
On Stateless Automata and P Systems ∗

Linmin Yang1, Zhe Dang1, and Oscar H. Ibarra2

1 School of Electrical Engineering and Computer Science

Washington State University

Pullman, WA 99164, USA

lyang1@eecs.wsu.edu, zdang@eecs.wsu.edu

2 Department of Computer Science

University of California

Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu

Abstract

We introduce the notion of stateless multihead two-way (respectively, one-
way) NFAs and stateless multicounter systems and relate them to P systems
and vector addition systems. In particular, we investigate the decidability of
the emptiness and reachability problems for these stateless automata and show
that the results are applicable to similar questions concerning certain variants
of P systems, namely, token systems and sequential tissue-like P systems.

1 Introduction

There has been a flurry of research activities in the area of membrane computing
(a branch of molecular computing) initiated seven years ago by Gheorghe Paun
[8]. Membrane computing identifies an unconventional computing model, namely
a P system, from natural phenomena of cell evolutions and chemical reactions. It
abstracts from the way living cells process chemical compounds in their compart-
mental structures. Thus, regions defined by a membrane structure contain objects
that evolve according to given rules. The objects can be described by symbols or by
strings of symbols, in such a way that multisets of objects are placed in regions of the
membrane structure. The membranes themselves are organized as a Venn diagram
or a tree structure where one membrane may contain other membranes. By using
the rules in a nondeterministic and maximally parallel manner, transitions between
the system configurations can be obtained. A sequence of transitions shows how the
system is evolving. At a high-level, a P system has the following key features:

∗The work of Zhe Dang and Linmin Yang was supported in part by NSF Grant CCF-0430531.

The work of Oscar H. Ibarra was supported in part by NSF Grants CCF-0430945 and CCF-0524136,

and a Nokia Visiting Fellow scholarship at the University of Turku.

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 144 - 157, 2007.

144



• Objects are typed but addressless (i.e., without individual identifiers),

• Objects can transfer between membranes,

• Membranes themselves form a structure (such as a tree),

• Object transferring rules are in (either maximally or locally) parallel, and

• The system is stateless.

Biologically inspired computing models like P systems [9] are often stateless.
This is because it is difficult and even unrealistic to maintain a global state for a
massively parallel group of objects. Naturally, a membrane in a P system, which
is a multiset of objects drawn from a given finite type set {a1, . . . , ak}, can be
modeled as having counters x1, . . . , xk to represent the multiplicities of objects of
types a1, . . . , ak, respectively. In this way, a P system can be characterized as a
counter machine in a nontraditional form; e.g., without states, and with parallel
counter increments/decrements, etc. The most common form of stateless counter
machines are probably the Vector Addition Systems (VASs), which are well-studied.
Indeed, VASs have been shown intimately related to certain classes of P systems [5].
However, with new applications of P systems in mind [10], the investigation of other
classes of stateless automata deserve further investigation.

In this paper, we present some results in this direction, with applications to
reachability problems for variants of P systems, namely, token systems and sequential
tissue-like P systems.

2 Preliminaries

A nondeterministic multicounter automaton is a nondeterministic automaton with
a finite number of states, a one-way input tape, and a finite number of integer coun-
ters. Each counter can be incremented by 1, decremented by 1, or stay unchanged.
Besides, a counter can be tested against 0. It is well-known that counter machines
with two counters have an undecidable halting problem. Thus, to study decidable
cases, we have to restrict the behaviors of the counters. One such restriction is to
limit the number of reversals a counter can make. A counter is n-reversal-bounded
if it changes mode between nondecreasing and nonincreasing at most n times. For
instance, the following sequence of counter values:

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 3, 2, 1, 1, 1, 1, . . .

demonstrates only one counter reversal. A counter is reversal-bounded if it is n-
reversal-bounded for some fixed number n independent of computations. A reversal-
bounded nondeterministic multicounter automaton is a nondeterministic multicoun-
ter automaton in which each counter is reversal-bounded.

Let Y be a finite set of variables over integers. For all integers ay, with y ∈ Y , b

and c (with b > 0),
∑

y∈Y ayy < c is an atomic linear relation on Y and
∑

y∈Y ayy ≡b

c is a linear congruence on Y . A linear relation on Y is a Boolean combination
(using ¬ and ∧) of atomic linear relations on Y . A Presburger formula on Y is the

On stateless Automata and P systems

145



Boolean combination of atomic linear relations on Y and linear congruences on Y .
A set P of tuples of nonnegative integers is Presburger-definable or a Presburger
relation if there exists a Presburger formula F on Y such that P is exactly the set
of the solutions for Y that make F true. It is well known that Presburger formulas
are closed under quantification.

Let N be the set of nonnegative integers and n be a positive integer. A subset
S of Nn is a linear set if there exist vectors v0, v1, . . . , vt in Nn such that S = {v |
v = v0 + a1v1 + . . . + atvt,∀1 ≤ i ≤ t, ai ∈ N}. S is a semilinear set if it is a
finite union of linear sets. It is known that S is a semilinear set if and only if S is
Presburger-definable [2].

Let Σ be an alphabet consisting of n symbols a1, . . . , an. For each string (word)
w in Σ∗, we define the Parikh map of w, denoted by p(w), as follows:

p(w) = (i1, . . . , in), where ij is the number of occurrences of aj in w.

If L is a subset of Σ∗, the Parikh map of L is defined by p(L) = {p(w) | w ∈ L}. L

is a semilinear language if its Parikh map p(L) is a semilinear set.
The following result is known [4]:

Theorem 1 p(L(M)) is an effectively computable semilinear set when M is a re-
versal-bounded nondeterministic multicounter automaton.

Consider a reversal-bounded nondeterministic multicounter machine (which is a
reversal-bounded nondeterministic multicounter automaton without input). Let
(j, v1, . . . , vk) denote the configuration of M when it is in state j and counter i

has value vi for 1 ≤ i ≤ k. Define R(M) = {(α, β) | configuration α can reach
configuration β in 0 or more moves }, which is called the reachability relation of M .
Using Theorem 1, one can easily show that R(M) is Presburger definable.

Theorem 2 The reachability relation of a reversal-bounded nondeterministic mul-
ticounter machine is Presburger definable.

An n-dimensional vector addition system (VAS) is specified by W , a finite set of
vectors in Z

n, where Z is the set of all integers (positive, negative, zero). For two
vectors x and z in N

n, we say that x can reach z if for some j, z = x + v1 + . . . +
vj , where, for all 1 ≤ i ≤ j, each vi ∈ W and x+ v1 + . . .+ vi ≥ 0. The Presburger
reachability problem for VAS is to decide, given two Presburger formulas P and Q,
whether there are x satisfying P and z satisfying Q such that x can reach z. The
following theorem follows from the decidability of the reachability problem for VASs
(which are equivalent to Petri nets) [7].

Theorem 3 The Presburger reachability problem for VAS is decidable.

3 Stateless Multihead Two-way (One-way) NFAs/DFAs
and Token Systems

Let Σ and Π be two alphabets. An object of some type in Σ (resp., Π) is called
a standard object (resp., a token). Consider a chain (with length n) of membranes

L. Yang, Z. Dang, O. H. Ibarra

146



(i.e., membranes are organized as a linear structure)

A1, . . . , An (1)

for some n. The chain is called initial if the following conditions are met:

1 Each Ai holds exactly one standard object,

2 A1 contains one token of each type in Π; the rest of the Ai’s do not contain
any tokens,

3 The standard object on the first membrane A1 is of type � ∈ Σ and the
standard object on the last membrane An is of type � ∈ Σ; the membranes in
between A1 and An do not contain any �-objects and �-objects.

Let Π′ ⊆ Π be given. The chain is called halting if we change the condition 2 in above
into “An contains one token of each type in Π′.” A rule specifies how objects are
transferred between two neighboring membranes (i.e., Ai and Ai+1 for 1 ≤ i ≤ n−1)
and is in one of the following two forms:

• (a, p)→,

• (a, p)←,

where a ∈ Σ and p ∈ Π. For instance, when (a, p)→ is applied on Ai, the Ai must
contain a standard a-object and a p-token. The result is to move the token from Ai

to Ai+1 (where 1 ≤ i ≤ n− 1). The semantics of (a, p)← is defined similarly but the
token p moves from Ai+1 back to Ai. We are given a set of rules R which are applied
sequentially; i.e., each time, a rule and an i are nondeterministically picked and the
rule is applied on Ai. We are interested in studying the computing power of such
token systems. Specifically, we focus on decision algorithms solving the following
reachability problem: whether there is an n and an initial chain with length n such
that, after a certain number of applications of rules in R, the initial chain evolves
into a halting chain. Notice that an instance of a chain in the form of (1) is a special
instance of tissue-like P systems [6] and in the future we will further study more
general intra-membrane structures (such as graphs) than linear structures in (1).
Also note that, in the reachability problem, the chain is not given. Instead, we are
looking for a desired chain. This is different from the case for a tissue-like P system
where a concrete instance (with the n in (1) given) is part of the system definition.

One can generalize the aforementioned token systems by allowing some of the
rules synchronized; i.e., a synchronized rule in the form of

[r1, r2, . . . , rk]

for some k and distinct rules r1, . . . , rk. The semantics of the synchronized rule is to
apply each ri at the same time. For instance, a synchronized rule [(a, p)→, (b, q)←],
when applied, is to nondeterministically pick an Ai and Aj (where i could be the
same as j) and apply the rule (a, p)→ on Ai and the rule (b, q)← on Aj (whenever
both are applicable). Such systems with synchronized rules are called generalized

On stateless Automata and P systems

147



token systems and we can raise the same reachability problem for generalized token
systems.

We first observe that the (generalized) token systems are essentially the same
as stateless multihead two-way NFAs M studied in the following, where each input
tape cell corresponds to a membrane in (1) and each token corresponds to a two-way
head. The stateless NFA M is equipped with an input on alphabet Σ and heads
H1, . . . ,Hk for some k. The heads are two-way, the input is read-only, and there
are no states. An Hi-move (also called a local move) MOVEi of the NFA can be
described as a triple (Hi, a,D), where Hi is the head involved in the move, a is the
input symbol under the head Hi, and D ∈ {+1,−1, 0} meaning that, as a result of
the move, the head Hi goes to the right, goes to the left, or simply stays. When a
head Hi tries to execute a local move (Hi, a,D), it requires that the symbol under
Hi must be a, otherwise M just crashes. A generalized move is in the form of
(Hi,S,D), where S is a set of symbols, and D is a set of directions (i.e., +1, −1, 0).
When executing a generalized move (Hi,S,D), the symbol Hi reads must belong to
S, and Hi nondeterministically picks a direction from D.

Note that a local move is a special case of a generalized move. An instruction
of M is a sequence of local or general moves, in the form of [MOVEi1 , MOVEi2 ,
. . ., MOVEim ], for some m, 1 ≤ m ≤ k, and i1 < . . . < im. (If m = 1, the
instruction is simply called a local instruction.) When the instruction is executed,
the heads Hi1, . . . ,Him perform the moves MOVEi1 , . . ., MOVEim , respectively and
simultaneously. Any head falling off the tape will cause M to crash. The NFA M

has a finite set of such instructions. At each step, it nondeterministically picks a
maximally parallel set of instructions to execute. M has a set of accepting heads
F ⊆ {H1, ...,Hk}. For most constructions in this paper, F consists of all the heads.
Initially, all heads are at the leftmost cell of the input tape. M halts and accepts
the input when the accepting heads are all at the rightmost cell. We assume that
the input tape of M has a left end marker � and a right end marker �. Thus, for
any input a1...an, n ≥ 2, a1 = �, an = �, and for 2 ≤ i ≤ n− 1, each ai is different
from the end markers.

We emphasize that in a stateless multihead one-way (two-way) NFA, at each
step, the application of the instructions is “maximally parallel”, i.e., all instructions
that can be applied to the heads must be applied. Note that, in general, the set of
instructions that can be applied maximally parallel need not be unique. If at most
m instructions are applicable at each step, then we say the machine is m-maxpar.

A stateless one-way (two-way) DFA is one in which at each step of the compu-
tation, at most one maximally parallel set of instructions is applicable.

Our first result is the following:

Theorem 4 The reachability problem for generalized token systems is undecidable.
The problem is decidable for token systems.

The first part of Theorem 4 is a direct consequence of the next theorem. The second
part follows from the fact that the emptiness problem for two-way NFAs is decidable.

Theorem 5 The emptiness problem for stateless (1-maxpar) 3-head one-way DFAs
is undecidable.

L. Yang, Z. Dang, O. H. Ibarra

148



Proof. Given a deterministic TM Z, let AZ = C1#C2#...#Cn be the halting com-
putation of Z starting on blank tape. Hence C1 is the initial configuration (on blank
tape), Cn is the halting configuration, and Ci+1 is the direct successor of Ci. We
assume that n ≥ 2. Let Γ and QZ be the tape alphabet and state set, respectively,
of Z.

Clearly, from Z, we can construct a 2-head one-way DFA M0 (with states) with
heads H1 and H2 and input alphabet Σ = Γ∪QZ ∪{#}, which accepts a nonempty
language (actually only the string AZ) iff Z halts. Because from configuration Ci the
next step of Z that results in configuration Ci+1 may move its read-write head left,
H2 may not always move to the right at every step in M0’s computation. However,
we can modify M0 into another two-head one-way DFA M by putting “dummy”
symbols α’s on the tape so that H2 can read these symbols instead of not moving
right. H1, of course, ignores these dummy symbols. M has now the property that
H2 always moves to the right at every step in the computation until M accepts.
Clearly, L(M0) = ∅ if and only if L(M) = ∅, and if and only if Z does not halt on
blank tape. We may assume that M accepts with H2 falling off the right end of the
tape in a unique accepting state f . (This assumption on H2 falling off the right end
of the tape should not be confused with the condition that in a stateless automaton,
a head falling off the tape will cause the machine to crash.) We also assume that
there are no transitions from state f . Let QM be the state set of M .

Thus, if δ(q, a1, a2) = (p, d1, d2), then d2 = +1. This transition is applicable
if M is currently in the state q and the heads H1 and H2 are reading a1 and a2,
respectively. When the transition is applied, H2 moves right, H1 moves right or
remains stationary depending on whether d1 is +1 or 0, and M enters state p.

We construct a stateless 3-head one-way DFA M ′ to simulate M . The heads of
M ′ are H1, H2, and H3. The input alphabet of M ′ is (Σ ×QM ∪ {�,�} ) (� and
� are left and right end markers for the input to M ′.) The instructions of M ′ are
as follows:

1. [(H1,�, 0), (H2,�, 0), (H3,�,+1)].

2. [(H1,�,+1), (H2,�,+1), (H3, (a, q),+1)] for every a ∈ Σ and every q ∈ QM .

3. Suppose δ(q, a1, a2) = (p, d1, d2) and p 6= f , then
[(H1, (a1, s), d1), (H2, (a2, q),+1), (H3, (b, p),+1)] is a rule for every s ∈ QM

and every b ∈ Σ.

4. Suppose δ(q, a1, a2) = (f, d1,+1), then
[(H1, (a1, s), d1), (H2, (a2, q),+1), (H3,�, 0)] is a rule for every s ∈ QM .

5. [(H1, (a, q),+1), (H2, (b, p),+1), (H3,�, 0)] is a rule for every a, b ∈ Σ and
q, p ∈ QM .

6. [(H1, (a, q),+1), (H2,�, 0), (H3,�, 0)] is a rule for every a ∈ Σ and q ∈ QM .

M ′ accepts if and only if all three heads are on �. From the construction, it is clear
that M ′ is a stateless 3-head one-way DFA, and L(M) = ∅ if and only if Z does
not halt on blank tape. The result follows from the undecidability of the halting
problem for TMs on blank tape. ⊓⊔

On stateless Automata and P systems

149



It is an interesting open question whether the 3 heads in the above theorem can
be reduced to 2, even if the 2 heads are allowed to be two-way. Note that in the
theorem, all 3 heads are involved in every instruction. We can strengthen this result
by a more intricate construction. Define a stateless k-head one-way 2-move NFA
(DFA) to be one where in every instruction, at most two heads are involved. Then
we have:

Theorem 6 The emptiness problem for stateless 3-head one-way 2-move DFAs is
undecidable.

Proof. Let M be the 2-head one-way DFA with states constructed in the previous
proof. The transition δ(q, a, b) = (p, d1,+1) of M can be represented by the tuple

[q, (H1, a, d1), (H2, b,+1), p]

Suppose M has n such transitions, and we number them as 1, . . . , n. We may assume
that M starts its computation with rule number 1.

Note that H2 moves to the right at every step, and that M accepts with H2

falling off the right end of the tape in a unique accepting state f and there are no
transitions from state f .

We say that transition numbers i and j are compatible if they correspond to tran-
sition instructions [q, (H1, a, d1), (H2, b,+1), p] and [p, (H1, a

′, d′1), (H2, b
′,+1), r], re-

spectively, for some states q, p, r, symbols a, a′, b, b′, and directions d1, d
′
1.

The input alphabet of M ′ is (Σ×N ×∆)∪{�,�}, where N = {1, . . . , n} (set of
transition numbers of M) and ∆ = {δ1, δ2} (� and � are the end markers of M ′).
The heads of M ′ are H1,H2,H3. The instructions of M ′ are defined as follows:

1. [(H1,�,+1)]

2. [(H3,�, 0), (H2,�,+1)]

3. [(H3,�,+1), (H2, (c, 1, δ1), 0)] for every c ∈ Σ.

Suppose transition number k corresponds to [q, (H1, a, d1), (H2, b,+1), p]. Then
the following instructions are in M ′:

4. [(H3, (b, k, δ1), 0), (H2, (b, k, δ1),+1]

5. [(H3, (c, i, δ1),+1), (H2, (d, i, δ2), 0)], for every 1 ≤ i ≤ n and every c, d ∈ Σ.

6. [(H1, (a, i, δ), d1), (H2, (c, k, δ2), 0)], for every 1 ≤ i ≤ n, every c ∈ Σ, and every
δ ∈ ∆.

7. [(H3, (c, i, δ2), 0), (H2, (c, i, δ2),+1)], for every 1 ≤ i ≤ n and every c ∈ Σ.

8. [(H3, (c, i, δ2),+1), (H2, (d, j, δ1), 0)], for every 1 ≤ i, j ≤ n with i and j com-
patible, and every c, d ∈ Σ.

9. [(H3, (c, i, δ2),+1), (H2,�, 0)], every c ∈ Σ and for every 1 ≤ i ≤ n, with
i corresponding to a transition of the form [q, (H1, a

′, d1), (H2, b
′,+1), f ] for

every state q and a′, b′ in Σ. (Note that f is the unique accepting state of M .)

L. Yang, Z. Dang, O. H. Ibarra

150



10. [(H1, (c, i, δ),+1), (H3 ,�, 0)], for every 1 ≤ i ≤ n, every c ∈ Σ, and every
δ ∈ ∆.

Define a homomorphism h that maps each symbol (α, i, δ) to (i, δ). Then we require
that the homomorphic image of the input tape of M ′ (excluding the end markers)
is a string in

(1, δ1)(1, δ2){(1, δ1)(1, δ2), ..., (n, δ1)(n, δ2)}
∗

so that a sequence of valid transitions can be executed properly. H2 and H3 are
used for this purpose (i.e., to check the format).

M ′ accepts if and only if all heads are on the right end marker. From the
construction, it is clear that L(M ′) = ∅ iff L(M) = ∅. The undecidability follows.

⊓⊔

Next, we will study the emptiness problem when the inputs are restricted. Recall
that a language is bounded if it is a subset of a∗1a

∗
2 . . . a∗k for some given symbols

a1, . . . , ak.

It is known [3] that if M is a multihead one-way NFA with states but with
bounded input, the language it accepts is a semilinear set effectively constructable
from M . In fact, this result holds, even if M has two-way heads, but the heads
can only reverse directions from right to left or from left to right at most r times,
for some fixed r independent of the input. It follows that Theorem 5 can not be
strengthened to hold for one-way machines accepting bounded languages. However,
for two-way machines, we can prove the following:

Theorem 7 The emptiness problem for stateless 5-head two-way NFAs over
bounded input is undecidable.

Proof. We show how a stateless 5-head two-way NFA M ′ can simulate a 2-counter
machine M . Suppose M has states q1, ..., qn, where we assume that n ≥ 3, q1 is the
initial state, and qn is the unique halting state. Assume that both counters are zero
upon halting, and the number of steps is odd. The transition of M is of the form
δ(qi, s1, s2) = (qj , d1, d2) where sr (sign of counter r) = 0 or + and dr (change in
counter r) = +1, 0, -1 for r = 1, 2.

A valid input to M ′ is a string of the form �q1q2...qnad
� for some d ≥ 1. We

construct a stateless 5-head two-way NFA M ′ (with heads H1,H2,H3, C1, C2) to
simulate M . We begin with the following instructions:

[(H1,�, 0), (H2,�,+1)]

[(H1,�,+1), (H2, q1,+1)]

[(H1, q1,+1), (H2, q2,+1)]

...

...

[(H1, qn−1,+1), (H2, qn,+1)]

On stateless Automata and P systems

151



[(H1, qn,+1), (H2, a,+1)]

[(H1, a,+1), (H2, a,+1)]

[(H1, a,+1), (H2,�, 0)]

The instructions above check that the input is of the form �q1q2...qnad
� for some

d ≥ 1. At the end of the process H1 and H2 are on the right end marker �. Next
add the following instructions:

[(H1,�,−1), (H2,�,−1), (H3,�,+1)]

[(H1, t,−1), (H2, t,−1), (H3, q1, 0)] for all t 6= q1

[(H1, q1, 0), (H2, q1, 0), (H3, q1,+1)]

[(H2, qk,+1), (H3, q2, 0)] for 1 ≤ k ≤ n− 1

[(H2, qk,−1), (H3, q2, 0)] for 2 ≤ k ≤ n

[(H1, qk,+1), (H3, q3, 0)] for 1 ≤ k ≤ n− 1

[(H1, qk,−1), (H3, q3, 0)] for 2 ≤ k ≤ n

In the instructions above, if the symbol under H3 is q2 (resp., q3) , the machine
positions H2 (resp., H1) to some nondeterministically chosen state (for use below).

Let C1 and C2 be the counters of M . Initially they are set to zero. In the instructions
below, we use heads C1 and C2 to correspond to the counters.

If δ(qi, s1, s2) = (qj, d1, d2) where sr = 0 or + and dr = +1, 0,−1, then add the
following instructions:

[(H1, qi, 0), (H2, qj , 0), (H3, q2,+1), (C1, t1, d1), (C2, t2, d2)]

[(H1, qj , 0), (H2, qi, 0), (H3, q3,−1), (C1, t1, d1), (C2, t2, d2)]

where tr = � if sr = 0 and tr 6= � if sr = +

If δ(qi, 0, 0) = (qn, 0, 0) (i.e., the 2-counter machine M halts in the unique state
qn with both counters zero after an odd number of steps), then add the following
instructions:

[(H1, qi, 0), (H2, qn, 0), (C1,�,+1), (C2,�,+1)]

[(H1, qi, 0), (H2, qn, 0), (C1, t,+1), (C2, t,+1)] for all t 6= �

[(Hr, t,+1), (C1,�, 0), (C2,�, 0)] for all t 6= � and for r = 1, 2, 3

M ′ accepts if all heads (H1,H2,H3, C1, C2) are on the right end marker. It is easily
verified that M ′ accepts the empty set if and only if M does not halt. ⊓⊔

The above theorem says that the emptiness problem is undecidable if the number of
heads is 5 (i.e., fixed) but the size of the input alphabet is arbitrary. The next result
shows that the emptiness problem is also undecidable if the size of input alphabet
is fixed (in fact, can be unary) but the number of heads is arbitrary.

L. Yang, Z. Dang, O. H. Ibarra

152



Theorem 8 The emptiness problem for stateless multihead two-way NFAs is unde-
cidable even when the input is unary but with the left end marker (resp., right end
marker).

Proof. We only show the case with the left end marker. (The construction can easily
be modified for the case with the right end marker.) We assume that the input has
length at least 1, excluding the left end marker. We use a stateless NFA M ′ (whose
input is unary with a left end marker) to simulate a two-counter machine M with
counters C1 and C2, and states q0, q1, . . . , qn. The idea is to use ⌈log2(n+1)⌉ heads,
H1, . . . ,H⌈log

2
(n+1)⌉, to control the states, and another two heads H⌈log

2
(n+1)⌉+1 and

H⌈log
2
(n+1)⌉+2 to control the value of counters C1 and C2. The two-counter machine

M starts in state q0, and C1 = C2 = 0. Initially, all heads of M ′ are at the leftmost
cell (i.e., �). If Hi, 1 ≤ i ≤ ⌈log2(n + 1)⌉, is at �, we consider it as 0; if Hi is at
the first a, we consider it as 1. Hence H⌈log

2
(n+1)⌉ . . . H1 is a binary string (with

H⌈log
2
(n+1)⌉ as its most significant bit), which is used to encode the index of a state

of M . Note that during the computation, Hi, 1 ≤ i ≤ ⌈log2(n + 1)⌉, only moves
between the left end marker and the first a. We omit the details of the simulation
of the instructions of M . ⊓⊔

Theorems 7 and 8 are best possible, since we can not fixed both the number of heads
and the size of the input alphabet and get undecidability. This is because for fixed
k and n, there are only a finite number of such stateless machines (also observed by
Artiom Alhazov). Hence, the emptiness problem has a finite number of instances
and therefore decidable.

A special case of Theorem 8 is when the input is unary and without end markers.
In this case, the heads are initially at the leftmost input cell and the automaton
accepts when the heads are all at the rightmost cell (we assume that there are
at least two cells on the input). Using a VAS to simulate the multihead position
changes,we have:

Theorem 9 The emptiness problem for stateless multihead two-way NFAs is decid-
able when the input is unary and without end markers.

Proof. Suppose we have a stateless NFA M with H1, . . . ,Hk for some k, and with
unary input

a . . . a,

of length B for some B. We can construct a corresponding VAS G = 〈x,W 〉, where
x ∈ N

k is the start vector, and W is a finite set of vectors in Z
k. Furthermore, we

require that the maximal entry of any vector in G can not exceed B − 1; otherwise,
G crashes. In other words, G is a bounded vector addition system. Since initially
in M , all heads are at the leftmost cell, we set x = (0, . . . , 0) in G. If in M , there is
an instruction I =[MOVEi1 , MOVEi2 , . . ., MOVEim ], for some m, 1 ≤ m ≤ k, and
MOVEij=(Hij , a,D), 1 ≤ j ≤ m, then in G we have v ∈ W . For all j, 1 ≤ j ≤ m,
the ithj entry of v is 0 if D = 0. The entry is 1 if D = +1. And, the entry is −1 if
D = −1. All other entries are 0.

Clearly, M accepts a nonempty language iff, for some B, (B − 1, . . . , B − 1) is
reachable in G; directly from Theorem 3, the result follows. ⊓⊔

On stateless Automata and P systems

153



4 Sequential Tissue-Like P Systems and Stateless Mul-

ticounter Systems

We now generalize the rules in a token system by allowing multiple objects to transfer
from one membrane to another in (1); the result is a variant of a tissue-like P system
[6] with sequential applications of rules [1]. More precisely, let Σ = {a1, . . . , am}.
A sequential tissue-like P system G is a directed graph with n nodes (for some
n), where each node i is equipped with a membrane Ai which is a multiset of
objects in Σ. In particular, we use m counters ~Xi = (xi1, . . . , xim) to denote the
multiplicities of objects of types a1, . . . , am in Ai, respectively. Each membrane
Ai is also associated with a Presburger formula Pi, called a node constraint, over
the m counters. Each edge (say, from node i to node j) in G is labeled with an
addition vector ~∆ij in Nm. Essentially, G defines a stateless multicounter system
whose semantics is as follows. Intuitively, G specifies a multicounter system with
n groups of counters with each group ~Xi of m counters. In the system, there are
no states. Each instruction is the addition vector ~∆ij specified on an edge. The

semantics of the instruction, when applied, is to decrement counters in group ~Xi by
~∆ij and increment counters in group ~Xj by ~∆ij (we emphasize the fact that each

component in the vector ~∆ij is nonnegative by definition). When the system runs,
an instruction is nondeterministically chosen and applied. Additionally, we require
that at any moment during a run, for each i, the constraint Pi is true when evaluated
on the counter values on group ~Xi. Formally, a configuration is a tuple of n vectors
(~V1, . . . , ~Vn) with each ~Vi ∈ Nm satisfying the node constraint Pi(~Vi). Given two
configurations C = (~V1, . . . , ~Vn) and C′ = (~V ′1 , . . . , ~V ′n), we say that C can reach C′

in a move, written C →G C′, if there is an edge from node i to node j (for some
i and j) such that C and C′ are exactly the same except that ~Vi − ~∆ij = ~V ′i and
~Vj + ~∆ij = ~V ′j . We say that C can reach C′ in G, written

C ;G C′

if, for some t,
C0 →G C1 . . . →G Ct

where C = C0, C1, . . . , Ct = C′ are configurations. We now study the following reach-
ability problem: given a G and two Presburger formulas P and Q, whether there are
C and C′ such that C ;G C′ and, C and C′ satisfy P and Q, respectively.

One can show that the reachability problem is undecidable even under a special
case:

Theorem 10 The reachability problem for sequential tissue-like P systems G is
undecidable even when G is a DAG.

We now consider the case when G is atomic; i.e., each node constraint Pi in G is a
conjunction of atomic linear constraints, i.e., Pi is in the form of

∧
(
∑

j

aijxij # ci),

where # ∈ {≤,≥}, aij and ci are integral constants. Using a VAS to simulate an
atomic sequential tissue-like P system, one can show:

L. Yang, Z. Dang, O. H. Ibarra

154



Theorem 11 The reachability problem for atomic sequential tissue-like P systems
is decidable.

In fact, the converse of Theorem 11 can be shown, i.e., atomic sequential tissue-
like P systems and VAS are essentially equivalent, in the following sense. Consider
a VAS M with k counters (x1, . . . , xk) and a sequential tissue-like P system G

with a distinguished node on which the counters are (z1, . . . , zl;x1, . . . , xk). We fur-
ther abuse the notation ;G as follows. We say that (z1, . . . , zl;x1, . . . , xk) reaches
(z′1, . . . , z

′
l;x
′
1, . . . , x

′
k) in G if there are C and C′ such that C ;G C′ and, C

and C′, when projected on the distinguished node, are (z1, . . . , zl;x1, . . . , xk) and
(z′1, . . . , z

′
l;x
′
1, . . . , x

′
k), respectively. We say that M can be simulated by G if, for

all (x1, . . . , xk) and (x′1, . . . , x
′
k) in Nk, (x1, . . . , xk) reaches (x′1, . . . , x

′
k) in M iff

(0, ..., 0;x1 , . . . , xk) reaches (0, ..., 0;x′1 , . . . , x
′
k) in G. We say that G is simple if each

constraint Pi in G is a conjunction of xij ≥ c (open constraint) or xij ≤ c (closed
constraint), for some constant c and every j, where xij is a counter in node i . Notice
that if G is simple then G must be atomic also. One can show:

Theorem 12 Every VAS can be simulated by a sequential tissue-like P system G

that is a DAG and simple.

For a sequential tissue-like P system G, a very special case is that there is only one
counter in each node, and the instruction on an edge (i, j) is I = 1, which means
that when I is executed, counter i is decremented by 1, and counter j is incremented
by 1. We call such a G single. One can show that the reachability relation ;G is
Presburger definable if G is a DAG and single. The proof technique is to “regulate”
the reachability paths in G and use reversal-bounded counter machine arguments,
and then appeal to Theorem 2.

Theorem 13 The reachability relation ;G is Presburger definable when sequential
tissue-like P system G is a DAG and single.

Currently, we do not know whether Theorem 13 still holds when the condition of G

being a DAG is removed.
As we pointed out, sequential tissue-like P systems are essentially stateless. To

conclude this section, we give an example where some forms of sequential tissue-like
P systems become more powerful when states are added, and hence states matter
(In contrast to this, VAS and VASS (by adding states to VAS) are known to be
equivalent).

Consider a sequential tissue-like P system G where each node contains only one
counter and, furthermore, G is a DAG. From Theorem 13, its reachability relation
;G is Presburger definable. We now add states to G and show that the reachability
relation now is not necessarily Presburger definable. G with states is essentially a
multicounter machine M with k counters (x1, . . . , xk) and each counter is associated
with a simple constraint defined earlier. Each instruction in M is in the following
form:

(sp, xi, xi+1, sq)

where 1 ≤ i < k and, sp and sq are the states of M before and after executing
the instruction. When the instruction is executed, xi is decremented by 1, xi+1

On stateless Automata and P systems

155



is incremented by 1, and the simple constraint on each counter should be satisfied
(before and after the execution).

Now, we show that an M can be constructed to “compute” the inequality x∗y ≥
z, which is not Presburger definable. We need 8 counters, x1, . . . , x8 in M . The idea
is that we use the initial value of x3, x5 and x7 to represent x, y and z, respectively,
and the remaining counters are auxiliary. In particular, x1 acts as a “warehouse”
for supplying counter values. The constraint upon every counter is simply xi ≥ 0,
1 ≤ i ≤ 8. Initially, the state is s0, x2 = 0, and all the other counters store some
values. We have the following instructions:

I1 = (s0, x3, x4, s1);

I2 = (s1, x1, x2, s2);

I3 = (s2, x7, x8, s0);

I4 = (s0, x5, x6, s3);

I5 = (s3, x2, x3, s0);

I6 = (s0, x2, x3, s0).

Note that s3 is the accepting state. I1, I2 and I3 mean that, when x3, which repre-
sents x, is decremented by 1, x2 will record the decrement, and x7, which represents
z, will also be decremented by 1. I4 says that during the decrement of x3, x5, which
represents y, will be nondeterministically decremented by 1. I5 and I6 will restore
the value of x3, and after the restoration, the value of x3 can never surpass the initial
one (i.e., x). One can show that x ∗ y ≥ z iff M can reach state s3 (the accepting
state) and, at the moment, x7 = 0.

5 Conclusion

We introduced the notion of stateless multihead two-way (respectively, one-way)
NFAs and stateless multicounter systems and related them to P systems and vector
addition systems. In particular, we investigated the decidability of the emptiness
and reachability problems for these stateless automata and showed that the results
are applicable to similar questions concerning certain variants of P systems, namely,
token systems and sequential tissue-like P systems. Many issues (e.g., the open
problems mentioned in the previous sections) remain to be investigated, and we
plan to look at some of these in future work.

References

[1] Z. Dang and O. H. Ibarra. On one-membrane P systems operating in sequential
mode. Int. J. Found. Comput. Sci., 16(5):867–881, 2005.

[2] S. Ginsburg and E. Spanier. Semigroups, Presburger formulas, and languages.
Pacific J. of Mathematics, 16:285–296, 1966.

L. Yang, Z. Dang, O. H. Ibarra

156



[3] O. H. Ibarra. A note on semilinear sets and bounded-reversal multihead push-
down automata. Inf. Processing Letters, 3(1): 25-28, 1974.

[4] O. H. Ibarra. Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM, 25(1):116–133, 1978.

[5] O. H. Ibarra, Z. Dang, and Ö. Egecioglu. Catalytic P systems, semilinear sets,
and vector addition systems. Theor. Comput. Sci., 312(2-3):379–399, 2004.

[6] C. Mart́ın-Vide, Gh. Păun, J. Pazos, and A. Rodŕıguez-Patón. Tissue P sys-
tems. Theor. Comput. Sci., 296(2):295–326, 2003.

[7] E. Mayr. An algorithm for the general Petri net reachability problem. Proc.
13th Annual ACM Symp. on Theory of Computing, 238–246, 1981.

[8] Gh. Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143, 2000.

[9] Gh. Păun. Membrane Computing, An Introduction. Springer-Verlag, 2002.

[10] L. Yang, Z. Dang, and O.H. Ibarra. Bond computing systems: A biologically
inspired and high-level dynamics model for pervasive computing. Proceedings
of the 6th International Conference on Unconventional Computation (UC’07),
Lecture Notes in Computer Science, 2007.

On stateless Automata and P systems

157


