�w1 ,w2���m
�k+1�, we will introduce a basis of Um−�k

with a certain “orthonormality” property. We make this precise as follows.
First, let X�k+1��U− be defined by Xk+1=X�k+1�Xk. We choose a basis �V�X�k+1�vhL+�k

� at grade
m−�k of the maximal proper submodule of the Verma module VhL+�k

�whose highest weight vector
has conformal dimension equal to that of Xkx�. Thus, V��Um−�k+1

− . We can complete this to a basis
of VhL+�k

at the same grade by adding vectors Z�vhL+�k
with Z��Um−�k

− . Since the quotient of a
module by its maximal proper submodule has nondegenerate Shapovalov form, we can even
choose the Z� to be orthonormal,46

�Z�vhL+�k
,Z�vhL+�k

� = ���, that is Z�
† Z�vhL+�k

= ���vhL+�k
. �5.7�

This then defines a basis �V�X�k+1��� �Z�� of Um−�k

− .
Since the Z� are not scalars �m��k�, we may write Z�

† =Z�;1
† L1+Z�;2

† L2. The choice of Z�;1

and Z�;2 is not unique, but if Z�
† =Z�;1�† L1+Z�;2�† L2 is another choice then
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�Z�;1
† − Z�;1�† �L1 = − �Z�;2

† − Z�;2�† �L2 � U+L1 � U+L2. �5.8�

It follows that each Z� gives rise to a well-defined element Z�;1
† w1+Z�;2

† w2 of �U−Xkx��k
, as

�w1 ,w2���m
�k�. We may therefore define ���C by

Z�;1
† w1 + Z�;2

† w2 = ��Xkx . �5.9�

We can similarly write V�
† =V�;1

† L1+V�;2
† L2, as the V� are also not scalars �m��k+1�. However, the

analogs of the �� all vanish as

�Xkx,X�k+1�†�V�;1
† w1 + V�;2

† w2��UXkx = �Xk+1x,V�;1
† w1 + V�;2

† w2�UXkx = 0. �5.10�

Here, � · , · �UXkx denotes the Shapovalov form of the submodule UXkx.
To tune the constants �� to zero, we set z=−����Z�Xkx�UXkx and apply the transformation

gz. Letting wj�=wj +Ljz, for j=1,2, explicit computation gives

��Xkx = Z�;1
† w1� + Z�;2

† w2� = 0 �5.11�

for all �. Here we use the orthonormality of the Z�, Eq. �5.7� �which clearly continues to hold
upon projecting VhL+�k

onto UXkx�. We need now only verify that each wj��UXk+1x �which is the
kernel of the Shapovalov form in the submodule UXkx� by showing that there is no element of U
which takes wj� to Xkx. We will detail this for j=1, the case j=2 being entirely analogous.

Clearly, we need only consider elements U�U−m+1+�k

+ . Write L−1U†�Um−�k

− in the basis de-
fined above to get

UL1 = �
�

a��X�k+1��†V�
† + �

�

b�Z�
†

= ��X�k+1��†�
�

a�V�;1
† + �

�

b�Z�;1
† �L1 + ��X�k+1��†�

�

a�V�;2
† + �

�

b�Z�;2
† �L2, �5.12�

where the a� and b� denote coefficients. Let U1� and U2� be the respective prefactors of L1 and L2

appearing in Eq. �5.12�. This equation then becomes �U1�−U�L1=−U2�L2�UL1�UL2, so we ob-
tain the equality Uw1�=U1�w1�+U2�w2� as �w1� ,w2����m

�k�. But, �X�k+1��† annihilates all of �UXkx��k+1
�compare with Eq. �5.10��, so we see that by tuning the ��� to zero, we have guaranteed that

kk

k+1k+1

Ω(k) →Ω(k+1) Ω(k;−) →Ω(k;+) Ω(k;+) →Ω(k+1;−)

FIG. 4. An illustration of the projections constructed in the proof of Lemma 5.1. On the left we portray the chain case, in
which the projection involves taking wj� from the module UXkx �itself a submodule of HL� to its �maximal� submodule
UXk+1x. On the right are the braid cases. We alternate between steps of two types, going from the module UXk

−x+UXk
+x to

its submodule UXk
+x �left�, and from the module UXk

+x to its submodule UXk+1
− x+UXk+1

+ x �right�. The shading indicates
schematically the module we start from and the submodule we arrive at, and the emphasised arrows indicate the singular
elements X�k+1� and X�k+1;�� which are used in the proof.
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Uw1� = U1�w1� + U2�w2� = �
�

b��Z�;1
† w1� + Z�;2

† w2�� = �
�

b����Xkx = 0, �5.13�

by Eq. �5.9�. Since this holds for all U�U−m+1+�k

+ , w1��UXk+1x. After repeating this argument for
w2�, we have completed the proof: gz�w1 ,w2�= �w1� ,w2����m

�k+1�.
Braid case �m

�k;−�→�m
�k;+�: Suppose that �w1 ,w2���m

�k;−� and k�r−1, so m��k+1
+ . Define

X�k+1;���U− by Xk+1
� =X�k+1;��Xk

−. We choose a basis, �V�−
− X�k+1;−�vhL+�k

−�� �V�+
+ X�k+1;+�vhL+�k

−�, say,
of the maximal proper submodule of VhL+�k

− at grade m−�k
−, and extend it to a basis of VhL+�k

− itself,

at the same grade, by adding orthonormal elements Z�vhL+�k
−. This defines our basis of Um−�k

−
− as in

the chain case.
Again, Z�

† =Z�;1
† L1+Z�;2

† L2 defines constants �� by Z�;1
† w1+Z�;2

† w2=��Xk
−x, and we use these

to define z=−����Z�Xk
−x and �w1� ,w2��=gz�w1 ,w2���m

�k;−�. The check that Uwj�=0 for any U
�U−m+j+�k

−
+ is done by writing L−jU

†�Um−�k
−

− in the above basis: We thereby obtain the analog of

Eq. �5.12� �but with separate terms for the X�k+1;+� and X�k+1;−� contributions�. This leads to Uwj�
=0 for all U as in the chain case. However, from this we are only able to conclude that wj�
�UXk

+x, not that wj� belongs to the maximal proper submodule UXk+1
− x+UXk+1

+ x of UXk
−x �for this,

we need the last case below�. We therefore have �w1� ,w2����m
�k;+�.

Braid case �m
�k;+�→�m

�k+1;−�: In this final case we suppose that �w1 ,w2���m
�k;+� and again k

�r−1, to guarantee that m��k+1
+ . We choose a basis of Um−�k

+
− as in the first braid case and use this

to construct z so that gz�w1 ,w2� is in ��k+1;−�. Everything now works as in the previous cases. We
only mention that proving Uwj�=0 for all U�U−m+j+�k

+
+ here lets us conclude that the wj� belong to

the maximal proper submodule UXk+1
− x+UXk+1

+ x because we have been working entirely in UXk
+x.

Thus, �w1� ,w2����m
�k+1;−� as required. �

We conclude this section with two small remarks pertaining to this proof. First, we call this
result the Projection Lemma because each subsequent gauge transformation can be thought of as
projecting the �w1 ,w2� onto the next-smallest subspace in the filtration. Indeed, if �w1 ,w2� is
already in the next-smallest subspace, then the �� defined in the proof must already vanish, hence
z=0 and gz is the identity map.

The second remark addresses why the sequence of projections defined in the proof terminates.
Once in the submodule corresponding to the rank k singular vector�s� �m

�k� ��m
�k;���, we were able

to project further provided that m��k+1 �m��k+1
� �. This guaranteed that the V-type basis elements

of the maximal proper submodule of Um−�k

− �Um−�k
�

− � were not scalars, and so could be written as a

sum of terms with L1 or L2 on the right. As soon as k=r−1, we find that some V-type basis
elements are scalars, and so cannot be written in this form. The proof then breaks down at the
point of Eq. �5.12� and its analogs.

And so it should: In the chain case with m=�r, the grade of the wj would be �r− j, so it is
completely unreasonable to expect that we can construct wj� belonging to UXrx. In the braid case,
we get the same conclusion if m=�r

−. When m=�r
+, one might hope to be able to find wj� belonging

to UXr
−x. However, it is possible to show �using Proposition 4.6 and Theorem 6.15 below, for

example� that this is only possible in a rather trivial case: Essentially, the “data” �w1 ,w2� must be
equivalent to �0,0�.

VI. CONSTRUCTION WHEN THE RIGHT MODULE IS VERMA

Throughout this section we assume that HR=VhR. In particular, this means that in the con-
struction of Sec. IV, the submodule N of HL � U is generated by ��0 ,hR−L0�, ��1 ,−L1� and

��2 ,−L2� �there is no � or X̄�. The corresponding exact sequence is

0 → HL → S → VhR → 0. �6.1�

In principle, we have everything we need for our attack on the question of the existence of
staggered modules S with exact sequence �6.1�. However, the proofs which follow are necessarily
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rather technical, given that they apply to completely general left modules. We will therefore first
briefly outline the main ideas behind them. We also suggest that the reader might like to keep in
mind the simplest case in which �0 is the singular vector of minimal �positive� grade in HL. This
case not only avoids the most troublesome technicalities �for example, we do not need the Pro-
jection Lemma for this case� but it also has the advantage of covering the majority of staggered
modules which have thus far found physical application.47

Our overall plan is straightforward. The analysis of the HR Verma case turns out to afford an
important simplification, namely, that the admissibility of the data is completely captured by the
set �, defined in Eq. �4.6�. This allows us to identify the set of nonisomorphic staggered modules
with exact sequence �6.1� as the vector space � /G, thereby settling the existence question when
�=0 �Theorem 6.4�. We then turn to the computation of the dimension of the space � /G. First, we
use the Projection Lemma to reduce this to the dimension of an equivalent space �� /G�, where
���� is significantly smaller, in general �Proposition 6.6�. This allows us to separate the com-
putation into four cases, according to the singular vector structure of HL around �0. In each case,
we reformulate the definition of �� so as to realize it as an intersection of kernels of certain linear
functionals �Theorem 6.11�. The computation of the dimension of �� is then just an exercise in
linear algebra, albeit a rather nontrivial one. The results of this computation are given in Theorem
6.14. Finally, we discuss generalizations of the beta invariant of Eq. �3.5� which reduce the
identification of a staggered module with exact sequence �6.1� to the computation of at most two
numbers.

A. Admissibility

In this section, we study the question of admissibility of data ��1 ,�2� under the hypothesis
that the right module is Verma. The result is reported in Proposition 6.2 below. First, however, we
need a simple but very useful lemma. Recall that the submodule N° may be naturally viewed as
a submodule of HL.

Lemma 6.1: When HR is Verma, u�N° if and only if there exist U1 ,U2�U, such that

U1�1 + U2�2 = u and U1L1 + U2L2 = 0. �6.2�

Proof: By definition, u�N° if and only if there exist U0 ,U1 ,U2�U, such that

U0�0 + U1�1 + U2�2 = u �in HL� �6.3a�

and

U0�L0 − hR� + U1L1 + U2L2 = 0 �in U� , �6.3b�

so one direction is trivial. What we need to show is that we may take U0=0, without loss of
generality. Note that by taking u�HL homogeneous, we may assume that U0, U1, and U2 are
homogeneous in U.

Consider U1L1+U2L2. Poincaré–Birkhoff–Witt ordering this combination will give a variety
of terms, each of which must have a positive index on the rightmost mode. If Poincaré–Birkhoff–
Witt-ordering U0 produced any term which did not have a positive index on the rightmost mode,
then right multiplying by �L0−hR� would preserve the ordering, and so this term could not be
cancelled by any �ordered� term of U1L1+U2L2. This contradicts �6.3b�, so all the ordered terms of
U0 must have a positive index on the rightmost mode. Then, U0�0=0, and �6.3a� has the desired
form.

But if every Poincaré–Birkhoff–Witt ordered term of U0 has a positive index on the rightmost
mode, we may write U0=U1�L1+U2�L2 for some U1� ,U2��U. Hence �for U0�Um�,
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U0�L0 − hR� + U1L1 + U2L2 = �L0 − hR − m�U0 + U1L1 + U2L2

= �U1 + �L0 − hR − m�U1��L1 + �U2 + �L0 − hR − m�U2��L2 = 0,

�6.4�

and a simple redefinition of U1 and U2 will put �6.3b� in the required form. This redefinition would
affect �6.3a�, but for the fact that

�L0 − hR − m��U1��1 + U2��2� = 0, �6.5�

as U1��1+U2��2 is an L0-eigenvector of eigenvalue hR+m. �

Recall that Lemma 4.1 gave a necessary condition for ��1 ,�2� to be data of a staggered
module. Theorem 4.4 and Lemma 6.1 now tell us that under the hypothesis that HR is Verma, this
condition is also sufficient: N° = �0� if and only if

U1�1 + U2�2 = 0 for all U = U1L1 = − U2L2 � UL1 � UL2. �6.6�

In the language of Sec. IV �see Eq. �4.2�, in particular�, this becomes:
Proposition 6.2: When HR is Verma, ��1 ,�2� is admissible if and only if ��1 ,�2���.
Example 4 shows that this hypothesis is not superfluous. Combining this result with Propo-

sition 3.6 now gives the following important characterization.
Proposition 6.3: The space of (nonisomorphic) staggered modules with exact sequence (6.1)

may be identified with the vector space � /G.
Example 7: At c=−2 �t=2�, one can use the algorithm detailed in Ref. 24 to fuse L−1/8 with

V3/8 and L1 with V0. In both cases, a staggered module is obtained with the short exact sequence,

0 → V0 → S → V1 → 0. �6.7�

The respective beta invariants turn out to be =−1 (as in Example 3) and = 1
2 . This exact

sequence therefore admits two distinct staggered modules, hence by Proposition 6.3, there is (at
least) a one-parameter family of such modules.

This example highlights in a novel way the physical importance of a good theory of staggered
modules. It shows concretely how physically relevant constructions (here fusion products) can
result in modules that cannot be distinguished from each other by their characters (graded di-
mensions) or even by the action of L0 alone.

Finally, since �=0 implies that �1=�2=0, we thereby obtain the first piece of our classifica-
tion, the case when rank �0=0.48 For consistency with Sec. VI C below, we will refer to this case
as case �0�.

Theorem 6.4: Case �0� of the classification. Given left and right modules HL and HR, for
which the latter is Verma and hL=hR, there exists a unique staggered module S with short exact
sequence (3.1).

We remark that it should not be surprising that the precise form of HL plays no role in this
result. For existence when HL is also Verma implies existence for general HL �subject only to the
nonvanishing of �0� by Proposition 4.5.

B. Choosing data

We have determined that the space of �nonisomorphic� staggered modules with exact se-
quence �6.1� is naturally realized as the quotient of � under the action of G, by Proposition 6.3.
These spaces are a little large, in general, so it proves convenient to prune them into something a
little more manageable. This will be achieved by applying the Projection Lemma �Lemma 5.1�.

Let us denote by M the submodule of HL generated by the singular vectors whose rank is one
less than that of �0. For example, if rank �0=1 we have M=HL.49 When rank �0�1, M is
generated by one or two singular vectors according as to whether HL is of chain or braid type �this
follows from �0�0�. We now define our “pruned” space of admissible data to be
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�� = ���1,�2� � � : �1,�2 � M� . �6.8�

The Projection Lemma with m=� �so r=rank �0� immediately gives the following.
Lemma 6.5: For any ��1 ,�2���, there exists gu�G such that gu��1 ,�2�= ��1� ,�2�����.
The proof only requires realizing that in this application, the subspace �m

�r−1� or �m
�r−1;−�

appearing in the Projection Lemma is precisely ��.
The new choice of data ��1� ,�2�� is equivalent to the old data ��1 ,�2�, so the underlying

staggered module remains unchanged. Of course, we still have some freedom in the choice. There
is a residual set of gauge transformations, namely, G�= �gu�G : u�M���G, which preserves
��. Analogous to the case of the full G �Sec. III�, we have G��M� /C�0 �as vector spaces�, hence

dim G� = dim M� − 1. �6.9�

Moreover, Proposition 6.3 can now be replaced by the following.
Proposition 6.6: The space of (nonisomorphic) staggered modules with exact sequence (6.1)

may be identified with the vector space �� /G�.
We point out that �0 need not be the singular vector of lowest grade in M �excluding of

course the obvious generating ones�. In the braid case when �0=Xx=X	
+x �with 	=rank �0�, X	

−x
may be a nonzero singular vector. Then, X	

−x�M has the same rank as �0, but its grade is strictly
less than that of �0. This case is the source of the most trouble in the following analysis.

C. Characterizing admissible data

In this section we give a tractable characterization of the admissibility of pairs ��1 ,�2�
�M�−1 � M�−2. As the case rank �0=0 �that is, �=0� has already been settled, we will assume
that rank �0�	�1 for the rest of the section.

We will separate this characterization into four cases, according to the number of generating
singular vectors of M and whether there is a nongenerating �nonzero� singular vector in M whose
grade is less than � �the troublesome cases�. Explicitly, the cases are

Case �1�: M is generated by a single singular vector and this is the only singular vector in M
of grade less than �. This applies in two situations: When HL is of chain �or link� type and when
HL is of braid type with either �0=X1

−x or �0=X1
+x and X1

−x=0.
Case �1��: M is generated by a single singular vector and there is another singular vector in

M of grade less than �. This only applies when HL is of braid type with �0=X1
+x and X1

−x�0.
Case �2�: M is generated by two distinct singular vectors and these are the only singular

vectors in M of grades less than �. This only applies when HL is of braid type with either �0

=X	
−x or �0=X	

+x and X	
−x=0.50

Case �2��: M is generated by two distinct singular vectors and there is another singular vector
in M of grade less than �. This only applies when HL is of braid type with �0=X	

+x and X	
−x

�0.
It is easy to verify that any possibility is covered by exactly one of these cases. We illustrate

them for convenience in Fig. 5.
To analyze each of these cases further, it is useful to first sharpen the conclusions of Lemma

6.1 somewhat. Specifically, we show that taking u to be a singular vector of “minimal rank” allows
us to choose U1 and U2 in U+.

Lemma 6.7: If ��1 ,�2��H�−1
L

� H�−2
L is not admissible (and HR is Verma), then N° contains

singular vectors of HL of grade less than �. For a singular vector x� whose rank is minimal among
those in N°, there then exist U1 ,U2�U+ such that

U1�1 + U2�2 = x� and U1L1 + U2L2 = 0. �6.10�

We have stated only one direction, but the converse is already implied by Lemma 6.1.
Proof of Lemma 6.7: Suppose that ��1 ,�2� is not admissible, which, in view of Theorem 4.4,

means that N° is a nonzero submodule of HL. Therefore N° contains nonzero singular vectors,
and it is generated by its minimal rank singular vectors. Take x� to be one such generator.
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By Lemma 6.1, we can find U1 ,U2�U such that both equations in �6.10� are satisfied. But, if
we Poincaré–Birkhoff–Witt order U1 and U2, we see that terms with negative modes on the left
cannot contribute to U1�1+U2�2 by the assumption that x� was of minimal rank. We therefore
drop them. Furthermore, any L0 on the left may be replaced by the appropriate eigenvalue, so we
may assume that U1 ,U2�U+ in the first equation. Linear independence of Poincaré–Birkhoff–Witt
monomials then allows us to likewise drop the terms with negative modes in the second equation.
We may therefore write U1L1+U2L2=�nL0

nU�n�=0 with U�n��U+. Independence and the lack of
zero divisors in U then mean that each U�n� must vanish separately, so we can certainly replace
each L0 by its eigenvalue here too. This means that the U1 ,U2�U+ of the first equation also satisfy
the second. Finally, we conclude from U1 ,U2�U+ in the first equation that the grade of x� must
be less than �. �

Assuming that ��1 ,�2��M�−1 � M�−2, the submodule N° is contained in M by Lemma 6.1.
The minimal rank referred to in Lemma 6.7 is then either 	−1 or 	. In concrete terms, we need to
check whether the rank 	−1 singular vectors are in N°, and if this can be ruled out, we do the
same for the rank 	 singular vector of grade less than � if necessary �cases �1�� and �2�� only�.
Below, we introduce functionals �, ��, and �� with the aim of reducing these checks to a
problem in linear algebra. We first separate our considerations according to the number of rank
	−1 singular vectors in HL, and then analyze the further constraints stemming from the presence
of a second rank 	 singular vector.

1. Cases „1… and „1�…

In these cases, M is generated by the normalized singular vector X	−1x of grade �	−1. Making
use of the fact that M�	−1

is one dimensional, we define for each U=U1L1=−U2L2

� �U+L1�U+L2��	−1−�, a linear functional

�U : M�−1 � M�−2 → C by U1�1 + U2�2 = �U��1,�2�X	−1x . �6.11�

Taking ��1 ,�2��M�−1 � M�−2, the submodule N° contains no singular vectors of rank less than
	−1. In view of Lemma 6.7, N° contains the rank 	−1 singular vector if and only if
�U��1 ,�2��0 for some U� �U+L1�U+L2��	−1−�. We formulate this result as follows.

Proposition 6.8: In cases �1� and �1��, assuming ��1 ,�2��M�−1 � M�−2, we have

Case (1) Case (1’)

Case (2) Case (2’)

ω0ω0 ω0

ω0ω0ω0
ω0

FIG. 5. An illustration of the possible structures of the left module HL in cases �1�, �1��, �2�, and �2��. As with earlier
figures, the black circle represents a singular vector of HL, whereas the white circle indicates a singular vector of the
corresponding Verma module which has been set to zero. We use a gray circle when it does not matter if the singular vector
has been set to zero or not. Note that the picture corresponding to case �1� with t�Q has been omitted—it is understood
as a subcase of the chain case pictured. Similarly, the degenerate braid case �t�Q , t�0� has not been explicitly
portrayed—it is regarded as a subcase of case �2�.
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X	−1x�N° if and only if

��1,�2� � �
U��U+L1 � U+L2��	−1−�

Ker �U. �6.12�

We point out that in case �1�, X	−1x is the only singular vector in M of grade less than �, so by
Lemma 6.7, the above condition completely characterizes the admissible data ��1 ,�2����. In
case �1��, there is another such singular vector, and so we will have to work harder to get a
complete characterization �Sec. VI C 3�. This proposition is of course crucial for case �1�� as well,
since it tells us how to rule out the rank 	−1 singular vectors. After that, 	 becomes the candidate
for the minimal rank referred to in Lemma 6.7.

2. Cases „2… and „2�…

In this case there are two rank 	−1 highest weight vectors in HL, namely, X	−1
� x, and the

submodule M=UX	−1
− x+UX	−1

+ x is not a highest weight module. We have

M�−j = U�−�
	−1
− −j

− X	−1
− x + U�−�

	−1
+ −j

− X	−1
+ x for j = 1,2, �6.13�

where the sum is direct in case �2�, but not in case �2��. In either case, given ��1 ,�2��M�−1

� M�−2, we can write � j =� j
−+� j

+ with � j
��UX	−1

� x. The two conditions we will obtain below
can be understood as one for each part, “�” and “�.”

In analogy with the �U above, we define the functionals �U�
� : M�−1 � M�−2→C by the

formulas,

U1
−�1 + U2

−�2 = �U−
− ��1,�2�X	−1

− x �6.14a�

and

U1
+�1 + U2

+�2 = �U+
+ ��1,�2�X	−1

+ x �mod UX	−1
− x� , �6.14b�

where U�=U1
�L1=−U2

�L2� �U+L1�U+L2��
	−1
� −�. These definitions again rely on the fact that both

M�
	−1
− and �M /UX	−1

− x��
	−1
+ are one dimensional.

Assuming ��1 ,�2��M�−1 � M�−2, so there can again be no highest weight vectors of rank
less than 	−1 in N°, Lemma 6.7 tells us under which condition the singulars X	−1

� x are in N°.
Precisely as above, X	−1

− x�N° if and only if there is a U− such that �U−
− ��1 ,�2��0. The case of

X	−1
+ x works out similarly, despite the slightly more involved definition of �+. The easy direction

is given by Lemma 6.7: If X	−1
+ x�N°, then there exists U+=U1

+L1=−U2
+L2 such that

�U+
+ ��1 ,�2�=1. To see the converse, assume that there exists U+ such that �U+

+ ��1 ,�2��0, and
without loss of generality choose U+ so that this value is unity. Explicitly, this means that

U1
+�1 + U2

+�2 = X	−1
+ x + u for some u � UX	−1

− x . �6.15�

If u=0, we are done, so assume that u=V−X	−1
− x�0 with V−�U−. The maximal proper submodule

of UX	−1
− x is trivial at the grade of u, so there must exist V+�U+, such that V+u=X	−1

− x. As u
=V−V+u, it now follows that

�1 − V−V+��U1
+�1 + U2

+�2� = �1 − V−V+��X	−1
+ x + u� = X	−1

+ x . �6.16�

Applying Lemma 6.1 to �1−V−V+�Uj
+, we conclude that X	−1

+ x�N°.
In conclusion, X	−1

� x�N° if and only if for some U� the value of �U�
� ��1 ,�2� is nonzero.

This gives the analog of Proposition 6.8.
Proposition 6.9: In cases �2� and �2��, assuming ��1 ,�2��M�−1 � M�−2, we have

X	−1
� x�N° if and only if
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��1,�2� � �
U���U+L1 � U+L2��	−1

� −�

Ker �U�
� . �6.17�

In case �2�, the above two conditions again completely characterize when ��1 ,�2����. As with
case �1��, however, case �2�� involves an additional singular vector which leads to a further
condition to check. However, we can now use Proposition 6.9 to rule out the rank 	−1 singular
vectors, so we may assume that the minimal rank of Lemma 6.7 is 	. We now turn to the
derivation of conditions for the additional rank 	 singular vector in cases �1�� and �2��.

3. Further conditions in cases „1�… and „2�…

When ��1 ,�2��M�−1 � M�−2, Propositions 6.8 and 6.9 give complete characterizations of
the absence of rank 	−1 singular vectors in N°, which suffices to settle the existence question of
staggered modules in cases �1� and �2�. In cases �1�� and �2��, Lemma 6.7 still leaves the possi-
bility that N° is nontrivial. We must therefore also characterize the absence of the singular vector
X	

−x �which has a lower grade than �0=X	
+x� in N°.

The derivation of this characterization is similar in flavor to the considerations of Secs. VI C 1
and VI C 2, although there are also important differences. The most immediate difference is that
we must assume from the outset that the 	−1 singular vectors have already been ruled out. This
is necessary for the application of Lemma 6.7, and we will see that the definition of the functional
�U�

� below will only make sense when ��1 ,�2� satisfies this condition. We point out also another
difference that will be relevant later. In Sec. VI E, we will construct invariants of staggered
modules in a manner closely related to the considerations of the two previous sections. However,
there will be no invariant related to what we have to do next. We will return to this point in Sec.
VI E.

To decide whether X	
−x is in N°, we will define yet another set of functionals �U�

� . We recall
that cases �1�� and �2�� both require HL to be of braid type, the former corresponding to 	=1 and
the latter to 	�1. To uniformize notation, we understand in the following that if 	=1 then �U+

+

stands for �U �as given in Sec. VI C 1� and �U−
− is ignored �that is, each �U−

− is to be regarded as
the zero map�. For U�=U1

�L1=−U2
�L2� �U+L1�U+L2��

	
−−� and ��1 ,�2�

� ��U−Ker �U−
− �� ��U+Ker �U+

+ �, the defining formula is

U1
��1 + U2

��2 = �U�
� ��1,�2�X	

−x . �6.18�

The definition makes sense, but only because of the restriction that ��1 ,�2� is already annihilated
by every �U�

� . This follows from the fact that the maximal proper submodule of UX	−1
� is generated

by the rank 	 singular vectors. For if U1
��1+U2

��2 were not proportional to X	
−x, so U1

��1

+U2
��2 would not be in the submodule UX	

−x�M, there would exist a U�U+, such that
�UU�

� ��1 ,�2� is equal to either X	−1
− x or X	−1

+ x, a contradiction.
The reason for this definition is the same as always. Assuming that both X	−1

− x and X	−1
+ x are

not in N°, so that �U�
� ��1 ,�2� can be defined, Lemma 6.7 tells us that N° is either zero or

generated by X	
−x. The analog of Propositions 6.8 and 6.9 is then the following.

Proposition 6.10: In the cases �1�� and �2��, assuming that ��1 ,�2��M�−1 � M�−2 is such
that N° contains no rank 	−1 singular vectors, we have N° = �0� if and only if

��1,�2� � �
U���U+L1 � U+L2��	

−−�

Ker �U�
� . �6.19�

This completes the characterization of admissibility in these cases.

4. Summary

We have defined functionals �U, �U�
� , and �U�

� whose kernels characterize when data are
admissible. We note that each of these functionals is manifestly gauge invariant, so these kernels
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respect the gauge freedom we have in choosing the data. By combining Lemma 6.5 with Propo-
sitions 6.8–6.10, we now arrive at the complete classification of the admissible data in terms of
these functionals.

Theorem 6.11: �Cases �1�, �1��, �2�, �2�� of the classification� Given HL and HR�VhR with
��0, choose ��1� ,�2���M�−1 � M�−2. Then, ��1� ,�2�����, so is the data of a staggered module
S [with exact sequence (6.1)], if and only if the appropriate condition below is satisfied.

Case �1�: �U��1� ,�2��=0 for all U� �U+L1�U+L2��	−1−�.
Case �1��: In addition to condition �1�, �U�

� ��1� ,�2��=0 for all U�� �U+L1�U+L2��1
−−�.

Case �2�: �U�
� ��1� ,�2��=0 for all U�� �U+L1�U+L2��

	−1
� −�.

Case �2��: In addition to condition �2�, �U�
� ��1� ,�2��=0 for all U�� �U+L1�U+L2��

	
−−�.

Here, 	=rank�0, and the relevant condition to use matches the case numbering given at the
beginning of Sec. VI C. Moreover, ��1 ,�2��H�−1

L
� H�−2

L is in �, hence is the data of a staggered
module S, if and only if there exist equivalent data ��1� ,�2�����.

We remark that the single case excluded from the above theorem ��=0, case �0�� was already
settled in Theorem 6.4.

D. Counting dimensions

The results of Theorem 6.11 are very concrete descriptions of the possible data of staggered
modules with HR=VhR, even if they might seem somewhat technical. Their value is that they
involve linear maps with simple definitions, and so allow reasonably straightforward computa-
tions, in each case, of the dimensions of the vector space �� /G� of inequivalent staggered mod-
ules.

To use Theorem 6.11 to compute the dimension of �� /G�, we will analyze the functionals �U,
�U−

− , �U+
+ , and �U�

� . In fact, it proves convenient to abstract one level further and consider also the
induced maps,

� : �U+L1 � U+L2��k−1−� → �M�−1 � M�−2�*, U � �U, �6.20a�

�− : �U+L1 � U+L2��k−1
− −� → �M�−1 � M�−2�*, U− � �U−

− , �6.20b�

�+ : �U+L1 � U+L2��k−1
+ −� → �M�−1 � M�−2�*, U+ � �U+

+ , �6.20c�

�� : �U+L1 � U+L2��k
−−� → ���U− Ker �U−

− � � ��U+ Ker �U+
+ ��*, U� � �U�

� . �6.20d�

All of these analyses are somewhat similar so we present instead two abstract results along these
lines from which the required dimension results will be extracted on a case-by-case basis. So
consider a highest weight module K with highest weight �h ,c� and cyclic highest weight vector x̃.
Fix a grade m. Then for �w1 ,w2��Km−1 � Km−2 and U=U1L1=−U2L2� �U+L1�U+L2�−m, we
define �U�w1 ,w2� by

U1w1 + U2w2 = �U�w1,w2�x̃ . �6.21�

This definition is clearly in the same spirit as those of �, ��, and ��. As above, �U is then the
corresponding functional on Km−1 � Km−2, and � alone stands for the map from �U+L1�U+L2�−m

to �Km−1 � Km−2�* that associates with any U the functional �U.
We want to know when �U is nontrivial. This is the subject of the following result.
Lemma 6.12: The functional �U� �Km−1 � Km−2�* is zero if and only if U=U1L1=−U2L2

� �U+L1�U+L2�−m is such that the Uj
†vh �j=1,2� are in the maximal proper submodule of the

Verma module Vh.
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In particular, we will often use this result to establish the injectivity of � by noting that if
there is no proper singular vector in Vh of grade less than m, then the only U for which �U

vanishes is U=0 �at grades m− j the maximal proper submodule is trivial�.
Proof: Write U=U1L1=−U2L2. By definition, �U=0 means U1w1+U2w2=0 for all �w1 ,w2�

�Km−1 � Km−2. Taking w1=0 and w2=0 �separately�, we see that this is equivalent to Ujwj =0 for
all wj �Km−j�j=1,2�. Writing wj =Vjx̃, we can further reformulate this as UjVjx̃=0 for all Vj

�Um−j
− �j=1,2�, from which we derive

0 = �UjVjx̃, x̃�K = �Vjx̃,Uj
†x̃�K = �Vjvh,Uj

†vh�Vh
, �6.22�

where we have distinguished the Shapovalov forms by a subscript displaying the relevant highest
weight module. We therefore conclude that �U=0 if and only if both U1

†vh and U2
†vh belong to the

maximal proper submodule of Vh. �

Let us now assume that there is a nonzero prime singular vector �x̃ in K �playing the role of
�0�, where ��Ul

− is singular �and normalized, although this is not strictly necessary�. We take
m= l. If the corresponding Verma module Vh has another �normalized, prime� singular vector of
grade less than l, we will denote it by �−vh and its grade by l−� l. In this new setup, the content
of Lemma 6.12 is simply described as follows. If �− is not defined, then �U=0 only if U=0, as
follows from the remark immediately following the statement. On the other hand, if �− is defined,
then we see that �U=0 if and only if U� ��−�†�U+L1�U+L2�l−−l. This follows from factorizing
each Uj

† as �Uj��
†�−, which leads to U=U1L1= ��−�†U1�L1 and U=−U2L2=−��−�†U2�L2.

The following result will allow us to compute the dimensions of the space of inequivalent
staggered modules. We mention that the first of the three cases appearing here was at the heart of
Rohsiepe’s analysis,26 although he only stated it for modules of chain type.

Lemma 6.13: The subspace of Kl−1 � Kl−2 that is annihilated by every �U has dimension
given by

dim �
U

Ker �U = �p�l� , if �− is not defined

p�l� − p�l − l−� , if �−x̃ = 0

p�l� − p�l − l−� + p�l − l− − 1� + p�l − l− − 2� , if �−x̃ � 0.
�

�6.23�

In the first two cases the result coincides with dim Kl and in the third case with dim Kl

+dim�U+L1�U+L2�l−−l.
Proof: Taking U� such that ��U�

� is a basis for Im �, the mapping

�w1,w2� � ��U1
�w1,w2�, . . . ,�Un

�w1,w2�� � Cn �6.24�

has kernel given by �U Ker �U and rank equal to dim Im �. In other words, each linearly
independent equation �U�w1 ,w2�=0 reduces the dimension we want to compute by one,

dim �
U

Ker �U = dim�Kl−1 � Kl−2� − dim Im �

= dim�Kl−1 � Kl−2� − dim�U+L1 � U+L2�−l + dim Ker � . �6.25�

Consider therefore the case in which Vh has no singular vector of grade less than l �except vh�,
so �− is not defined. Then we have dim Kl−j = p�l− j� for j=1,2. But, Lemma 6.12 tells us that in
this case �with m= l�, U��U has a trivial kernel: dim Ker �=0. Plugging these facts and the
result of Lemma 4.3 into Eq. �6.25�, the first formula follows.

Consider now the cases for which �− is defined. Regardless of whether �−x̃ vanishes or not,
Lemma 6.12 gives �with m= l� Ker �= ��−�†�U+L1�U+L2�l−−l, hence
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dim Ker � = dim�U+L1 � U+L2�l−−l = p�l − l− − 1� + p�l − l− − 2� − p�l − l−� , �6.26�

by Lemma 4.3. When �−x̃=0, the graded dimensions of K are dim Kl−j = p�l− j�− p�l− l−− j� for
j=1,2. Plugging everything in and observing cancellations gives the second formula. On the other
hand, if �−x̃�0 the graded dimensions are dim Kl−j = p�l− j� and the third formula follows. �

With help of Lemma 6.13, we are ready to state and prove one of our main results, that giving
the dimensions of the space of nonisomorphic staggered modules, �� /G�, when the right module
is Verma.

Theorem 6.14: The dimension of the vector space �� /G� of isomorphism classes of staggered
modules S with short exact sequence (6.1) is the number of rank 	−1 highest weight vectors in
HL. Explicitly,

Case �0�: �� = 0� dim ��/G� = 0,

Cases �1� and �1��: �HL of chain type or 	 = 1 braid type� dim ��/G� = 1,

Cases �2� and �2��: �HL of 	 � 1 braid type� dim ��/G� = 2.

Proof: Case �0� being already done �Theorem 6.4�, we will have to work out the cases �1�,
�1��, �2�, and �2�� of Theorem 6.11 separately. As we already know that dim G�=dim M�−1
�Equation �6.9��, it remains to be shown that dim ��=dim M� in cases �1� and �1��, and that
dim ��=dim M�+1 in cases �2� and �2��.

Case �1�: Let K=M=UX	−1x and define � by X�X	=�X	−1. This � is then normalized and
prime, and l is given by �−�	−1. Let � be �, as defined in Eq. �6.20a�. When HL is of chain type
or of braid type with �0=X1

−x, Lemma 6.13 applies with �− undefined. Since ��=�U Ker �U, we
read off the dimension

dim �� = p�� − �	−1� = dim M�. �6.27�

The outstanding possibility, when HL is of braid type with �0=X1
+x, is such that Lemma 6.13

applies with �−=X1
−, hence l−=�1

−. But for case �1�, X1
−x=0, so the second formula in the lemma

also gives the dimension of �� as

dim �� = p��� − p��1
−� = dim M�. �6.28�

Case �1��: This can only occur in the 	=1 braid case with �0=X1
+x and X1

−x�0. We set K
=M=HL and �=X1

+=X, �−=X1
−, so l=� and l−=�1

−. From the third case of Lemma 6.13, we read
off

dim �
U

Ker �U = dim M� + dim�U+L1 � U+L2��1
−−�. �6.29�

But in case �1��, �� is a only a subset of this intersection: ��=�U��U�
� ��U Ker �U �and the

inclusion is typically strict�. Accounting for the extra conditions imposed by the �U�
� means that

the dimension of the admissible data is reduced by dim Im ��, which is of course given by

dim Im �� = dim�U+L1 � U+L2��1
−−� − dim Ker ��. �6.30�

Thus, dim ��=dim M�+dim Ker ��.
To show injectivity of �� and complete the computation, note first that �UX1

−x��−1

� �UX1
−x��−2��U Ker �U, so �� is defined on this subspace. Now we apply Lemma 6.12 to K

=UX1
−x, m=�−�1

−, and �=��. Since VhL+�1
− has no singular vectors of grade less than l �except

vhL+�1
− itself�, we conclude that �U�

� =0 implies U�=0.
Case �2�: In the braid case with 	�1 we have
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M = UX	−1
− x + UX	−1

+ x . �6.31�

In case �2�, the sum is direct at grades smaller than �, so we may uniquely decompose every wj

�M�−j as

wj = wj
− + wj

+, with wj
� � �UX	−1

� x��−j . �6.32�

We proceed by considering the “�” and “�” pieces separately.
The space whose dimension we want to compute is

�� = ��
U−

Ker �U−
− � � ��

U+
Ker �U+

+ � . �6.33�

We take K=UX	−1
� x, �=��, X=�X	−1

� , l=�−�	−1
� , and if defined, X	

−=�−X	−1
� and l−=�	

−−�	−1
� .

Then, the first or second formula of Lemma 6.13 �as appropriate� gives the dimension of
�U� Ker �U�

� , where the �U�
� are restricted to the direct sum of the subspaces �UX	−1

� x��−1

� �UX	−1
� x��−2 �spanned by the �w1

� ,w2
�� of Eq. �6.32��. The result is that this dimension coincides

with that of Kl= �UX	−1
� x��.

But from the definition of the �U�
� , Eq. �6.14a� and �6.14b�, we quickly determine that the �U�

�

always annihilate the subspace �UX	−1
� x��−1 � �UX	−1

� x��−2. The dimension we want is therefore just
the sum

dim �� = dim�UX	−1
− x�� + dim�UX	−1

+ x�� = dim M� + 1, �6.34�

where the additional 1 derives from the fact that the decomposition �6.31� is not direct at grade �
because of the one-dimensional intersection spanned by �0.

Case �2��: As in the previous case, we use Lemma 6.13 to compute the dimension of
�U� Ker �U�

� , where the �U�
� are restricted to act on pairs of descendants �of the appropriate

grade� of X	−1
� x. This time we must use the third formula, with the result that this dimension is

dim�UX	−1
� x�� + dim�U+L1 � U+L2��

	
−−�.

The sum �6.31� is no longer direct at grades less than �, but we still know that each �U�
�

annihilates pairs �w1 ,w2� whose elements wj are in �UX	−1
� x��−j. Consequently, any pair whose

elements are in the intersection of these subspaces, �UX	
−x��−j, is also annihilated. It follows then

that

dim���U−Ker �U−
− � � ��U+Ker �U+

+ ��

= dim�UX	−1
− x�� + dim�UX	−1

+ x�� + 2 dim�U+L1 � U+L2��
	
−−� − dim�UX	

−��−1 − dim�UX	
−x��−2

= p�� − �	−1
− � + p�� − �	−1

+ � + p�� − �	
− − 1� + p�� − �	

− − 2� − 2p�� − �	
−�

= dim M� + 1 + dim�U+L1 � U+L2��
	
−−�. �6.35�

Finally, we recall that ��=�U�Ker �U�
� � ��U−Ker �U−

− �� ��U+Ker �U+
+ �. As in case �1��, this

implies that

dim �� = dim M� + 1 + dim Ker ��, �6.36�

and the injectivity of �� follows from the same argument as before. This completes our compu-
tations. �

E. Invariants as coordinates

We have seen in Theorem 6.14 that the number of rank 	−1 singular vectors of HL coincides
with the dimension of the vector space �� /G� �equivalently � /G� of nonisomorphic staggered
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modules with the short exact sequence �6.1�. Next, we will construct coordinates on this vector
space by defining invariants  or � of the data defining the staggered module.

In cases �1� and �1��, recall that M is generated by the singular vector X	−1x. We define �
�U− so that X=�X	−1 �� is then singular, normalized, and prime�. Since � is not a scalar, we may
write �†=Y1L1+Y2L2, although Y1 and Y2 are not uniquely specified. Nevertheless, every choice

of Y1 and Y2 defines a functional ̃� �M�−1 � M�−2�* by

Y1�1 + Y2�2 = ̃��1,�2�X	−1x . �6.37�

Because � is singular, this functional is invariant under the action of the gauge group G�,

̃��1 + L1u,�2 + L2u� − ̃��1,�2� = �Y1L1 + Y2L2�u = �†u = 0 �u � M�� . �6.38�

Moreover, it should be clear that if the data are admissible, ��1 ,�2����, then ̃ does not depend
on the choice made for Y1 and Y2. In this case, gauge invariance implies that we have a well-
defined functional on �� /G�. This is our coordinate, and we denote it by .

Similarly, in cases �2� and �2��, M is generated by the singular vectors X	−1
− x and X	−1

+ x, and
we define ���U− so that X=��X	−1

� �making the �� singular, normalized, and prime�. Again, the
�� are not scalars, hence we may write ����†=Y1

�L1+Y2
�L2 �nonuniquely� and define functionals

̃�� �M�−1 � M�−2�* by

Y1
−�1 + Y2

−�2 = ̃−��1,�2�X	−1
− x �6.39a�

and

Y1
+�1 + Y2

+�2 = ̃+��1,�2�X	−1
+ x �mod UX	−1

− x� . �6.39b�

As above, the singularity of the �� implies that these functionals are invariant under G�, and when
��1 ,�2����, the definitions do not depend on the choice of Y1

� and Y2
�. Thus, we obtain two

coordinates on �� /G� in this case, and we denote the corresponding functionals by �.
We remark that even in the cases �1�� and �2��, we do not define an invariant related to the

singular vector X	
−x. We cannot even write down a formula analogous to Eqs. �6.37�, �6.39a�, and

�6.39b� because �0=X	
+x is not a descendant of X	

−x. Even if one could concoct such a formula, it
is difficult to imagine why the corresponding quantity should be gauge invariant. In any case, we
will see in Theorem 6.15 below that the invariants we have already defined are sufficient to
completely characterize a staggered module with exact sequence �6.1�.

Note that if ��1 ,�2����, so we do indeed have a staggered module �with right module
Verma�, then � j =Ljy for j=1,2. Hence we may write �abusing notation in an obvious manner�

X	−1x = �Y1L1 + Y2L2�y = �†y ⇔  = �X	−1x,�†y�UX	−1x. �6.40�

Similar formulas may be written for �, although for +, one should include a projection from M
onto UX	−1

+ x. It is in this form that we may compare these invariant coordinates with the beta
invariant defined in Eq. �3.5�.

It is the latter invariant which has been used in the literature to distinguish staggered modules
with the same exact sequence, although we have already noted �Eq. �3.7�� that this beta invariant
vanishes whenever 	=rank�0�1. This has not been found to problematic thus far because, to the
best of our knowledge, only modules with 	�1 have been found to be relevant in applications.
Nevertheless, this vanishing is a conceptual problem which is solved by the invariant coordinates
introduced above. Namely, when 	=1 �cases �1� and �1���, the beta invariant of Eq. �3.5� coincides
with the �value of the� coordinate  because �=X �this is why we have risked some confusion by
using the same notation for the coordinates and invariants�. When 	�1 and the beta invariant
vanishes identically, we have instead the coordinates  �cases �1� and �1��� or � �cases �2� and
�2���. We therefore feel justified in concluding that the invariant coordinates defined here should
replace the �in hindsight, naïve� definition of the beta invariant given in Sec. III.
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There is one point that remains to be addressed. The beta invariant of Sec. III vanishes
identically when 	�1, hence is useless in this case for distinguishing staggered modules with the
same exact sequence. We claim that the invariant coordinates defined above are superior in this
respect, so we need to establish that the invariant coordinates  or � are linearly independent
functionals on the vector space �� /G�, that is, that they are actually coordinates. We remark that
this would complete our analysis of staggered modules when the right module is Verma. Indeed,
the vector space of inequivalent staggered modules with a given short exact sequence �6.1� was
seen in Theorem 6.14 to have dimension 0, 1, or 2. As the number of coordinates we have
constructed precisely matches the dimension of �� /G� in each case, they completely characterize
the staggered module �again, given a short exact sequence�. Practically, this means that the for-
mulas given in Eqs. �6.37�, �6.39a�, and �6.39b� reduce the identification of a staggered module
�6.1� to the computation of one or two numbers.

Theorem 6.15: In cases �1� and �1��, the functional  is not identically zero on the one-
dimensional vector space �� /G�, and so parametrizes it. In cases �2� and �2��, the functionals −

and + are nonzero and linearly independent on the two-dimensional vector space �� /G�, and so
parametrize it.

Proof: We first note that to show that a functional ̃ on a finite-dimensional vector space V is
nonvanishing on the intersection of the kernels of a collection of functionals ��U�, it is enough to

prove that ̃ is linearly independent of this collection. This follows quite readily by taking a basis

for the span of ��U�, extending it to a basis of V*, and then considering the action of ̃ on the dual

basis �identifying V** and V in the standard way�. Our strategy below is therefore to prove that ̃
and its variants are linearly independent of the �U �and its variants�, so  is nonzero.

Case �1�: Assume that ̃ is a linear combination of the �U : ̃=�UbU�U=�B� �M�−1

� M�−2�* for some B=�UbUU=B1L1=−B2L2. Then, from the definitions �6.11� and �6.37�, we get

Y1w1 + Y2w2 = B1w1 + B2w2 for all w1 � M�−1 and w2 � M�−2, �6.41�

where Y1L1+Y2L2=�† is such that X=�X	−1 �so � is nonzero and singular�. Setting w2=0, we find
that Y1−B1 must annihilate M�−1. However, this implies that

��Y1 − B1�†X	−1x,M�−1�M = �X	−1x,�Y1 − B1�M�−1�M = 0, �6.42�

hence that �Y1−B1�†X	−1x is a grade �−1 descendant of a �noncyclic� singular vector of M. But,
in case �1�, M has no nontrivial singular vectors of grade less than � �except of course for X	−1x
itself�. Thus, �Y1−B1�†X	−1x=0.

When the Verma module corresponding to M has no singular vectors of grade less than �, we
may conclude that Y1=B1, and repeating this argument for w1=0, that Y2=B2. Then, we obtain a
contradiction,

�† = Y1L1 + Y2L2 = B1L1 + B2L2 = 0. �6.43�

However, case �1� also includes the possibility that M=HL is of braid type with 	=1, �=X
=X1

+, and X1
−x=0. Then, we can only conclude that �Y1−B1�†=V1�− for some V1�U−, where �−

=X1
− is singular. Similarly, taking w2=0 now leads to �Y2−B2�†=V2�− for some V2�U−, and we

arrive at

�† = Y1L1 + Y2L2 = B1L1 + B2L2 + ��−�†�V1
†L1 + V2

†L2� = ��−�†�V1
†L1 + V2

†L2� . �6.44�

This is again a contradiction because it implies that �x=X1
+x is a descendant of �−x=X1

−x. It

therefore follows that in case �1�, ̃ is linearly independent of the ��U�, so � ��� /G��* is
nonvanishing.

Case �1��: In this case, ����UKer �U, so we again need ̃ to be linearly independent of the
�U. If this was not the case, we would use the argument which settles case �1� to derive the
contradiction of Eq. �6.44� �the sole difference arises because �−x�0��−=X1

−�, so Eq. �6.42�
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would give �Y j −Bj�†x=Vj�
−x for some Vj �U−, recovering �Y j −Bj�†=Vj�

−�. Therefore, ̃ does

not vanish identically on �UKer �U. However, we still have to rule out the possibility that ̃ might
vanish on the �typically proper� subset ��=�U�Ker �U�

� . To do this, note that there exists a pair

�w1 ,w2���UKer �U for which ̃�w1 ,w2��0. We will use this pair to construct a pair �w1� ,w2��
��U�Ker �U�

� which has the same �nonzero� value as �w1 ,w2� under ̃, thereby establishing that

̃�0 on ��.

The key observation is that any �w1
� ,w2

��� �U�−x��−1 � �U�−x��−2 is annihilated by ̃ and
every �U, but not, in general, by the �U�

� . We may therefore “shift” our pair �w1 ,w2� by any such

�w1
� ,w2

�� without affecting membership in �UKer �U or changing its value under ̃. Take then a
basis ��U

�
�

� � of Im ��, and notice that as the restriction to �U�−x��−1 � �U�−x��−2 of �U�
� is zero

only for U�=0 �Lemma 6.12�, this remains a basis for the restrictions. Extend arbitrarily to a basis
of ��U�−x��−1 � �U�−x��−2�*. Let the corresponding dual basis of �U�−x��−1 � �U�−x��−2 be denoted
by ��w1

��� ,w2
�����, so, in particular, �U

�
�

� �w1
��� ,w2

����=��,�. Choosing now

wj
� = �

�

�U
�
�

� �w1,w2�wj
���, �6.45�

we quickly compute that �w1� ,w2��= �w1−w1
� ,w2−w2

�� is annihilated by every �U�
� . Since

�w1� ,w2����UKer �U and ̃�w1� ,w2��= ̃�w1 ,w2��0, this proves that ̃�0 on ��.
Cases �2� and �2��: In these cases, we once again use the decomposition

M�−j = �UX	−1
− x��−j + �UX	−1

+ x��−j , �6.46�

where the sum is direct in case �2� but not in case �2��. We therefore write wj =wj
−+wj

+ with wj
�

�UX	−1
� x�j=1,2�. The nonuniqueness of this decomposition in case �2�� leads to no difficulties in

what follows.
We start by observing that the restrictions of our functionals to the “wrong” subspaces are

trivial,

�U�
� = ̃� = 0 on �UX	−1

� x��−1 � �UX	−1
� x��−2. �6.47�

In particular, in case �2��, all these functionals vanish on the intersection �UX	
−x��−1 � �UX	

−x��−2

�which is why nonuniqueness leads to no difficulties�. It follows from this that if the ̃� are
nonzero on ��, their linear independence, and hence that of the �, follows for free.

However, proving that the functionals � are nonzero reduces to demonstrating �separately

for “�” and “�”� that the corresponding ̃� are linearly independent of the �U�
� and, furthermore

�in case �2�� only�, to checking that the ̃� do not vanish identically on �U�Ker �U�
� . After

splitting the �w1 ,w2� according to Eq. �6.46�, the arguments establishing these results are identical
to those presented in cases �1� and �1��, so we do not repeat them here. �

We close this section with a couple of examples illustrating the formalism constructed above.
The first illustrates a simple case in which there are two invariant coordinates �.

Example 8: By Theorem 6.14, there is a two-dimensional space of nonisomorphic staggered
modules S with c=0 �t= 3

2
� and short exact sequence,

0 → V0 → S → V5 → 0, �6.48�

because HL=V0 is of braid type and its grade �=5 singular vector �0 has rank 2 (this is a case
�2� example). The dimensionality of �� /G� can also be demonstrated directly as follows.

The normalized rank 1 singular vectors generating the submodule M of HL are

L−1x and �L−1
2 − 2

3L−2�x . �6.49�

This example is rather special because the only states of HL not in M are x and its (nonzero)
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multiples (the irreducible highest weight module L0 is one dimensional). It follows that ��
=��M=�. Since �=5, we should check the constraint on the possible data ��1 ,�2��M4

� M3 coming from the nontrivial element of �U+L1�U+L2�−5 given in Eq. (4.8),

�L1
2L2 + 6L2

2 − L1L3 + 2L4��1 = �L1
3 + 6L1L2 + 12L3��2. �6.50�

However, both sides must be proportional to x�M, hence must vanish for all �1 and �2. There
is therefore no constraint upon the data.

Since dim M4=5 and dim M3=3, the space of admissible data has dimension 8. As the space
of gauge transformations G�=G has dimension dim M5−1=6, we conclude that the space of
inequivalent staggered modules with exact sequence (6.48) is two dimensional, as expected. Fi-
nally, as �0 may be represented in the forms

�0 = �L−1
4 − 20

3 L−2L−1
2 + 4L−2

2 + 4L−3L−1 − 4L−4�L−1x �6.51a�

=�L−1
3 − 6L−2L−1 + 6L−3��L−1

2 − 2
3L−2�x , �6.51b�

it follows from Eq. (6.39a) and (6.39b) and Theorem 6.15 that this space is parametrized by two
invariants,

−L−1x = �L1
4 − 20

3 L1
2L2 + 4L2

2 + 4L1L3 − 4L4�y �6.52a�

and

+�L−1
2 − 2

3L−2�x = �L1
3 − 6L1L2 + 6L3�y �mod CL−1

2 x� . �6.52b�

Any choice of values for these beta invariants corresponds to a distinct staggered module.
This example is admittedly special because M coincides with HL at all positive grades. One

consequence is that both − and + are defined for all ��1 ,�2��� and are invariant under the full
group of gauge transformations G. In general, however, this is not true. Practically, the beta
invariants may be viewed as numbers to be computed in order to identify representations. It is
therefore somewhat inconvenient that they are, in general, only defined for data ��1 ,�2����,
hence for only certain choices of y, and are consequently only invariant under the restricted set of
gauge transformations G��G preserving ��.

While the Projection Lemma, Lemma 5.1, guarantees that we can always choose �equivalent�
data in ��, it is sometimes desirable to define the invariants so that one can easily compute them
for general data ��1 ,�2���, and hence for general choices of y. In the following example, we
illustrate how to combine the content of the Projection Lemma with the above definitions of the
beta invariants to deduce a generally valid formula.

Example 9: We consider the one-dimensional space of c=−2 �t=2� staggered modules with
short exact sequence,

0 → V0 → S → V3 → 0, �6.53�

HL is of chain type with singular vectors L−1x and �0= �L−1
2 −2L−2�L−1x at grades 1 and 3,

respectively. �0 is therefore composite, of rank 2, and M is generated by L−1x. We note first of all,
supposing that y is chosen such that ��1 ,�2����, that the invariant  of Eq. (6.37) may be
defined by

L−1x = �L1
2 − 2L2�y . �6.54�

Our aim is to derive a similar formula that can be used with any choice of y (assuming only that
it is correctly normalized).

To do this, we recall that in the proof of the Projection Lemma, we constructed projections
onto appropriate submodules of HL which take data to equivalent data. This was achieved by
considering an orthonormal basis of the complement of the submodule (as a vector space) at the
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right grade. In the case at hand, we only need one projection to get from � to ��, the submodule
we want to project onto is M, and the grade of our basis is �=3. Since dim M3=2 and
dim H3

L=3, we may take Z= �i /2�L−3 to define our orthonormal basis �Zx� (recall that the Shapov-
alov form is assumed bilinear, not sesquilinear). On the other hand, the vectors L−1

3 x and L−2L−1x
span M at grade 3 (they are the V�L−1x in the notation of Sec. V).

Given data in �, the key step in the proof of the Projection Lemma was to find equivalent data
in �� using a carefully chosen gauge transformation gz. In the case at hand, one can check that
the choice amounts to z=−ZZ†y. In terms of gauge transforming y, this corresponds to applying
the operator 1−ZZ† to obtain the new y (for which the corresponding data are in ��). This
immediately yields an improved version of the definition (6.54) of ,

L−1x = �L1
2 − 2L2��1 − ZZ†�y = �L1

2 − 2L2��1 + 1
4L−3L3�y , �6.55�

which may be used for any (admissible) choice of y.
It should be clear that the same strategy will recover formulas for the beta invariants of

general staggered modules �with exact sequence �6.1�� which are valid for every y corresponding
to admissible data. All that will change is that the orthonormal basis may consist of several
elements Z�, and that one might need several consecutive projections. Indeed, in the chain case we
let Z�

�k� denote the basis elements chosen at the kth step of the projections of Sec. V and define

1 − P = �1 − �
�

Z�
�	−1��Z�

�	−1��†�¯ �1 − �
�

Z�
�2��Z�

�2��†��1 − �
�

Z�
�1��Z�

�1��†� . �6.56�

The formula defining the invariant now becomes

X	−1x = �†�1 − P�y . �6.57�

In the braid case, projecting from rank k−1 to k required two steps and we will denote the
corresponding orthonormal bases by Z�

�k−1;+� and Z�
�k;−�. Now,

1 − P = �1 − �
�

Z�
�	−1;−��Z�

�	−1;−��†��1 − �
�

Z�
�	−2;+��Z�

�	−2;+��†��1 − �
�

Z�
�	−2;−��Z�

�	−2;−��†�
¯ �1 − �

�

Z�
�2;−��Z�

�2;−��†��1 − �
�

Z�
�1;+��Z�

�1;+��†��1 − �
�

Z�
�1;−��Z�

�1;−��†� , �6.58�

and the invariants are defined by

−X	−1
− x = ��−�†�1 − P�y and +X	−1

+ x = ��+�†�1 − P�y �mod UX	−1
− x� . �6.59�

As a final simplification in such formulas, we can even remove the inconvenient quotient in
the definition of +. Specifically, we can choose one more basis �W��, this time for U

�
	−1
+ −�

	−1
−

− , such

that the corresponding basis �W�vhL+�
	−1
− � of VhL+�

	−1
− is orthonormal. Then for any u�M�

	−1
+ , the

vector ��W�W�
† u is in UX	−1

− x, and u−��W�W�
† u is proportional to X	−1

+ x by virtue of orthonor-
mality. A completely explicit formula for + is thus

+X	−1
+ x = �1 − �

�

W�W�
†���+�†�1 − P�y . �6.60�

We make one final remark about this way of defining invariants. The explicit forms of the
projections 1−P�U will, in general, depend on the choices of orthonormal bases used. However,
the values taken by the beta invariants of course do not.

VII. GENERAL RIGHT MODULES

In view of the general construction of Theorem 4.4, the existence question in the case of
arbitrary right modules HR seems at first to be more involved than the HR Verma case elucidated
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in Sec. VI. The vectors �� ,−X̄� that are added to the list of generators of N �Eq. �4.10�� contain

both �, which is only determined by the data in a rather indirect fashion, and X̄, for which no
simple, explicit general formula is known. However, Proposition 4.6 suggests an alternate strategy.
Indeed, given left and right modules HL and HR, we can first use Theorem 6.14 to determine the

space of isomorphism classes of staggered modules Š with exact sequence,

0 → HL→

̌

Š→
�̌

VhR → 0, �7.1�

and then for each isomorphism class, decide whether the right module can be replaced by HR,
obtaining

0 → HL→



S→
�

HR → 0. �7.2�

In practice, the isomorphism classes are determined by the beta invariants of Š, so our task in this
section is to analyze, in terms of these coordinates, when such a replacement is permitted.
Throughout this section, we will assume that the right module HR of S is not a Verma module.

Note that the definitions of �, G, ��, G�, and M depend only on the left module HL which
is unchanged in the replacement proposed above. We will therefore continue to use these notations
in this section without comment. Similarly, the important definitions �Eqs. �6.37�, �6.39a�, and

�6.39b�� of  and � make perfect sense for S. Indeed, since the data of S and Š coincide by
Proposition 4.6, it follows that their beta invariants coincide too. We therefore obtain, as an
immediate consequence of Theorems 6.14 and 6.15, a uniqueness result covering every case
except that which was already treated in Corollary 3.5.

Corollary 7.1: There exists at most one staggered module S (up to isomorphism) for any given
choice of left and right modules and beta invariants  or � of Sec. VI E (as appropriate).

A. Singular vectors of staggered modules

It was observed in Corollary 4.7 that S may be realized as a quotient of Š. We give in this

section a sharpening of this result. First, however, we recall from Proposition 3.3 that when X̄

�U
�̄

−
is defined, it is necessary for the existence of S that X̄�0=0 in HL. A similar statement holds

if both X̄−�U
�̄−
−

and X̄+�U
�̄+
−

are defined. We therefore assume in what follows that HL satisfies

this requirement.

Proposition 7.2: When X̄ is defined, a staggered module S exists if and only if Š has a singular

vector ȳ at grade �+ �̄. Then, S= Š /Uȳ. When X̄− and X̄+ are defined, S exists if and only if Š has

singular vectors ȳ− and ȳ+ at grades �+ �̄− and �+ �̄+, respectively. Then, S= Š / �Uȳ−+Uȳ+�.
We remark immediately that by Proposition 3.3, the left module HL does not have a �nonzero�

singular vector at grade �+ �̄, so the singular vectors ȳ or ȳ� in Š are not annihilated by the
projection onto VhR. Indeed, we may assume the normalizations,

�̌�ȳ� = X̄vhR or �̌�ȳ�� = X̄�vhR. �7.3�

The singular vectors therefore have the form X̄y−� or X̄�y−��, where � ,���HL. The
uniqueness of such singular vectors follows again from Proposition 3.3. We mention that it is in
considering situations such as these that the terminology employed by Rohsiepe in Ref. 26 be-

comes inconvenient. In particular, we see once again that for Š, Rohsiepe’s lower module, which
he defines as the subspace of L0 eigenvectors, is not a highest weight module �it contains ȳ�.

Proof: We first assume that S exists. Denote by Ň and N the submodules of HL � U in the

constructions �Theorem 4.4� of Š and S, respectively. As we have seen in the proof of Proposition

4.6, Ň�N. We will show that Ln�� ,−X̄��Ň for all n�0 and �L0−hR− �̄��� ,−X̄��Ň, thereby
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establishing that �� ,−X̄� becomes singular in the quotient �HL � U� /Ň= Š �we will only detail this

direction in the X̄ case, that of X̄� being identical�.
We first write LnX̄=U0�L0−hR�+U1L1+U2L2, as usual because X̄ is singular. Then in

HL � U, the definition of Ň gives

Ln��,− X̄� = Ln��,0� − U0�0,L0 − hR� − U1�0,L1� − U2�0,L2�

= Ln��,0� − U0��0,0� − U1��1,0� − U2��2,0� �mod Ň� , �7.4�

and each of the four terms on the right hand side is obviously in 
L�HL�=HL � �0�. Now,

�� ,−X̄� is one of the generators of N, so the sum of the four terms is in N �since Ň�N�. But the
existence of S implies that N� 
L�HL�=N° = �0� by Theorem 4.4, hence that the sum of these four

terms is zero. We conclude that Ln�� ,−X̄��Ň as required.

The argument for �L0−hR− �̄� is similar. In fact, we have �L0−hR− �̄�X̄= X̄�L0−hR�, so

�L0 − hR − �̄���,− X̄� = − X̄�0,L0 − hR� = − X̄��0,0� �mod Ň� . �7.5�

But we are assuming that X̄�0=0 �Proposition 3.3�, hence we find that �L0−hR− �̄��� ,−X̄��Ň, as

required. This completes the proof that the class of �� ,−X̄� modulo Ň is a singular vector of Š.

The other direction requires us to show that the existence of the singular vector ȳ� Š implies
that the quotient by the submodule generated by ȳ is the desired staggered module S. The strategy
here is rather similar to that used to prove Theorem 4.4. First observe from Eq. �7.3� that

�̌�Uȳ�=J, where HR=VhR /J. We denote the projections from Š to Š /Uȳ and from VhR to HR by
�̄ and �J, respectively. We then define module homomorphisms 
 and � so as to make the
following diagram commutative:

0 → HL →ı̌ Š →� VhR → 0

� ↓�� ↓�J

0 → HL →� Š
Uy

→� HR → 0

ˇ

�7.6�

Our task is now to show that the bottom row is exact. For injectivity of 
= �̄ � 
̌, we must show
that Ker �̄� Im 
̌=Uȳ� 
̌�HL�= �0�. But, if Uȳ� 
̌�HL� for some U�U, then we can assume that

U�U− by the singularity of ȳ. Exactness of the top row now gives 0= �̌�Uȳ�=UX̄vhR �VhR, hence
U=0 as Verma modules are free as U−-modules. This proves that 
 is injective. The projection �
is well defined by � � �̄=�J � �̌ because Ker �̄ is annihilated by the right hand side by construc-
tion. Its surjectivity follows from that of �J and �̌.

Exactness then follows from that of the top row, whence � � 
=� � �̄ � 
̌=�J � �̌ � 
̌=0, and the

following argument: If � � �̄�u�=0 for some u� Š, then �J � �̌�u�=0, hence �̌�u�=UX̄vhR for some
U�U. We therefore conclude that

u = Uȳ �mod 
̌�HL��, so �̄�u� = 0 �mod �̄
̌�HL� = 
�HL�� . �7.7�

As �̄ is surjective, we are done.
We have therefore constructed an exact sequence with the left and right modules of S. The

data of Š /Uȳ are obtained by acting on y= �̄�y̌� �which is indeed mapped to xR�HR under �� and

coincide with that of S �and Š�. By Proposition 3.6, S� Š /Uȳ as required.
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The argument for the X̄� case is similar, although slightly more complicated. First we con-

struct an exact sequence for Š /Uȳ− as above �with injection 
� and surjection ���, obtaining a
commutative diagram very similar to �7.6�. The arguments for this step are exactly the same as
those above. Then, we define 
 and � so as to make the following augmented diagram commute:

0 → HL →ı̌ Š →� VhR → 0

� ↓�� − ↓�J −

0 → HL →�� Š
Uy−

→�� VhR

J�
→ 0−

0 → HL →� Š
Uy + Uy+

→� HR → 0
−

↓ ↓�� + �J +�

ˇ

�7.8�

Here, �̄� corresponds to quotienting by the submodule generated by ȳ� and �J� corresponds to

quotienting by the submodule J� generated by X̄−vhR or X̄+x� as appropriate, where x� is the
highest weight vector of VhR /J−. The arguments demonstrating exactness and the isomorphism of

S and Š / �Uȳ−+Uȳ+� are also identical to those above, except as regards the proof that 
 is
injective.

Note then that 
 will be injective if the only U�U− for which Uȳ+� 
��HL� are such that

Uȳ+�Uȳ−. But applying �� and using the exactness of the middle row of �7.8� gives UX̄+x�=0.
The module generated by the highest weight vector x� is not Verma, so we can only conclude that

U=V−�+
−+V+�+

+ for some V��U−, where the �+
�X̄+vhR denote the �normalized� singular vectors in

VhR whose rank is one higher than that of X̄+vhR �in particular, the �+
� are singular�. Thus,

Uȳ+ = V−�+
−ȳ+ + V+�+

+ȳ+. �7.9�

We use the fact that �+
�X̄+=�−

�X̄− for some singular �−
��U− �which follows from the Feigin–

Fuchs classification of singular vectors in Verma modules�. It is easily verified that �+
�ȳ+−�−

�ȳ−

� Š are singular vectors and furthermore that they are in Ker �̌=Im 
̌. By Proposition 3.3, we then

have �+
�ȳ+=�−

�ȳ−. Substituting into Eq. �7.9�, we therefore see that the vector Uȳ+� Š must be in
the submodule generated by ȳ−, establishing the injectivity of 
. �

This result validates the practical technique proposed in Ref. 21 to find constraints on the beta

invariant of a staggered module S by searching for singular vectors in the corresponding Š. The
power of Proposition 7.2, when combined with the classification of Theorem 6.14, is evidenced by
the following examples.

Example 10: We are finally ready to demonstrate the claims made in Examples 3 and 4
concerning the allowed values of . In the former case, the staggered module S had c=−2 �t
=2�, HL=V0 /V3, and HR=V1 /V6. By Theorem 6.14, there is a one-dimensional space of staggered

modules Š with the same left module but HR=V1, parametrized by  (Theorem 6.15). We search

in Š for a singular vector at grade 6, finding one for every �C,

ȳ = �L−1
3 − 8L−2L−1 + 12L−3��L−1

2 − 2L−2�y − �− 16
3 � + 1�L−2

2 L−1
2 + 4

3 �14 + 5�L−3L−2L−1 − 6L−3
2

− 6� − 2�L−4L−1
2 + 8L−4L−2 − 2

3 �5 + 2�L−5L−1 + 4L−6�x . �7.10�

Here, we have used �L−1
2 −2L−2�L−1x=0 to eliminate terms of the form U−L−1

3 x.51 It now follows
from Proposition 7.2 that there also exists a one-dimensional space of staggered modules S
(likewise parametrized by ) with the desired left and right modules.

The case of Example 4 is different. The staggered module S had c=0 �t= 3
2

�, HL=V0 /V2, and
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HR=V1 /V5. Searching for a grade 5 singular vector in the Š (with unknown ), we find that a
singular vector exists if and only if =− 1

2 , in which case it has the form

ȳ = �L−1
4 − 20

3 L−2L−1
2 + 4L−2

2 + 4L−3L−1 − 4L−4�y − �− 32
9 L−3L−2 + 16

3 L−4L−1 + 2L−5�x .

�7.11�

Here, we have used �L−1
2 − 2

3L−2�x=0 to eliminate terms of the form U−L−1
2 x. Proposition 7.2 now

states that there is a unique staggered module S with the desired left and right modules, and that
it has beta invariant =− 1

2 .
While searching for singular vectors gives a useful general technique to determine how many

staggered modules correspond to a given exact sequence, it is clear that this method is computa-
tionally intensive. For instance, even the relatively simple module discussed in Example 6 requires
searching for singular vectors at grade 14, hence determining the form of � �when it exists� within
a space of dimension dim H14

L = p�14�− p�10�=93. Clearly, it would be very helpful to have stron-
ger existence results, and it is these that we turn to now.

B. Submodules and the Projection Lemma

The previous section reduces the existence question for S to a question about singular vectors

ȳ �or ȳ�� in Š. We will first develop the idea of this section in the case in which there is only one

X̄, briefly noting afterward the slight changes needed in the X̄� case. Recall that these singular

vectors ȳ necessarily take the form X̄y−�, where ��H
�+�̄

L
. In searching for these singular

vectors, we are naturally led to consider the set of elements obtained from X̄y through translating
by an element of H

�+�̄

L
. This translation is strongly reminiscent of gauge transforming data, and it

is this similarity that we shall exploit in this section.

To make matters more transparent, let us consider instead of Š, a staggered module T that
differs only in that its left module is also Verma. This does not change the dimension of the space
of isomorphism classes, by Theorem 6.14, and we have the usual definitions of x, y, �0, �1, �2,
and  �or ��. However, this slight change in viewpoint necessitates a reinterpretation of the
results of the previous section because a Verma left module obviously conflicts with the conclu-
sion of Proposition 3.3 when the right module is not Verma �upon setting a singular vector of HR

to zero�. Instead of searching for singular vectors of the form X̄y−�, we will therefore instead

consider the submodules of T generated by the X̄y−u, where u ranges over �VhL��+�̄�T.

More precisely, let us consider the submodules T̄�u��T which are generated by x and X̄y
−u. Because we have insisted that the left module is Verma �and this is why we are insisting upon
this in the first place�, these are all staggered modules with exact sequence,

0 → VhL → T̄�u� → VhR+�̄ → 0. �7.12�

Indeed, putting ȳ= X̄y−u, we define in the usual way �̄0= �L0−hR− �̄�ȳ= X̄�0, �̄1=L1ȳ, �̄2=L2ȳ,

and thence ̄ �or ̄�� by Eq. �6.37� �or �6.39a� and �6.39b��. Varying u� �VhL��+�̄ then really does

amount to performing gauge transformations on any given representative, T̄�0� say. In particular,

all the T̄�u� are isomorphic.

Apply now the Projection Lemma, Lemma 5.1, to the staggered module T̄�0�. This tells us that
we can always make a gauge transformation so that the transformed data ��̄1� , �̄2�� belong to the

submodule M̄ of VhL generated by the singular vectors of rank 	+ 	̄−1, where 	 is the rank of

�0=Xx in VhL and 	̄ is the rank of X̄vhR in VhR �so 	+ 	̄ is the rank of �̄0�VhL�. In other words,

there exists �� �VhL��+�̄, such that vir+�X̄y−���M̄. The submodule U�X̄y−���T is then a

staggered module with left module M̄ �or even some submodule thereof�, right module VhR+�̄, and

beta invariant ̄ �or ̄��.
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Consider now the quotient of T by M̄�VhL. If we assume that �0�M̄ �which is equivalent

to assuming that 	̄�1�, then Proposition 4.5 tells us that this is a staggered module Š with exact
sequence

0 → VhL / M̄ → Š → VhR → 0. �7.13�

Moreover, its beta invariant is obviously the same as that of T, namely, . It should now be evident

that ȳ= X̄y−� is a singular vector of Š, so by Proposition 7.2, we may construct a module S
= Š /Uȳ for each beta invariant  whose exact sequence is

0 → VhL / M̄ → S → VhR / UX̄vhR → 0. �7.14�

We can even reduce the left module of S further by quotienting by any submodule not containing
�0.

It remains only to remark upon the differences in the X̄� case. We may apply the above

formalism to consider separately the submodules T̄��u��T which are generated by x and X̄�y
−u. Applying the Projection Lemma to each, we conclude that there exist ��, such that

vir+�X̄�y−����M̄ for the submodule M̄�VhL generated by the rank 	+ 	̄−1 singular vectors

�we emphasize that this is the same submodule for both “�” and “�”�. The vectors ȳ�= X̄�y

−�� are therefore both singular in the quotient Š=T /M̄, so an appeal to Proposition 7.2 then
settles this case. Putting this all together, we have proven the following result.

Proposition 7.3: Let 	 and 	̄ denote the ranks of the singular vectors �0=Xx�VhL and

X̄vhR �VhR. If there are no (nonzero) singular vectors in HL of rank 	+ 	̄−1, then the dimension of
the space of staggered modules S with exact sequence (7.2) matches the dimension of the space of

staggered modules Š with exact sequence (7.1).
Example 11: This result allows us to understand why the exact sequence (3.19) of Example 3

admits a one-parameter family of staggered modules. In Example 10, we proved that this was
indeed the case, but now we see it as a direct consequence of Proposition 7.3, and hence as a
corollary of the Projection Lemma. To whit, the left module is V0 /V3 and the right module is V1 /V6

(see Fig. 3 in Sec. III). The ranks of �0=L−1x and X̄vhR are 1 and 2, respectively, so that of �0 is
	+ 	̄=3. But there is no (nonvanishing) rank 2 singular vector of HL (it would have dimension 3),
hence the proposition applies.

We note that the proposition does not apply to the exact sequence (3.20) considered in
Example 4. In this case, the left module is V0 /V2 and the right module is V1 /V5, so we find that
	+ 	̄=2. But there is a nonvanishing rank 1 singular vector in HL, namely, �0. This failure to meet
the hypotheses should be expected as we have already shown (Example 10) that the dimension of

the space of S differs from that of the corresponding Š. We will therefore have to work harder to
get an intuitive understanding of why this is so (beyond a brute force computation of singular
vectors).

Example 12: In the study of the so-called LM�1,q� logarithmic conformal field theories,24 one
encounters staggered modules Ss with c=13−6 �q+q−1� �t=q� and exact sequence,

0 → Q1,s → Ss → Q1,s+2�q−�� → 0, �7.15�

where Q1,s=Vh1,s
/Vh1,s+s. Here, s is a positive integer not divisible by q, and 0���q is the

remainder obtained upon dividing s by q. The left and right modules are of chain type, the former
being irreducible if s�q and reducible with singular vectors of ranks 0 and 1 if s�q. The right
module is always reducible with singular vectors of ranks 0 and 1.

We then have 	=0 when s�q and 	=1 otherwise, �= �q−���s−�� /q, 	̄=2, and �̄=s+2�q
−��. Since the left module has no singular vectors of rank 	+1, it follows from Proposition 7.3
and Theorem 6.14 that the exact sequence (7.15) describes a one-parameter family of staggered
modules. Identifying the staggered modules appearing in the LM�1,q� models therefore requires
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computing the corresponding beta invariants. Unfortunately, this has only been done for certain
small s.

Proposition 7.3 states that if HL has no �nonzero� singular vectors of rank greater than or equal
to 	+ 	̄−1, then the existence question for staggered modules S is equivalent to the same question

for the corresponding Š. Moreover, Proposition 3.3 tells us that the left module HL of S cannot
have a singular vector of rank 	+ 	̄ or 	+ 	̄+1, according as to whether HL is of chain or braid
type, respectively. We have therefore solved the existence question for staggered modules in all
but a finite number of outstanding critical rank cases. It is these cases that we now turn to.

C. Existence at the critical ranks

If HL has nonzero singular vectors at the critical rank 	+ 	̄−1, we can still follow the strategy

of Sec. VII B to try to construct S, but we cannot, in general, quotient away the full submodule M̄
without ending up with a left module smaller than HL. We will therefore have to perform a more
detailed analysis to determine when we can quotient by a smaller submodule.

For convenience, we will separate the outstanding cases according to the configurations of the
singular vectors of HL and HR at the critical ranks. We let g� �0,1 ,2� denote the number of rank
	+ 	̄−1 singular vectors of HL and n� �0,1 ,2� denote the �minimal� number of singular vectors
needed to generate J, where HR=VhR /J. The critical rank cases correspond to neither g nor n
vanishing, so we have four singular vector configurations which we illustrate in Fig. 6. There, g
represents the number of black circles in the top row for HL and n represents the number of white
circles in the bottom row for HR. We label the critical rank cases by this pair of integers �g ,n�.

Let us first consider the case �1,1� with modules of chain type for simplicity. Recall that the

data of the module T̄��� were denoted by ��̄1 , �̄2�, where � were chosen so that �̄ j =Ljȳ

Case (1,1)

Case (1,2)

Case (2,1)

Case (2,2)

β

β
±

β±

β±
±

FIG. 6. The critical rank configurations for which Propositions 7.3 and 3.3 are not sufficient to settle the existence
question. Pictured are the singular vectors of HL of ranks 	+ 	̄−1 and 	+ 	̄, and their counterparts of ranks 	̄−1 and 	̄ in
HR. Black indicates that the singular vector is present, white that it has been set to zero, and gray that either possibility is
admissible. The �curved� horizontal arrows indicate the nondiagonal action of L0. It is understood that in certain circum-
stances, some of the singular vectors pictured may not actually be present in the braid cases �for example, when 	̄=1, HR

has only one singular vector of rank 	̄−1=0�. We also indicate for each configuration the beta invariants of Eq. �7.16�
whose vanishing is equivalent to the existence of the associated staggered module.
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=Lj�X̄y−���M̄. Instead of quotienting T by M̄, we would now like to quotient by the smaller

submodule U�̄0=UX̄Xx�M̄. It is clear that ȳ will become singular in the quotient if and only if
�̄ j =0 for j=1,2. Of course, we have the freedom of gauge transformations in choosing �, so the

question should be whether ��̄1 , �̄2� is equivalent to �0,0�. From this, we conclude that ȳ= X̄y

−� will be singular in T /U�̄0 �for some choice of �� if and only if the beta invariant ̄ of T̄���
vanishes. We remark that this is equivalent to the vanishing of ̄ for any T̄�u�, u� �VhL��+�̄, by
gauge invariance.

In general, g and n may be greater than 1 and there are a few possibilities among the

submodules of M̄ that we might want to quotient out. We will analyze whether the submodules

U�X̄�y−����T contain the singular vectors X	+	̄−1
�� x�VhL, where ��� �−,+� parametrizes the

nonvanishing singular vectors X	+	̄−1
�� x�0 of HL. Analogous to the argument above, we find that

to each generating singular vector of J and each rank 	+ 	̄−1 singular vector of HL, there is a

corresponding beta invariant which must vanish. Specifically, given vectors ȳ�= X̄�y−�� such that

�̄ j
�=Ljȳ

��M̄ and elements �̄��
� �U− �singular and prime�, such that X	+	̄

� = �̄��
� X	+	̄−1

�� and

X	+	̄−1
�� x�0 in HL, we define gn� �0,1 ,2 ,4� beta invariants by

��̄−
��†ȳ� = ̄−

�X	+	̄−1
− x and ��̄+

��†ȳ� = ̄+
�X	+	̄−1

+ x �mod UX	+	̄−1
− x� . �7.16�

These are the beta invariants of the T̄�����, and we may quotient T to get a staggered module Š
with left module HL and singular vectors ȳ� if and only if all of the ̄��

� vanish �the easy proof of
this is sketched below�. We have indicated which beta invariants are relevant to each critical rank
case in Fig. 6 for convenience. We further remark that we will suppress the indices � and �� in
cases where they take a single value �as in case �1,1� above�.

Theorem 7.4: Given HL, HR=VhR /J, and ��1 ,�2��� such that HL contains nonzero sin-
gular vectors of rank 	+ 	̄−1, a staggered module S with these left and right modules and data

exists if and only if ̄��
� =0 for all �� �−,+� such that X̄�vhR �J and all ��� �−,+� such that

X	+	̄−1
�� x�0.

Proof: In view of Proposition 7.2 and the above, all that needs to be proven is that the

vanishing of the appropriate invariants ̄ occurs precisely when the ȳ become nonvanishing

singular vectors in the quotient Š=T /K �recall that K is then a submodule of M̄�. To lighten the
notation, we will omit superscript indices �. It is understood that what follows must be repeated
separately for the n values that � takes.

It is clear that ȳ will be singular if and only if both �̄1 and �̄2 belong to K. When K is

generated by singular vectors of grades �+ �̄ or greater, for example, when VhL is of chain type,
this requires that the data vanish �this direction is always easy, in fact�. Now, the data can be

chosen to vanish using a gauge transformation if and only if all beta invariants ̄ or ̄� vanish
because vanishing data is admissible �Proposition 6.2�, gauge transformations connect any two
equivalent pieces of data �Proposition 3.6� and beta invariants completely determine the isomor-
phism class �Theorem 6.15�. The proof is then complete for such K.

However, K�M̄ may be generated by singular vectors of lower grade than �+ �̄. To deal with
this possibility, note that

�̄ j � UX	+	̄−1
� x ⇒ ̄� = 0. �7.17�

Indeed, this is just the analog of �a part of� Eq. �6.47� in the present situation, and it immediately

implies that if ȳ becomes singular in the quotient T /K, then the invariants ̄�� vanish. Roughly
speaking, the converse is also true: Split the data as �̄ j = �̄ j

++ �̄ j
−, where �̄ j

��UX	+	̄−1
� x. From the

arguments in Secs. VI D and VI E, we can infer that the admissible ��̄1
� , �̄2

�� modulo the gauge

transformations gu, u� �UX	+	̄−1
� ��+�̄, form a one-dimensional vector space parametrized by ̄�.
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Then, ̄�=0 implies that we can choose �̄ j
�=0 by a gauge transformation. It follows that the “full

data” �̄ j can be chosen to belong to UX	+	̄−1
� x. When K is generated by X	+	̄−1

� x, the vanishing of

̄� therefore implies that ȳ becomes singular in the quotient T /K. When K is generated by

singular vectors of grade 	+ 	̄, the vanishing of both the ̄� implies the same. This completes the
proof. �

Determining when the beta invariants ̄��
� of the staggered modules T̄��u� vanish is an explicit

condition which can be checked in particular examples �see Example 13 below�. To get more
insight into this, we revisit the definitions of these beta invariants using the forms given in Eqs.
�6.57� and �6.59�. This allows us to set u=0 and write

̄��
� X	+	̄−1

�� x = ��̄��
� �†�1 − P̄�ȳ� = ��̄��

� �†�1 − P̄�X̄�y , �7.18�

modulo UX	+	̄−1
− x if ��=+, where 1− P̄ denotes the net effect of the Projection Lemma �as in Sec.

VI E�. Now, X̄� is singular, and both ��̄��
� �† and P̄ have positive modes on the right of each of their

terms �see Eqs. �6.56� and �6.58��. We may therefore write

��̄��
� �†�1 − P̄�X̄� = U0

��,����L0 − hR� + U1
��,���L1 + U2

��,���L2 �7.19�

for some U0
��,��� ,U1

��,��� ,U2
��,����U, hence

̄��
� X	+	̄−1

�� x = U0
��,����0 + U1

��,����1 + U2
��,����2. �7.20�

This expresses the ̄��
� as affine-linear functionals of the data ��1 ,�2� of T �and thus also of Š�.

Finally, applying a gauge transformation gu to ��1 ,�2� results in the left hand side of Eq. �7.20�
changing by

��̄��
� �†�1 − P̄�X̄�u − U0

��,����L0 − hR�u = 0, �7.21�

since u has conformal dimension hR and �1− P̄�X̄�u�M̄�+�̄. This gauge invariance then lets us

conclude that the ̄��
� are affine functions on the space � /G of isomorphism classes of staggered

modules Š with exact sequence �7.1�. Assuming that ��0, so that the beta invariants  or � of

Š are defined, we can therefore consider the ̄��
� as affine functions of  or �.

Example 13: We consider the existence of a c=−2 �t=2� staggered module S with exact
sequence,

0 → V0/V3 → S → V1/V3 → 0. �7.22�

We therefore have X=L−1, 	=1, X̄= �̄=L−1
2 −2L−2, and 	̄=1. Since �0=L−1x has rank 	+ 	̄−1

=1, this is a critical rank example.
By Theorem 6.14, there is a one-dimensional space of staggered modules T with left module

V0 and right module V1, parametrized by . We must determine the beta invariant ̄ of the

submodule T̄�0� generated by x and X̄y. Referring to the calculation of Example 9, we have

̄�0 = X̄†�1 − P̄�X̄y = �L1
2 − 2L2��1 + 1

4L−3L3��L−1
2 − 2L−2�y

= �8L−1L0L1 − 15L−1L1 + 4�2L0 + 1��L0 − 1��y = �− 15 + 12��0. �7.23�

The conclusion is then that S exists by Theorem 7.4 if and only if ̄=0, hence = 4
5 . This value is

of course reproduced by searching for an explicit singular vector of the form ȳ= X̄y−� with �

�V0 /UX̄�0=HL (as in Sec. VII A).
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Consider a case �1,1� staggered module S of chain type �or 	=1 braid type�. If ��0 �so 	
�0�, then there is a single invariant  to consider. By Theorem 7.4, S exists if and only if a single

invariant ̄ vanishes. We have shown that the latter invariant is an affine function of the former, so
there are three possibilities.

• ̄ is constant and zero, so S exists for all .

• ̄ is constant and nonzero, so S does not exist for any .

• ̄ is not constant, so S exists for a unique .

In the absence of any information to the contrary, we should expect that the last possibility is
overwhelmingly more likely to occur. Moreover, indeed, this is what we observe. For instance, the
staggered modules of Examples 4, 6, and 13 all admit only a single value of . We can now finally

understand this as the generic consequence of imposing one �linear, inhomogeneous� relation, ̄
=0, on one unknown, .

More generally, we can use Eq. �7.20� to decompose the beta invariants of the T̄��0� as

̄��
� ��1,�2� = ���

� ��1,�2� + ̄��
� �0,0� . �7.24�

This defines linear functionals ���
� on the space of data of the T �and Š�. Let b� �0,1 ,2� denote

the number of beta invariants needed to describe the T. Assuming that the ���
� are all linearly

independent, we therefore obtain gn linear relations in b unknowns.52 Analyzing these numbers in
each case then leads to simple expectations for the dimension of the space of staggered modules
S.

More specifically, when the left and right modules are of chain type, b is 0 or 1, depending on
whether 	=0 or not. In the braid case, b is 0, 1, or 2, depending on whether 	=0, 	=1, or 	
�1 �this is a direct restatement of Theorem 6.14�. We should therefore expect that the staggered
modules S corresponding to the critical rank configurations of Fig. 6 will exist in case �1,1�
provided that 	�0 and cases �1,2� and �2,1� provided that 	�1. We should not expect the S to
exist otherwise. Moreover, we expect that when S exists, it is unique, except in case �1,1� with
braid type and 	�1, in which case we expect a one-parameter family of staggered modules.

Example 14: It is easy to investigate examples of critical rank staggered modules using the
singular vector result of Proposition 7.2. For example, we know from Example 10 that a c=0 �t
= 3

2
� staggered module with HL=V0 /V2 and HR=V1 /V5 is unique, admitting only =− 1

2 . Similarly,
replacing the right module by V1 /V7 leads to a unique staggered module with = 1

3 . These are both
case �1,1� examples, but we may deduce from their (expected) uniqueness that the case �1,2�
staggered module S corresponding to replacing the right module by V1 / �V5+V7� does not exist:

The associated Š would have to have singular vectors at grades 5 and 7, requiring both =− 1
2 and

= 1
3 .
For case (2,1) examples, we take HL=V0 / �V5+V7� and HR=Vh /Vh� for h=1,2 and h�=5,7

(and c=0). In all these cases, 	=1, so we do not expect that such staggered modules exist.
Moreover, one can explicitly check in each case that the appropriate singular vector does not
exist, confirming our expectations. It is more interesting to consider the 	=2 examples with HL

=V0 / �V12+V15� and HR=V5 /Vh for h=12 and 15. The singular vectors turn out to exist if and only
if

− = − 11 200
51 , + = 1680

17 and − = − 5600
57 , + = 3360

19 , �7.25�

respectively, in line with expectations. Finally, if we replace the right module by V5 / �V12+V15� to
get a case �2,2� example, we see from the different � above that this staggered module cannot
exist, again as expected.

Our last example illustrates case �1,1� with 	�1. We search for a c=0 staggered module S
with HL=V0 /V7 and HR=V5 /V12, hence 	=2. The corresponding Š turns out to have a singular
vector at grade 12 provided that
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189− + 80+ = − 3360. �7.26�

It follows that there exists a one-parameter family of such staggered modules S, just as we expect.
The above examples completely support our naive expectations concerning the dimensions of

the spaces of critical rank staggered modules. However, things are never quite as simple as one
might like.

Example 15: Let c=1 �t=1� and HL=HR=V1/4 /V9/4. These are chain-type modules with �
=0, so the corresponding staggered module S would be a case �1,1� critical rank example with

	=0. With no  but one ̄, we should not expect that such an S exists. Nevertheless, it is easy to
check that the vector

�L−1
2 − L−2�y − 4

3L−2x � Š �7.27�

is singular. By Proposition 7.2, a staggered module with these left and right modules does there-
fore exist, contrary to our expectations.

Example 16: We can readily generalize the realization of Example 15 for other �=0 examples.

Let t be arbitrary but let h=hr,s, r ,s�Z+, vary with t as in Eq. (2.12). Then, X̄�Urs
− also varies

with t, although it need not remain prime (that is, �̄= X̄ for generic t only). We may therefore
methodically investigate the existence of staggered modules with HL=HR=Vh /Vh+rs by computing

̄�x = X̄†X̄y � T �7.28�

for small r and s (because �=0, there is no P̄�. Clearly ̄� need not coincide with the true

invariant ̄ if X̄ is composite. Some results are (note that swapping r and s amounts to inverting
t):

�r ,s� ̄� ̄=0
�1, 1� 2 –
�2, 1� 4�t2−1� t= �1
�3, 1� 24�t2−1��4t2−1� t= �1
�4, 1� 288�t2−1��4t2−1��9t2−1� t= �1, �

1
2

�5, 1� 5760�t2−1��4t2−1��9t2−1��16t2−1� t= �1
�6, 1� 172 800�t2−1��4t2−1��9t2−1��16t2−1��25t2−1� t= �1, �

1
2 , 1

3

�2, 2� −8t−4�t2−1�2�t2−4��4t2−1� t= �
1
2 , �2

�3, 2� −192t−6�t2−1�3�t2−4��4t2−1�2�9t2−1� t= �
1
3 , �2

Here, we list those t for which ̄� vanishes and for which this vanishing implies the vanishing of

̄ (which requires X̄ to be prime), hence the existence of a staggered module with HL=HR

=Vh /Vh+rs. This sequence of examples makes it clear that given r and s, staggered modules of this
kind can certainly exist.

In the �=0 case discussed above, the invariants ̄ are evidently constants. As we have seen,
their vanishing is nevertheless a subtle question. However, continuing the analysis of Example 16
leads to a clear pattern for the existence question in this case, and, in fact, this question was
already solved explicitly �for chain-type modules� by Rohsiepe in Ref. 26. His argument extends

to any staggered module for which =0 or �− ,+�= �0,0� and X̄ is prime �	̄=1�, and we outline
it below. Note that this is always a critical rank case.

Proposition 7.5: Suppose that Š is a staggered module with left module HL, right module VhR,
and all beta invariants vanishing (if any are defined). Suppose further that the prime singular

vector X̄vhR of smallest grade �̄ is such that X̄�0=0. Then there exists a singular vector in Š at

grade �+ �̄ if and only if hR=hr,s with t=q / p�Q (where gcd�p ,q�=1), p 	 r ,q 	 s and 	p	s� 	q	r.

Proof: We will prove the existence of the singular vector by demonstrating the vanishing of ̄
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or ̄�. We immediately remark that the assumption of �̄ being the smallest grade of a prime

singular means that �̄=rs for a pair �r ,s��Z+�Z+ that satisfies hr,s=hR with minimal product rs.

Since any invariants of Š vanish, we may choose y� Š such that �1=�2=0, by Propositions

3.6 and 6.2 and Theorem 6.15. Writing LjX̄=V0�L0−hR�+V1L1+V2L2, we notice that with this

choice, LjX̄y=V0�0�M̄, so we need no projections to define the ̄�. Now, one of these invariants
is given �perhaps modulo UX	−x� by

̄�0 = X̄†X̄y = U0�L0 − hR�y , �7.29�

where we have written X̄†X̄=U0�L0−hR�+U1L1+U2L2 as usual. But by Poincaré–Birkhoff–Witt

ordering appropriately, we may choose U0= f�L0� for some polynomial f , since X̄†X̄�U0. We
therefore obtain

̄�0 = f�L0��L0 − hR�y = f�hR��0. �7.30�

The vanishing of ̄ is therefore equivalent to hR being a zero of f , hence a double zero of
f�h��h−hR�.

Consider now the highest weight vector vh�Vh. We have

X̄†X̄vh = U0�L0 − hR�vh = f�h��h − hR�vh. �7.31�

By extending �X̄vh� to a basis of �Vh��̄, it is possible to show that ̄=0 if and only if the Kac

determinant �Eq. �2.11�� of Vh at grade �̄=rs possesses a double zero at h=hR �this is an innocent
generalization of the statement of Ref. 26, Lemma 6.2, its proof needs no changes�. No �r� ,s��
with hr�,s�=hR has r�s�� �̄=rs, so the double zero can only occur if there is another such pair
�r� ,s��� �r ,s� with r�s�=rs. Such a second distinct pair is easily verified to have the form
�r� ,s��= �	t	−1s , 	t	r�, and integrality and distinctness yield the conditions given in the statement of
the proposition.

These conditions are equivalent to the vanishing of this ̄. But, they also imply that HR and

HL are of chain type. Hence this is the only ̄ and its vanishing is actually sufficient for the
existence of the singular vector. This completes the proof. �

The restriction that X̄vhR have minimal �positive� grade is not serious, but Rohsiepe’s argu-

ment requires some refining in this case. Essentially, if VhR is of braid type with X̄=X1
+, we

generalize �Ref. 26, Lemma 6.2� to conclude that ̄=0 is equivalent to the Kac determinant of Vh

at grade �̄= �̄1
+ having a zero at h=HR of order p��̄1

+− �̄1
−�+2 �or greater�. However, coupling the

explicit form of the Kac determinant formula with the conclusion of Proposition 7.5 for X̄=X1
−, we

can deduce that the order of this zero is precisely p��̄1
+− �̄1

−�+1. Thus, ̄ cannot vanish.
This solves the existence question for staggered modules S with no nonvanishing beta invari-

ants, X̄�0=0 and HR=Vh /UX̄vh, where X̄ is prime: They exist if and only if h=h�	p	,�	q	 for some
� ,��Z+, where t=q / p�Q and ���. In particular, the left and right modules must be of chain

type. One can also deduce existence for general X̄, assuming existence when X̄ is prime, by
inductively applying Proposition 7.5 to certain submodules of �quotient modules of� the corre-

sponding T. However, deducing general nonexistence from nonexistence when X̄ is prime requires
far more intricate extensions of Rohsiepe’s argument. Such arguments could complete the analysis
in some further special cases, but the details are not in the spirit of what we have achieved here,
so we will not elaborate any further upon them.

As mentioned before, the existence of these �=0 critical rank staggered modules is certainly
not in line with our naive expectations based on counting constraints and unknowns. However,
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viewed in the light of Example 16, we can conclude that these counterexamples to our expecta-

tions are, in fact, quite rare—given �̄, then in all the continuum of values of t there are only finitely
many for which such staggered modules exist.

Of course, we should contrast this with the critical rank cases not covered by Proposition 7.5.
In these cases, while we have not been able to rule out counterexamples to our expectations, we
know of none! We would like to offer a speculative argument suggesting why this is so. Recall that

the analysis of the cases covered by Proposition 7.5 is simplified by not requiring the P̄ when

defining the ̄. Structurally, we only need consider two singular vectors, �0 �which may as well be

x in the analysis� and X̄vhR �which is prime�, in our calculations. The key observation which we
exploited in Example 16 was that such a configuration of two singular vectors can be continuously

deformed for all t. The result was �modulo issues of X̄ remaining prime� an expression for ̄ as a
polynomial in t and t−1. Given this, it is no surprise that this polynomial will vanish for some

values of t. In other words, because each ̄ corresponds to a configuration of only two singular
vectors, we should expect that our naive counting arguments will fail from time to time.

In contrast, the more general critical rank cases require the consideration of at least three
singular vectors. Such configurations cannot be deformed smoothly—varying t without at least
one of singular vectors disappearing is impossible. There is therefore very little to be gained from

trying to express the ̄ as polynomials in t and t−1 because the result will not correspond to a
meaningful beta invariant for almost all t. For this reason, we suspect that counterexamples to our
naive expectations of this more general type must be significantly rarer than those guaranteed by
Proposition 7.5. Indeed, one might even be tempted to conjecture that there are, in fact, no
counterexamples beyond those which we have described above. Evidently, more work is necessary
to further understand this important situation.

VIII. SUMMARY OF RESULTS

In the preceding sections, we have answered our main question—that of the characterization
and classification of staggered modules—in an expository yet detailed manner. We fully expect
that the formalism developed throughout the course of this study will be invaluable when faced
with further questions concerning these kinds of indecomposable modules and their generaliza-
tions. Moreover, we have tried throughout to illustrate with examples how such questions arise in
concrete practical studies and can be answered.

The details should nevertheless not prevent us from presenting the reasonably simple answer
that we have obtained to the original question. The results may be presented in purely structural
terms, as one would hope, and we are finally in a position to summarise what we have shown.

Theorem 8.1: Given two highest weight modules HL and HR of central charge c and highest
weights hL and hR, respectively, the space S of isomorphism classes of staggered modules S with
exact sequence,

0 → HL→



S→
�

HR → 0,

is described as follows. Let

• �=hR−hL be the grade of a singular vector �0�HL;
• 	 be the rank of �0, if �0�0;

• n� �0,1 ,2� be the number of generating singular vectors X̄�vhR of J, where HR=VhR /J;

• 	̄ be the rank of the X̄�vhR, if n�0;
• b� �0,1 ,2� be the number of (nonzero) rank 	−1 singular vectors in HL;
• g� �0,1 ,2� be the number of (nonzero) rank 	+ 	̄−1 singular vectors in HL, if n�0.

Then
• there exists no such S unless �0�0 �requiring � to be a non-negative integer�;
• there exists no such S unless each X̄��0=0.
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Assuming these necessary conditions are met, we have the following.
• When g=0,S is a vector space � /G of dimension b. When nontrivial, this vector space is

parametrized by the beta invariants of Sec. VI E.
• In general, S is an affine subspace of � /G characterized by the vanishing of the gn auxiliary

beta invariants of Sec. VII C.

Theorem 8.1 gives a complete description of the space S, hence a complete classification of
staggered modules, when g=0. In the few remaining cases in which g�0 �the critical rank cases
of Sec. VII C�, our classification is not complete. For these cases, pictured in Fig. 6, we can,
however, say that if b=0 �or all the beta invariants of Sec. VI E vanish�, then the nature of S is
determined by Proposition 7.5 and its simple consequences. Otherwise, we expect �based on some
speculative reasoning and an extensive study of examples� that the dimension of S is given by

dim S = b − gn , �8.1�

where negative dimensions indicate that S is empty. We hope to report on the validity of this
expectation in the future.
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