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On Standard-Error-Decreasing Complementarity: 
Why Collinearity is not the Whole Story 

 

Abstract 

There is a widespread belief among economists that adding additional variables to a regression 
model causes higher standard errors. This note shows that, in general, this belief is unfounded and 
that the impact of adding variables on coefficients’ standard errors is unclear. The concept of 
standard-error-decreasing complementarity is introduced, which works against the collinearity-
induced increase in standard errors. How standard-error-decreasing complementarity works is 
illustrated with the help of a nontechnical heuristic, and, using an example based on artificial data, it 
is shown that the outcome of popular econometric approaches can be potentially misleading. 

 

Keywords: Standard-error-decreasing complementarity, multivariate regression model, standard 

error, econometric methodology, multicollinearity, collinearity 
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1. Introduction 

Economists often believe that including additional variables in multivariate linear regression models 
is problematic and should be avoided. This belief is based on the effects of multicollinearity. For 
instance, Baltagi (2002, p. 80) notes that in the presence of multicollinearity, ordinary least square 
(OLS) ‘estimates are unreliable as reflected by their high variances’. Wooldridge (2013, p. 92) states 
that ‘for estimating βj, it is better to have less correlation between xj and the other independent 
variables’. In Green (2012, p. 129), Kennedy (1992, p. 176), and Cameron and Trivedi (2005, p. 350), 
multicollinearity is discussed under the headings of ‘Data Problems’, ‘Violating Assumptions’, and 
‘Computational Difficulties’, respectively. Note that we could also use alternative estimators, such as 
ridge regressions, to cope with collinearity. However, the price to be paid for using these models is 
the loss of unbiasedness. As our focus is on the estimation of, at least potentially, unbiased models, 
we do not discuss these modelling alternatives.  

Multicollinearity or, to use the shorter term collinearity, is often defined as a ‘high (but not perfect) 
correlation between two or more independent variables’ (Wooldridge 2013, p. 91).1 However, what I 
want to suggest in this note is that we should not concentrate exclusively on collinearity, as it is only 
one part of the story of how additional regressors affect standard errors—and not always the most 
important one. Put differently, the prevailing focus on collinearity, defined as a correlation between 
explanatory variables, is not particularly helpful and can even be highly misleading. Instead, what I 
believe to be of core interest for applied researchers is how adding one or more variables to a 
regression affects the standard errors of the coefficient estimates, i.e. the efficiency of our 
parameter estimates. But in general, as we will see below, information about the correlation 
between variables does not allow drawing conclusions about the impact of including more 
explanatory variable on estimation efficiency.  

Thus, the main point of this note is to alert empirical researchers to the fact that the impact of 
collinearity as stated in many econometrics textbooks is only part of the story and that it is a priori 
unclear how adding variables will affect estimation efficiency. In fact, including additional variables 
may help us obtain more precisely estimated parameters. To some extent, this has already been 
recognised, either explicitly or implicitly, in empirical work, e.g., in randomised control trials, where 
providing estimates including other covariates in addition to the treatment is sometimes done so as 
to achieve more precision, or in the case of adding squared or higher polynomial terms to, say, a 
wage regression. To separate this positive influence from the negative one emphasised above, I 
introduce the concept of standard-error-decreasing complementarity among explanatory variables. 
Although this phenomenon is noted in the literature under different guises, many economists do not 
appear to be aware of its existence, which may lead to potentially unsatisfactory model specification 
choices. In this note, standard-error-decreasing complementarity is explained with an easy to 
understand and intuitive heuristic employing Venn diagrams and, using a practical example based on 
synthetic data, the potential consequences of ignoring its existence are illustrated. The note 
concludes by briefly outlining the implications of standard-error-decreasing complementarity for 
widely applied approaches to empirical research. 
                                                            
1 In its perfect form, collinearity implies that OLS estimates cannot be obtained. This is the case when there are 
either fewer observations than parameters to be estimated or a perfect linear relationship between 
independent variables. Here, we are not concerned with perfect collinearity, which, in practice, is typically 
relevant only in models containing many dummy variables. 
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2. Explaining Standard-Error-Decreasing Complementarity 

To illustrate the impact of adding additional explanatory variables on standard errors, we start from a 
multivariate regression model with k variables, which we estimate using OLS for observations i 
running from 1 to n. ݕ௜ = ොߙ + ଵ௜ݔመଵߚ + ଶ௜ݔመଶߚ + ⋯+ ௞௜ݔመ௞ߚ + ݁௜, (1) 

where y = dependent variable, xj = independent variables (j = 1…k), e = residual, and ߙො, መ௝ߚ  = estimated 
constant term and estimated coefficients of independent variables, respectively. 

Although collinearity potentially affects the variances of all k estimated coefficients in the regression, 
for the sake of simplicity, we concentrate on variable j. Many textbooks (e.g., Greene 2012; 
Wooldridge 2013) express the variance of the estimated coefficient for variable xj in the form of ܸܽݎ൫	ߚመ௝൯ = ఙమௌௌ்ೕ(ଵିோೕమ) (2) 

with ߪଶ = variance of the error term, ܵܵ ௝ܶ = ∑ ൫ݔ௜௝ − ௝൯ଶ,௡௜ୀଵݔ̅ 	and ௝ܴଶ = the ܴଶ obtained from 
regressing the jth independent variable on all the other independent variables. 

However, for our purposes, the variance of the estimated coefficient on variable xj can be more 
helpfully expressed by following Stone (1945) as ܸܽݎ൫	ߚመ௝൯ = ଵ௡ି௞ ఙ೤మఙೕమ (ଵିோమ)(ଵିோೕమ) (3) 

where ߪ௬ଶ = variance of the dependent variable, ߪ௝ଶ = variance of the jth independent variable, and ܴଶ = obtained from estimating Equation (1). 

From Equation (3), we can deduce that the magnitude of ܸܽݎ൫	ߚመ௝൯ depends on six influences: 

• Number of observations: the higher the number of observations, the lower the variance. 
Intuition: more observations provide more information about the estimated relationship. 

• Number of estimated parameters: the lower the number of estimated parameters, the lower 
the variance. Intuition: more information is available for estimating each individual 
parameter.  

• Variance of y: the smaller the variance of the dependent variable, the lower the estimated 
variance of the coefficient. Intuition: less movement in the dependent variable makes 
explanation by the independent variables easier. 

• Variance of xj: the larger the variance of the independent variable, the lower the coefficient’s 
variance. Intuition: more information in the independent variable makes it easier to explain 
movement in the dependent variable. 

• ௝ܴଶ: the weaker the relationship of the jth independent variable with the other independent 
variable, the lower the variance. Intuition: different variation in the independent variables 
makes it easier to discover their individual influence. Thus, a large ௝ܴଶ causes standard errors 
to increase because of collinearity. 
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• ܴଶ: the better the fit of the regression, the lower the variance. Intuition: the improvement in 
fit to the data reduces the variance of an estimated parameter. Hence, this is the driving 
force of standard-error-decreasing complementarity between variables. 

௝ܴଶ and ܴଶ are functions of the number of explanatory variables and are weakly positively affected by 
the addition of another explanatory variable: ܴଶᇱ(݇) = ܴ݀ଶ(݇) ݀݇ൗ ≥ 0 (4) 

௝ܴଶ′(݇) = ݀ ௝ܴଶ(݇) ݀݇൘ ≥ 0 (5) 

Thus, the variance of the estimated coefficient on variable xj can be expressed as a function of the 
number of explanatory variables: ܸܽݎ௝(݇) = ଵ(௡ି௞) ఙ೤మఙೕమ ൣଵିோమ(௞)൧ቂଵିோೕమ(௞)ቃ (6) 

The effect on the size of the coefficient variance of the jth regressor due to adding a further 
explanatory variable can be computed as the derivative of the above expression with respect to k:2 

ௗ௏௔௥ೕ(௞)ௗ௞ = ఙ೤మఙೕమ ൝(݊ − ݇)ିଶ ൣଵିோమ(௞)൧ቂଵିோೕమ(௞)ቃ + (݊ − ݇)ିଵ ିோమᇲ(௞)	ቂଵିோೕమ(௞)ቃା	ோೕమᇲ(௞)ൣଵିோమ(௞)൧ቂଵିோೕమ(௞)ቃమ ൡ (7) 

In principle, we would also have to consider the reduction in the degrees of freedom brought about 
by including another variable. Except for very small sample sizes, this standard-error-increasing effect 
is negligible. Hence, ignoring the change in coefficient variance that is due to the reduction in the 
degrees of freedom leaves: 

ௗ௏௔௥ೕ(௞)ௗ௞ = ఙ೤మఙೕమ (݊ − ݇)ିଵ ൝ିோమᇲ(௞)	ቂଵିோೕమ(௞)ቃା	ோೕమᇲ(௞)ൣଵିோమ(௞)൧ቂଵିோೕమ(௞)ቃమ ൡ (8) 

The sign of this expression is determined by the sign of the numerator of the term in parentheses, 
which, in general, is undetermined. This illustrates that the focus on collinearity and its common 
implication of a standard-error-increasing effect when variables are added could be misleading, as it 
depends on certain conditions.  

An increase in the coefficient variance of the jth regressor after increasing the number of explanatory 
variables requires: −ܴଶ′(݇)ൣ1 − ௝ܴଶ(݇)൧ + ௝ܴଶ′(݇)ሾ1 − ܴଶ(݇)ሿ > 0 ⇔ ௝ܴଶ′(݇)ሾ1 − ܴଶ(݇)ሿ > ܴଶ′(݇)ൣ1 − ௝ܴଶ(݇)൧ (9) 

It is apparent from Equation (9) that the relationship is not straightforward. Concentrating on the 
changes in the two R-squared values after adding a variable and assuming R2 = Rj

2 shows that the 
variance increases if the increase in collinearity as measured by ௝ܴଶ′(݇) is greater than the increase in 
                                                            
2 Note that there are some technical issues. First, k is an integer number and, therefore, applying marginal 
analysis is just an approximation here. Second, in general, the derivative will reflect a particular sequence of 
explanatory variables.  
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the fit of the equation (ܴଶ′(݇)). But, of course, why should R2 = Rj
2? This suggests that, in general, we 

do not know whether adding additional regressors to our model increases or decreases the efficiency 
of estimated parameters.  

In the extant literature, the possibility of standard-error-decreasing complementarity is noted, using 
different names and a different perspective, by focussing on the relationship between partial R2s and 
multivariate R2. Kendall and Stuart (1973) discuss a situation where the sum of two partial R2s from 
bivariate regressions of the form ݕ௜ = ොଵߙ + ଵ௜ݔመଵߚ + ݁ଵ௜ and ݕ௜ = ොଶߙ + ଶ௜ݔመଶߚ + ݁ଶ௜ is lower than the 
R2 from the regression ݕ௜ = ොߙ + ଵ௜ݔመଵߚ + ଶ௜ݔመଶߚ + ݁௜, i.e. ܴଵଶ + ܴଶଶ ൏ ܴଶ. In these circumstances, the 
authors call x2 a ‘masking variable’, as it ‘masks’ the relationship between x1 and y. In their textbook, 
Daniel and Wood (1980) note that plotting x1 against y to find out about their relationship is 
problematic in a multivariate context. In a statistical software manual, Ryan et al. (1985) use the term 
‘suppressor’ for a variable that increases the significance of another variable when added to a 
multivariate equation. Hamilton (1987) proposes a vector geometric approach to explain how 
Kendall and Stuart’s (1973) result is possible, i.e. that ܴଵଶ + ܴଶଶ ൏ ܴଶ. However, judging from the 
arguments made in many research papers and from comments heard at numerous conferences and 
seminars, the possibility of standard-error-decreasing complementarity of variables is not something 
many empirical researchers are aware of, much less take into consideration. 

Thus, the current attempt to simplify the concept as much as possible by using a simple heuristic and 
emphasising intuition to illustrate standard-error-decreasing complementarity in the specific case of 
two explanatory variables. The conclusions, however, can be generalised to the case of k variables 
given in Equation (1). The heuristic is based on Ballentine Venn diagrams, introduced by Kennedy 
(1992) to explain multivariate regression, adapted to the present purpose. Figure 1 expresses the 
working of collinearity in a multivariate regression with the help of Venn diagrams. 

Figure 1: Illustrating the Impact of Adding Variables Using Venn Diagrams 

 
 (A)    (B)   (C)   (D) 

The respective variation of variables y, x1, and x2 is represented by circles. An overlap of circles 
indicates common variation between variables. The bivariate case is illustrated in panel (A) of Figure 
1. There is an overlap between the circles representing the variation in y and x1, which suggests that 
the latter explains parts of the former. Area a is the information set available for estimating ߚመଵ. We 
assume area a to be inversely related to the estimator’s standard error. In addition, the ratio of area 
a to the total area of y can be thought of as giving the coefficient of determination, R2. 
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Multivariate regression analysis is illustrated by panels (B) and (C) of Figure 1, which show two 
alternative scenarios of adding another explanatory variable x2. The R2 of the multivariate regression 
can be computed by summing up areas a, b, and c. Excluding the case of orthogonality between 
independent and dependent variables, adding another independent variable will always increase R2. 
Areas a and c are used for estimating ߚመଵ and ߚመଶ, respectively. The explanative power of area b cannot 
be clearly allocated to either x1 or x2 and thus is not employed in parameter estimation. Thus, area b 
in our heuristic reflects collinearity. Panel (B) illustrates the standard case of adding a variable. Area b 
is relatively large compared to area c, where area c reflects standard-error-decreasing 
complementarity, which implies that the additional explanatory power of x2 is relatively small and 
the overlap with x1 in terms of explaining y is relatively large. Thus, little information is available for 
estimating the two parameters, which, keeping everything else constant, causes standard errors to 
be high. 

However, as shown in Equation (9), looking at collinearity alone does not suffice for drawing general 
conclusions about the direction of change in coefficient standard errors. Moreover, we do not learn 
anything about the magnitude of the change, i.e. even if standard errors increase, coefficients may 
continue to be significant if the influence of collinearity is roughly offset by the influence of standard-
error-decreasing complementarity. In Figure 1, this is illustrated by comparing areas b and c in panels 
(B) and (C): area b is larger, and area c smaller, in the former than in the latter. Hence, by solely 
focussing on area b, we would conclude that adding variables unambiguously leads to higher 
standard errors of ߚመଵ and ߚመଶ in both panels (B) and (C). However, this conclusion is generally invalid, 
as we have to consider the change in R2, too. In panel (C), we see that area c, reflecting standard 
error-decreasing-complementarity, is larger than area b, reflecting collinearity. Thus, in this example 
we should find lower standard errors of ߚመଵ and ߚመଶ in the multivariate compared to the bivariate case. 

This illustration suggests why using correlation coefficients to find out about collinearity is generally 
not advisable: the (squared) correlation coefficient between x1 and x2 is given by (b + d). Hence, in 
general, from the sum of the two areas we cannot infer much about the magnitude of b on its own. 
Theoretical exceptions are the extreme cases of perfect and zero correlation. In practice, collinearity 
is low if the correlation coefficient is close to zero and high if it is close to unity. But what ‘close’ 
means in this context is far from clear. Finally, consider panel (D), which adds yet another variable to 
our model. Now it becomes even more obvious why using correlation coefficients to find out about 
collinearity cannot be recommended: they ignore the presence of other variables and their potential 
impact on ௝ܴଶ. Thus, the intuition is that we cannot learn very much about collinearity, a multivariate 
phenomenon involving the dependent and the explanatory variables, by studying correlation, a 
bivariate phenomenon involving only explanatory variables. Put differently, even correlated 
explanatory variables can help explain variation in y and, thereby, decrease standard errors of 
estimated coefficients.  

 

3. An Empirical Example Using Artificial Data 

Let us now illustrate the working of collinearity and standard-error-decreasing complementarity in 
the context of a small, artificial dataset (see Table A1 in the Appendix). Variables y, x1, and x2 are 
taken from Hamilton (1987). The data-generating process is y = -4.52 + -3.1 x1 + 1.03 x2, whereas the 
variables x3, x4, and x5 are newly constructed as ‘nuisance influences’ for the purposes of this 
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illustration. For the sake of the argument, let us suppose that all independent variables can be 
supported by good theoretical arguments, but there is no unambiguous economic theory on which to 
base what variables should be included in the empirical model, making it necessary to conduct what 
Leamer (1978) calls a ‘specification search’. Put differently, there are theoretical reasons for 
including some or even all the variables in the final empirical model. However, in this example, a 
successful ‘specification search’ should result in a model for y that solely depends on x1 and x2.  

We will now use the artificial dataset to demonstrate that it is possible to arrive at a wrong model by 
trying too hard to avoid collinearity. Our first step is to check the correlation matrix in Table 1, as is 
often done by applied researchers concerned about collinearity. The conclusions typically derived 
from this table are as follows: variables x2, x3, x4, and x5 look like promising candidates for explaining 
y, whereas x1 does not seem to play a role. There is collinearity between x1 and x2 and between x4 
and x5, perhaps with respect to x3 too, and we should be wary of including them in the same model.  

Researchers sometimes try to gauge the extent of collinearity in their models by using variance 
inflation factors (VIF), which are computed as 1/(1- ௝ܴଶ) and are much better at revealing the 
multivariate nature of collinearity than are correlation coefficients (see Belsley et al. 1980). A rule of 
thumb is that a VIF > 10 is indicative of collinearity. Using the Stata 14 default option of centred 
variables, we obtain the VIF values shown in the VIF 1 column of Table 1. All variables except x3 
appear to suffer from collinearity and their inclusion in one model could be viewed as problematic. 
Belsley (1984) emphasises that centring variables may produce misleading conclusions and, thus, we 
also compute VIF values based on uncentred variables (the VIF 2 column). The general conclusions 
from the centred VIF statistics hold, except that now we are warned even more strongly about 
collinearity involving x1 and x2. 

Table 1: Correlation Matrix  

 y x1 x2 x3 x4 VIF 1 VIF 2 
x1 0.003 1    18.0 625.3 
x2 0.434 -0.900 1   21.6 378.4 
x3 0.808 -0.081 0.425 1  3.0 11.2 
x4 -0.753 -0.040 -0.291 -0.609 1 19.6 59.3 
x5 -0.708 -0.066 -0.247 -0.550 0.969 17.1 47.8 

Note: VIF 1 (VIF 2) is based on centred (uncentred) variables. 

Finally, one can compute a conditioning index for a matrix of explanatory variables. This is the ratio 
of the largest to the smallest eigenvalue of the matrix. Belsley et al. (1980) state that a conditioning 
index over 20 is indicative of collinearity. Computing the conditioning index for the five explanatory 
variables in our empirical example yields a value of 21, which suggests that our coefficients for this 
set of regressors are likely estimated imprecisely.  

Using these findings, the collinearity-wary researcher would probably commence model estimation 
by choosing the variables having the highest correlation coefficients (in absolute terms) with the 
dependent variable, while trying to avoid collinearity. Given that the researcher does not know the 
data-generating process, these considerations suggest explaining y by x2, x3, and x4. Table 2, column 
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(1) contains the estimation results. We apply a standard significance level of 5% in our tests.3 
Evaluating model (1) suggests that, with two significant variables and a good fit, it seems satisfactory. 
Moreover, diagnostic tests indicate no problems. We may want to make sure that choosing x2 and x4 , 
and not x1 and x5, was not a mistake. Hence, we estimate model (2) to test the robustness of our 
model with respect to selecting specific variables out of a set of correlated variables. However, our 
previous results are confirmed as x1 and x5 behave almost exactly like x2 and x4, respectively, except 
that the fit in model (1) is slightly better.  

Moreover, given their large correlation coefficient, it could be worthwhile to ensure that x1 and x2 are 
not relevant individually, which is analysed in columns (3) and (4), respectively. Neither x1 nor x2 are 
significant individually and we conclude that these variables are not explaining anything. In contrast, 
we expect that there is a lot of collinearity between individually significant variables x4 and x5, 
contributing to higher standard errors. To confirm this, we estimate model (5), now including both x4 
and x5. The results seem to validate our previous analyses emphasising collinearity, as now neither x4 
nor x5 is significant, due to more than three times higher standard errors.4  

If this modelling approach seems a little too arbitrary, we can employ an automatic model selection 
algorithm. To make sure that collinearity does not interfere with obtaining precisely estimated 
parameters, we now use a stepwise procedure based on including one variable after the other 
(forward selection, p-value: 0.2, begin with empty model).  

Applying the default option in Stata 14 (stepwise, pe(.2)), we obtain the output shown in Table 2, 
column (6). Model (6) is basically the same as model (1), except that, due to removing insignificant x2, 
it boasts a superior adjusted R2. 

Rather than being satisfied with our modelling effort, let us remember that there could also be 
standard-error-decreasing complementarity in our dataset, which cannot be detected by studying 
correlations, conditioning indices, or VIFs. A practical way of finding out about standard-error-
decreasing complementarity is to run a model including all relevant variables.  

Model (7) of Table 2 contains the relevant estimation output and it completely contradicts our 
previous conclusions. Now only x1 and x2 emerge as being highly significant individually, two variables 
we previously considered to be of no relevance. How could that happen? Looking at the R2 of this 
regression shows the working of standard-error-decreasing complementarity, as it has become much 
bigger compared to the ones computed for the earlier models. As a consequence, standard errors of ߚመଵ and ߚመଶ fell dramatically and we can conclude that there is standard-error-decreasing 
complementarity between x1 and x2. Using a variance ratio test, we can reject equality of standard 
error estimated for ߚመଵ in model (2) when compared to the one estimated in model (8), which 
contains x1 and x2 as regressors.  

                                                            
3 Note that given the small number of observations in our sample data, in principle, it would make a great deal 
of sense to follow Leamer’s (1978) arguments and use a higher significance level. However, here we are only 
interested in illustrating a specific point and the chosen significance level works well for achieving that.  
4 Of course, we could have removed x2 in our manual specification search, too. 
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Table 2: Explaining y Using Different Models (15 observations, estimator: OLS) 

 (1) 
Specification 

based on 
correlation 

matrix 

(2) 
Alternative 

specification 

(3)  
Individual 

influence of x1 

(4) 
Individual 

influence of x2 

(5) 
Results for x4 

and x5 are 
dominated by 

collinearity 

(6) 
Best specification 

based on 
correlation matrix 

(7) 
General model 

(8)  
Showing standard 
error decreasing 
complementarity 

x1  0.04 
(0.227) 

0.04 
(0.416) 

   3.06** 
(0.019) 

3.10** 
(0.012) 

x2 0.04 
(0.072) 

  0.196 
(0.113) 

0.04 
(0.076) 

 1.02** 
(0.006) 

1.03** 
(0.004) 

x3 0.02* 
(0.007) 

0.02** 
(0.007) 

  0.02* 
(0.007) 

0.02** 
(0.006) 

0.0002 
(0.0002) 

 

x4 -0.01* 
(0.004) 

   -0.01 
(0.015) 

-0.01* 
(0.004) 

0.0003 
(0.0003) 

 

x5  -0.01* 
(0.004) 

  -0.001 
(0.014) 

 -0.0005 
(0.0003) 

 

constant 11.48** 
(0.596) 

11.48** 
(0.835) 

11.99 
(1.267) 

10.63 
(0.811) 

11.47** 
(0.640) 

11.74** 
(0.399) 

-4.34** 
(0.099) 

-4.51** 
(0.061) 

F-test F(3,11)=12.15** F(3,11)=11.20** F(1,13)=0.00 F(1,13)= 3.02 F(3,11)=11.71** F(2,12)=19.09** F(5,9)= 22376** F(2,12)= 39220** 

R2 0.77 0.75 0.00 0.19 0.77 0.76 0.99 0.99 

Adj. R2 0.71 0.69 -0.08 0.13 0.68 0.72 0.99 0.99 

Heterosc. test F(6,8)=0.32 
[p-value: 0.91] 

F(6,8)=0.42 
[p-value: 0.85] 

F(2,12)=2.77 
[p-value: 0.10] 

F(2,12)=0.37 
[p-value: 0.70] 

F(8,6)=0.17 
[p-value: 0.99] 

F(4,10)=0.63 
[p-value: 0.65] 

n.a. F(4,10)=1.08 
[p-value: 0.42] 

RESET test F(2,9)=0.35 
[p-value: 0.72] 

F(2,9)=0.15 
[p-value: 0.86] 

F(2,11)=1.38 
[p-value: 0.29] 

F(2,11)=1.13 
[p-value: 0.36] 

F(2,8)=0.38 
[p-value: 0.70] 

F(2,10)=0.39 
[p-value: 0.69] 

F(2,7)=4.61 
[p-value: 0.06] 

F(2,10)=0.37 
[p-value: 0.70] 

Normality test Chi2(2)=4.70 
[p-value: 0.10] 

Chi2(2)=4.47 
[p-value: 0.11] 

Chi2(2)=2.42 
[p-value: 0.30] 

Chi2(2)=2.52 
[p-value: 0.28] 

Chi2(2)=4.92 
[p-value: 0.09] 

Chi2(2)=3.50 
[p-value: 0.17] 

Chi2(2)=3.68 
[p-value: 0.16] 

Chi2(2)=3.31 
[p-value: 0.19] 

Note: * (**) indicates statistical significance at a 5% (1%) level. Standard errors are given in brackets. Heteroscedasticity test is based on White (1980); RESET is based Ramsey 
(1969) but using squares and cubes; normality test is based on Doornik and Hansen (1994). 
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Similarly, we can reject equality of standard error estimated for ߚመଶ in model (3) when compared to 
the one estimated in model (8).5 This result is an example of the situation shown in Panel C of Figure 
1, where area c is much larger than area b. Thus, in spite of a correlation coefficient of -0.9, the gain 
in explanatory power of adding x2 to x1 more than offsets the collinearity between the two variables.  

But surely x4 and x5, suffering from collinearity as shown above, are significant when tested jointly? 
The F-test is F(2,9) = 3.07, which is not significant at a 5% level, and nor is either of the two variables 
significant when included individually. In fact, if we test x3, x4, and x5 jointly, we obtain an 
insignificant test statistics (F(3,9) = 2.71), which means that even x3, so significant in the previous 
models, could be removed.  

As an alternative to our manual model reduction procedure, we consider an automatic general-to-
specific modelling algorithm (the default Autometrics option offered by OxMetrics 7) and obtain the 
output in model (8) of Table 2. In terms of the variables chosen from the given set, model (8) is 
orthogonal to model (6) but, statistically, it is clearly the superior model and, in fact, captures the 
data-generating process very well. Finally, note the decrease in standard errors of ߚመଵ and ߚመଶ in model 
(8) compared to the model containing more variables (model (7)), which reflects the standard-error-
increasing effect of collinearity. 

Thus, collinear variables in a regression could be measuring important and separate determinants of 
the dependent variable and excluding them from the regression may be like throwing the baby out 
with the bathwater. Including a collinear variable often increases standard errors of the other 
variables in the model and they may even lose their significance. However, standard-error-decreasing 
complementarity works against that effect. If standard-error-decreasing complementarity is big 
enough, the additional fit achieved by considering an additional variable may overcompensate the 
increase in standard errors due to collinearity. Hence, modelling an empirical relationship without 
considering all relevant variables at the same time may lead to incorrect specifications, as shown in 
Table 2.  

 

4. Standard-error-decreasing complementarity and omitted variable bias 

Note that the effect of standard-error-decreasing complementarity must be kept conceptually 
separate from an omitted variable bias, as the former affects the variance of the coefficient, whereas 
the latter affects the coefficient itself. Figure 1 can be used to illustrate estimation biases, too. 
Assume we estimate ݕ௜ = ොଵߙ + ଵ௜ݔመଵߚ + ݁ଵ௜, i.e. we erroneously omit x2. A bias in ߚመଵ arises because 
we now use area b in addition to area a in our estimation, even though area b cannot be solely 
attributed to x1.  

Looking at the coefficients in Table 2 and comparing the results for the correct specification in model 
(8) with the individually estimated coefficients in models (3) and (4), reveals that the point estimates 
are different. Using a t-test for differences in means we find that the two point estimates are also 

                                                            
5 Using a two-sample variance-comparison test for testing the estimated standard error for ߚመଵ in model (3) 
against the one in model (8), we reject the null hypothesis of equal size: F14,14 = 1200, p = 0.000. The same is 
true when testing the estimated standard error for ߚመଶ in model (4) against the one in model (8): F14,14 = 798, p = 
0.000. 
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statistically significant at all reasonable levels of significance.6 Thus, the positive impact of lower 
standard errors on the size of the t-values is further enhanced by the existence of an omitted 
variable bias in the previously estimated models, which can be seen by the increase in the coefficient 
estimates for x1 and x2. Given that we know the data-generating process, we can conclude that the 
bivariate regressions involving x1 and x2 individually lead to omitted variable biases.  

However, at the start of this section, it was claimed that standard-error-decreasing complementarity 
and omitted variable bias should be kept apart conceptually. Let us consider an empirical example 
that illustrates this proposition. Here, we are using the extreme case of two regressors, x6 and x7, 
which are orthogonal to each other (i.e., correlation coefficient = 0) and, by definition, do not 
experience any collinearity. Table 3 presents three models explaining y by employing x6 and x7 
individually as well as jointly. 

Table 3: Explaining y Using Orthogonal Regressors (15 observations, estimator: OLS) 

 (9) 
Individual influence  

of x6 

(10) 
Individual influence  

of x7 

(11) 
Including both 

orthogonal variables 
x6 0.894** 

(0.088) 
 0.894** 

(0.083) 
x7  -0.08 

(0.150) 
-0.08 

(0.048) 
constant 10.21** 

(0.191) 
12.24** 
(0.499) 

10.46** 
(0.229) 

F-test F(1,13)= 102.2** F(1,13)=0.29 F(2,12)=59.71** 

R2 0.89 0.02 0.91 

Adj. R2 0.88 -0.06 0.89 

Heteroscedasticity test F(2,11)=3.38 
[p-value: 0.07] 

F(2,12)=1.09 
[p-value: 0.37] 

F(5,9)=1.17 
[p-value: 0.38] 

RESET test F(2,11)=0.37 
[p-value: 0.55] 

F(2,11)=0.02 
[p-value: 0.98] 

F(2,10)=3.94 
[p-value: 0.06] 

Normality test Chi2(2)=0.46 
[p-value: 0.80] 

Chi2(2)=1.23 
[p-value: 0.54] 

Chi2(2)=1.03 
[p-value: 0.60] 

Note: See notes to Table 2. 

Model (9) shows that x6 has a significant impact on y, whereas model (10) finds no significant effect 
of x7. The estimates in model (11) demonstrate the orthogonality of the two regressors, as there is no 
change in the coefficients when compared to the bivariate regressions. The standard errors have 
declined in both cases; however,  However, the change is only significant from zero in the case of x7 
(even though the coefficient estimate has not become significant).7 This illustrates the important 

                                                            
6 Using a two-sample t-test with unequal variances to test the coefficient for x1 in model (3) against the one in 
model (8), we reject the null hypothesis of equal size: t14 = -150, p = 0.000, and this is also the case when 
testing the coefficient for x2 in model (4) against the one in model (8): t14 = -28.6, p = 0.000.  
7 Using a two-sample variance-comparison test for testing the estimated standard error for ߚመ଺ in model (9) 
against the one in model (11), we cannot reject the null hypothesis of equal size: F14,14 = 1.12, p = 0.83. 
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condition for standard-error-decreasing complementarity, namely, a sufficiently large increase in the 
fit of the regression. Adding x6 to a model already containing x7 increases model fit only marginally, 
which, given the small sample size, does not suffice to overcome the detrimental effect of the 
decrease in the degrees of freedom on the standard error estimate. 

Thus, in principle, when entering an additional variable, there can be five outcomes on the variables 
already in the regression model: (i) coefficients and standard errors change, (ii) only coefficients 
change, (iii) only standard errors change, (iv) none of them changes (the additional variable is 
orthogonal to the other regressors and standard-error-decreasing complementarity is exactly offset 
by the reduction in the degrees of freedom), and (v) no estimates at all in the case of perfect 
multicollinearity. 

This suggests that the effect of adding another variable to the regression on the variables already in 
the regression is, in practice, generally unpredictable. Put differently, trying to anticipate the effects 
of adding a variable a priori may invalidate statistical inference if it leads to a selective consideration 
of variables. There is nothing new about this conclusion; in fact, it is the basis of arguments for the 
superiority of general-to-specific modelling compared to a specific-to-general approach (for a lucid 
exposition, see Hendry 2007). However, to the best of my knowledge, the influence of standard-
error-decreasing complementarity is not explicitly considered in this strand of literature. 

 

5. Conclusion 

Many empirical researchers in the field of economics believe that adding more variables to a 
regression model leads to unambiguously higher standard errors because of multicollinearity. This 
note argues that, in general, this belief is unfounded. Instead, it is shown that, although adding 
variables creates standard-error-increasing collinearity, equation fit may improve too, which has a 
negative impact on standard errors. Here, the latter effect is called standard-error-decreasing 
complementarity between variables. Using an intuitive heuristic and an artificial dataset, it is 
illustrated that standard errors of estimated coefficients may even decline after adding another 
variable. This suggests that, in general, we do not know whether adding additional regressors to our 
model increases or decreases the efficiency of estimated parameters. 

An important question for empirical researchers involves the likelihood of encountering standard-
error-decreasing complementarity when using real-world data. Here, we can only speculate, as we 
do not know the actual data generating processes (assuming they exist in the first place, of course). 
My own experience, as well as that of many of my colleagues, suggests that the extreme form of 
standard-error-decreasing complementarity revealed in our artificial dataset above is very rare, 
perhaps nonexistent. However, lesser forms do occur, perhaps not frequently, but regularly. For 
example, there are instances where two or more variables are significant when included as a group 
but not when considered individually. This suggests that standard-error-decreasing complementarity 
is not just an interesting theoretical curiosity but may actually affect everyday empirical research. 

                                                                                                                                                                                          
However, when testing the estimated standard error for ߚመ଻ in model (10) against the one in model (11), we can 
reject the null of equally-sized standard errors: F14,14 = 9.77, p = 0.000. 
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The methodological consequences of acknowledging the potential relevance of standard-error-
decreasing complementarity are likely wide ranging, as they could pose significant problems for a 
number of common research approaches.8 As discussed above, one cannot expect that individually 
insignificant bivariate relationships will remain so in a multivariate setting—for two reasons: one is 
the well-known omitted variable bias and the other one is standard-error-decreasing 
complementarity. Thus, even if we are not overly concerned about omitted variable biases in a 
particular research project, e.g., because of orthogonality between the regressors, we should less 
readily embrace a number of widely employed empirical methodologies. I discuss three of the most 
important of these below. 

First, many applied studies enter variables in a groupwise form, for example, initially a group of 
economic variables is tested for significance, then a group of political variables, and so forth. The 
extreme approach here would be adding single variables to some sort of base model without ever 
seriously considering all the variables together in one model. If there is standard-error-decreasing 
complementarity between individual or groups of independent variables, it will likely never be found 
and inference and interpretation will be flawed. Also note Gelbach’s (2016) discussion of the pitfalls 
of adding covariates sequentially to test the robustness of the main variables of interest, particularly 
the sensitivity of results to the specific sequence of additions. 

Second, there has been a renewed focus on the ‘robustness’ of empirical estimation results with 
respect to changes in the specification of the regression equation. The first consistent robustness 
approach is the ‘extreme bounds analysis’ developed by Leamer (1983), but the issue has been taken 
up recently by various authors (e.g., Plümper and Neumayer 2012). However, taking seriously models 
separating variables connected by standard-error-decreasing complementarity could lead to 
problematic inferences. Going back to our example above, should we really discard x1 and x2 as 
nonrobust only because they become insignificant as soon as they are not both included in a 
regression specification? 

Third, it has become very popular to focus on the identification of causal effects in empirical studies, 
which is often combined with a movement away from estimating complicated econometric models. 
As Angrist and Pischke (2010) argue, attention has shifted to showing the relationships of interest in 
the context of small models. Thus, whether using data derived from natural or laboratory 
experiments, researchers tend to proceed in a ceteris paribus fashion, emphasising how one variable 
causes another variable. However, inasmuch as capturing standard-error-decreasing 
complementarity is necessary for obtaining significant coefficients, this implies that potentially 
important relationships will not be discovered, as the interconnection between several causal 
variables is not systematically considered. This argument is slightly related to one of the points made 
by Leamer (2010) in his comment on Angrist and Pischke (2010). He emphasises the potential role of 
correlation in finite samples even for variables that should be orthogonal in principle. 

To conclude, empirical researchers using regression analyses should be aware that omitted variables 
may not only cause biases in the estimators, but could also lead to high coefficient standard errors. 
They should also understand that the effects of adding variables to a model are complex and that 
standard errors may either increase or decrease. Looking at correlation coefficients, conditioning 
                                                            
8 An overview of econometric methodology with linkages to the philosophy of science is given by Dharmapala 
and McAleer (1996).  
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indices, or VIF values is of little help here and may even be misleading. Thus, awareness of standard-
error-decreasing complementarity needs to become more widespread and its potential implications 
should be reflected in the methodology underlying the specification of empirical models. Without 
having considered the full model, i.e. the inclusion of all potentially relevant variables as argued by 
economic theory, one cannot rule out that the final model is statistically inferior due to ignoring the 
possibility of standard-error-decreasing complementarity. In my view, this constitutes another 
reason why a general-to-specific approach to econometrics is generally superior to specific-to-
general approaches (see also Gilbert 1989). 

Going beyond what I demonstrated in this note, let me conclude with a conjecture about what this 
implies for practitioners of applied econometrics. An important guiding principle should be that 
specification of the model is not based on an empirical preselection process of the variables to be 
included. Adding a variable to the model or subtracting one from it may change the estimated effects 
of the remaining variables due to omitted variable biases and/or estimation efficiency because of 
changes in standard errors. If smaller, more efficiently estimated models are desired as a basis for 
the interpretation of results (for arguments in favour of that, see, e.g., Hendry (2007), Keuzenkamp 
and McAleer (1995), and Hayo (1998)), then these should be derived via a consistent reduction of the 
general model that includes all theoretically relevant variables. Researchers should report the 
general model and the corresponding reduction test that supports working with a simplified model. 
Finally, one should not rely on collinearity diagnostics when trying to gauge the impact of adding 
variables on coefficient standard errors. 

 

References 

Angrist, J. D. and J.-S. Pischke (2010), The credibility revolution in empirical economics, Journal of 
Economic Perspectives 24, 3–30. 

Baltagi, B. H. (2002), Econometrics, 3rd ed. Heidelberg: Springer. 

Belsley, D. A. (1984), Demeaning conditioning diagnostics through centering, American Statistician 
38, 73–93. 

Belsley, D. A., E. Kuh, and R. E. Welsch (1980), Regression Diagnostics: Identifying Influential Data and 
Sources of Collinearity. New York: John Wiley. 

Cameron, A. C. and P. K. Trivedi (2005), Microeconometrics. Cambridge: Cambridge University Press. 

Daniel, C. and F. S. Wood (1980), Fitting Equations to Data, 2nd ed. New York: John Wiley. 

Dharmapala, D. and M. McAleer (1996), Econometric methodology and the philosophy of science, 
Journal of Statistical Planning and Inference 49, 9–37. 

Doornik, J. A. and H. Hansen (1994), A practical test for univariate and multivariate normality, 
Discussion Paper, Nuffield College, Oxford. 

Gelbach, J. B. (2016), When do covariates matter? And which ones, and how much?, Journal of Labor 
Economics 34, 509–543. 



16 
 

Gilbert, C. L. (1986), Professor Hendry's econometric methodology, Oxford Bulletin of Economics and 
Statistics 48, 283–307. 

Gilbert, C. L. (1989), LSE and the British approach to time series econometrics, Oxford Economic 
Papers 41, 108–128. 

Greene, W. H. (2012), Econometric Analysis, 7th ed. Upper Saddle River (USA): Pearson. 

Hamilton, D. (1987), Sometimes R2 > r2
yx1 + r2

yx2: Correlated variables are not always redundant, 
American Statistician 41, 129–132. 

Hayo, B. (1998), Simplicity in econometric modelling: Some methodological considerations, Journal of 
Economic Methodology 5, 247–261. 

Hendry, D. F. (2007), Econometrics: Alchemy or Science? Oxford: Oxford University Press. 

Kendall, M. G. and A. Stuart (1973), The Advanced Theory of Statistics, Vol. 2, 3rd ed. New York: 
Hafner. 

Kennedy, P. (1992), A Guide to Econometrics, 3rd ed. Oxford: Blackwell. 

Keuzenkamp, H. A. and M. McAleer (1995), Simplicity, scientific inference and econometric 
modelling, Economic Journal 105, 1–21. 

Leamer, E. E. (1978), Specification Searches, New York: John Wiley. 

Leamer, E. E. (1983), Let’s take the con out of econometrics, American Economic Review 73, 31–43. 

Leamer, E. E. (2010), Tantalus on the road to Asymptopia, Journal of Economic Perspectives 24, 31–
46. 

Plümper, T. and E. Neumayer (2012), Model uncertainty and robustness tests: Towards a new logic of 
statistical inference, mimeo, London School of Economics. 

Ramsey, J. B. (1969), Tests for specification errors in classical linear least squares regression analysis, 
Journal of the Royal Statistical Society B 31, 350–371. 

Stone, R. (1945), The analysis of market demand, Journal of the Royal Statistical Society, B7, 297. 

White, H. (1980), A heteroskedastic-consistent covariance matrix estimator and a direct test for 
heteroscedasticity, Econometrica 48, 817–838. 

Wooldridge, J. M. (2013), Introductory Econometrics, 5th ed. Andover (UK): Cengage Learning. 



17 
 

Appendix 

Table A1: Artificial Data for Illustrating the Effect of Collinearity and Standard-Error-Decreasing Complementarity  

y x1 x2 x3 x4 x5 x6 x7 
12.37 2.23 9.66 33 36 36 2 1 
12.66 2.57 8.94 45 50 38 3 1 
12.00 3.87 4.40 24 40 43 2 4 
11.93 3.10 6.64 14 23 20 2 3 
11.06 3.39 4.91 10 60 50 1 3 
13.03 2.83 8.52 54 14 23 3 5 
13.13 3.02 8.04 87 12 25 3 4 
11.44 2.14 9.05 16 56 61 1 2 
12.86 3.04 7.71 54 43 25 3 2 
10.84 3.26 5.11 15 125 130 1 4 
11.20 3.39 5.05 23 49 33 1 1 
11.56 2.35 8.51 54 30 28 2 5 
10.83 2.76 6.59 12 130 130 1 5 
12.63 3.90 4.90 45 23 23 3 3 
12.46 3.16 6.96 56 35 30 2 2 
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