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ON STATIC THREE-MANIFOLDS WITH

POSITIVE SCALAR CURVATURE

Lucas Ambrozio

Abstract

We compute a Bochner type formula for static three-manifolds
and deduce some applications in the case of positive scalar cur-
vature. We also explain in details the known general construc-
tion of the (Riemannian) Einstein (n + 1)-manifold associated to
a maximal domain of a static n-manifold where the static po-
tential is positive. There are examples where this construction
inevitably produces an Einstein metric with conical singularities
along a codimension-two submanifold. By proving versions of clas-
sical results for Einstein four-manifolds for the singular spaces thus
obtained, we deduce some classification results for compact static
three-manifolds with positive scalar curvature.

1. Introduction and statements of the main results

Let (Mn, g) be a complete Riemannian manifold. A static potential
is a non-trivial solution V ∈ C∞(M) to the equation

(1) HessgV −∆gV g − V Ricg = 0.

Riemannian manifolds admitting static potentials are very interest-
ing geometric objects that arise in different contexts. For instance, the
left hand side of (1) defines the formal adjoint of the linearization of the
scalar curvature and the existence of static potentials plays an important
role in problems related to prescribing the scalar curvature function (see
[23], [14] and also [21]). On the other hand, given a solution to (1) on
a three-manifold it is possible to construct a space–time satisfying the
vacuum Einstein equations (with cosmological constant), whose prop-
erties, physically interpreted, justify the name static (see, for example,
[59]).

The existence of a static potential imposes many restrictions on the
geometry of the underlying manifold. For example, its scalar curva-
ture must be constant and the set of zeroes of V is a totally geodesic
regular hypersurface [14]. It might seem reasonable to believe that
a description of all Riemannian manifolds admitting a static poten-
tial is possible. In dimension n = 3, a solution to this classification
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2 L. AMBROZIO

problem seems to be more likely (because the Ricci tensor determines
completely the Riemann curvature tensor) and has also physical inter-
est (since n = 3 is the relevant dimension in the General Theory of
Relativity).

Definition. A static triple is a triple (Mn, g, V ) consisting of a con-
nected n-dimensional smooth manifold M with boundary ∂M (possibly
empty), a complete Riemannian metric g on M and a static potential
V ∈ C∞(M) that is non-negative and vanishes precisely on ∂M . Two
static triples (Mi, gi, Vi), i = 1, 2, are said to be equivalent when there
exists a diffeomorphism φ : M1 → M2 such that φ∗g2 = cg1 for some
constant c > 0 and V2 ◦ φ = λV1 for some constant λ > 0.

In other words, a static triple is a maximal connected domain where
a static potential is positive, and two static triples are equivalent when
they are isometric (up to scaling) with proportional static potentials.
The classification problem is to describe all equivalence classes of static
triples.

The literature on the subject is extensive and many classification
results are known particularly in the zero and negative scalar curvature
cases (for example, see [35], [49], [54], [18], [4], [47], [25] and [12],
[60], [52], [5], [26], [20], [41], [27]).

In this work we focus on three-dimensional static triples with positive
scalar curvature.

Fischer and Marsden [23] conjectured that the standard unit round
spheres (Sn, gcan) are the only closed Riemannian manifolds with scalar
curvature n(n−1) admitting static potentials. In fact, the linear combi-
nations of the coordinate functions are all solutions to (1) in (Sn, gcan).
This conjecture was soon realized to be too optimistic. Kobayashi [36]
and Lafontaine [39] proved more generally a classification result for lo-
cally conformally flat static triples in all dimensions. We state their
result in dimension n = 3 as follows:

Theorem 1 (Kobayashi [36], Lafontaine [39]). Let (M3, g, V ) be a
static triple with positive scalar curvature. If (M3, g) is locally confor-
mally flat, then (M3, g, V ) is covered by a static triple that is equivalent
to one of the following static triples:

i) The standard round hemisphere,

(
S3
+, gcan, V = xn+1

)
.

ii) The standard cylinder over S2 with the product metric,

([
0,

π√
3

]
× S2, gprod = dt2 +

1

3
gcan, V =

1√
3
sin(

√
3t)

)
.
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iii) For some m ∈ (0, 1
3
√
3
), the triple

(
[rh, rc]× S2, gm =

dr2

1− r2 − 2m
r

+ r2gcan, Vm =

√
1− r2 − 2m

r

)
,

where rh = rh(m) < rc = rc(m) are the positive zeroes of Vm.

Remark 1. A static triple (M̃n, g̃, Ṽ ) covers a static triple (Mn, g, V )

when there exists a covering map π : M̃ → M such that g̃ = π∗g and
Ṽ = V ◦ π.

Remark 2. We have normalized the scalar curvature of the examples
above to be 6. They are sometimes referred as (time-symmetric slices
of) the de Sitter space, the Nariai space and the Schwarzschild–de Sitter
spaces of positive mass m, respectively (see [12]).

Remark 3. The three types of locally conformally flat manifolds de-
scribed above can be distinguished from the behavior of their Ricci ten-
sor. The round hemisphere is an Einstein manifold, the standard cylin-
der has parallel Ricci tensor but is not Einstein, and the Schwarzschild–
de Sitter spaces of positive mass are locally conformally flat but do not
have parallel Ricci tensor.

In dimension n = 3, the above list contains all known examples of
compact simply connected static triples with positive scalar curvature.
Qing and Yuan [53] proved uniqueness of these examples assuming a
weaker hypothesis on the Cotton tensor. Lafontaine and Rozoy [40]
gave an argument to show the uniqueness of these examples under an
additional hypothesis on the regularity of the critical level sets of the
static potential. A speculation on the possibility of constructing exam-
ples with more than two boundary components was presented in [12].

It is interesting to observe that precisely two more examples can
be obtained as quotients of the standard cylinder, one of them non-
orientable with two boundary components, the other one orientable with
connected boundary (see their description in the end of Section 7). One
should think about this last example in the context of the “cosmic no-
hair conjecture” suggested in [12] and correctly stated in [11]. In any
case, the question remains whether the standard round hemisphere is
the only compact simply connected static triple (M3, g, V ) with positive
scalar curvature and connected boundary.

An important result towards the answer to this question states that
the standard hemisphere has the maximum possible boundary area
among static triples with positive scalar curvature and connected bound-
ary. More precisely, the following theorem holds:

Theorem 2 (Boucher–Gibbons–Horowitz [12], Shen [57]). Let (M3,
g, V ) be a compact oriented static triple with connected boundary and
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scalar curvature 6. Then ∂M is a two-sphere whose area satisfies the
inequality

|∂M | ≤ 4π.

Moreover, equality holds if and only if (M3, g, V ) is equivalent to the
standard hemisphere.

This result has also a version allowing more boundary components
(see Section 2, Proposition 6). Hijazi, Montiel and Raulot [34] estab-
lished a similar result that involves an inequality for the first eigenvalue
of the induced Dirac operator of each boundary component.

Theorem 2 has some interesting interpretations. The inequality for
the area of the boundary can be thought as a Penrose type inequality
in the context of positive scalar curvature (as suggested in [12]). The
rigidity phenomenon associated to the equality case is related to Min-
Oo’s Conjecture, which is known to be false after the work of Brendle,
Marques and Neves [17]. In view of that, Theorem 2 gives an interesting
rigidity result for the standard round hemisphere under a nice extra
geometric assumption (for related results, see for example [33], [22]
and [44]).

In this paper we prove some classification results for static three-
manifolds with positive scalar curvature. In particular, we obtain a
stronger version of Theorem 2 that includes the oriented static quotient
of the standard cylinder in the picture. Our results may also be used
to rule out some possible new examples of compact static triples with
positive scalar curvature.

The main ingredient is a Bochner type formula that holds for any
three-dimensional static triple. LetR denote the scalar curvature, R̊ic =
Ric−(R/3)g denote the trace-free part of the Ricci tensor and C denote
the Cotton tensor of (M3, g). C is the 3-tensor defined by

C(X,Y,Z) = (∇ZRic)(X,Y )− (∇Y Ric)(X,Z)

− 1

4
(dR(Z)g(X,Y )− dR(Y )g(X,Z)),

for all X,Y,Z ∈ X (M). A classical result asserts that (M3, g) is locally
conformally flat if and only if its Cotton tensor vanishes (see [9], Chapter
4, Section 3.2).

If (M3, g) admits a static potential V , we prove the following identity:
(2)
1

2
div(V∇|R̊ic|2) =

(
|∇R̊ic|2 + |C|2

2

)
V +

(
R|R̊ic|2 + 18det(R̊ic)

)
V.

Assuming a pointwise inequality for the traceless Ricci tensor we de-
duce the first consequence of formula (2).
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Theorem A. Let (M3, g, V ) be a compact oriented static triple with
positive scalar curvature. If

|R̊ic|2 ≤ R2

6
,

then one of the following alternatives holds:

i) R̊ic = 0 and (M3, g, V ) is equivalent to the standard hemisphere;
or

ii) |R̊ic|2 = R2/6 and (M3, g, V ) is covered by a static triple that is
equivalent to the standard cylinder.

Remark 4. One can verify that the above pinching condition on
the traceless Ricci tensor implies that (M3, g) has non-negative Ricci
curvature. As we will see later, the above result can also be deduced as
a corollary of more general results (see Theorem E below).

For the next applications we work with the singular Einstein manifold
that can be constructed from a static triple. The general construction
has already been discussed in the literature (for instance, in [28] and
[12]). When not singular, the obtained Riemannian manifolds are some-
times called gravitational instantons, although this terminology might
be confusing.

As mentioned before, as a general fact, given a static triple (Mn, g, V )
with scalar curvature R = ǫn(n− 1), ǫ ∈ {−1, 0, 1}, the metrics

h± = ±V 2dt2 + g

satisfy the Einstein equation Rich±
= ǫnh±. While the Lorentzian

metric h− has no singularities on R × ∂M (as the vanishing of V only
means that ∂t is a light-like vector on this set), the Riemannian metric
h+ becomes singular on R × ∂M . One way to overcome this problem
could be to identify the variable t with period 2π (as done in [12] and
[28]). When this procedure removes the metric singularity, one ob-
tains precisely the type of Einstein manifolds studied by Seshadri [56].
However, although metric singularities might be inevitable, the singular
space obtained is well-behaved: it has a cone-like singularity along a
codimension-two submanifold.

This type of singular space, sometimes called an edge space, has been
long studied in the literature and its theory presents many interesting
geometric and analytic phenomena. For instance, there has been very
recent progress in understanding the Yamabe problem in these spaces,
see the work of Akutagawa, Carron and Mazzeo [1] and Mondello [48].
On the other hand, classical formulas like the Gauss–Bonnet–Chern
formula for closed 4-manifolds have generalizations to these spaces, see
the work of Liu and Shen [43] (and also the work of Atiyah and LeBrun
[8]). For a comprehensive exposition on singular Riemannian spaces of
stratified type, see [51].
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In the second part of this paper, after describing carefully the above
construction and the properties of the singular metric h+ (see Section
6), we argue that part of the classical Bonnet–Myers Theorem and a
deep theorem of Gursky [31] on Einstein four-manifolds with positive
scalar curvature hold for the singular Einstein manifolds obtained from
compact static triples with positive scalar curvature. As a consequence,
we prove two results.

The first one gives a description of the topology of compact static
triples (M3, g, V ) with positive scalar curvature. It is inspired by the
work of Galloway [24] on the topology of black holes and generalizes
results of [56]. Before stating it, we recall that a closed minimal surface
Σ2 in (M3, g) is called stable when the second variation of the area is
non-negative for all variations, and unstable otherwise.

Theorem B. Let (M3, g, V ) be a compact oriented static triple with
positive scalar curvature. Then

i) The universal cover of M is compact.
ii) If ∂M contains unstable connected components, then ∂M contains

exactly one unstable connected component. In this case, M is sim-
ply connected.

iii) Each connected component of ∂M is diffeomorphic to a sphere.

Remark 5. Regarding the classification problem of compact static
triples with positive scalar curvature, item i) above allows to assume
simply connectedness without loss of generality.

The second result can be seen as a gap result for compact static triples
(M3, g, V ) with positive scalar curvature.

Theorem C. Let (M3, g, V ) be a compact simply connected static
triple with scalar curvature 6. Then, one of the following alternatives
holds:

i) (M3, g, V ) is equivalent to the standard hemisphere; or
ii) (M3, g, V ) is equivalent to the standard cylinder; or
iii) Denoting by ∂iM , i = 1, . . . , r, the connected components of ∂M

and by ki the (constant) value of |∇V | on ∂iM , the following in-
equality holds:

r∑

i=1

ki|∂iM | < 4π

3

r∑

i=1

ki.

Remark 6. This theorem should be compared with Theorem B in
[31]. In fact, when the associated Einstein manifold to a static triple
satisfying the hypotheses of Theorem C has no singularities the result
is a direct corollary of that theorem (see Section 6 for more details).



ON STATIC THREE-MANIFOLDS 7

Remark 7. The inequality in iii) is invariant under rescaling of the
static potential. Theorem C is sharp in the sense that one can explicitly
verify that:

i) For the standard cylinder, k1 = k2 and |∂1M | = |∂2M | = 4π/3.
ii) For the Schwarzschild–de Sitter spaces of mass m ∈ (0, 1/3

√
3),

k1|∂1M |+ k2|∂2M |
k1 + k2

is an increasing function of m that converges to 0 as m → 0 and
to 4π/3 as m → 1/3

√
3. Moreover, |∂1M | < 4π/3 < |∂2M | and

k1 > k2 for all m ∈ (0, 1/3
√
3).

As an immediate application, we can state

Theorem D. Let (M3, g, V ) be a compact simply connected static
triple with connected boundary and scalar curvature 6. If

|∂M | ≥ 4π

3
,

then (M3, g, V ) is equivalent to the standard hemisphere.

Another corollary of the previous results is the following:

Theorem E. Let (M3, g, V ) be a compact static triple with scalar
curvature 6 and non-negative Ricci curvature. Then (M3, g, V ) is equiv-
alent to the standard hemisphere or is covered by the standard cylinder.

In fact, in this case, one can see using the Gauss equation that each
component of ∂M is a totally geodesic two-sphere with Gaussian cur-
vature K ≤ 3, hence each component has area greater than or equal to
4π/3.

The paper is organized as follows. After reviewing some basic ma-
terial on static triples (Section 2), we deduce some formulas for the
Cotton tensor of such triples (Section 3) and prove the Bochner type
formula (2) (Section 4). Theorem A is proven in Section 5. In Sec-
tion 6 we describe the associated singular Einstein manifold and briefly
discuss some of its geometric and topological properties. In Section 7
we prove the topological classification Theorem B. The remaining two
sections are devoted to the proof of Theorem C. The proof mimics the
arguments of Gursky in [31], which involve obtaining the solution to a
Yamabe type problem and the Gauss–Bonnet–Chern formula for closed
oriented four-manifolds. Technical work is needed to justify why these
arguments also work for the singular Einstein four-manifold associated
to a compact three-dimensional static triple. The paper ends after three
appendixes. The first one contains the proof of a key inequality used
in Section 8. Then we classify certain solutions to an equation of type
HessV = (∆V/2)g on a compact surface, a result needed in Section 7.
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The last appendix discusses the regularity properties of the solution to a
degenerate elliptic problem that appeared in the proof of Proposition 21.

Acknowledgments. I am grateful to Fernando Codá Marques, Harold
Rosenberg and especially André Neves for their encouragement and sup-
port, for interesting conversations and for their kind interest in this
work. I would also like to thank Rafe Mazzeo for correspondence re-
garding the regularity properties of solutions to the singular Yamabe
problem. I was supported by CNPq-Brazil.

2. General properties of static triples

This section aims to present some of the basic properties of static
manifolds that will be used frequently throughout the paper (see also
[21]).

Let (Mn, g) be a complete Riemannian manifold. A static potential is
a non-trivial solution V ∈ C∞(M) to the second order overdetermined
elliptic equation

(3) HessgV −∆gV g − V Ricg = 0.

Equation (3) is equivalent to a useful system of equations. Moreover,
the set of zeroes of V has a very special geometry.

Lemma 3 ([23], [14]). The static equation (3) is equivalent to the
equations

HessgV = V (Ricg − Λg),(4)

∆gV + ΛV = 0,(5)

where the scalar curvature Rg = (n − 1)Λ is constant. Moreover, if
(Mn, g) admits a static potential V ∈ C∞(M), then

i) 0 is a regular value of V ;
ii) {V = 0} is totally geodesic; and
iii) |∇V | is locally constant and positive on {V = 0}.
Proof. (see [21]) Taking the trace of (3), we obtain

(6) ∆gV +
Rg

n− 1
V = 0.

The equivalence between (3) and the system (4), (5) follows immedi-
ately. To prove that Rg is constant, we observe that the divergence of
(3) gives

(7) V dRg = 0,

as can be seen by the Ricci formula for commuting derivatives and the
contracted second Bianchi identity 2divgRicg = dRg. Considering the
homogeneous ODE satisfied by the restriction of V to geodesics (which
follows from (4)), we conclude that if ∇V (p) = 0 at p ∈ {V = 0}, then V
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must vanishes identically near p. By analytical continuation of solutions
to the elliptic equation (5), V must vanish identically, a contradiction.
Thus, 0 is a regular value of V and hence, by (7), R must be constant.
The remaining assertions follow because the second fundamental form
of the level set {V = 0} and the derivative of |∇V |2 on {V = 0} depends
on HessV , which vanishes on this set by (4). q.e.d.

The above proposition implies that static triples (Mn, g, V ) as defined
in the Introduction have constant scalar curvature and totally geodesic
boundary. When dealing with the classification problem, one can, there-
fore, assume (Mn, g, V ) has scalar curvature R = ǫn(n − 1) for some
ǫ ∈ {−1, 0, 1}. The constant value of |∇V | on a connected component
of ∂M is sometimes called the surface gravity of the component (as in
[28]).

As a consequence of the Maximum Principle, the following result
holds for compact static triples:

Proposition 4 ([23], [14]). Let (Mn, g, V ) be a static triple with
scalar curvature R = ǫn(n− 1), ǫ ∈ {−1, 0, 1}.

i) If M is closed, then V is a positive constant and (M,g) is Ricci-
flat.

ii) If M is compact and ∂M is non-empty, then R > 0 and n is the
first Dirichlet eigenvalue of the Laplacian of (M,g).

Proof. If M is closed, Hopf’s maximum principle implies that R is
zero and V is constant. Thus, the static equation (3) becomes Ric = 0.
IfM is compact and ∂M 	= ∅, R/(n−1) is an eigenvalue of the Laplacian
for the Dirichlet problem in (M,g), by equation (6). Hence, it is positive.
Since V does not change its sign, R/(n−1) is the first eigenvalue. q.e.d.

Regarding the classification problem of static triples, item ii) of Propo-
sition 4 has a useful consequence. In order to verify that two compact
static triples with the same scalar curvature are equivalent it is enough
to verify that they are isometric because, as first eigenfunctions, the
static potentials must be proportional to each other in that case.

Given a static triple (Mn, g, V ) with scalar curvature R = ǫn(n− 1),
the function |∇V |2+ǫV 2 plays an important role. If (Mn, g) is Einstein,
in which case the static equation reduces to Obata’s equation HessV =
−ǫV g [50], it is possible to verify that this function is constant. The
following proposition shows the converse. More generally, we have

Proposition 5. Let (Mn, g, V ) be a static triple with scalar curvature
R = ǫn(n− 1), ǫ ∈ {−1, 0, 1}. Then the function

|∇V |2 + ǫV 2

does not achieve a non-negative maximum on M \ ∂M unless it is con-
stant and (Mn, g) is Einstein.



10 L. AMBROZIO

Proof. Using the Bochner formula, one proves Shen’s identity [57],

(8) div

(
1

V
∇

(
|∇V |2 + ǫV 2

))
= 2V |R̊ic|2,

and applies the strong maximum principle. q.e.d.

Integrating (8) on a compact three-dimensional static triple, one ob-
tains a fundamental formula that can be used to prove Theorem 2.

Proposition 6 ([57]). Let (M3, g, V ) be a compact oriented static
triple with scalar curvature R = 6. Denoting by ∂1M, . . . , ∂rM the
connected components of ∂M and by ki the value of |∇V | on ∂iM , the
following formula holds:

(9)

r∑

i=1

ki|∂iM |+
∫

M
|R̊ic|2V dμ = 2π

r∑

i=1

kiχ(∂iM),

where χ(∂iM) denotes the Euler characteristic of ∂iM .

Proof. By Shen’s identity (8), the vector field

X =
1

V
∇(|∇V |2 + V 2)

is such that divX = 2V |R̊ic|2 on M . Moreover, as can be seen using the
static equation (4), X = 2(Ric(∇V,−) − 2∇V ). The Gauss equation
for the totally geodesic boundary ∂M gives

K =
R

2
−Ric

( ∇V

|∇V | ,
∇V

|∇V |

)
= 3−Ric

( ∇V

|∇V | ,
∇V

|∇V |

)
,

where K denotes the Gaussian curvature of ∂M . Observing that the
outward-pointing normal to ∂M is −∇V/|∇V |, we integrate (8) to ob-
tain

∫

M
V |R̊ic|2dμ =

1

2

∫

M
divXdμ =

1

2

∫

∂M
g

(
X,− ∇V

|∇V |

)
dσ =

=

∫

∂M
(2−Ric

( ∇V

|∇V | ,
∇V

|∇V |

)
)|∇V |dσ =

∫

∂M
(K − 1)|∇V |dσ.

Formula (9) follows now by the Gauss–Bonnet theorem. q.e.d.

In order to understand the behavior of the static potential near ∂M ,
we compute the expansions of V and |∇V | along a normalized geodesic
issuing from ∂M orthogonally.

Proposition 7. Let (Mn, g, V ) be a static triple with scalar curvature
R = ǫn(n− 1), ǫ ∈ {−1, 0, 1}. Given p ∈ ∂M , let γ : [0, ǫ) → M be the
normalized geodesic such that γ(0) = p and γ′(0) is the unit normal to
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∂M pointing inside M . Then the following expansions hold as s goes to
zero:

V 2 ◦ γ(s) = |∇V |2(p)(s2 + 1

3
(Ric(γ′(0), γ′(0))− ǫn)s4 +O(s6)),

|∇V |2 ◦ γ(s) = |∇V |2(p)(1 + (Ric(γ′(0), γ′(0))− ǫn)s2 +O(s4)).

Proof. Without loss of generality, we can assume that |∇V |(p) =
1, so that γ′(0) = ∇V (p). We need the formulas obtained by taking
successive derivatives of the static equation (4):

HessV = V (Ric− ǫng),

∇HessV = (Ric− ǫng)⊕ dV + V∇Ric,

∇2HessV = V (Ric− ǫng)⊕ (Ric− ǫng) + V∇2Ric+ T,

where T depends on ∇Ric and dV .
For p ∈ ∂M , we claim that ∇Ric(∇V,∇V,∇V )(p) = 0. In fact,

given an orthonormal basis {e1, . . . , en−1,∇V (p)} of Tp∂M , since (M,g)
has constant scalar curvature, the contracted second Bianchi inequality
implies

0 =
dR

2
= divRic(∇V ) =

n−1∑

i=1

(∇eiRic)(∇V, ei) + (∇∇V Ric)(∇V,∇V ).

On the other hand, since ∂M is totally geodesic, Codazzi equa-
tion implies Ric(∇V, ei) = 0 for all i = 1, . . . , n − 1, and, therefore,∑

(∇eiRic)(∇V, ei) = 0. This proves the claim.
Hence, at the point p ∈ ∂M ,

HessV (∇V,∇V )(p) = 0,

(∇HessV )(∇V,∇V,∇V )(p) = Ric(∇V,∇V )(p)− ǫn,

(∇2HessV )(∇V,∇V,∇V,∇V )(p) = 0.

The result follows now by a direct computation using the above for-
mulas. q.e.d.

As a consequence of Propositions 5 and 7, we obtain some control
on the behavior of the curvature of the boundary component where the
function |∇V |2 + ǫV 2 attains a maximum.

Proposition 8. Let (Mn, g, V ) be a static triple with scalar curvature
RM = ǫn(n−1), ǫ ∈ {−1, 0, 1}. If |∇V |2+ ǫV 2 attains a maximum at a
boundary component ∂1M , then ∂1M has scalar curvature greater than
or equal to ǫ(n− 1)(n − 2).

Proof. Since |∇V | is constant on each connected component of ∂M =
V −1(0), the maximum of |∇V |2+ǫV 2 is attained at every point of ∂1M .
Let γ be a geodesic issuing from p ∈ ∂1M as in Proposition 7. Then
|∇V |2(p) ≥ (|∇V |2 + ǫV 2) ◦ γ(s) = |∇V |2(p)(1 + (Ric(γ′(0), γ′(0)) −
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ǫ(n − 1))s2 + O(s4)) implies that Ric(γ′(0), γ′(0)) ≤ ǫ(n − 1). Since
∂1M is totally geodesic, the result follows from the Gauss equation
R∂1M = RM − 2Ric(γ′(0), γ′(0)). q.e.d.

We finish this section with a result about the Jacobi operator of a
minimal hypersurface Σn−1 in (Mn, g, V ). We denote by N a unit vector
field normal to Σ and by A the second fundamental form of Σ given by
A = g(∇XN,Y ) for all X,Y tangent to Σ.

Proposition 9. Let (Mn, g, V ) be a static triple. Let Σn−1 be an
immersed compact hypersurface in M . Then the Jacobi operator of Σ
is such that

LΣV := ∆ΣV + (Ric(N,N) + |A|2)V = g(∇V, 
H) + |A|2V.

Proof. Since ∆Mf = ∆Σf −g(∇f, 
H)+Hessf(N,N) for every func-
tion f ∈ C∞(M), the formula for LΣV follows from the static equa-
tion (3). q.e.d.

3. The Cotton tensor of a three-dimensional static triple

We deduce some identities satisfied by the Cotton tensor of three-di-
mensional static triples. They will be used in the proof of the Bochner
type formula (2) in the next section. It may be interesting to compare
the computations carried out in this section and in the following one
with the more general computations related to conformal flatness of
[53].

Let (M3, g) be a Riemannian three-manifold. The Riemann curvature
tensor is completely determined by the Ricci tensor. In fact,

(10) Rm =

(
Ric− R

4
g

)
⊙ g =

(
R̊ic+

R

12
g

)
⊙ g,

where A⊙B denotes the Kulkarni–Nomizu product of symmetric two-
tensors given in coordinates by (A⊙B)ijkl = AikBjl−AilBjk−AjkBil+
AjlBik (see [10]).

The Cotton tensor of (M3, g) is defined by

C(X,Y,Z) = (∇ZRic)(X,Y )− (∇Y Ric)(X,Z)

− 1

4
(dR(Z)g(X,Y )− dR(Y )g(X,Z)),

for all X,Y,Z ∈ X (M). If V ∈ C∞(M) is a static potential on (M3, g),
the Cotton tensor has a particularly simple expression.

Lemma 10. Assume (M3, g) admits a static potential V ∈ C∞(M).
Let

˚HessV = HessV − ∆V

3
g
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denote the traceless part of the Hessian of V and let T be the three-tensor
defined by

T (X,Y,Z) = (∇Z
˚HessV )(X,Y )− (∇Y

˚HessV )(X,Z),

for all X,Y,Z ∈ X (M). Then

(11) T (X,Y,Z) = −(R̊ic(X,Y )dV (Z)− R̊ic(X,Z)dV (Y ))

− (g(X,Y )R̊ic(Z,∇V )− g(X,Z)R̊ic(Y,∇V )),

and

C(X,Y,Z) = (∇ZR̊ic)(X,Y )− (∇Y R̊ic)(X,Z)

(12)

=
1

V

(
T (X,Y,Z)− R̊ic(X,Y )dV (Z) + R̊ic(X,Z)dV (Y )

)
.

Proof. Without loss of generality we assume that R = 6ǫ for ǫ ∈
{−1, 0, 1}. The static equations (4), (5) can be rewritten in coordinates
as

( ˚HessV )ij = V (R̊ic)ij,

(HessV )ij = V;ij = ( ˚HessV )ij − ǫV gij .

By the Ricci identity for commuting covariant derivatives and (10),
we obtain formula (11):

Tijk = (V;ijk + ǫVkgij)− (V;ikj + ǫVjgkj)

= −RpikjV
p

; + ǫ(gijV;k − gkjVj)

= −((R̊ic)ijV;k − (R̊ic)ikV;j)− (gij(R̊ic)kpV
p

; − gik(R̊ic)jpV
p

; ).

On the other hand, Cijk = (R̊ic)ij;k − (R̊ic)ik;j , because the scalar

curvature is constant. Formula (12) follows since ˚HessV = V R̊ic.
q.e.d.

The norm of the Cotton tensor C can be computed in different ways,
each way allowing to deduce interesting consequences. For instance, on
a regular level set Σ = V −1(c), c > 0, |C| depends on the norm of the
traceless part of the second fundamental form of Σ and on the gradient
of |∇V |2 on Σ (see [42], Formula 14). That computation is useful to
prove the classification results of [36] and [39]. In the next lemma we
show other two formulas that will be used in our applications.

Lemma 11. Assume (M3, g) admits a static potential V ∈ C∞(M).
Then

|C|2 = 1

V 2

(
8|R̊ic|2|∇V |2 − 12|R̊ic(∇V,−)|2

)
= − 4

V
Cijk(R̊ic)ijV k.

In particular, C vanishes at a point p ∈ M such that V (p) 	= 0 only

if ∇V (p) = 0 or R̊ic has at most two different eigenvalues at p.
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Proof. By Lemma 10, V Cijk = Tijk + Uijk, where

Tijk =− ((R̊ic)ijV;k − (R̊ic)ikV;j)

− (gij(R̊ic)kpV
p

; − gik(R̊ic)jpV
p

; ),

Uijk =− ((R̊ic)ijV;k − (R̊ic)ikV;j).

Thus, since

|U |2 = 2(R̊ic)ij(R̊ic)ijV;pV
p

; − 2(R̊ic)jpV
p

; (R̊ic)jqV;q ,(13)

TijkU
ijk = 2(R̊ic)ij(R̊ic)ijV;pV

p
; − 4(R̊ic)jpV

p
; (R̊ic)jqV;q ,(14)

|T |2 = 2(R̊ic)ij(R̊ic)ijV;pV
p

; − 2(R̊ic)jpV
p

; (R̊ic)jqV;q ,(15)

we obtain

V 2|C|2 = |T |2 + 2TijkU
ijk + |U |2 = (8|R̊ic|2|∇V |2 − 12|R̊ic(∇V,−)|2).

Moreover, since Cijk + Cikj = 0, from (13) and (14) we have

−V Cijk(R̊ic)ijV k =
V

2
CijkU

ijk =
1

2
(Tijk + Uijk)U

ijk

= (2|R̊ic||∇V |2 − 3|R̊ic(∇V,−)|2) = V 2

4
|C|2.

To finish the proof of the lemma, given p ∈ M with V (p) 	= 0,

we choose {e1, e2, e3} ⊂ TpM an orthonormal basis diagonalizing R̊ic.

Writing (R̊ic)ij(p) = λiδij and ∇V (p) =
∑3

i=1 aiei, we have

V 2|C|2(p) = 8|R̊ic|2(p)|∇V |2(p)− 12|(R̊ic)(∇V,−)|2(p)
= 4a21(2λ

2
2 + 2λ2

3 − λ2
1) + 4a22(2λ

2
1 + 2λ2

3 − λ2
2)

+ 4a23(2λ
2
1 + 2λ2

2 − λ2
3).

Since tr(R̊ic) = λ1 + λ2 + λ3 = 0, we obtain

V 2|C|2(p) = 4a21(λ1 + 2λ2)
2 + 4a22(λ2 + 2λ1)

2 + 4a23(λ1 − λ2)
2.

The last statement of the lemma follows. q.e.d.

4. The Bochner type formula

Proposition 12. Assume (M3, g) admits a static potential V ∈
C∞(M). Then

(16)
1

2
div(V∇|R̊ic|2) = (|R̊ic|2 + |C|2

2
)V + (R|R̊ic|2 + 18det(R̊ic))V.

Proof. Without loss of generality, we rescale the metric in such way
that R = 6ǫ for some ǫ ∈ {−1, 0, 1}. During the computation, we will
use the static equations written as

( ˚HessV )ij = V (R̊ic)ij ,(17)

V;ij = ( ˚HessV )ij − ǫV gij ,(18)
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and the fact that R̊ic is divergence free, which is a consequence of the
contracted second Bianchi identity 2div(Ric) = dR = 0.

We have

1

2
div(V |R̊ic|2) = 1

2
g(∇V,∇|R̊ic|2) + V∆

|R̊ic|2
2

(19)

= (R̊ic)ij;p(R̊ic)ijV p
; + V |∇R̊ic|2 + V g(∆R̊ic, R̊ic).

By the static equations (17) and (18),

(∆( ˚HessV ))ij = (∆V )R̊icij + V (∆R̊ic)ij + 2(R̊ic)ij;pV
p

; ,

hence

(20) V (∆R̊ic)ij = (∆( ˚HessV ))ij + 3ǫV (R̊ic)ij − 2(R̊ic)ij;pV
p

; .

Now we compute ∆( ˚HessV ). Following the notations of Lemma 10,

let Tijk = ( ˚Hess)ij;k− ( ˚Hess)ik;j. Taking two derivatives of ˚HessV , we
obtain

( ˚HessV )ij;kl = ( ˚HessV )ik;jl + Tijk;l = ( ˚HessV )ki;jl + Tijk;l

= ( ˚HessV )ki;lj +Rp
kjl(

˚HessV )pi

+Rp
ijl(

˚HessV )kp + Tijk;l

= ( ˚HessV )kl;ij +Rk
plj(

˚HessV )pi −Rpilj( ˚HessV ) p
k

+ Tkil;j + Tijk;l.

Contracting the two last indexes and using (10), we have

(∆( ˚HessV ))ij = ( ˚HessV )qq;ij +Rpj( ˚HessV )pi −Rpiqj( ˚HessV )qp
(21)

+ T q
iq;j + T q

ijq;

= (R̊ic)pj( ˚HessV )pi + 2ǫgpj( ˚HessV )pi

− ǫ(gpqgij − gpjgiq)( ˚HessV )qp

− (R̊ic)pqgij( ˚HessV )qp + (R̊ic)pjgiq( ˚HessV )qp

+ (R̊ic)iqgpj( ˚HessV )qp − (R̊ic)ijgpq( ˚HessV )qp

+ T q
iq;j + T q

ijq;

= 3ǫV (R̊icij)− V gij(R̊ic)pq(R̊ic)qp

+ 2V (R̊ic)pj(R̊ic)pi + V (R̊ic)iq(R̊ic) q
j

+ T q
iq;j + T q

ijq; .

By Lemma 10,

Tijk = −((R̊ic)ijVk − (R̊ic)ikVj)− (gij(R̊ic)kpV
p

; − gik(R̊ic)jpV
p

; ).
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Hence,

T q
iq;j = −(((R̊ic)qiV;q − (R̊ic)qqV;i) + (gqi(R̊ic)qpV

p
; − gqq(R̊ic)ipV

p
; ));j

(22)

= ((R̊ic)ipV
p

; );j = (R̊ic)ip;jV
p

; + (R̊ic)ipV
p

; j

= (R̊ic)ip;jV
p

; + (R̊ic)ip(( ˚HessV )pj − ǫV gpj )

= (R̊ic)ip;jV
p

; + V (R̊ic)ip(R̊ic)pj − ǫV (R̊ic)ij .

Moreover, recalling that (R̊ic) q
iq; = 0, we also have

T q
ijq; = −((R̊ic) q

ij; V;q − (R̊ic) q
iq; V;j )− ((R̊ic)ijV

q
;q − (R̊ic)iqV

q
;j )

(23)

− (gij(R̊ic) q
qp; − giq(R̊ic) q

jp; )V
p

; − (gij(R̊ic)qp − giq(R̊ic)jp)V
pq

;

= −(R̊ic)ij;qV
q

; − (−3ǫV )(R̊ic)ij + (R̊ic)iq(( ˚HessV )qj − ǫV gqj )

+ (R̊ic)jp;iV
p

; − (gij(R̊ic)qp − giq(R̊ic)jp)((
˚HessV )pq − ǫV gpq)

= ǫV (R̊ic)ij + V (R̊ic)iq(R̊ic)qj + V (R̊ic)jp(R̊ic)pi

− V gij(R̊ic)pq(R̊ic)qp + (R̊ic)jp;iV
p

; − (R̊ic)ij;qV
q

; .

Putting together (21), (22) and (23) we conclude that

(∆( ˚HessV ))ij = 3ǫV (R̊ic)ij − 2V (R̊ic)pq(R̊ic)pqgij(24)

+ 3V ((R̊ic)jp(R̊ic)pi + (R̊ic)ip(R̊ic)pj)

+ ((R̊ic)ip;j + (R̊ic)jp;i − (R̊ic)ij;p)V
p

; .

Combining (19), (20) and (24) we finally obtain

1

2
div(V∇|R̊ic|2) = V |∇R̊ic|2 + 6ǫV |R̊ic|2

+ 3V ((R̊ic)ip(R̊ic)pj + (R̊ic)jp(R̊ic)pi)(R̊ic)ij

− 2((R̊ic)ij;p − (R̊ic)ip;j)(R̊ic)ijV p
;

= V |∇R̊ic|2 − 2Cijp(R̊ic)ijV p
;

+ 6ǫV |R̊ic|2 + 6V tr(R̊ic ◦ R̊ic ◦ R̊ic).

To finish the proof, we use Lemma 11 and observe that if λ1, λ2, λ3

are the eigenvalues of R̊ic at some point of M , then λ1 + λ2 + λ3 = 0
implies

tr(R̊ic ◦ R̊ic ◦ R̊ic) = λ3
1 + λ3

2 + λ3
3

= −3λ2
1λ2 − 3λ1λ

2
2 = 3λ1λ2λ3 = 3det(R̊ic).

q.e.d.
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5. Proof of Theorem A

Theorem 13. Let (M3, g, V ) be a compact oriented static triple with

positive scalar curvature. If |R̊ic|2 ≤ R2/6, then one of the following
alternatives holds:

i) R̊ic = 0 and (M3, g, V ) is equivalent to the standard hemisphere;
or

ii) |R̊ic|2 = R2/6 and (M3, g, V ) is covered by a static triple that is
equivalent to the standard cylinder.

Proof. Using Lagrange’s multipliers method, one proves that every
symmetric traceless linear endomorphism A : R3 → R

3 satisfies

54(det(A))2 ≤ |A|6,
with equality if and only if A has at most two distinct eigenvalues.
Hence, since V is non-negative, the last two terms of the Bochner type
formula (16) satisfy the inequality

(25) (R|R̊ic|2 + 18det(R̊ic))V ≥ (R−
√
6|R̊ic|)|R̊ic|2V,

with equality at p ∈ M \ ∂M if and only if R̊ic(p) has at most two
distinct eigenvalues. Since V vanishes on ∂M , integrating (16) on M
and using (25) we obtain

0 ≥
∫

M

(
|∇R̊ic|2 + |C|2

2

)
V dμ +

∫

M

(
R−

√
6|R̊ic|

)
|R̊ic|2V dμ.

Our assumptions, therefore, imply that (M3, g, V ) is a locally con-
formally flat static triple with parallel Ricci tensor that either satisfies
R̊ic = 0 or R =

√
6|R̊ic|. The result follows then by the classification

results of [36] and [39], see Theorem 1 in the Introduction. q.e.d.

6. The associated singular Einstein manifold

Let (Mn, g, V ) be a static triple. As usual, we assume it has constant
scalar curvature ǫn(n− 1) for some ǫ ∈ {1, 0, 1}.

Let U be a small tubular neighborhood of ∂M diffeomorphic to [0, 1)×
∂M . Given p ∈ U and the corresponding point (r, x) ∈ [0, 1) × ∂M , we
write p = (r, x), for simplicity. Let B2

1 denote the open unit ball centered
at the origin of R2 and let S1 = R/2πZ denote the unit circle.

Let N n+1 be the quotient set

(S1 × (M \ ∂M)) ⊔ (B2
1 × ∂M)/ ∼,

where the equivalence relation ∼ identifies (θ, p) ∈ (S1× (U \∂M)) with
(r cos θ, r sin θ, x) ∈ (B2

1 \ {0}) × ∂M if p = (r, x).
N n+1 canonically inherits a structure of smooth manifold. {0}×∂M

is a codimension-two submanifold of N that we can identify with ∂M ⊂
M .
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One can intuitively imagine N n+1 as the manifold obtained by rotat-
ing M around ∂M .

The map that associates to each θ0 ∈ S1 the diffeomorphism of N
determined by (θ, p) ∈ S1 × (M \ ∂M) �→ (θ + θ0, p) ∈ S1 × (M \ ∂M),
p ∈ ∂M �→ p ∈ ∂M is a smooth action of S1 on N whose set of fixed
points is ∂M ⊂ N . We denote by X ∈ X (N ) the vector field generating
this action.

For every θ ∈ S1 the map φθ : M → N defined by p ∈ M \ ∂M �→
(θ, p) ∈ S1 × (M \ ∂M), p ∈ ∂M �→ (0, p) ∈ B2

1 × ∂M is a smooth
embedding. It gives a natural identification between M and the space
of orbits of the S1 action on N .

We denote by Ω the open dense subset N \ ∂M ⊂ N . Ω is naturally
identified with S1 × (M \ ∂M). Since V is positive on M \ ∂M , we can
define a smooth Riemannian metric h on Ω by the formula

h = V 2dθ2 + g.

The maps φθ : (M \ ∂M, g) → (Ω, h) are then isometric embeddings.
Moreover, the vector field X is orthogonal to every hypersurface φθ(M \
∂M) and such that |X| ◦φθ = V on M \∂M . These conditions uniquely
determine the metric h.

A computation in coordinates shows that the Ricci tensor of h is given
by

Rich(X,X) = −
(

1

V
∆gV

)
h(X,X),

Rich(X,Z) = 0,

Rich(Y,Z) = Ricg(Y,Z)− 1

V
(HessgV )(Y,Z),

where Y,Z are tangent to M . Since V is a static potential and (Mn, g)
has scalar curvature ǫn(n− 1), the metric h is Einstein,

Rich = ǫnh.

It is also a straightforward computation to verify that X = ∂θ is a
Killing vector field, i.e., that the S1 action described before is an action
by isometries.

To understand the behavior of the metric h near a connected compo-
nent ∂iM of ∂M , we introduce Fermi coordinates. Let s be the distance
function to ∂M in (M,g) and let (x2, x3) be a local coordinate system
on a neighborhood W of a point in ∂iM . Using (x0 = θ, x1 = s, x2, x3)
as local coordinates in N \ ∂M , we can write

(26) h = (ds2 + k2i s
2dθ2 +

3∑

i,j=2

gij(0, x
2, x3)dxidxj) + E,
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where ki denote the constant value of |∇V | on ∂iM and |E| ≤ Cs2 for
some constant C > 0. Indeed, using the fact that ∂M is totally geodesic
and Proposition 7, we obtain the expansions

gij(s, x
1, x2) = gij(0, x

1, x2) +O(s2) and V (s, x1, x2) = kis+O(s3).

We remark that E1A = E(∂s, ∂xA) = 0 for all A = 0, 1, 2, 3. More-
over, the coefficients of E in this coordinate system depend only on the
coordinates x1 = s, x2, x3 and have a Taylor expansion in s as s goes
to zero with coefficients that are smooth functions of the coordinates
x2, x3.

Equation (26) has the interpretation that near a connected compo-
nent ∂iM of the singular set ∂M ⊂ N , the metric h has the structure
of cone metric with link S1(ki) (the circle with length 2πki, a number
sometimes called the cone angle) along the codimension-two smooth
submanifold (∂iM,g∂M ), up to a perturbation. Metrics with this singu-
lar behavior have been already described and studied in the literature.
We refer the reader to [43] (see their definition of singular Riemannian
metric), [8] (where the singularities are called of “edge-cone” type) and
to the more general notion of iterated edge metrics on iterated edge
spaces used in [1] (see also [2]).

Summarizing up, the manifold N n+1 endowed with the Einstein edge
metric h and the S1 action by isometries generated by the vector field
X, which is everywhere orthogonal to the orbit space (Mn, g), vanishes
on the singular set ∂M and has norm V , will be called the associated
singular Einstein manifold to the static triple (Mn, g, V ).

We proceed with a description of some topological and geometrical
properties of the associated singular Einstein manifold.

N n+1 is compact if and only if Mn is compact, and it is simply con-
nected ifM and ∂M are simply connected (by Van Kampen’s Theorem).
When N is compact, since the vector field X ∈ X (N ) does not vanish
on Ω, N and ∂M = {X = 0} have the same Euler characteristic (one
can argue as in [37]). When N is oriented, X �→ −X gives rise to an
orientation inverting diffeomorphism.

The metric h = V 2dθ2 + g extends smoothly to a component ∂iM
of ∂M ⊂ N if and only if there exists a smooth function U : [0,

√
η) ×

∂iM → [0,+∞) such that U(0, p) = 1 for all p ∈ ∂M and V (s, p) =
sU(s2, p) in the Fermi coordinate system [0, η)× ∂iM (see [10], 9.114).
A necessary condition is that ki = |∇V | = 1 on ∂iM . This condition is
usually stated to be also sufficient (see [12] or [28]). When h extends
smoothly to all N , (N , h) is an example of the type of Einstein manifolds
studied in [56].

We emphasize that, in general, equivalent static triples with the same
scalar curvature give rise to geometrically distinct associated Einstein
manifolds. In fact, the orbits of the S1 action will have different lengths
if the static potentials are proportional by a factor λ 	= 1.
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When ∂M is compact it is possible normalize the static potential V
in such way that |∇V | ≤ 1 on ∂M . This means that in this situation,
to study (Mn, g, V ) one can work with an edge space (N n+1, h) such
that all cone angles are less than or equal to 2π.

Since (M,g) is complete, N endowed with the distance function in-
duced by h is a complete length space and the Hopf–Rinow Theorem
holds (see [51], Section 2.4). In particular, N is compact if and only if
(N , h) has finite diameter.

The structure of the metric h near the singular set clearly implies that
geodesics realizing the distance between a point in N and a component
of ∂M meets ∂M orthogonally. The proof of this fact is essentially the
same as the proof of the Gauss’ Lemma.

For the computation of the volume of an associated singular Einstein
manifold (N n+1, h) to a compact oriented static triple with scalar cur-
vature R = n(n−1), the singular codimension-two set ∂M is negligible.
The relation between the volume element of h and the volume element of
g is dμh = V dθ∧dμg. Hence, Fubini’s theorem and the static equations
yield

|N | =
∫ 2π

0

∫

M
dμh = 2π

∫

M
V dμg = −2π

n

∫

M
∆V dμg =

=
2π

n

∫

∂M
g

(
∇V,

∇V

|∇V |

)
dσg =

2π

n

r∑

i=1

ki|∂iM |.

Each function φ on Mn corresponds to a function on N n+1 invariant
under the S1 action. For the sake of simplicity, we make no notational
distinction between them. If ψ ∈ C∞(M), a direct computation in
coordinates shows that V∆hψ = V∆gψ + g(∇gV, ψ) = divg(V∇gψ)
on Ω.

In the four-dimensional case, the Riemann curvature tensor of the
Einstein metric h is determined by the Weyl tensor W of h. An explicit
calculus in coordinates shows that W depends only on the Ricci tensor
of the metric g. In fact, if {e0 = V −1∂θ, e

1, e2, e3} is an orthonormal
basis of TpN , p ∈ Ω, all the components WABCD vanish except

Wijkl = (R̊icg ⊙ g)ijkl, Wi0j0 = −(R̊icg)ij for i, j, k, l = 1, 2, 3.

When N 4 is oriented, considering W as a symmetric endomorphism
of the space of two-forms on M and its usual self-dual/anti-self-dual
decomposition W = W++W− (see [10]), one can also show by a direct
computation that

|W+|2h = |W−|2h = |R̊icg|2g.
In fact, W+ and −Ricg have the same set of eigenvalues. We will use

these facts about W in the last sections.
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As a final remark concerning the four-dimensional case, we can now
unveil the origin of the Bochner type formula (16) for a static triple
(M3, g, V ): it is just the Bochner formula for the self-dual part of the
Weyl tensor of the Einstein metric h = V 2dθ2+g (see [31], Formula 1.3).

We finish our description of the associated singular Einstein manifolds
to static triples by discussing some examples.

1) Given the unit hemisphere (Sn
+, gcan, V = xn+1), the associated Ein-

stein manifold is the unit round sphere (Sn+1, gcan). The S1 action is
generated by rotations in the plane {x1 = . . . = xn = 0} ⊂ R

n+2.

2) Given the standard three-dimensional cylinder over S2 with scalar
curvature 6, the associated Einstein manifold is the product (S2 × S2,
1
3(gcan + gcan)) The S

1 action is generated by rotations of one of the S2

factors around a fixed axis.

3) Any Schwarzschild–de Sitter space of positive mass m has the prop-
erty that the norm of the gradient of its static potential attains different
values on different boundary components (see Remark 7). No rescaling
of V can remove the singularities of the associated Einstein manifold,
which is, topologically, S2 × S2.

4) The Euler characteristic of the associated Einstein four-manifold
(N 4, h) to a compact orientable static triple (M3, g, V ) with positive
scalar curvature is equal to the Euler characteristic of the two-dimen-
sional orientable closed surface ∂M . In particular, χ(N ) is an even
integer. Therefore, no Einstein metric on CP

2 (e.g., the Fubini–Study

metric) or on CP
2#2CP

2
(e.g., the Shen–LeBrun–Weber metric [19])

arises from a compact static three-manifold.

5) If a compact static triple with positive scalar curvature (M3, g, V )
generates an associated Einstein manifold (N 4, h = V 2dθ2 + g) that is
Kähler, then it must be isometric to the standard cylinder. In fact, it
is known that the self-dual part W+ of the Weyl tensor of a Kähler
four-manifold is such that |W+

h |2h = R2
h/24 (see [10], 16.62). Since

|R̊icg|2g = |W+
h |2h and Rh = 2Rg, the claim follows from Theorem A.

7. Topology of compact static three-manifolds with positive

scalar curvature

The topology of three-dimensional static triples (M3, g, V ) can be
studied using area-minimizing surfaces that can be produced in mean-
convex manifolds by direct variational methods if the topology of M
is sufficiently complicated. For, as we will see, locally area-minimizing
surfaces exist in M \ ∂M only in exceptional cases.

Let (M3, g, V ) be a compact static triple. Let Σ2 be a compact surface
and φ : Σ → M a proper embedding, i.e., an embedding of Σ in M such
that φ(Σ) ∩ ∂M = φ(∂Σ). Sometimes we identify Σ with its image in
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M . We will frequently assume that Σ is two-sided, i.e., that there exists
a smooth unit normal vector field N on Σ.

Let (M,g) := (M \ ∂M,V −2g). Since M is compact, V vanishes on
∂M and |∇V | is a positive constant on each boundary component of
M , (M,g) is a conformally compact Riemannian manifold. These Rie-
mannian manifolds have bounded geometry [3], i.e., they have positive
injectivity radius and the Riemann curvature tensor and all of its co-
variant derivatives are bounded. This allows one to consider, for some
small δ > 0, the smooth flow Φ : [0, δ) × Σ → M of Σ with normal
velocity V ,

(27)
d

dt
Φt(p) = V (Φt(p))Nt(p) for all p ∈ Σ, Φ0 = φ.

In fact, (27) is just the flow of Σ in (M,g) by equidistant surfaces.
This flow is smooth if δ is less than the injectivity radius of (M,g).

The surfaces Φt(Σ), t ∈ [0, δ), are compact properly embedded sur-
faces in (M,g) with the same boundary as Σ, since V vanishes on ∂M .

We show that the flow (27) starting at a minimal surface typically
decreases the area (compare with [16], Proposition 3.3, and [41], Lemma
2.4). More precisely, we prove the following:

Proposition 14. Let (M3, g, V ) be a static triple with scalar curva-
ture R = 6ǫ, ǫ ∈ {−1, 0, 1}. Let Σ2

0 be a compact properly embedded
two-sided minimal surface in (M3, g) and choose N0 a smooth unit nor-
mal vector field on Σ0.

Let Φt, t ∈ [0, δ), be the smooth normal flow with speed V starting at
Σ0 defined by (27). Write Σt = Φt(Σ0). Then

t ∈ [0, δ) �→ |Σt|
is monotone non-increasing. When t �→ |Σt| is constant,

i) If Σ is closed, then

Φ : ([0, δ) × Σ0, (V ◦Φ)2dt2 + gΣ0) → (M,g)

is an isometry onto its image W ⊂ M . Moreover, (Σ0, gΣ0) has
constant Gaussian curvature K = 3ǫ and V is constant on each
Σt, so that g on W is isometric to the product metric ds2 + gΣ0 .

ii) If ∂Σ is not empty, then ǫ = 1 and

Φ : ([0, δ) × (Σ0 \ ∂Σ0), (V ◦ Φ)2dt2 + gΣ0) → (M,g)

is an isometry onto its image W ⊂ M \ ∂M . Moreover, (Σ0, gΣ0)
is isometric to the round hemisphere (S2

+, gcan) with Gaussian cur-
vature K = 1 and V restricted to Σt is a static potential, so that
g on W is isometric to the constant sectional curvature metric
V 2
|Σ0

dθ2 + gΣ0 .
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Proof. Let 
Ht = −HtNt define the mean curvature Ht of Σt. The
variation of Ht is given by ∂tHt = −LΣtV . By Proposition 9,

∂tHt = −g(∇V, 
Ht)− |At|2V ≤ g(∇V,Nt)Ht.

Since H0 = 0, Gronwall’s inequality implies that Ht ≤ 0 for every
t ∈ [0, δ). By the first variation formula of area for variations that fix
the boundary ∂Σt = ∂Σ0, this implies that t ∈ [0, δ) �→ |Σt| is non-
increasing.

If t ∈ [0, δ) �→ |Σt| is constant, the previous analysis implies that
each Σt is totally geodesic. It follows that each (Σt, gΣt) is isometric to
(Σ0, gΣ0).

Denote by Vt the restriction of V to Σt. Since each Σt is totally
geodesic, using the general formula for the variation of the second fun-
damental form of a surface Σ under a normal variation with speed ψ,

∂tAij = −ψRiNjN − (HessΣψ)ij + ψ|A|2,
we deduce that on each Σt we have

HessΣtVt(X,Y ) = −g(R(X,Nt)Nt, Y )Vt,

for every pair of vectors X,Y ∈ TΣt. Given an orthonormal basis
{X,Y,Nt} of tangent vectors at a point in the totally geodesic surface
Σt, we have

1

Vt
HessΣtVt(X,X) =

1

Vt
HessVt(X,X)

= Ric(X,X) − 3ǫ

= sec(X ∧ Y ) + sec(X ∧Nt)− 3ǫ

= Kt + g(R(X,Nt)Nt,X) − 3ǫ

= (Kt − 3ǫ)− 1

V
HessVt(X,X).

Since X ∈ TΣt is arbitrary, we conclude that Vt is a non-negative
smooth function on Σt that satisfies

(28) HessΣVt =
1

2
(Kt − 3ǫ)Vtg and Vt = 0 on ∂Σt.

If ∂Σt is empty, the existence of a positive solution to (28) implies
Kt = 3ǫ and Vt constant. If ∂Σt is non-empty, one must have K = ǫ = 1
and Vt is a solution to the static equation on (Σt, gΣt). See Appendix B
for a proof of these facts. The last statements of i) and ii) follows by a
reparametrization. q.e.d.

The next proposition exemplifies how one can combine Proposition
14 and the existence of area-minimizing surfaces to study the topology
of a three-dimensional static triple in a quite effective way.
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Proposition 15. Let (M3, g, V ) be a compact static triple with non-
empty boundary. The inclusion map i : ∂M → M induces an injective
map i∗ : π1(∂M) → π1(M) between the fundamental groups.

Proof. Let [Γ] ∈ π1(∂M) be such that i∗[Γ] = 0 in π1(M). We may
assume that Γ is a smooth embedded closed curve. We want to show
that Γ bounds a disk in ∂M .

Since Γ bounds a disk in M and (M3, g) is a compact mean convex
three-manifold, there exists a solution Σ0 to the Plateau problem for
this given Γ [46], i.e., Σ0 is a disk in M with ∂Σ = Γ such that

|Σ0| = inf{|Σ|; Σ immersed disk in (M3, g) with ∂Σ = Γ}.
In [46] it is also shown that any solution is an embedded minimal disk

Σ, with boundary ∂Σ = Γ, which is either contained in ∂M or properly
embedded in M . In the first case [Γ] = 0 in π1(∂M). Therefore, it
remains to be analyzed the case where Σ0 is a properly embedded disk
in M .

Since V vanishes on Γ ⊂ ∂M , the flow (27), {Σt}t∈[0,δ), with normal
speed V starting at Σ0, is such that ∂Σt = Γ for all t ∈ [0, δ). Thus,
|Σt| ≥ |Σ0|, as Σ0 is a solution to the Plateau problem. By Proposition
14, the opposite inequality also holds. Thus, each Σt is also a solution
to the minimization problem we are considering and the statement ii)
in Proposition 14 holds true.

To finish the proof, one uses a continuation argument. Let T > 0 be
the maximal time in which the flow (27) exists and is smooth. By the
above argument, we are in the situation described by Proposition 14,
item ii). We claim that T = +∞. In fact, the surfaces Σt \ ∂Σt never
touch the boundary of M in finite time (for it would imply that (M \
∂M,V −2g) is incomplete) and, if T < +∞, a sequence Σti with ti → T
would be a sequence of Plateau solutions converging to another solution
to the Plateau problem for Γ (which is smooth and properly embedded
by [46]) and it would be possible to continue the flow beyond T .

Now we do the same argument flowing in the direction of the opposite
normal. In the end, we have obtained an isometric embedding of (S3

+ \
∂S3

+, gcan) in (M \∂M, g). In particular, M is diffeomorphic to S3
+. And

in this case, obviously [Γ] = 0 in π1(∂M), as we wanted to prove. q.e.d.

Remark 8. There are oriented static triples (M3, g, V ) with negative
scalar curvature and non-spherical boundary components, see [41]. It
is interesting to observe that essentially the same proof as above gives
a similar result for the non-compact static triples considered in that
paper.

We have now all ingredients to prove Theorem B.

Theorem 16. Let (M3, g, V ) be a compact oriented static triple with
positive scalar curvature. Then
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i) The universal cover of M is compact.
ii) If ∂M contains an unstable component, then ∂M contains exactly

one unstable component. In this case, M is simply connected.
iii) Each connected component of ∂M is diffeomorphic to a sphere.

Proof. As usual, we may assume R = 6.
i) Since M is compact, |∇V | + V 2 attains its maximum, necessarily

at a boundary component ∂1M (Proposition 5). By Proposition 8, ∂1M
has Gaussian curvature K ≥ 1 and, therefore, is diffeomorphic to a two-
sphere. This implies that the boundary of the universal covering M̃
has also a component ∂1M̃ diffeomorphic to a two-sphere (in fact, every
component covering ∂1M satisfies this property). Now, any point in the
regular set of the associated singular Einstein manifold (N 4, h) can be

joined to the compact set ∂1M̃ by a geodesic minimizing the distance
of p to ∂1M and touching this hypersurface orthogonally. Estimating
the distance to the first focal point as in the classical proof of Bonnet–
Myers theorem, we conclude by the generalization of the Hopf–Rinow

theorem to the singular space (Ñ 4, h) ([51], section 2.4) that Ñ must
be compact, as any of its points must be at distance at most π/2 from

the compact set ∂1M̃ .
ii) By item i), without loss of generality we can assume M is sim-

ply connected and show that ∂M has exactly one unstable component.
(M3, g) cannot be the standard cylinder because it contains by hypoth-
esis at least one unstable boundary component that we denote by ∂uM .
We remark also that all embedded closed surfaces inM are two-sided (as
M is simply-connected) and that we can assume [∂uM ] 	= 0 in H2(M ;Z)
(otherwise, ∂M = ∂uM). Since the standard cylinder is ruled out, ar-
guing as in Proposition 15 using the results of the Geometric Measure
Theory about the existence and regularity of area-minimizing currents
in an integral homology class (see [58]) and Proposition 14, item i),
one shows that the minimization of area in the homology class of ∂uM
produces a smooth embedded oriented stable minimal surface (possibly
disconnected and with integer multiplicities) homologous to ∂uM that
is necessarily contained inside ∂M . No connected component of such
surface can be contained in an unstable component of ∂M . Reason-
ing on the homology relations between the boundary components (as in
[41], Lemma 3.3), the existence of an unstable component other than
∂uM is seem to lead to a contradiction.

iii) Each stable component of ∂M is diffeomorphic to a sphere be-
cause M is oriented and has positive scalar curvature [55]. On the other
hand, if there is an unstable component of ∂M , M must be simply con-
nected by ii). The conclusion follows from Proposition 15. q.e.d.

To conclude this section, we describe the two static triples that can
be obtained from the standard cylinder. Besides the (non-orientable)
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static quotient of the Schwarzschild–de Sitter spaces, they are the only
static quotients of the locally conformally flat examples described in
Theorem 1.

Given

(M3, g, V ) =

([
0,

π√
3

]
× S2, gprod = dt2 +

1

3
gcan,

1√
3
sin(

√
3t)

)
,

the maps

A1 : (t, x) ∈ M �→ (t,−x) ∈ M, A2 : (t, x) ∈ M �→
(

π√
3
− t,−x

)
∈ M

are isometric involutions without fixed points such that V ◦ Ai = V ,
i = 1, 2. Hence, the quotients (M3, g, V )/Ai, i = 1, 2, are static triples.

A1 inverts orientation and the first quotient M/A1 is diffeomorphic
to [0, π/

√
3]× RP

2. On the other hand, M/A2 is oriented, contains an
embedded copy of RP2 and has a connected boundary diffeomorphic to
S2 (in fact, M/A2 is diffeomorphic to RP

3 minus a ball). The associated
Einstein manifolds are both isometric to the standard product

(S2 × RP
2,
1

3
(gcan + gcan)),

but the corresponding S1 actions are generated by rotations around a
fixed axis of different factors of S2×RP

2: S2 in the case of (M,g, V )/A1,
RP

2 in the case of (M,g, V )/A2. We stress the subtle fact that, despite
M/A2 being orientable, the associated Einstein manifold to M/A2 is
non-orientable.

8. Solution to a Yamabe type problem

Given (M3, g, V ) a compact static triple with scalar curvature 6, we
consider (N 4, h) the associated singular Einstein manifold (as described
in Section 6). As before, we denote by Ω the open dense subset of N
where the Riemannian metric h is defined, i.e., Ω = N \ ∂M .

The metric h is Einstein with scalar curvature 12. Let |W+|h be the
norm of self-dual part of the Weyl curvature tensor of h. As remarked
before, |W+|h = |R̊icg|g.

We consider the equation

(29) −∆hu+
1

6
(12− 2

√
6|W+|h)u =

1

6
λu3,

where λ is some constant. As showed in [31], the right hand side defines
a second order differential operator that has some conformal covariance
properties. To explain the geometric relevance of (29), we observe that
a positive function u ∈ C2(Ω) that solves (29) gives rise to a conformal

metric h̃ = u2h on Ω such that

R̃− 2
√
6|W̃+|h̃ = λ

is constant (see [31]).
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The aim of this section is to prove that, except in the case where
W+ = 0, there exists for some non-positive λ a mildly regular solution
to (29) on (N 4, h) that is invariant under the S1 action on N .

Theorem 17. Let (N 4, h) be the associated singular Einstein mani-
fold to a compact static triple with positive scalar curvature (M3, g, V )
that is not equivalent to the standard hemisphere.

There exists a constant λ ≤ 0 and a positive function φ ∈ W 1,2(N )∩
L∞(N ), invariant under the S1 action on N , that is a weak solution to
(29). Moreover, φ ∈ C0,μ(N ) ∩ C2,α(Ω) for some μ, α ∈ (0, 1) and φ is
a strong solution to (29) on Ω.

We remark that the Sobolev space W 1,2(N ) is the completion of
C∞
0 (Ω) with respect to the usual Sobolev norm.
In order to deal with this modified Yamabe problem in the singular

space (N 4, h), we apply the machinery developed by Akutagawa, Car-
ron and Mazzeo in [1] to solve the Yamabe problem in singular spaces.
In fact, once we reformulate the problem considering the required S1-
invariance of the solution, the proof of Theorem 17 is essentially the
same proof of Theorems 1.12 and 1.15 in [1], combined with the regu-
larity results of [2].

As in the study of the classical Yamabe problem, one uses the varia-
tional approach. Consider the functional

W(φ) =

∫
N |∇hφ|2h + 1

6(12− 2
√
6|W+|)φ2dμh

(
∫
N φ4dμh)1/2

defined for every function φ ∈ W 1,2(N ), φ 	= 0. This functional is well-
defined because the usual Sobolev embedding W 1,2(N ) ⊂ L4(N ) holds
in (N 4, h) (see [1], section 2.2). It is straightforward to verify that W
is bounded from below.

Let A denote the set consisting of functions on W 1,2(N ) that are
invariant under the S1 action on (N 4, h). If φ ∈ A is not identically
zero, we have

W(φ) = (2π)1/2
∫
M (|∇gφ|2g + 1

6(12 − 2
√
6|R̊icg|g)φ2)V dμg

(
∫
M φ4V dμg)1/2

.

Now we define

WM (N , [h]) := inf{W(φ); φ ∈ A,φ ≥ 0, φ 	= 0}.
A non-negative function φ ∈ A attaining the infimum WM (N , [h])

has to be a weak solution of the following equation on (M3, g):

(30) −divg(V∇gφ) +
1

6
(12 − 2

√
6|R̊icg|g)V φ =

1

6
WM (N , [h])V φ3.

This is precisely equation (29) for the S1-invariant function φ ∈ A,
where λ = WM (N , [h]). It is a quasi-linear degenerated elliptic equation
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(see Appendix C for more information about this type of degenerated
equation).

We first argue that the Yamabe type invariant WM (N , [h]) is non-
positive. The next proposition contains the key inequality, which should
be compared with the refined Kato inequality for Codazzi tensors [15].

Proposition 18. Let (M3, g, V ) be a static triple. At a point p ∈ M

where R̊ic does not vanishes,

(31) |∇|R̊ic||2 ≤ 3

5

(
|∇R̊ic|2 + |C|2

2

)
.

The proof is postponed to the Appendix A, where it is shown more
generally that a similar inequality holds true for every symmetric two-
tensor that has constant trace and zero divergence.

Following [31], Proposition 3.4, the idea to prove that WM (N, [h]) is
non-positive is to manipulate the Bochner type formula (16) to get rid
of the gradient terms using the refined inequality (31). To a systematic
recent use of this idea, we refer the reader to the beautiful paper [13].

Proposition 19. Let (M3, g, V ) be a compact oriented static triple

with scalar curvature R = 6. If R̊ic 	= 0 on M , then

inf
{φ∈C∞(M);φ>0}

∫

M

(
6|∇φ|2 + (12 − 2

√
6|R̊ic|)φ2

)
V dμg ≤ 0.

Proof. For each ǫ > 0, we consider a suitable power of the positive
smooth function φǫ = (|R̊ic|2+ǫ)1/2 and take the limit as ǫ goes to zero.

By hypothesis, φǫ is not constant. Given p > 0,

div(V∇(φp
ǫ )) = pdiv(φp−1

ǫ (V∇φǫ))(32)

= pφp−1
ǫ div(V∇φǫ) + p(p− 1)V φp−2

ǫ |∇φǫ|2

= pφp−2
ǫ (φǫdiv(V∇φǫ) + (p − 1)V |∇φǫ|2)

= pφp−2
ǫ

(
div

(
V∇(φ2

ǫ )

2

)
+ (p− 2)V |∇φǫ|2

)
.

Since ∇(|R̊ic|2) = ∇(φ2
ǫ ) = 2φǫ∇φǫ, at a point where |R̊ic| 	= 0 we

have

|∇φǫ|2 =
1

4φ2
ǫ

|∇|R̊ic|2|2 = |R̊ic|2
|R̊ic|2 + ǫ

|∇|R̊ic||2 ≤ |∇|R̊ic||2.

By Proposition 18, we conclude that

(33) |∇φǫ|2 ≤
3

5

(
|∇R̊ic|2 + |C|2

2

)
.

Inequality (33) holds even at a point where R̊ic = 0, since at such
point φǫ attains a minimum. Combining (32), the Bochner type formula
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(16) and inequality (33), we obtain

div(V∇(φp
ǫ ))

≥ pφp−2
ǫ V

(
6|R̊ic|2 + 18det(R̊ic) +

(
5

3
+ p− 2

)
|∇φǫ|2

)
.

Choosing p = 1/3, the last term vanishes. Recalling inequality (25),
we finally obtain

(34) div(V∇(φ1/3
ǫ )) ≥ 1

3
V (6−

√
6|R̊ic|)|R̊ic|2φ−5/3

ǫ .

Multiplying (34) by the φ
1/3
ǫ ∈ C∞(M) and integrating by parts, we

have ∫

M
(3|∇(φ1/3

ǫ )|2 + (6−
√
6|R̊ic|)|R̊ic|2φ−4/3

ǫ )V dμg ≤ 0.

Hence, for all ǫ > 0,
∫

M

(
3|∇(φ1/3

ǫ )|2 + (6−
√
6|R̊ic|)(φ1/3

ǫ )2
)
V dμg

≤
∫

M
(6−

√
6|R̊ic|)φ−4/3

ǫ (φ2
ǫ − |R̊ic|2)V dμg ≤ Dǫ1/3,

for some constant D > 0. The proposition follows. q.e.d.

Proposition 19 implies that

WM (N , [h]) ≤ 0,

when the compact static triple (M3, g, V ) is not equivalent to the stan-
dard hemisphere.

Now, following [1], for each open set U ⊂ N we set

S(U) = inf{
∫

N
|∇hφ|2hdμh; φ ∈ W 1,2

0 (U ∩ Ω), ‖φ‖24 = 1},

W(U) = inf{W(φ); φ ∈ W 1,2
0 (U ∩ Ω), ‖φ‖24 = 1},

and define the local Sobolev and the local (modified) Yamabe constant
by

Sℓ(N , h)= inf
p∈N

lim
r→0

S(B(p, r)) and Wℓ(N , [h])= inf
p∈N

lim
r→0

W(B(p, r)).

Accordingly to [1],

Sℓ(N , h) = Wℓ(N , [h]) > 0,

see Lemma 1.3, Proposition 1.4 and Theorem 2.2 in [1]. The explicit
value of the local Sobolev constant of an edge space like (N 4, h) was
computed in [48]. At this point, it may be useful to remark that Rh −
2
√
6|W+|h is a bounded function onN (in fact, it is a Lipschitz function)

so that all conditions iv) a), b), c) described in [1] for Scalg (their
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notation) are satisfied by Rh−2
√
6|W+|h. It is straightforward to verify

that their arguments apply for such modified potential instead of Scalg.
With this information at hands, we now sketch the proof of Theorem

17 (see [1], proof of Theorem 1.12). The idea to obtain a solution to
(30) is first to produce minimizers φp ∈ A of the modified functional

μp(φ) =

∫
N |∇hφ|2h + 1

6(12− 2
√
6|W+|)φ2dμh

(
∫
N φpdμh)2/p

,

on the space of non-negative functions φ ∈ A such that ‖φ‖L2p/(p−2)(N ) =

1 by the direct method of the calculus of variations and then, using a
priori estimates, obtain a sequence φpi with pi → 4 converging to a
function φ ∈ A such that μ4(φ) = WM (N , [h]).

In [1] it was shown that this approach works if the local Yamabe
invariant is strictly greater that WM (N , h). Since we proved WM (N , h)
≤ 0, the proof of Theorem 1.12 in [1] applies.

The conclusion is that there exists a weak solution φ ∈ W 1,2(N ) ∩
L∞(N ) to (30) that is non-negative and invariant under the S1-action.
The positiveness of φ follows by [1], Proposition 1.15. Concerning the
regularity of the solution, the C2,α regularity on Ω follows by standard
results for quasi-linear elliptic equations [29] and the Hölder continuity
on N follows by [2].

We conclude this section with a remark concerning the Yamabe prob-
lem on (N 4, h). We claim that the Yamabe constant of (N 4, h),

Y(N , [h]) = inf
{ψ∈W 1,2(N );ψ 	=0}

∫
N |∇hψ|2 + 2ψ2dμh

(
∫
N ψ4dμh)1/2

is positive. In fact, suppose by contradiction that Y(N , [h]) ≤ 0. Since
the local Sobolev constant of (N 4, h) is positive, Theorems 1.12 and
1.15 of [1] implies the existence of a positive function ψ0 ∈ L∞(N ) ∩
W 1,2(M) that satisfies −∆hψ0+2ψ0 = Y(N , [h])ψ3

0 weakly on N . Thus,
ψ0 > 0 satisfies an equation of the form −∆hψ0 + Gψ0 = 0 for some
positive function G and we have

∫
N |∇hψ0|2hdμh = −

∫
N Gψ2

0dμh < 0, a
contradiction.

In particular, the solution φ obtained in Theorem 17 is such that the

integral of the scalar curvature of the metric ĥ = φ2h is positive, since by
the definition of the Yamabe constant,

∫
N R̂dμĥ ≥ Y(N , [h])‖φ‖2L4(N ) >

0. This remark will be used in the next section (see Proposition 21).

9. Proof of Theorem C

We start with two propositions that are the key results needed for the
proof of Theorem C. The first one is a version of the Gauss–Bonnet–
Chern formula.
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Lemma 20. Let (N 4, h) be an oriented associated singular Einstein
manifold to a compact static triple (M3, g, V ) with positive scalar cur-
vature.

Given u ∈ C4(M) ∩ C∞(int(M)), consider the Riemannian metric

h̃ = u2h = u2(V 2dθ2+g) on Ω. Then the singular space (N 4, h̃) is such
that

(35)
1

48

∫

N
R̃2dμh̃ +

∫

N
|W̃+|2

h̃
dμh̃ = 8π2

r∑

i=1

ki +
1

4

∫

N
| ˚̃Ric|2

h̃
dμh̃,

where ki denotes the constant value of |∇V | on a connected component
of ∂M = ∂1M ∪ . . . ∪ ∂rM for all i = 1, . . . , r.

Proof. First, we study the behavior of the metric h̃ = u2(V 2dθ2 + g)
near its singular set ∂M . In order to do this, we introduce Fermi coor-
dinates on M with respect to the metric g̃ = u2g. Since by hypothesis
this is a C4 metric on M , the normal exponential map of ∂M is only of
class C3.

Let s and s̃ denote the distance function to the boundary ∂M in
(M3, g) and (M3, g̃), respectively. Let x = (x2, x3) be local coordinates
in ∂M . We have s̃(s, x) = u(0, x)s + O(s2). Since V (0, x) = 0 and
∂sV (0, x) = ki at a point (0, x) = (0, x2, x3) belonging to the connected
component ∂iM (Proposition 7), we also have

(uV )(s̃, x2, x3) = (u(0, x)+O(s̃))(∂s̃V (0, x2, x3)s̃+O(s̃2)) = kis̃+O(s̃2).

Using the local coordinates (x0 = θ, x1 = s̃, x2, x3) near ∂iM , we

conclude that h̃ = (uV )2dθ2 + g̃ has the expansion

h̃ij(s̃, x
2, x3) = ds̃2 + k2i s̃

2dθ2 +

3∑

i,j=2

g̃ij(0, x
2, x3)dxidxj+

+ 2

3∑

i,j=2

Ãij(0, x
2, x3)s̃dxidxj +

3∑

i,j=2

G̃ij(0, x
2, x3)s̃2dxidxj + E,

where Ã(0, x2, x3) is the second fundamental form of ∂M in (M3, g̃ =
u2g) at x = (0, x2, x3). Moreover, the remainder E satisfies |E| ≤ Cs̃3

for some constant C > 0 and E(∂s̃, ∂xA) = 0 for all A = 0, 1, 2, 3.

Thus, h̃ is singular in the sense of [43]. Accordingly to [43] (compare
with [8]), a Gauss–Bonnet–Chern formula holds for the singular space

(N 4, h̃) and is given by

1

48

∫

N
R̃2dμh̃ +

1

8

∫

N
|W̃ |2

h̃
dμh̃ − 1

4

∫

N
| ˚̃Ric|2

h̃
dμh̃ =

= 4π2(χ(N )− χ(∂M) +

r∑

i=1

kiχ(∂iM)).
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In the above formula |W̃ |h̃, denotes the norm of the Weyl tensor W̃ .

Considering the self-dual/anti-self-dual decomposition W̃+ + W̃− of W̃
viewed as a symmetric endomorphism of the space of two-forms, we
have |W̃ |2

h̃
= 4(|W̃+|2

h̃
+ |W̃−|2

h̃
).

As observed in Section 6, N 4 and the fixed point set of the S1 action
on N , i.e., ∂M , have the same Euler characteristic. Moreover, since the
map θ �→ −θ is an orientation inverting isometry of (N 4, h̃), |W̃ |2

h̃
=

8|W̃+|2
h̃
. By Theorem B, iii), each connected component of ∂M is a

two-sphere. Formula (35) follows. q.e.d.

Remark 9. The associated Einstein manifold (N 4, h = V 2dθ2 + g)
itself is such that

1

48

∫

N
R2

hdμh = 2π
r∑

i=1

ki|∂iM |,
∫

N
|W+|2hdμh = 2π

∫

M
|R̊icg|2gV dμg.

Thus, formula (35) for (N 4, h) is precisely the fundamental formula
(9) for (M3, g, V ) (see Proposition 6). This curious observation can
be used to give a different proof of the above lemma using only the
conformal invariance of the Weyl term in (35) and the conformal trans-
formations laws of the Q-curvature (for the definition and properties of
the Q-curvature, see, for example, [32]).

The second key proposition is a consequence of the existence result
Theorem 17 (compare with [31], Proposition 3.5).

Proposition 21. Let (N 4, h) be the associated singular Einstein
manifold to a compact static triple (M3, g, V ) with positive scalar cur-
vature. Assume that (M3, g, V ) is not equivalent to the standard hemi-
sphere.

Then

inf
h̃=u2h, u>0
u∈C∞(M)

∫

N
R̃2dμh̃ ≤ 24

∫

N
|W+|2hdμh.

Moreover, assume the equality holds. Let φ be the solution to the
modified Yamabe problem given in Theorem 17. Then φ ∈ C∞(M) and

the metric ĥ = φ2h on Ω is such that R̃ = 2
√
6|W̃+|h̃ is a positive

constant.

Proof. By Theorem 17, there exists a Riemannian metric ĥ = φ2h on
Ω = N \ ∂M , where φ ∈ C0(M) ∩ C2,α(int(M)) is positive, such that

R̂− 2
√
6|Ŵ+|ĥ

is a constant λ ≤ 0. Multiplying by R̂ and integrating on N , we obtain
∫

N
R̂2dμĥ = 2

√
6

∫

N
R̂|Ŵ+|ĥdμĥ + λ

∫

N
R̂dμh̃
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≤ 2
√
6(

∫

N
R̂2dμĥ)

1/2(

∫

N
|Ŵ+|2

ĥ
dμĥ)

1/2 + λ

∫

N
R̂dμĥ.

As remarked in the end of the previous section,
∫
N R̂dμĥ > 0. There-

fore, ∫

N
R̂2dμĥ ≤ 24

∫

N
|Ŵ+|2

ĥ
dμĥ =

∫

N
|W+|2hdμh,

and equality holds if and only if λ = 0. The last equality follows from
the conformal invariance of |W+|2hdμh in dimension four.

Since an approximation argument implies that

inf
h̃=u2h, u>0
u∈C∞(M)

∫

N
R̃2dμh̃ = inf

h̃=u2h, u>0
u∈C0(M)∩C2,α(int(M))

∫

N
R̃2dμh̃,

we conclude that

inf
h̃=u2h,u>0
u∈C∞(M)

∫

N
R̃2dμh̃ ≤

∫

N
R̂2dμĥ ≤

∫

N
|W+|2hdμh.

If equality holds, then R̂ = 2
√
6|Ŵ+|ĥ and the infimum of the func-

tional ĥ �→
∫
N R̂2dμĥ on the set of metrics {ĥ = ψ2h; ψ ∈ C0(M) ∩

C2,α(int(M)), ψ > 0} is attained by φ. Considering variations ĥt =

(φ + tφ−1v)2h, v ∈ C∞
0 (int(M)), one can show that R̂ must be con-

stant (see [10], 4.67). Therefore, |Ŵ+|ĥ is constant and φ satisfies the
equation

−6divg(V φ) + 12V φ = R̂V φ3.

In Appendix C, we argue that φ is smooth up to the boundary. The
proposition follows. q.e.d.

We have now all ingredients we need to prove Theorem C.

Theorem 22. Let (M3, g, V ) be a compact simply connected static
triple with scalar curvature 6. One of the following alternatives holds:

i) (M3, g, V ) is equivalent to the standard hemisphere; or
ii) (M3, g, V ) is equivalent to the standard cylinder; or
iii) Denoting by ∂M = ∂1M ∪ . . .∪ ∂rM the connected components of

the boundary and by ki the value of |∇V | on ∂iM , the following
inequality holds:

r∑

i=1

ki|∂iM | < 4π

3

r∑

i=1

ki.

Proof. Let (N 4, h) be the associated singular Einstein manifold to
(M3, g, V ). Assume (M3, g, V ) is not equivalent to the standard hemi-
sphere. As a consequence of Proposition 21, there exists a positive
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function u ∈ C∞(M) such that (N 4, h̃ = u2h) satisfies

1

24

∫

N
R̃2dμh̃ ≤

∫

N
|W̃+|2

h̃
dμh̃ =

∫

N
|W+|2hdμh.

Moreover, we can assume equality holds if and only if R̃ = 2
√
6|W̃+|h̃

is a positive constant.
Combining the above inequality with the Gauss–Bonnet–Chern for-

mula (35) for (N 4, h̃), we conclude that

(36)
3

2

∫

N
|W+|2hdμh ≥ 8π2

r∑

i=1

ki +
1

4

∫

M
| ˚̃Ric|2

h̃
dμh̃ ≥ 8π2

r∑

i=1

ki.

Now, (N 4, h = V 2dθ2 + g) satisfies
∫

N
|W+|2hdμh = 2π

∫

M
|R̊icg|2gV dμg.

By the fundamental formula (9) for (M3, g, V ) (see Proposition 6 and
Theorem B, iii)), we also have

r∑

i=1

ki|∂iM |+
∫

M
|R̊icg|2gV dμg = 4π

r∑

r=1

ki.

Therefore,
r∑

i=1

ki|∂iM | ≤ 4π

3

r∑

i=1

ki.

If equality holds above, the conformally related metric h̃ = u2h must
be Einstein (by (36)) and R̃ = 2

√
6|W̃+|h̃ must be a positive constant.

As shown in [31], using the formulas relating the divergence of the
Weyl tensors of conformally related metrics one can then conclude that
u must be constant. Thus, the metric h = V 2dθ2 + g also satisfies
Rh = 2

√
6|W+|h, that is, |R̊icg|g =

√
6. And then Theorem A implies

that (M3, g, V ) is the standard cylinder. q.e.d.

Appendix A. An inequality for transverse trace-free tensors

We prove a generalization of the refined Kato inequality for Codazzi
tensors on three-manifolds (see [15]). The proof is similar to [61],
Lemma 5.1. We hope this inequality will be useful in other contexts.

Proposition 23. Let (M3, g) be a Riemannian three-manifold and
T a symmetric 2-tensor that has constant trace and zero divergence.
Denote by C the 3-tensor defined by

C(X,Y,Z) = ∇T (X,Y,Z)−∇T (X,Z, Y ) for all X,Y,Z ∈ X (M).

Then, at every p ∈ M such that |T |(p) 	= 0,

|∇|T ||2 ≤ 3

5

(
|∇T |2 + |C|2

2

)
.
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Proof. Let e1, e2, e3 be a local orthonormal basis that diagonalizes T
at a point p ∈ M where |T | 	= 0. Then |∇|T |2| = 4|T |2|∇|T ||2 implies

|∇|T ||2 = 1

|T |2
3∑

k=1

(

3∑

i,j=1

TijTij;k)
2 =

1

|T |2
3∑

k=1

(

3∑

i=1

TiiTii;k)
2.

By Cauchy–Schwartz inequality,

(37) |∇|T ||2 ≤ 1

|T |2
3∑

k=1

(

3∑

i=1

T 2
ii)(

3∑

i=1

T 2
ii;k) =

3∑

i,k=1

T 2
ii;k.

Let A,B,C ∈ {1, 2, 3} denote different indexes. Then

CBBA +CCCA =

3∑

i=1

CiiA =

3∑

i=1

Tii;A −
3∑

i=1

TiA;i(38)

= d(tr(T ))A − div(T )A = 0,

by hypothesis. This implies

TAA;A = −TBB;A − TCC:A = −TBA;B − TCA;C ,

TBB;A = TBA;B + CBBA,

TCC;A = TCA;C + CCCA = TCA;C − CBBA.

Thus, rewriting inequality (37) as

|∇|T ||2 ≤
3∑

i=1

(T 2
11;i + T 2

22;i + T 2
33;i),

each of the above summand is of the form (a+ b)2 + (a− c)2 + (b+ c)2

for some a, b, c ∈ R. Because of the algebraic identity

(a+ b)2 + (a− c)2 + (b+ c)2 + (a− b+ c)2 = 3(a2 + b2 + c2),

we then conclude that

|∇|T ||2 ≤ 3(T 2
21;2 + T 2

31;3 + C2
221) + 3(T 2

12;1 + C2
112 + T 2

32;3)

(39)

+ 3(C2
223 + T 2

13;1 + T 2
23;2)

= 3
∑

i 	=k

T 2
ik;i+

3

2
((C2

221 + C2
331)+ (C2

112 + C2
332)+ (C2

223 +C2
113))

=
3

2
(
∑

i 	=k

T 2
ik;i +

∑

i 	=k

T 2
ki;i +

∑

i 	=k

C2
iik),

=
3

2
(
∑

i 	=k

T 2
ik;i +

∑

i 	=k

T 2
ki;i +

1

2
(
∑

i 	=k

C2
iik +

∑

i 	=k

C2
iki)),
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where in the last three lines we used (38), the symmetry of T and the
antisymmetry of C in the last two variables. The proposition follows by
combining inequalities (37) and (39). q.e.d.

Appendix B. Solutions to an equation of type ˚HessV = 0

Let (Mn, g) be a Riemannian manifold admitting a non-constant so-
lution to the equation HessV = (∆V/n)g. These manifolds have been
classified by Kühnel [38]. In this section, we consider a particular case
of this equation on compact surfaces (Σ2, g),

HessV =
1

2
(K − 3ǫ)V g,

where K is the Gaussian curvature of (Σ, g) and ǫ ∈ {−1, 0, 1}. It has
appeared in the proof of Proposition 27 in Section 8.

For completeness, we prove here the classification of positive solutions
of this equation. The argument follows [24], Lemma 3.

Proposition 24. Let (Σ2, g) be a closed surface with Gaussian curva-
ture K and ǫ ∈ {−1, 0, 1}. If there exists a positive solution V ∈ C∞(M)
of the equation

(40) HessΣV =
1

2
(K − 3ǫ)V g,

then V is constant and Σ has constant Gaussian curvature K = 3ǫ.

Proof. Taking the divergence of (40), we obtain the following integra-
bility condition:

(41) d((K − ǫ)V 3) = 0.

Therefore, K = cV −3 + ǫ for some constant c. Integrating the trace
of (40), we have that c is positive, zero or negative if ǫ equals 1, 0 or −1,
respectively. We analyze each case separately.

If ǫ = 0, then c = 0 and, therefore, K ≡ 0 and HessV = 0. The
theorem follows.

If ǫ = −1, then c < 0 and, therefore, K < −1. Using this and the
integrability condition, we conclude that a point p ∈ Σ is a critical point
of K if and only if it is a critical point of V . Moreover,

∆K = c

(
12

V 5
|∇V |2 − 3

V 4
∆V

)
= c

(
12

V 5
|∇V |2 − 3

V 3
(K + 3)

)
.

Hence, at a point p0 ∈ Σ of absolute minimum of K,

0 ≤ ∆K(p0) = − 3c

V 3(p0)
(K(p0) + 3) ⇒ K(p0) ≥ −3,

since c < 0 and V is a positive function. Similarly, at a point p1 ∈ Σ
of absolute maximum of K, K(p1) ≤ −3. Therefore, K ≡ −3 and
HessV = 0. The result follows.
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If ǫ = 1, then c > 0 and, therefore, K > 1. We can assume Σ is
homeomorphic to the sphere S2.

Suppose, by contradiction, that V is not constant. By [38], the exis-
tence of a non-constant solution V to the equation

˚HessV = 0,

in a closed surface implies that V has precisely two non-degenerated
critical points (the point of minimum p0 and the point of maximum p1),
that V depends only on the distance to a critical point, and that the
metric on Σ \ {p0, p1} can be written in the warped-product form

g = du2 +

(
V ′(u)
V ′′(0)

)2

dθ2,

where u ∈ (0, u∗) is the distance to p0 and θ is a 2π-periodic variable
(see [38]). V is an increasing function of u defined on the interval [0, u∗].

For the above metric, HessgV = V ′′g, so equation (40) is equivalent
to

(42) 2V ′′ = (K − 3)V =
c

V 2
− 2V.

This second order differential equation can be expressed in the Hamil-
tonian form using the energy

H(x, y) = y2 +
c

x
+ x2,

for x = V > 0, y = V ′. Sketching the level sets, one can verify that the
constant solution of (42) corresponds to the point (x, y) = ((c/2)1/3 , 0)
and that the solution V of (42) originated in our problem is such that

V (0) < (c/2)1/3 < V (u∗).
Now we use the Gauss–Bonnet theorem and the explicit expression

of the metric to compute:

4π=

∫

Σ
KdΣ=

∫ 2π

0

∫ u∗

0

[
1 +

c

V 3

] V ′

V ′′(0)
dudθ=

2π

V ′′(0)

[
V − c

2V 2

]u∗

0
.

By (42), we conclude that c = 2V 3(u∗). And this is a contradiction.
q.e.d.

Proposition 25. Let (Σ2, g) be a compact surface with non-empty
boundary. Let K denote its Gaussian curvature and let ǫ ∈ {−1, 0, 1}.
Assume that there exists a non-trivial non-negative solution V ∈ C∞(M)
to the problem

HessΣV =
1

2
(K − 3ǫ)V g in Σ, V = 0 in ∂Σ.

Then ǫ = 1, Σ is isometric to the round hemisphere (S2
+, gcan) with

constant Gaussian curvature K = 1 and V is a static potential on
(Σ2, g).
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Proof. The integrability condition (41) and the hypothesis that V
vanishes on ∂Σ implies that K = ǫ on Σ. Taking the trace of equation
(40), we obtain

(43) ∆V + 2ǫV = 0.

Hence, multiplying by V and integrating by parts on Σ using that V
vanishes on ∂Σ one concludes that ǫ must be positive. Therefore, V 	= 0
satisfies the static equations (40) and (43), since (Σ2, g) has constant
Gaussian curvature K = ǫ = 1. q.e.d.

Appendix C. Regularity of solutions to a degenerated elliptic

problem

Given (M3, g, V ) a compact orientable static triple, let (N 4, h) be its
associated singular Einstein manifold. We want to study the regularity
properties of a positive solution φ ∈ C0,μ(N )∩W 1,2(N )∩C2,α(int(M))
to the Yamabe equation

(44) −∆hφ+ 2φ = 2φ3,

on the singular space (N 4, h). Equation (44) means that the conformally

related metric ĥ = φ2h on N \ ∂M has constant scalar curvature 12.
The first observation is that φ ∈ C∞(int(M)) by standard elliptic

regularity [29]. The problem is to understand the behavior of φ near
∂M . In order to analyze this point, we first deduce some formulas in
an appropriated coordinate system near ∂M .

Let (x0 = s, x1, x2) be Fermi coordinates on a small tubular neighbor-
hood U = {p ∈ M ; s(p) = d∂M (p) < ǫ} of ∂M , where (x1, x2) are local
coordinates on ∂M . We write Ms = {p ∈ M ; d∂M (p) = s} and use the
subscript s to denote the geometric quantities related to Ms in (M,g).
Using the fact that ∂M is totally geodesic in (M,g) and the expansion
of V near ∂M (Proposition 7), we conclude that the Laplacian of the
metric h = V 2dθ2 + g takes the form:

∆hφ = ∆gφ+
1

V
g(∇gV,∇gφ)

= (∂2
sφ+∆sφ+Hs∂sφ) +

∂sV

V
∂sφ+

1

V
gij∂iV ∂jφ

= ∂2
sφ+

1

s
∂sφ+∆0φ+Q(φ),

where, for indexes i, j running through {1, 2} and indexes A through
{0, 1, 2},

∆0φ = gij(0, x)(∂i∂jφ− Γk
ij(0, x)∂kφ), and

Q(φ) = Qijs2∂i∂jφ+QAs∂Aφ for Qi,j, QA ∈ C∞([0, ǫ) × ∂M).
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Hence,

(45) ∂sφ
2 +

1

s
∂sφ+∆0φ+Q(φ) = 2φ− 2φ3.

Now, considering the metric h̃ = s−2h for some smooth positive func-
tion s on M \ ∂M that coincides with the distance function to ∂M in
U , the function η = sφ satisfies

(46) −∆h̃η + R̃η = 2η3.

In the above equation, R̃ denotes the scalar curvature of (N , h̃). Using
the formulas relating the geometric quantities associated to conformal
metrics (see [10]), one observes that ∆h̃η = s2∆hη−2ds(∇hη) and that

R̃ ∈ C∞(M) satisfies R̃ = −12 +O(s2) as s goes to zero.
Since η is invariant under the S1 action on (N 4, h), this equation

reduces to a uniformly degenerated elliptic equation (in the sense of
[30]) on the conformally compact manifold (M = M \ ∂M, g = s−2g).
In fact, by the above formulas, we have

s2∂sη − s∂sη + s2∆sη + Q̃As∂Aη =
1

6
R̂η − 2η3,

where ∆sη = gij(∂i∂jφ−Γk
ij∂kφ) for indexes i, j running through the set

{1, 2} and Q̃A ∈ C∞([0, ǫ)×∂M) satisfies Q̃A = O(s2) as s goes to zero
for all A ∈ {0, 1, 2}. Observing that η = sφ, φ ∈ C0,μ(M)∩C∞(int(M)),

Schauder type estimates for η implies that φ = s−1η is such that s|α|∂α
xφ

is uniformly bounded for every multi-index α (see [30], Proposition 3.4).
Accordingly to [1], one can go further and show that i) φ is, in fact,

conormal (i.e., the derivatives si∂i
s∂

j
x1∂

k
x2φ are bounded on M for all

non-negative integers i, j, k); and ii) has an expansion in s as a sum
involving terms like apqs

p logq(s) where apq ∈ C∞(∂M). The reader
will find general theories about this kind of degenerated elliptic equation
developed in [45] (the “edge-calculus”) and [6] (we also refer the reader
to [7], where some theory is developed in a very concrete situation).

Using the information that φ has an expansion in s near ∂M , we
compute it considering that φ satisfies

(47) ∂2
sφ+

1

s
∂sφ = F,

for F = F (φ) = 2φ−2φ3−∆0φ−Q(φ) smooth on (0, ǫ)×∂M and such

that sk∂
(k)
s F is bounded on M for all positive integer k.

For every x ∈ ∂M and every s ∈ (0, ǫ), there exists ζs ∈ (0, ǫ) such
that φ(s, x) = φ(0, x) + ∂sφ(ζs, x)s, by Taylor’s Theorem. Since φ is
smooth on the interior of M , from this formula for x �→ φ(0, x) it follows
that φ restricted to ∂M belongs to C∞(∂M).

We will compute the expansion of φ using the classical method of
separation of variables. We are grateful to André Neves for suggesting
this approach.
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Let λ0 = 0 < λ1 ≤ λ2 ≤ . . . denote the eigenvalues of the Laplacian
∆0 on (∂M, g∂M ) and let {ξi} be a L2-orthonormal basis of eigenfunc-
tions,

∆0ξi + λiξi = 0.

For each s ∈ (0, ǫ), we can write

φ(s, x) =
+∞∑

i=0

αi(s)ξi(x) where αi(s) =

∫

∂M
φ(s, x)ξi(x)dμ0(x).

The convergence of the above series is to be understood in the space
L2(∂M, dμb). Since φ is smooth in the interior of M and continuous up
to ∂M , we have that αi ∈ C0([0, ǫ)) ∩ C∞((0, ǫ)) and, in fact, for all
s ∈ (0, ǫ),

∂(k)
s φ(s, x) =

+∞∑

i=0

α
(k)
i (s)ξi(x) where α(k)(s) =

dkα

dsk
(s).

Integrating (47) against each ξi for each fixed s ∈ (0, ǫ) we conclude
that each αi ∈ C0([0, ǫ)) ∩ C∞((0, ǫ)) satisfies an equation of the form

(48) α′′ +
1

s
α′ − λα = F,

for some constant λ and a function F ∈ C0([0, s))∩C∞((0, s)) depending
on φ. In fact, αi satisfies (48) with λ = λi + 2 and

F (s) = Fi(φ)(s) =

∫

∂M
(−2φ3(s, x)−Q(φ)(s, x))ξi(x)dμ0(x).

Lemma 26. Let k be a non-negative integer. If α ∈ C0([0, ǫ)) ∩
C∞((0, ǫ)) is a solution to (48) for some F ∈ Ck([0, ǫ)) ∩ C∞((0, ǫ)),
then α ∈ Ck+2([0, ǫ)).

Proof. We first explain the argument for k = 0. From (48), we have

(sα′)′ = λsα+ sF.

Integrating from δ > 0 to s < ǫ we obtain

sα′(s)− δα′(δ) = λ

∫ s

δ
tα(t)dt+

∫ s

δ
tF (t)dt.

Since α is bounded, limδ→0 δα
′(δ) = 0 (otherwise, α(s) would grow

like | log(s)| as s goes to zero). Since α and F are bounded, we can take
the limit as δ goes to zero and conclude that, for all s ∈ (0, δ),

(49) α′(s) =
λ

s

∫ s

0
tα(t)dt +

1

s

∫ s

0
tF (t)dt.

In particular, lims→0 α
′(s) = 0 because α and tF are continuous.

Moreover, for every 0 < δ < s < ǫ, we have

α(s)− α(δ)

s− δ
=

λ

s− δ

∫ s

δ

1

u

∫ u

0
tα(t)dtdu+

1

s− δ

∫ s

δ

1

u

∫ u

0
tF (t)dtdu,
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so that taking the limit as δ goes to zero we obtain

α(s)− α(0)

s
=

λ

s

∫ s

0

1

u

∫ u

0
tα(t)dtdu +

1

s

∫ s

0

1

u

∫ u

0
tF (t)dtdu = O(s).

It follows that α is differentiable at the origin and satisfies α′(0) = 0.
Thus, α ∈ C1([0, ǫ)).

For every s ∈ (0, s), integration by parts now gives
∫ s

0
tα(t)dt =

s2

2
α(s)− 1

2

∫ s

0
t2α′(t)dt.

We claim that a similar formula also holds for the integral of tF (t). In
fact, observe that tF ′(t) is bounded (as before, we have lims→0 sF

′(s) =
0). For every 0 < δ < s < ǫ, integration by parts gives

∫ s

δ
tF (t)dt =

(
s2

2
F (s)− δ2

2
F (δ)

)
− 1

2

∫ s

δ
t2F ′(t)dt.

Using that F is continuous and tF ′(t) is bounded, we can make δ go
to zero to obtain

∫ s

0
tF (t)dt =

s2

2
F (s)− 1

2

∫ s

0
t2F ′(t)dt,

as claimed.
Differentiating (49) at s ∈ (0, ǫ), we obtain

α′′(s) = − λ

s2

∫ s

0
tα(t)dt + λα(s)− 1

s2

∫ s

0
tF (t)dt+ F (s)

=
λ

2
α(s) +

1

2
F (s) +

1

2s2

∫ s

0
t2(λα′(t) + F ′(t))dt.

Observe that, as s goes to zero,

| 1

2s2

∫ s

0
(t2(λα′(t) + F ′(t))dt| ≤ C( sup

t∈(0,s)
|tα′(t)|+ sup

t∈(0,s)
|tF ′(t)|) → 0.

Therefore, by continuity of α and F , lims→0 α
′′(s) = (λα(0)+F (0))/2

and, similarly, we obtain

α′(s)− α′(0)
s

=
α′(s)
s

=
1

2s

∫ s

0
(λα(t) + F (t))dt+ o(1),

so that α is differentiable at s = 0 with α′′(0) = (λα(0)+F (0))/2. Thus,
α ∈ C2([0, ǫ)) as we wanted to prove.

For the general case, one can combine successive derivatives of (49)
and integration by parts to prove by induction that for every i =
0, 1, . . . , k + 2 and every s ∈ (0, ǫ),

α(i)(s) = λ
i−2∑

j=0

ajα
(j)(s)+

i−2∑

j=0

bjF
(j)(s)+

ci
ti

∫ s

0
ti(α(i−1)(t)+F (i−1)(t))dt,
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for some constants aj , bj and ci. Moreover, the last term behaves as

o(1) as s goes to zero, α(i) is differentiable at the origin and

α(i)(0) = lim
s→0

α(i)(s) = λai

i−2∑

j=0

α(j)(0) + +bi

i−2∑

j=0

F (j)(0),

for every i = 0, 1, . . . , k + 1. The result follows. q.e.d.

To prove the claimed regularity of the solution φ ∈ C0(M) ∩ C∞

(int(M)) (see the end of Proposition 21), we would have to observe that
for every non-negative integer k, αi ∈ Ck([0, ǫ)) for all non-negative i
implies that F = F (φ) ∈ Ck(M)∩C∞(intM) and apply induction using
the above lemma.
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[6] L. Andersson and P. Chruściel, Solutions of the constraint equations in general

relativity satisfying “hyperboloidal boundary conditions”, Dissertationes Math.
(Rozprawy Mat.) 355 (1996), 100 pp, MR 1405962, Zbl 0873.35101.
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Henri Poincaré 16 (2015), no. 10, 2239–2264, MR 3385979, Zbl 1326.83052.

[48] I. Mondello, The local Yamabe constant of Einstein stratified spaces,
arXiv:1411.7996.



ON STATIC THREE-MANIFOLDS 45

[49] H. Müller zum Hagen, D. Robinson and H. Seifert, Black holes in static vacuum

space–times, Gen. Relativ. Gravitation 4 (1973), 53–78, MR 0398432.

[50] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a

sphere, J. Math. Soc. Japan 14 (1962), 333–340, MR 0142086, Zbl 0115.39302.

[51] M. Pflaum, Analytic and geometric study of stratified spaces, Lecture Notes in
Mathematics, 1768. Springer-Verlag, Berlin, 2001, MR 1869601, Zbl 0988.58003.

[52] J. Qing, On the rigidity for conformally compact Einstein manifolds, Int. Math.
Res. Not. 21 (2003), 1141–1153, MR 1962123, Zbl 1042.53031.

[53] J. Qing and W. Yuan, A note on static spaces and related problems, J. Geom.
Phys. 74 (2013), 18–27, MR 3118569, Zbl 1287.83016.

[54] D. Robinson, A simple proof of the generalization of Israel’s Theorem, Gen.
Relativ. Gravitation 8 (1977), no. 8, 695–698, Zbl 0429.53043.

[55] R. Schoen and S.T. Yau, Existence of incompressible minimal surfaces and the

topology of three dimensional manifolds with non-negative scalar curvature, Ann.
of Math (2) 110 (1979), no. 1, 127–142, MR 0541332, Zbl 0431.53051.

[56] H. Seshadri, On Einstein four-manifolds with S
1-actions, Math. Z. 247 (2004),

no. 3, 487–503, MR 2114424, Zbl 1073.53063.

[57] Y. Shen, A note on Fischer–Marsden’s conjecture, Proc. Amer. Math. Soc. 125
(1997), no. 3, 901–905, MR 1353399, Zbl 0867.53035.

[58] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for
Mathematical Analysis, Australian National University, Canberra, 1983, MR
0756417, Zbl 0546.49019.

[59] R. Wald, General relativity, University of Chicago Press, Chicago, 1984, Zbl
0549.53001, MR 1243449, Zbl 0549.53001.

[60] X. Wang, On the uniqueness of the AdS spacetime, Acta Math. Sin. (Engl. Ser.)
21 (2005), no. 4, 917–922, MR 2156971, Zbl 1082.53040.

[61] D.-G. Yang, Rigidity of Einstein 4-manifolds with positive curvature, Invent.
Math. 142 (2000), no. 2, 435–450, MR 1794068, Zbl 0981.53025.

Department of Mathematics
Imperial College London
South Kensington Campus

London SW7 2AZ
United Kingdom

E-mail address: l.ambrozio@imperial.ac.uk


