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The problem of extending the language of statecharts to include overlapping states is considered.

The need for such an extension is motivated and the subtlety of the problem is illustrated by

exhibiting the shortcomings of naive approaches. The syntax and formal semantics of our

extension are then presented, showing in the process that the definitions for conventional

statecharts constitute a special case. Our definitions are rather complex, a fact that we feel

points to the inherent difficulty of such an extension. We thus prefer to leave open the question

of whether or not it should be adopted in practice.
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1. INTRODUCTION

Motivated by the problem of specifying the behavior of complex reactive

systems, statecharts have been introduced [4] as an extension of conventional

finite-state machines and their state transition diagrams. The extended

features present in statecharts include the encapsulation of states and the

partitioning of states by cooperating orthogonal components, with broadcast

communication. The former allows for hierarchical descriptions and interlevel

transitions, and the latter makes it possible to specify multilevel concurrency

and chain-reaction effects.

The language of statecharts has been used in the specification of a number

of real-world systems, including significant parts of the avionics package for

an advanced fighter aircraf~ at the Israel Aircraft Industries. The language is
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also at the heart of the STATEMATE system, a graphical working environ-

ment for engineers involved in specifying and designing large systems [7].

Several subsequent papers have proposed formal syntax and semantics for

statecharts [6, 9, 10, 11, 13]. To a large extent, these papers are devoted to

the delicate semantic issues raised by the asynchronous nature of concur-

rency with chain reactions, and the zero-time nature of transitions with

broadcast events and actions. (Similar semantic issues have been tackled in

the context of the Esterel language; see [1] and [2].) As far as the syntax is

concerned, the differences between the versions of statecharts appearing in

these references are mostly in the labels allowed along transitions; that is, in

the structure of the events, conditions, and actions. The syntax of the charts

themselves, although presented nongraphically,l corresponds essentially to

that appearing in [4].

In this paper we are interested in enriching the basic structure of the state

space in statecharts to accommodate overlapping, as suggested in [4, Sect.

6.2]. Our work is motivated mainly by the fact that we have been repeatedly

approached by users of statecharts, asking that we extend the language to

include overlapping. These people often indicate that, in their opinion, the

issue is trivial (“all you have to do is to allow me to draw states whose

borderlines cross—the meaning is obvious—and eliminate any graphic edi-

tor’s complaints when I do so”). Some also point to the fact that other

languages provide analogous power, say, by subroutines or tasks. Our intu-

ition was that extensions to graphical languages are particularly problematic,

since a user has a large amount of liberty in drawing the figures, and

features can easily be made to mesh with others in ways that might not have

been anticipated by the language designer.

The desire to accommodate overlapping states is also consistent with [5],

where higraphs are proposed as the set-theoretic graphical model underlying

statecharts. The “blobs” in a higraph are organized as Euler circles (i. e., Venn

diagrams) with a partitioning mechanism for describing Cartesian products.

However, blob intersection has a natural set-theoretic semantics, and our

feeling was that, when the temporal, dynamic semantics of states and events

were to be adopted, the problem would become far more difficult.

Accordingly, the main purpose of our research here is to investigate the

extent to which overlapping states can be conveniently added to statecharts.

As the reader will see, the issue is indeed far from being trivial. The paper

shows that mathematically such an extension is possible. However, the

syntax and semantics we provide are quite complicated. We believe that the

complication is in some way inherent in the desire to so extend the language,

in the sense that any serious attempt to carry out the extension would result

in similar complications. We thus leave the final judgment of whether the

benefits outweigh the cost to the reader.

In providing our extension, we all but ignore the details of the labels. This

decision eliminates some of the standard semantic issues of concurrency

1An exception M [10], in which a graphical, compositional syntax and semantics are presented.
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mentioned above, but these can be dealt with quite adequately using any of

the approaches discussed in, for example, [6], [9]-[13].

States in a statechart are organized as an AND\OR tree (see Figure 1).

They can be repeatedly decomposed into OR-substates (actually, XOR-sub-

states) or AND-components, and the source and target states of a transition

are allowed to reside on any level. To complete the (underspecifled) definition

of a transition entering a nonatomic state, one may use default arrows or

history connectors. As we shall see in Section 2, in many cases a dynamic

specification can benefit greatly from being able to define states that overlap

and contain common sub states, thus relaxing the restriction that the basic

state structure is a tree. We also point to some of the subtleties of the

problem, by way of discussing pitfalls that arise when this idea is addressed

naively.

Section 3 introduces the extended state structure, and in Section 4 we

incorporate transitions. When applied to a tree structure, our definitions can

be seen to coincide with those of [4] and [6].

2. MOTIVATION AND OVERVIEW

Perhaps the most obvious justification for overlapping states is to avoid

ACM TransactIons on Software Engineering and Methodology, Vol. 1, No. 4, October 1992.
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having to duplicate otherwise identical subcharts. Consider Figure 2,2 which

is a (rather crude and vastly underspecified) statechart of a simple modem.

Both the receive and transmit states have an intricate FFT computation as

one of their sub states, which one might prefer to specify as in Figure 2,

rather than having it attached as an orthogonal component or having it

appear twice in its entirety.

Overlapping states are useful also for clustering states by common events

and for setting priorities. Assume that a memory controller can receive

requests from five potential customers, UO, . . ., U1. Figure 3 is a self-explana-

tory statechart, in which the states that respond to each request are gathered

into a common parent, from which the common events emanate naturally.

This figure may also be viewed as a priority graph, in which a request from

UO has the highest priority, one from u ~ has higher priority than one from

UA, and one from UI has higher priority than one from U3.

However, a closer look at Figures 2 and 3 reveals a problem Although the

state structures in both figures are virtually identical, the intended meaning

of the overlapping is quite different. In Figure 2 the modem cannot receive

and transmit at the same time, and the system is really intended to be

exclusively either in receive. FFT or in transmit. FFT (i.e., the system’s

configuration cannot include both states ). In Figure 3, on the other hand, we

obviously intend the system to be in both p~. wait and p~. wait simultane-

ously, in order to be able to respond to any request.

2 This example, as well as those in Figures 3 and 7, are based on examples appearing in [3].
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We might attempt to distinguish between these cases by means of two

syntactically distinct types of overlapping; say, with dots signifying exclusiv-

ity, as shown graphically in Figure 4. This has a number of drawbacks. First,

the syntax would have to be very restrictive, so as to avoid contradictions like

the one in Figure 5, where the two types of intersection entail that it is

impossible to be in the state lying inside the intersection, since we would

have to be in both of B and C, as well as in only one of them. Second,

restricting the overlapping feature to take on only XOR and AND meanings

renders it but a minor improvement over conventional statecharts, in which

these are the only two ways of decomposing states. The real challenge raised

by the mechanism of overlapping is to model other combinations of states,

such as a nonexclusive OR (which, in a certain technical sense, cannot be

described with an ordinary statechart), or intricate combinations of more

than two states. Third, it may be desirable to make the actual relationship

between overlapping states dynamically flexible, depending, say, on the state

we are coming from or on the particular event that has occurred. Having two

(or more) kinds of overlapping, each giving rise to a fixed Boolean combina-

tion between its constituent states, is therefore not good enough. Finally,

even if we agree to make do with XOR alone, we would still have to provide

means for specifying which of the two states in question we want to enter

when taking a given transition.

Our approach is to allow a single kind of intersection, but endow it with

flexible semantics, so that the system can actually be in any subset of the

intersecting states at any given time. A transition can then be extended by

ACM Transactions on Software Engmeermg and Methodology, Vol. 1, No. 4, October 1992.
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specifying which states we insist on entering when taking it, and which we do

not mind not entering (although we might be entering their descendants).

This idea complicates things considerably. A transition is no longer given by

the set of lowest-level source and target states (and a label), It may now also

contain information about nonbasic states that are to be entered in the

process of reaching the target, and those that are not to be entered.

Graphically, this is specified by arrows that are allowed to skip edges (see

[4, Fig. 45] or [5, Fig. 2813). Thus, in Figare 6, if we are in F and D occurs, we

will enter both C and B (and remain also in A). If y occurs, we enter C

without entering B. Taking the a arrow when in state G entails entering B

and C but not A. We should remark that skipping an edge does not

necessarily prevent the system from being in the skipped state. In fact,

whether or not the skipped state is really entered can depend on the current

configuration. (Figure 8 indeed contains such a case. ) For example, taking the

8 arrow from H in Figure 6 results in the system entering A. As shown later,

this is because there must be at least one continuous sequence of ancestral

states leading to the root from any atomic state we happen to be in.

There is another important motivation for adding overlapping states to

statecharts, which causes an additional complication. It involves the desire to

use overlapping for graphical specification of synchronization mechanisms.

Consider Figure 7, which contains five orthogonal components, A through E,

that are suppose to be synchronized from left to right in a pipeline-like

manner. The figure shows how the intended behavior can be depicted graphi-

cally, without the need for explicit message passing or other symbolic means.

The system starts out in its five wait states. When a arrives, A enters Al,

3 This figure was erroneously labeled Figure 27 by the typesetter of [5].
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but the event also synchronizes B to B1. The other components remain in

their wait states. When in this AB pair, ~ causes B to move over to Bz, but

also to synchronize C to Cl. The next transition is different; here we have

chosen to skip the boundary of CD when y arrives, entering C2 without

synchronizing D to DI. The synchronization of D will take place when 6

occurs.

While the figure appears to capture this intended behavior quite well, it

illustrates two rather peculiar, yet desirable, properties that we would like to

incorporate into our semantics. They involve states like AB, which are direct

offspring of an AND state (i.e., state ABCDE), yet are themselves of type

AND. The first property is that, unlike normal direct offspring of an AND

state, the system need not necessarily be in every such offspring whenever it

is in its parent. Thus, when we are in state ABCDE in Figure 7 (say, by

being in the five wait states) we need not be in any of the four synchronizing

states, AB through DE.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 4, October 1992.
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The other special property is that, although the system can be in some of

an AND state’s orthogonal components without being in the state itself, once

the system happens to be in all of its components, it is considered to be in the

state itself too. For example, we may be in C2 without being in CD, but once

we also enter DI, the intention is that now we are in CD, so that event o-, for

example, will take effect if and when it occurs. This property should not hold

unless the synchronizing state is a direct offspring of the synchronized AND

state; in Figure 8, for example, entering two components of A13 by the

skipping arrows will not necessarily cause the system to be in AB. The

difference is that in Figure 7 state AB is a substate of ABCDE, whereas in

Figure 8 All is its sibling. Graphically, the difference is that in Figure 8 AB

is drawn entirely within ABCDE. To illustrate this difference, see Figure 9,

which contains the two corresponding trees.

Having described some of the issues that our syntax and semantics ad-

dress, we can now get into the definitions themselves.

3. OVERLAPPING STATES

3.1 Syntax

As in [6], the syntax of states consists of a set of states S, and two functions:

(1) p:S + 2s, and

(2) ~: S ~ {AND, OR}.

These are the hierarchy function and the type function, respectively. Hence,

P(~) is the set of direct descendant states of state x. Let p“ and p+ be the

reflexive transitive closure of p and the irreflexive transitive closure, respec-

tively.

The functions p, P*, and p+ are extended to sets of states by

p(x) = u p(x).

XEx

If x ~ S, we require that x @ p+(x). We also require the existence of a

special state root in S such that p *( root ) = S. Note that these restrictions

limit the state-graph to be a connected directed acyclic graph (DAG). A

conventional (nonoverlapping) statechart, satisfying the additional restriction

p(x) n p(y) + 0 e x = y, is, in fact, a tree. (Compare Figure 1 with Figure

9.) A state x is basic if p(x) = 0; for a basic state, we require that

+(x ) = AND. Here are some additional definitions:

—superstate( x) = {y I x E p(y)} G3uperstate is just p-1).

—amxsstoral(x, y) = x ~ p*(y) v y = P*(x) <x and y are ancestral).

—disjoint( x, y) = p“(x) n P*(y) = 0 (x and y share no common substate).

—overlap( x, y) - 7 ancestoral( x, y) A 1 disjoint( x, y) (x and y are

neither ancestral nor disjoint, so they must be overlapping).

ACM TransactIons on Software Engineering and Methodology, Vol. 1, No. 4, October 1992
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We also extend superstate and overlap to sets (the latter in the second

component only), by

superstate( X ) - U superstate( x ),

XEX

overlap( x, Y) = 3Y G Y.(overlap( x, y)).

Although the semantics provided in the paper works well without any

additional restrictions on the syntax, some cases do not lend themselves to

satisfactory visual depiction. It might thus be a good idea to enforce the

following restrictions: They are merely aimed at making drawings feasible.

Assume that a, al, and az are distinct AND states; that r, rl, and rz are

distinct OR states; and that x, y, and z are distinct states of either type. The

restrictions are as follows:

—If the AND state a is not basic, then superstate ~(a)) = {a}. This prevents

the likes of Figure 10, where the substate x of an AND state has an

additional superstate,

—Two direct substates of a state are never ancestral. Formally,

superstate( x ) n superstate( y ) + 0 ~ 1 ancestoral( x, y).

—Direct OR substates of an AND state have no common descendants.

Formally, rl, rz ● p(a) ~ disjoint( rl, r2 ). Thus, Figure 11 (in which the

state a curves around and overlaps with itself) is forbidden.

—If the AND states a and al are not basic states and if al ● p(a), there

must be at least two OR states rl, rz ● P(a) such that both overlap(al, rl )

and overlap( al, rz ) hold. (See Figure 12; in fact, by this restriction, any

AND substate of an AND state must be essentially as in Figure 12.) This

restriction also helps clause (2’ ) in Section 3.2 to deal correctly with the

distinction between the AND and OR substates of an AND state.

ACM TransactIons on Software Engmeermg and Methodology, Vol. 1, No. 4, October 1992
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3.2. Semantics

In [6] a legal configuration of a nonoverlapping statechart is defined as

follows:

—The least common ancestor (lea) of a set of states X is a state x for which

X c p’(x) (i.e., x is a common ancestor) and ‘ifs = p+(x),(X ~ p*(s)) (i.e., it

is the least such).

—Two distinct states x and y are orthogonal if +(lca({x, y})) = AND. In

addition, a state x is considered to be orthogonal to itself. A set of states is

orthogonal if its states are pairwise orthogonal.

—A maximal orthogonal set is an orthogonal set that cannot be extended (by

adding elements) to a larger orthogonal set.

—A legal configuration is a maximal orthogonal set of basic states.

The upward closure of a configuration with respect to the superstate

operation (i.e., the reflexive transitive closure of p– 1, applied to the con@-u-

ration) can be shown to satisfy the following, for every x in C:

(1) +(x) = OR - Ip(x) n c1 = 1;

(2) rj(x) = AND + p(x) c C; and

(3) superstate(x) C C.

These three clauses mean, respectively, that exactly one direct descendant

of an OR state of’ C is in C, that euery direct descendant of an AND state of C

is in C, and that C is indeed upward closed.

The definition of a configuration given above is not suitable for the overlap-

ping states case, since here the lca of a set of states need not be unique;

hence, the orthogonality relation between two states is not well defined.

Moreover, here it is not enough to describe which basic states the system is

in, since, for example, in Figure 13 being in the basic state z does not

determine which of x and\or y we are in. Instead, we base our definition of a

legal configuration on a modification of the three clauses for the upward

closure.

The first clause, ~(x) = OR ~ I p(x) n Cl = 1, is too strong, since an OR

state might have two (or more) substates in the configuration (when they

overlap). To overcome this, we define paths. We say that path( x, y, S) holds,

for states x and y and a set of states S, if there exists a sequence of states

{x,}~=l, all of which are in S, and such that x,+, ● p(x, ), xl = x, and x. = y.

In particular, path( x, x, S) holds iff x ● S.

ACM TransactIons on Software Engmeermg and Methodology, Vol. 1, No. 4, October 1992.
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Figure 14 ‘m
Clause (1) now becomes clause (1’ ):

(1’)

t)(x) =OR+(p(x)n C#OA

Vyl, y, G P(X) m C. dz. (path(yl, z,C) Apath(y2, z, C))).

Figure 14 is an example illustrating clause (1’). For C = {r, Yl, Y2, Zl, Z2, z),

both path( yl, z, C) and path( yz, z, C) hold, so yl and yz can both be in the

configuration C, although r is an OR state.4

The second clause, V(x) = AND ~ p(x) c C, should now be limited to

force C to contain only OR substates of an AND state that is in C. An AND

substate of an AND state, such as a ~ in Figure 12, behaves differently, As

explained in Section 2, if its substates are all in C, then it must be there too,

but the fact that its superstate ( a in Figure 12) is in C does not force it to be

there also. Hence, clause (2) now becomes

(2’)

~(x) =AND + Vy~P(~).((tjJ(y) =OFt+y GC) A

((i/I (y)= AND AVZE p(y).

(+(z) =OR~p*(z)nC+O)) -Y GC)).

In Figure 12, the states covered by the internal V quantifier in (2’) are ZI and

Z2 (x and y in (2’) stand for a and al in Figure 12, resp. ).

The third clause, superstate( x ) c C, is now replaced by

(3’) x + root + superstate( x ) n (2 # 0,

since, as in Figure 13, z can be in the configuration without it necessarily

containing both x and y.

‘ The requirement =z.(path(-yl, z, C) ~ path(y,, z, C)) could not be easdy replaced by ( P (yl )
n ~‘ (yz ) n C) # o, since then we would have to find other means for preventing the set

{i-, yl, yl, Zz, A, z}, which contains both A and z, from being a configuration,
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To summarize, a nonempty set of states C is a configuration if it satisfies

clauses (l’), (2’), and (3’), for each x ~ C. As the reader can check, this

definition coincides with the usual definition (of the upward closure of a

configuration) for the nonoverlapping case [6].

4. IINCORPORATING TRANSITIONS

411 Syntax

For the nonoverlapping case, a transition is defined in [6] to be a triple

(S, L, T), where

—S, a set of states, is the source;

—L, is the label of the transition (a formal definition appears in [6]); and

—T, a set of states, is the target.

The source of the transition in Figure 15, for example, is {sl, SZ}, while the

target is {tl}. A transition maybe taken in a system configuration SC whose

state configuration is C if it is structurally relevant to C (i.e., S G C) and if

its label is enabled in SC.

As discussed in Section 2, an arrow in a statechart with overlapping states

may skip over state borderlines. Hence, to distinguish in the nongraphical

syntax between transitions a and ~ of Figure 16, we must define the target

set T to consist of all states that the arrow crosses, as well as those incident

with the arrow’s head. Thus, writing Tt (resp., St, Et) for the target set (resp.,

source set, exit set) of a transition t, we obtain, in this case, T. = {A, D} and

TD = {B, D}. For the transition of Figure 15, the target set is no longer {tl}; it

now becomes {t3,t2,tl}.However, it turns out that this extension is not

enough. Consider transitions a and ~ of Figure 17. T. = TP = {B} and

S. = S6 = {l}; but after taking a in configuration {1?, A, 1}, we find ourselves

in {R, A, B, 2}, whereas after taking ~ in the same configuration, we are in

{R, B, 2}. The point is that we must capture in our syntax the fact (easily

depicted graphically) that P leaves A but a does not. We thus want to define

the exit set E of a and ~, by E. = {1}, and EP = {1, A}. We should remark

that the exit set E is a new, fourth component of a transition, whereas our

new target set replaces the old one.

Formally, then, a transition in a statechart with overlapping states is a

quadruple (S, E, L, T), where the source S and label L are as above, E is

the exit set (which we take to include S too; i.e., S c E), and T is the target

set of states entered and not only those at the head of the arrow.

5 The term is defined formally in [6], and the changes required for the overlapping states case are

few and not directly relevant to the goals of this paper. Intuitively, a system configuration is a

state conf@_uration together with the values of variables and conditions, the events taking place,

etc. A label “cc, [ cord ]/act” is enabled in a system configuration if the event ev occurred and the

condition conct is true. Upon taking the transition, the action act is executed. In our case, as

mentioned earlier, we must deal with upward closed configurations, not just configurations

consisting of sets of basic states.
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Consider Figure 18. Here, S,, = {1}, and E. = {1, A, B}, since the source is

captured graphically by the arrow’s tail, while the exit set contains the states

actually crossed by the arrow. From a semantic point of view, although

Em = E6 = {1, A, B}, /3 will not be taken in configuration C = {R, 1, A}, since

Sp = {1, B} and S6 $Z C. The transition a, on the other hand, will be taken in

this configuration. However, the implications of taking a and /3 are similar

in terms of the states actually exited and entered, since an implication is a

function of the exit set. Thus, S can be viewed as a condition, and E as a

parameter, for calculating the results of taking the transition. As far as the

target set T is concerned, we do not need this separation.

Before going on, let us make two more remarks on the syntax. First,

although we have to specify skipping over a state borderline on state entry,

we have found skipping on exit (e.g., arrow a in Figure 19) to be inessential.

For example, in Figure 19, arrow a can be replaced by arrow P, since their

target, being exclusive of state B, forces them both to leave it.

Second, we do not keep track of the precise itinerary of an arrow in a chart,

but only its source, exit set, and target. Hence, arrow a in Figure 20 is not

interpreted as the statechart designer probably meant, and we do not supply

formal means for capturing such intentions. Note also that the target and

exit sets are themselves unordered. Hence, transitions ~ and y in Figure 20

are equivalent. It may be worthwhile to distinguish between such cases in a

more sophisticated semantics for statecharts. Perhaps this can be done by

introducing a new, more refined level of steps, beyond the microsteps of [6].
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Figure 18

Figure 19
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Now that we have a syntax for transitions, we can proceed to the seman-

tics. We define the states that are actually left as a result of taking a

transition in some configuration C (Section 4.2) and the states that are

entered (Section 4.31. These capture the semantic implications of a single

transition, defining a new configuration. Two or more transitions taken

concurrently are discussed in Section 4.4.

4.2 States Left by a Transition

In this section we define the set of states left by some transition (S, -E, L, T )

from some configuration C. We denote this set by left(C, (S, E, L, T )). In the

conventional, nonoverlapping case [6], the states actually left when taking a

transition are exactly those in the subchart rooted at the lca of the transi-

tion. The lea of a transition is either the lea of the source and target taken

together or its closest OR superstate. This simple idea is not adequate here.

For example, it does not explain why transition ~ in Figure 21 does not cause

As to reenter its default.

In the overlapping case, a transition must cause all states in the exit set E

to be left, including their descendants. The states that overlap with E should

also be left (with their descendants). For example, both states A and B, and

their descendants, are left when a is taken in Figure 22. Note that state B is
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Figure 21

Figure 22

F-&a

reentered with a new default in its upper component. Formally, our first

approximation to the set of states left by a transition with exit set E is

p“(ll U {xloverlap(x, E)}).

An exception to this definition may occur when the entire transition is

located inside the state, like state A when transition ~ is taken in Figure 22.

In this case, A overlaps with the exit set of ~ but should not be left.

Formally, the exception includes the states in arrow-inside(E), where

arrow-inside(E) = {xlx@EAEn p+(x) #0}.

In other words, if a state x is not exited, but at least one of its descendants is,

then the transition is entirely inside x.

Another exception can be found in Figure 23. State 4 therein is left when

taking a in configuration {R, A, Al, Az, 4, 5}, since A is left and D is

entered. However, we do not want it to be left if the configuration was

{~, Y, z,, z,, Z3, 4,5,6, A, Al, A,}. TO capture such cases, let us define the

following:

and-super-neighbors( E, C )

={zl+(z) =ORAp*(z)nlZ=OA

3-Y G (superstate( z ) n arrow-inside(E) n (3).(@(y) = AND)}.

Now, p“(and-super-neighbors(E, C)) is taken as an additional set of states

that are not to be left. Note that z, in this definition, represents states ZI and

Z3 of Figure 23, but not state Z2, since p*(z2) n E # 0.
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Fignre 23

R

F1

Another set of states that should be left consists of those that are inconsis-

tent with the target set of the transition. For example, state 1 is left when /3

is taken in Figure 23. Formally, this set is defined as

contradict(T) = {x IVG. (7’ u {x} G G + G is not a configuration)}.

Before continuing, let us summarize formally what we have done so far. Our

present version of the states left when taking the transition (S, E, L, T ) in

configuration C is

left(C, (S, E, L, T))

= (( P*(E u {x Ioverlap(x, E)}) - (arrow-inside(E)

Up’ (and-super-neighbors( E, C) ) ) ) U contradict T) ) n C’.

Note that, in contrast with the states left by a transition in the nonoverlap-

ping case, left depends not only on the transition but also on the configura-

tion. This is a subtle and important difference. In the nonoverlapping states

case, we can preprocess the statechart by computing the consequences of the

transitions once, in advance. Here, the effects of a transition are dynamic and

have to be computed anew for different configurations.

4.3 States Entered by a Transition

In the nonoverlapping case, if x is the lca of the transition taken, the set

entered after leaving p*(x) is defined to be a function of x, the target set T,

and default arrows.6 (This function is called “C” in [6], but since we use C for

a ccmfigaration, we shall later call it added.) Our syntax includes a default

function, denoted 8: S + 2s. This function provides, for a state x, the set of

states pointed to by the default arrow of x. In the nonoverlapping case, the

6 It may also depend on the history of the computation, if the statechart contains history

connectors. In this paper we assume no such history connectors and no labels on default arrows.

We do this in order to highlight the special problems with overlapping states, with as little

overhead as possible. An expanded version of our semantics that deals with history of various

kinds and labeled default arrows appears in [12].
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Figure 24 -1
A

a

1

m
elements of 8(x) are restricted to be in P+( x). Here we need to allow 8(x)

also to contain states that overlap with x. We thus have

8(x) C( p+(x) U {yloverlap(x, y)}).

Processing a transition when in configuration C starts by removing the set

left(C, ( S, E, L, T )) from C and adding the target set T. Omitting the

parameters of left for simplicity, we thus obtain a set of states, called

mandatory, that must appear in the new configuration:

mandatory = (C – left) u T.

Let us now deal with defaults. For a conventional, nonoverlapping statechart,

a default arrow is taken in a state whenever the choice of a substate to enter

had not been already made by the transition itself or by a default arrow that

was taken in one of its superstates. For example, in Figure 24, when entering

A by transition a, we use the default in states A and B, but not the one in

state N.

Formally, if we already have a candidate new-con fig for the new configu-

ration, then the following recursive predicate indicates whether or not the

default appearing in a state x is taken:

default-used( x, new-config)

= Vy = (superstate+ ( x ) n new-config).

(default-used( y, new-config) ~ ( y does not determine in x)).

For the moment, “y does not determine in x“ is taken to stand for p+(x) (I

8’(y) = 0, where

8’(y) =

(

S(y) y # root,

mandatory y = root.

Note that, since default-used(root, new-config) is trivially true, we ensure

that mandatory, that is, the states in C that were not left, together with

those entered, are all in the next configuration.

Now, when overlapping is allowed, a transition can determine which of the

descendants of a state it will enter, not only by entering one or more of them

directly but also by entering states with which they overlap. Of course, this

kind of choice may be made either by the transition itself or by a default

arrow taken in a superstate.
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Figure 25
a

—

J

For example, when taking transition a in Figure 25, the only default arrow

taken is that of state F, since a prescribes entrance to both A and B, and

taking any other default would contradict that. Hence, “y does not determine

in x” now becomes

p+(x) n 8’(Y) =@ A ~overlap(x, ~’(y)).

If default-used is true, meaning that the default arrow should be taken,

the n new-config must contain 8(x) as a subset, the states whose entrance is

prescribed by x’s default. In fact, it should contain 8‘( x), and we occasionally

need something even stronger. For a set of states X, define lub( X) as the

intersection of all configurations that include X if that intersection is not

empty, and X if it is. Now, 8“ ( x) is defined as lub( 8‘( x )). Our final

definition of” y does not determine in x“ is thus

p+(x) n 8“(Y) = @ A ~overlap(x, 8“(Y)).

The set of configurations that are preliminary candidates for being the next

configuration can now be defined as follows:

candidates(C, (S, E, L, T))

= {new-config Inew-config is a legal configuration

A Vx = new-config.( default-used( x, new-config) -

8“ ( x) C nevv-config)}.

(Note that any new-config that finds its way into candidates will contain

mandatory, by the definitions of 8‘ and default-used.) The result of taking

the transition is now given as follows: If the set candidates (whose parame-

ters we omit for brevity) is empty, the transition is undefined, since it

contains an internal contradiction. See, for example, arrow a in Figure 26. If

it is a singleton, then its single member is taken as the next configuration. If,

on the other hand, it contains more than one candidate configuration, we

form the intersection

rein-candidate = n N.
NE Candidates

Now, if rein-candidate is a member of candidates, we take it to be the new

configuration, and it will actually be the minimal candidate solution. If not,
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Figure 26

R
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then the transition is undefined (or defined as nondeterminism) because

there is, in fact, no minimal configuration.

For example, arrow ~ of Figure 26 allows {R, B, 1} or {R, B, 2} as new-con-

fig’s, since 8( B ) = @. Hence, there is no minimum and no next configuration.

On the other hand, arrow y allows {R, E, 3} or {R, E, 3, D}, and hence, the

next configuration is {1?, E, 3}.

We should mention that to start off a statechart we initialize it to the

start configuration consisting of applying our definitions for defaults to

mandatory = {mot}.

4.4 Parallel Transitions

In a nonoverlapping statechart, a set of transitions may be performed simul-

taneously if it is structurally consistent, meaning that the leas of any two

transitions in the set are orthogonal. Since leas cannot be exclusive for

transitions relevant to a common state configuration, this requirement is

similar to the following one: For any two such transitions, the left u added

sets7 are pairwise disjoint, so that transitions do not interfere with each

other. We adopt this requirement. For example, in Figure 27, a and ~ are

consistent if B is in the configuration and A is not. On the other hand, if A

is in the configuration, but B is not, then operating each arrow separately

will cause the other component of B to enter its default, and the two

transitions will thus no longer be consistent. Hence, as in the definition of

left, in the overlapping states case consistency between transitions is not a

structural property but a dynamic, temporal one. For each state configura-

tion, the consistency question arises anew.

We are not quite done yet. Consider Figure 28. After taking two transitions

as if they were taken separately,~ the result may not be a legal configuration.

7 The set added is the set of states added to the orlgmal configuration C after removing left,

which M discussed in SectIon 4.2, to obtain the new configuration. Thus, It M .sImply min-

candidate – (C – left),

8 As the reader may verify, a consequence of our requmement that the left u added sets are

disjoint for every pam of transitions that are to be taken simultaneously M that the transitions

can be taken m any order.
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Figure 27

Figure 28
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In this example, state A must be in the next configuration whenever its

descendants are in it (see Section 3.2). Hence, we must complete the result to

a unique minimal legal configuration.

Formally, let t,, for 1 s i s n, be a set of transitions whose respective sets

in a given configuration C are left, and added,, respectively. Denote

(( 1[
new-full-config = lub C – IJ left, u

)]
U added, .

1<2<71 l<2<n

The set {t,] is consistent in C if

(1) Vi + j, (left, u added, ) n (leftJ u addedJ) = g; and

(2) new-full-config is a legal configuration.

Now, if the set {t,} is indeed consistent in C, its transitions are taken

together, and new-full-config is the next configuration. The sets left and

added associated with taking this parallel transition are given by

left = U left,,

Islsn

added = new-full-config – (C – left).

Note that, as in the nonoverlapping states case, there may be several

maximal consistent sets of transitions.

The semantics of transitions, as presented in the previous sections, is

consistent with the semantics for nonoverlapping statecharts (see, e.g., [ 61),

in the following sense: If our semantics is applied to a conventional state-
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Figure 29

chart, in which transitions are not allowed to exit and then reenter states,

the two semantics coincide. (The two transitions in Figure 29, for example,

have the same semantics in the conventional case, but differ in ours.) As

explained earlier, the usual semantics for statecharts do not deal adequately

with transitions that are allowed to contain more than just a source and

target, whereas ours does.

5. DISCUSSION

The addition of overlapping to statecharts enriches the formalism. Although

it does not provide any new expressive power (the extended statecharts can

still express only regular sequences of events), it enables more compact and

natural specifications. However, as explained in the introduction, the exten-

sion also complicates things considerably. Thus, the question of whether the

benefits are worth the cost one has to pay does not have a clear answer.

An interesting direction for further work involves the efficient implementa-

tion of overlapping, providing simulation capabilities. For example, it appears

that extending the implementation of statecharts in the STATEMATE sys-

tem [7] would not be straightforward. This is due to the dynamic nature of

the implications of a transition in the overlapping states case and to the need

for more complicated graphics. It is also of interest to extend other languages

that are based on higraphs to include overlapping. The activity charts and

module charts of STATEMATE [7] come to mind, as do the Mir6 diagrams for

security constraints of [8].

Other extensions of statecharts, such as parameterized states, recursion,

and transitions endowed with probabilities [4], would also become more

difficult when coupled with overlapping.
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