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A procedure for calculating critical level and power of likelihood ratio test, based on a 
Monte-Carlo simulation method is proposed. General principles of software building  
for its realization are given. Some examples of its application are shown. 

 

1    Introduction 
 
In this paper we show how the present day fast computer could solve non-standard old statistical 
problems. In most cases statisticians work with approximations of test statistics distributions, and 
then use respective statistical tables. When approximations do not work the problem is usually 
tabled. We propose such simulation approach which we do believe could be helpful in many case. 

The problem of statistical hypothesis testing is very important for many applications. In 
the notable but rare case, it is possible to find some simple test statistic having a standard 
distribution. However, in the general case the statistics based on the Likelihood Ratio Test (LRT) 
does not usually have one of the known standard distributions. The problem could be overcome 
with the help of an appropriate simulation method. This method was first used in [3] for a specific 
case of almost lack of memory (ALM) distributions. In this paper we propose a general approach 
for using the method, describe its general principles and algorithms, show how to build up an 
appropriate software, and illustrate with examples it application. 

2    LRT and the Simulation Approach 
 
It is well known according to Neyman-Pearson theory [8], that the most powerful test for testing a 
null hypothesis 0H : f(x) = 0f (x) versus an alternative 1H : f(x) = 1f (x) is the LRT. For this 

test, the critical region W for a sample 1x ,…, nx  of size n has the form 
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where )x, …,(x n10f  and )x, …,(x n11f are joint probability densities of the distributions of 

observations (the likelihood functions) under hypotheses 0H  and 1H with probability density 

functions (p.d.f.) (.)0f and (.)1f  respectively. The notation 

 
is used for test's statistic. For independent observations this statistic can be represented in the 
form 
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Considering the observations 1x ,…, nx  as independent realizations of random variable (i.i.d. r.v.) 

X with p.d.f. (.)0f the significance level of the test is 

=α =}{
0

WPH  }),,({ 10 αtXXwP nH >K .                                                  (1) 

Here an appropriate critical value αt  for any given significance level α is the smallest solution of 
equation (1). 

Analogously, considering the same observations 1x ,…, nx  as independent realizations of 

random variable Y with p.d.f. (.)1f , the power of the test is 
 =απ =}{

1
WPH }),,({ 11 αtYYwP nH >K .                                                              (2) 

Thus, to find the critical value for a given significance level α  and the power of the test )(απ , 

a statistician needs to know the distributions of the test statistic w  under hypotheses 0H  and 

1H . 
For parametric hypothesis testing the problem becomes more complicated because in 

such cases one has to be able to find a free of parameters distribution of this statistic. 
To avoid calculations of these functions we propose to use the simulation method. This 

means that instead of searching for exact statistical distributions, we will calculate appropriate 
empirical distributions as their estimations.  This method gives desired results due the fact (based 
on the Strong Law of Large Numbers) that the empirical distribution function of the test statistic 
converges with probability one to the theoretical distribution. 

In the following, due to numerical reasons, instead of statistic w we will use its natural 
logarithm, and for simplicity we will denote this statistic with the same latter, w , 
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Due to additional statistical reasons, instead of the cumulative distribution functions (CDF) of the 
statistic w under hypotheses 0H  and 1H , we will use their tails, 

  oF )(t  = }),,({ 10
tXXwP nH >K ,                                                         (4) 

and 

1F )(t   = }),,({ 11
tYYwP nH >K .                                                              (5) 

For large size samples, n>>1, it is possible to use a simplier approach based on the Central Limit 
Theorem. It is well known that this theorem provides a normal approximation of the distribution 
for sums of i.i.d. r.v.'s under conditions of existence of finite second moments. This would allow 
one to calculate and use only two moments of the test's statistic w  and then to calculate the 
appropriate significance level and power of the test making use of the respective normal 
approximation. 

To show how it works, let us denote by U and V the r.v.'s 
)(ln)(ln 01 XfXfU −= ,       )(ln)(ln 01 YfYfV −= , 

where X and Y are taken from distributions with densities (.)0f and (.)1f  respectively, 

corresponding to hypotheses 0H  and 1H . Denote by Uµ , Vµ  and 2
Uσ , 2

Vσ  their expectations 
and variances respectively, when they exist. Then, for large samples, n>>1, under null hypothesis, 
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the test's statistic w  has approximately normal distribution with parameters n Uµ , and n 2
Uσ .  

This means that the significant level αt  for given value of α can be found from the equation 
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Here α−1z  is the (1-α)-quantile of the standard normal distribution. Thus, the critical value αt  for 
the test statistic w  at a given significance level α is 
  

 αt  ≈ n Uµ  + α−1z  nUσ .                                                                 (6) 
The power of the test equals 
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From this equality it is possible to see that the power of the test mainly depends on the difference 
in expectations of the r.v.'s U and V. 

In some cases the parameters Uµ , Vµ  and 2
Uσ , 2

Vσ  can be calculated in closed 
(explicit) form. In general it is possible to estimate them also with the help of Monte-Carlo 
techniques and then use the respective estimated values instead of the exact ones. Appropriate 
algorithms for calculating the empirical cumulative distribution functions (CDF) of the test's 
statistic under hypotheses 0H  and 1H for both cases are described below. 

3    Algorithms 
 
In this section two algorithms for calculation of the tails of CDF of LRT's statistic w  under both 
null and alternative hypothesis (the null 0H : f(x) = 0f (x) and the alternative 1H : f(x) = 1f (x)), 
based on Monte-Carlo method are proposed. One algorithm can be applied for any sample size n. 
The second algorithm should be used for large samples, n>>1, mainly when the parameters Uµ , 

Vµ  and 2
Uσ , 2

Vσ  are finite. 

Algorithm 1.  LRT for any sample size 

Begin.  Select the p.d.f.'s (.)0f and (.)1f , and the sample size n. 

Step 1.   Generate a sequence of N random samples ),,( )()(
1

j
n

j xx K , j=1,…,N, from a 

distribution with p.d.f. (.)0f , and calculate N values of the test's statistics 
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Step 2.  Calculate the complementary empirical distribution function 



 

F {1)(,0 N
tN = number of }' tsw j > ,      t > 0. 

Step 3. Calculate the critical value αt  for the test statistic w  at a given significance level 
α as the smallest solution of the equation 

     F α=)(,0 tN . 

Step 4. Generate a sequence of N random samples ),,( )()(
1

j
n

j yy K ,j=1,…,N, from a 

distribution with p.d.f. (.)1f , and calculate the values of the analogous to (8) test 
statistics jw  with )( j

iy ’s instead of )( j
ix ’s. 

Step 5. Calculate the complementary empirical distribution function for the new sample  

 F {1)(,1 N
tN = number of }' tsw j > ,      t > 0. 

Step 6. Calculate the power of the test statistic w  at the given significance level α from 
the equation 

     F αα π=)(,1 tN . 

Step 7.             Enter the application’s data:  For a given user's sample ),,( 1 nxx K , calculate 
the test  
                         statistic 
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Calculate the p-value for testing the null hypothesis 0H : f(x) = 0f (x) versus 

the alternative 1H : f(x) = 1f (x) by making us of the Likelihood Ratio Test from 
the equation 

F −= pwN )(,0 value. 
Make a decision by comparing the calculated  p-value and α. Alternatively, reject 
the hypothesis 0H  if the inequality 

α
tw > holds. 

Calculate the probability of committing an error of type II (when testing the null 
hypothesis 0H : f(x) = 0f (x) versus the alternative 1H : f(x) = 1f (x) by making 
use of the Likelihood Ratio Test by the simulation method) from the equation 

−1 F −= β)(,1 wN the probability of type II error. 
Step 8.  Print results: 

• The chosen  null hypothesis 0H : f(x) = 0f (x) and alternative 

hypothesis 1H : f(x) = 1f (x), the selected significance level α, and the 
sample size n . 

• The  p-value of the test 
• The power of the test, βπα −= 1 . 
• The calculated value of the test statistic w , and the calculated by simulation 

critical value 
α

t  

• The graphs of the tails of the empirical CDFs  F )(,0 tN  and  F )(,1 tN . 

End. 



 
For large size samples when the second moments of the r.v.’s U, and V exist, it is possible to 
modify and simplify the simulation algorithm as shown below. 

Algorithm 2.   LRT for large samples. 

Begin.  Select the p.d.f.'s (.)0f and (.)1f , and the sample size n. 

Step 1.   Generate a sequence of N random variables ),,( 1 Nxx K , from a distribution 

with p.d.f. (.)0f , and calculate N values of the statistics 

uu j = )( jx  = )(ln)(ln 01 jj xfxf − ,    j=1,…,N.                                 (9) 

  and its sample mean u , and sample variance 2
us  according to 
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Step 2. Calculate the critical value αt  for the test statistic w  at a given significance level 
α from the equation 

αt  ≈ nu  + α−1z nsu ⋅⋅ ,                                                        (11) 

  where α−1z  is the (1-α)-quantile of the standard normal distribution. 

Step 3. Generate a sequence of N random variables ),,( 1 Nyy K , from a distribution 

with p.d.f. (.)1f , and calculate N values of the statistics 
vv j = )( jy  = )(ln)(ln 01 jj yfyf − ,    j=1,…,N.                                 (12) 

  and its sample mean v , and sample variance 2
vs  according to rules (10) for the 

data (12). 
Step 4. Calculate the power of the test at the given significance level α from the equation 
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                   where )(xΦ  is the c.d.f. of the standard normal distribution. 
Step 5.             Enter the application’s data:  For a given user's sample ),,( 1 nxx K , calculate 
the test  

                   statistic 
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Calculate the p-value for testing the null hypothesis 0H : f(x) = 0f (x) versus 

the alternative 1H : f(x) = 1f (x) by making us of the Likelihood Ratio Test from 
the equation 

p-value= }),,({ 10
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where w  is the calculated statistic from the sample. Make a decision by 
comparing the calculated p-value and α. Alternatively, reject the hypothesis 0H  

if the inequality 
α

tw > holds, where αt  is calculated by (11). 



Calculate the probability of committing an error of type II (when testing the null 
hypothesis 0H : f(x) = 0f (x) versus the alternative 1H : f(x) = 1f (x) by making 

use of the LRT by the simulation method) from the equation β = απ−1  with the 

απ  calculated in Step 4.  
Step 6.  Print results: 

• The chosen null hypothesis 0H : f(x) = 0f (x) and alternative hypothesis 1H : 

f(x) = 1f (x), the selected significance level α, and the sample size n ; 
• The  p-value of the test; 
• The power of the test, βπα −= 1 ; 
• The calculated test statistic w , and the calculated by simulation critical value 

α
t ; 

• The graphs of the tails of the CDFs  
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End. 

4    The Software 

For practical application of the above algorithms an appropriate software should be elaborated. 
The software should have a friendly interface, which allows work in two different regimes: 
individual (customized), and automatic. 

In the individual regime only particular observations are tested for any pair of given null 
and alternative hypotheses. Automatic regime allows one to calculate and show the significance 
level and power functions as functions of the test's statistic, and also as functions of some 
parameters of the model. In this way it would allow one to investigate some parametric models. 

The interface includes the main menu, which allows the users to choose: 
• the regime for investigation; 
• the p.d.f. for hull and alternative hypotheses from a given list of distributions, 

which include almost all standard discrete and continuous distributions, or 
• propose an option to the user for selecting probability distribution’s formulae or 

tables of his/her own choice. 
The submenu allows: 

• one to choose the parameter values for hypothesis testing for individual regime; 
or 

• one to choose the intervals and steps of increment for parameters varying for the 
problem investigated in an automatic regime. 

The software allows also different type of presentation of the results: numerical, 
graphical, comparison with respect to various variables, or with respect to family of functions. 
These and other appropriate possibilities make the content of the design menu. 

The design will be based on the new technologies presented in [8]. 

5    An Example 
 
Below we consider one example on which the work of algorithms in the previous section will be 
illustrated.  



Example.  An ALM  distribution versus other ALM distribution with uniform 
distribution. 
It is known that when in the ALM distribution  

=)(xf  )()1( c
c
xxfaa Y

c
x





−⋅−







,                                                        (14) 

where a  is a parameter of distribution,  c  is the length of a period, and )(xfY  is an arbitrary 
distribution on the interval [0,c). More details about ALM distributions can be found in [5]. 
 Here for the ALM distribution in the null hypothesis 0H  we choose ),(0 xf  presented by 
(14) with parameters chosen in the following way  

c=1,    0a =.5,    )(0, xfY =1  for  0 ≤  x ≤  1.        (15) 

This means that the r.v. X with distribution (14) is based on the uniform distribution of Y 0  on 

[0,1] (cycle of length 1), and probability for jump over a cycle without success is 0a =.5. Any 
other choice of the parameter  0a ≠.5 will produce an ALM distribution ),(1 xf different from the 

chosen )(0 xf . And this p.d.f. )(1 xf  will appear in our considerations as an alternative 

hypothesis 1H . 
Thus, we study the likelihood ratio test according to Algorithms 1 and 2 above with the 

choice for the p.d.f. )(0 xf , with 0a =.5, and choosing various other values for parameter 1a ≠.5. 
In studying the power function dependence on significance level α we select 

1a =.05,.1,.15,K ,.9,.95; N = 10000, n = 10, c = 1. 
 
F(0)   : 0a =.5  F(1)  ,  1a = .1                     Power f-n πα   
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Fig. 1. Cumulative distribution functions for the test statistic and the power function of the 
test 

 
The results for the power function in this case of significance level α =.05 are shown on Fig. 1.  

6    Conclusions 
 
The problem of hypotheses testing arises in many statistical applications. In analytical form its 
solution can be done for a very limited number of cases. The method proposed in this paper gives 
the solution for practically all cases. Nevertheless, for its practical realization special computer 
tools with friendly interface are needed. This work is now in the progress, and we show here 



some examples of the approach used for some special case of distributions, - so called almost lack 
of memory distributions. 
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