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Abstract .  In regression diagnostics, the case deletion model (CDM) and the 
mean shift outlier model (MSOM) are commonly used in practice. In this paper 
we show that the estimates of CDM and MSOM are equal in a wide class of 
statistical models, which include LSE, MLE, Bayesian estimate and M-estimate 
in linear and nonlinear regression models; MLE in generalized linear models and 
exponential family nonlinear models; MLEs of transformation parameters of 
explanatory variables in a Box-Cox regression models and so on. Furthermore, 
we study some models, in which, the estimates are not exactly equal but are 
approximately equal for CDM and MSOM. 

Key words and phrases: Case deletion model, exponential family nonlinear 
models, mean-shiR outlier model, nonlinear regression models, regression trans- 
formation, proportional hazards models. 

I. Introduction 

In regression diagnostics, there are three commonly used models: case-deletion 
model (CDM), mean-shift outlier model (MSOM) and case-weighted model 
(CWM) (Cook and Weisberg (1982)). Each of those models has its own advantage 
in practice. In general, CDM is intuitive and easy to understand, MSOM is easy 
to deal with and CWM may be used to some specific cases (see for example, 
Pregibon (1981)). However, CDM and MSOM are central frequentist models 
(Beckman and Cook (1983)). It is well known that  in linear models, CDM and 
MSOM are equivalent in following sense: the least squares estimates (LSE) of the 
parameters are equal for CDM and MSOM. However, the equivalence of other es- 
timates in linear models are not clear. Furthermore, the equivalence of CDM and 
MSOM outside of linear models have not been fully studied in the literature. The 
aim of this article is to show that the estimates of CDM and MSOM are equivalent 
in a wide class of statistical models, which include LSE, maximum likelihood es- 
timate (MLE), Bayesian estimate and M-estimate in normal linear and nonlinear 
regression models, MLE in exponential family nonlinear models, MLEs of trans- 
formation parameters of explanatory variables in a Box-Cox regression models and 
so on. Furthermore, we Mso study some models, in which the estimates are not 
exactly equal but are approximately equal for CDM and MSOM. The emphasis 
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of our discussion is the equivalence of CDM and MSOM. Some similar results 
may hold for CWM, but we will skip the details. In Section 2, we discuss the 
equivalence of CDM and MSOM in normal nonlinear regression models. The ex- 
ponential family nonlinear models are studied in Section 3. Section 4 investigates 
two kinds of models, in which the MLEs are approximately equal for CDM and 
MSOM. Section 5 gives our concluding comments. All proofs of theorems are 
deferred to the Appendix. 

2. CDM and MSOM in nonlinear regression models 

Consider a nonlinear regression model as follows: 

(2.1) Y = f (9 )  + e, 

where Y = (Y l , . . . ,  y~)r is a vector of responses, f(/~) = ( f ( z l ,  9 ) , . - . ,  f (x~,  9)) r 
is a vector of model functions, and x l , . . . , X n  are explanatory variables. 9 = 
(91 , . . . ,  9p) T is a vector of unknown parameters and e = (O , - - . ,  e~) T is a vector 
of independent random variables having normal distribution N(O, a2i)  where I is 
an n x n identity matrix. We denote that V(9) = c0f(9)/09 T and e(9) = Y - f ( 9 ) .  

Now we consider the Bayesian estimates based on the mode of posterior dis- 
tribution (MBE, see Box and Tiao (1973), p. 308). If (9, a2) have noninformative 
prior, then these estimates is consistent with the ordinary MLE. Here, we assume 
that cr has inverse gamma distribution, i.e. p(a) c< c r -bexp{ - - (b -  1)a2/(2a2)} 
and the conditional distribution of 9 given a is N(90, a2E0), where G0 is a known 
vector and S0 is a known positive definite matrix. It is easy to show that the 
posterior density of (9, a) is 

(2.2) P(9, a I Y) o< a-(~+p+b) exp{_M(9) / (2a2)} ,  

where M(9)  = (b - 1)a 2 + (9 - 9 0 ) T ~ o 1 ( 9  - -  90) -}- e T ( 9 ) e ( 9 ) .  Denote the MBEs 
of 9 and a2 by 9 and 62 which maximize P(9, cr 1 Y)" It is easy to show from (2.2) 
that /~ and ~ satisfy 

(2.3) 
(2.4) 

v r ( 9 ) e ( 9 )  - z 0 1 ( 9  - 90)  = o, 

(72 = (n + p  A- b ) - l M ( 9 ) .  

To assess the influence of i-th case (x~,y~) on the estimates /3 and ~, we 
consider CDM and MSOM of (2.1) as follows: 

(2.5) 
(2.6) 

Y(~) = f(~)(9) + ~(~), 
Y = f ( 9 )  + d ~  + E, 

where Y(i), f(~)(9) and e(i) are obtained from Y, f (9 )  and e respectively with i-th 
case deleted; di is an n-vector having 1 in the i-th position and 0 elsewhere. The 
prior distributions of a and/3 in (2.5) and (2.6) are assumed as before and 3' has 
noninformative prior. The MBEs of 9 and cr 2 for (2.5) and (2.6) are denoted by 
/~(~), ~ )  and/~mi, ~m~~ 2 respectively, which are assumed to be existing and unique. 
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THEOREM 2.1. Under above assumptions, we have 

(2.7) ~mi =~(i ) ,  (~mi-2 = ( n . . ~ p + b ) - l ( n + p + b _ l ) ~ i ) , , ~ r ~ i ) .  

This theorem shows that diagnostic models (2.5) and (2.6) of nonlinear model 
(2.1) play the same role for investigating the influence of i-th case on ~ and a2. In 
other words, CDM is equivalent to MSOM. For the diagnostics purpose, we can 
define the Cook distance and W-K statistic from/3 and ~(~) based on models (2.5) 
or (2.6), and we also can make a testing of hypothesis H0 : 7 = 0 based on model 
(2.6). 

As the special case of Theorem 2.1, we can get several important corollaries 

as follows which have not been seen in the literature. 

(I) If we set b = i, E0 -~ ee in equation (2.2) which corresponds to nonin- 
formative prior, we have p(j3, (z [ y) oc cr -1 exp{--eT(/~)e(/3)/(2cr2)}. Then/3 and 
a2 is consistent with the ordinary MLE or LSE. Therefore, CDM is equivalent to 
MSOM for MLE or LSE in normal nonlinear regression models. Ross (1987) and 
Dzieciolowski and Ross (1990) have used this fact implicitly. 

(2) If f(/3) = X/3 in (2.1), then it reduces to a linear regression model and 
V(/~) = X, V(~)(3) = X(~) which is obtained from X by deleting i-th row. So 
equations (2.3) and (A.1) become 

x T ( Y  - x 3 )  : r o (3 - 3o), 
T X(i) (Y(i) - X(i)/~) ~- Y]o 1 (~ - t30) �9 

Therefore, the MBE of t3 in model (2.1) and (2.5) (or (2.6)) can be expressed as 

( 2 . 8 )  
/~(i) ~-~ ~ -- (1 - - p i i ) - l ( x T x  --~ Z o l ) - l x i ~ i ,  

where/~i~ = xT(X  TX  + E o l ) - l x i ,  e = Y - X~,  ei = Yi - xT~ and x T is i-th 
row of X. It is well known that (2.8) is also the Bayesian estimate of/3 based 
on minimizing the posterior risk under squared error loss. It is also known that, 
if E0 = k - i I  in equation (2.8), then ~ is the ridge estimate; if E0 = (QKQT) - i  
where Q is composed of the orthonormal eigenvectors of x T x ,  then /3 is the 
generalized ridge estimate; if E0 = (r -2a~(xTx)  -1, then /3 is the James-Stein 
estimate (Lindley and Smith (1972), Weisberg (1985)). Theorem 2.1 implies that  
several important biased estimates in linear regression models, such as ridge es- 
timate, generalized ridge estimate and James-Stein estimate, are equal for CDM 
and MSOM. 

(3) The results of Theorem 2.1 also can be extended to the diagnostics of k 
cases (xi, y~), i E J ,  J = { i l , . . . , i k} ,  i.e. CDM and MSOM are equivalent for 
investigating the influence of k cases on the estimates/3 and ~2. 

(4) The results of Theorem 2.1 can be extended to regression models in which 
random error vector e has elliptically contoured distribution, i.e. e ~ ECn(O, ~r2I, 9) 
(see Fang et al. (1990)) where the density function of e is a-lg(--eTe/(2(r2)) and 
g(.) is twice continuously differentiable. For the sake of simplicity, we assume 
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that  cr is known and 13 has elliptically contoured prior whose densi ty function is 
~-1 ]E01-1/2h(T(~)),  T(~)  = - - ( 2 ~ 2 ) - l ( ~ - ~ 0 ) T E o  I (~--/30)- Now we consider the  
M BE of 13 based on the mode of posterior distribution. By an analogous analysis 
to Theorem 2.1, we can show that  ~(~) = ~,~ under the  conditions in which both  

/3(i) and/3m~ exist and are unique. As a corollary of above s ta tement ,  for nonlinear 
model  (2.1) with elliptically contoured random error e N ECn(O, ~2I, 9), if a S is 
known, then the ordinary MLEs of/3 are equal for CDM  (2.5) and M S O M  (2.6). 

3. CDM and MSOM in exponential family nonlinear models 

Suppose that  the da ta  are given by (xi, Yi) with #i = E(yi)  and the monotonic  
t ransformation ~ = g(#i) is a nonlinear function of/3, i.e. 

(3.1) E(y~) = #~, ~?~ = g(#~) = :(x~;/3) =_ f i (# ) ,  i = 1 , . . . , n :  

which may be called generalized nonlinear model. If  f~(~) -- xT~, then (3.1) is 
the  well known generalized linear model and if g(#~) = #~, then (3.1) is jus t  the  
ordinary nonlinear regression model. We usually assume tha t  Y = (Y l , . . . ,  Y~) is 
an n-vector  of independent  variables having exponential  family dis t r ibut ion as 

;(y~, 0i) = exp[a-2{yi0i  - b(0~) + c(yi, a)}], i = 1 , . . . ,  n, 

where b(.) and c(., .) are known differentiable functions, and 0i is the  nature  pa- 
rameter.  If b(O~) = 0~/2, then .y~ is normally distr ibuted.  Since #~ = b(0i), we 
have 0~ = k(f~(/3)) where k(.) = b-19-1(.) .  The MLEs  of/3 and a are respectively 
denoted by /3  and 5 that  minimize following object ive function 

n 

(3.2) Q(#,  a) = - a  -2  E{y~k(f~( /3))  - b(k(f i (#)))  + c(yi, a)},  
i = 1  

which is called exponential  family nonlinear models (Cook and Tsai (1990)). Fur- 
thermore,  we can consider more general models in which ~ and ~ minimize follow, 
ing object ive function: 

n 

( 3 . 3 )  = 
i----1 

where f i ( ' )  and Pi(', ") are known differentiable functions and may depend  on bo th  
x~ and Yi, i = 1 , . . . , n .  This model is proposed by Gay and Welsch (1988) and 
includes a wide class of models as its special cases. Clearly, model  (3.2) is an 
impor tant  example of (3.3). 

Now we consider the  diagnostic problem for model  (3.3). To assess the influ- 
ence of i - th case on the est imates ~ and &, we consider CDM  and M S O M  of model  
(3.3) as follows: 

(3.4) Q(~) (/3, c~) = ~ P9 (fJ (/3), cr), 
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Now let estimates/3(,) ,  a(i) and 3 ,~ ,  a/, ~mi minimize (3.4) and (3.5) respectively. 
We suppose that  all above est imates exist and are unique. 

THEOREM 3.1. Under above assumptions, i ra  is known, then/~m~ =/3(i); i f  
is unknown, we have 

(a) I fpi( f~(/3) ,a)  = pi(a~), ai = g(a) f i ( f l )  + hi(a) ,  i -- 1 , . . .  ,n,  where g(.) 
and hal.) are differentiable funetion  and # 0, the  = = 

(b) / fpi( f i ( /3) ,  or) -- g(a)~i(f i (Z))  § hi(a) ,  where ~i(') is a differentiable func- 
tion, the  = (but not  neces ar  to have - -  

This theorem states that ,  for the general model (3.3) CDM is equivalent to 
MSOM under some mild conditions when we investigate the influence of i - th case 
on est imates ~ and 82. From Theorem 3.1, we have several impor tan t  corollaries 
and comments  as follows. 

(1) The exponential  family nonlinear models (3.2) is the special case of (b) of 
Theorem 3.1 with g(a)  = a -2,  hi(a)  = ~-2c(yi ,  a) and ~i(f i(~))  = yik(fi(/~)) - 
b(k(f i(Z)))  respectively. Therefore, we always have ~mi = ~(i). Note  tha t  we 
may  have not 8,~i = &(i). As a counter example, the MLE of a in normal linear 
regression is a trivial one, in which 2̂~m~ = n-1  ( n -  1 ) ~ )  ~2~(i), bu t  amî 2 ~ ~.~). 

(2) The M-es t imates  of (2.1) can be  obta ined from (3.3) with Pi(fi(fl) ,  a) -- 
pi(ai), ai = c~-l(yi - f i(fl)) and p(.) is a convex positive function. This is the 
special case of (a) of Theorem 3.1 with g(a)  = - a  -1 and hi (a) = a - l y i .  Therefore 
the  M-es t imates  of nonlinear regression models are equal for CDM  and MSOM. 

(3) If Pi(fi(fl),  a) = - log{p(yi; fi(fl),  a)}  where P(Yi; fi(fl),  a) is the densi ty 
function of Yi (Davison and Wsai (1992)), then ~mi = ~(i) when ~ is known. 
As a special case, for nonlinear regression models whose random error r �9 �9 �9 en 
are independent  and identically distr ibution but  not necessarily normal,  we have 
/3,~ =/~(~) when a is known. 

(4) The accelerated life models described by Cox and Oakes (1984) can be 
represented as 

(3.6) Zi log Ti T = = x i / 3 + a e i ,  i = 1 , . . . , n .  

We consider one of the typical  case in which each Ti has Weibull dis t r ibut ion 
and hence each ~ has s tandard extreme-value distr ibution function F(y)  = 1 - 
exp(-eY) .  Therefore, the log likelihood function of Z = ( Z 1 , . . . , Z n )  T can be 
expressed as 

(3.7) L(~,  a) = Z { h i a ~  - exp(ai)  - 5i loga},  
i=1 

where ai = a - l ( Z i  - xT/~), 5i = 1 for an uncensored observation and 5~ = 0 for a 
censored one. Theorem 3.1 shows that  if a is known, then the MLEs of/3 of model  
(3.6) are equal for C DM and MSOM. 



272 BO-CHENG WEI AND JIAN-QING SHIH 

Table I. The estimators corresponding to CDM and MSOM. 

CDM MSOM 

1 5.157 -.505 .064 5.161 -.506 .424 .059 

2 5.663 -.629 .129 5.669 -.629 -.161 .120 

3 5.663 -.627 .123 5.669 -.628 -.232 .114 

4 5.656 -.625 .123 5.662 -.626 --.233 .114 

5 5.646 -.622 .123 5,653 -.623 -.239 .114 

6 5.631 -.620 .132 5.638 -.621 -,130 .123 

7 5.622 -.619 .138 5.629 -.620 -.046 .129 

8 5.631 --.626 .150 5.637 -.626 .051 .131 

9 5.704 -.655 ,119 5.710 -.656 .200 .IIi 

Modified data 
1" 2,817 .299 1.015 2.817 .299 29.622 1.015 

2 5.786 - .475  1.195 5.683 - .439  - . 612  1.109 

3 5.777 - . 432  .988 5.667 - .394  -3 .166 .921 

4 5.610 -.421 1.172 5.520 -.387 --.805 1.086 

5 5.477 --.380 1.157 5.388 -.347 --.914 1.071 

6 5.378 --.352 1.154 5.290 --.319 --.896 1.067 

7 5.756 -.668 .427 5.736 --.661 2.319 .379 

8 5.132 --.278 1.134 5.042 -.243 --1.032 1.046 

9 5.053 --.255 1.130 4.962 --.219 --1.063 1,042 

If  ~ is unknown, then  (3.7) is neither case (a) nor case (b) of Theorem 3.1. In 
this case, CDM may be not equivalent to MSOM. In fact, it is easily shown tha t  
~(i), #(i) and/~mi, 5,~i respectively satisfy following equations: 

(3.8) ~ bjxj = 0 and (m - ~i) + ~ bjaj = 0; 
j~s j r  

(3.9) ~ b j x j  = 0  and m + ~ b j a j  =0, 
j r  j7s 

where bj -= 6j - e x p ( a j )  and m is the number of uncensored observations. Compar- 
ing (3.8) and (3.9), it is easily seen tha t  if i - th case is a censored observation, then  
MSOM is equivalent to CDM; if i- th case is an uncensored one then  the MLEs 
of (8, cr) are not  exactly equal for CDM and MSOM, but  they  may be approxi- 
mate ly  equal if m is relatively large. Similar result also holds for (3.6) if Ti have 
log-normal distributions. 

Now let us consider a numerical example of clotting times of blood da ta  dis- 
cussed by McCullagh and Nelder ((1989), p. 302). We use the accelerated life mod- 
els with Weibull distr ibution and set Z~ = log(yi) = a + 3xi  + crei, i = 1 , . . . ,  9, 
where xi = log(ui) and Yi = (Lot)i. The parameter  estimates are & = 5.63, 
/~ = - .622 and & = .130. Parameter  estimates corresponding to CDM and MSOM 
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are listed in Table 1 which shows that the differences of estimates between CDM 
and MSOM are very small. Now we change the values of Y3 and Y7 for 4.2 and 
210 respectively and regard Yl as a right censored observation, then the difference 
of estimates between CDM and MSOM seems to be large. The last nine rows of 
Table 1 give parameter estimates corresponding to CDM and MSOM for modified 
data. These results show that  some of relative differences of estimates of/3 be- 
tween CDM and MSOM are quite large (for example, (~(9) - ~ r n g ) / ~ ( 9 )  = 14.1% 

and (/3(s)-/3-~s)///3(s) = 12.6%). Note that &(1) = &ma and/3(1) = ~rnl since c a s e  1 
is assumed to be a censored observation. 

(5) For general case of (3.3) with unknown a, equations (A.9) and (A.11) of 
Appendix show that ~,~ is usually not equal to ~(~) except 0p~ (f~ (/3)+7, a)//0a = 0 
in (A.12). The case (a) of Theorem 3.1 is a typical example of this. If ~m~ # ~(~), 

(A.8) and (A.10) show that ~,~i is usually not equal to/3(~) except (A.8) or (A.10) 
is independent of c~. The case (b) of Theorem 3.1 is a typical example of this. For 
other cases of (3.3) with unknown a, the equivalent of CDM and MSOM is still not 
known. But fortunately for the most of commonly encountered practical models, 
such as (2.1) and (3.2), this equivalence is clarified as stated in items (1)-(4). 

4. CDM and MSOM in other models 

Since MSOM is easy to deal with in most situations, one usually use MSOM 
instead of CDM to derive diagnostic statistics. But MSOM may be not equivalent 
to CDM for some models. In this section, we study regression transformation 
models and proportional hazards regression models, in which the FILEs of MSOM 
and CDM are not exactly equal, but may be approximately equal if the number 
of observations is relatively large. 

The regression transformation model of (2.1) with f(/3) = X/3 is 

(4.1) Y(A) = Xf l  + r 

where Y(A) = (Yl (~) , . . . ,  Yn (A)) T. Yi(/~) = h(y~, .k) is a monotonic transformation 
of y~ indexed by the unknown parameter A, hi. , .) is a known differentiable function, 
i = 1 , . . . ,  n, and Box-Cox power transformations are commonly used in practice. 
The CDM and MSOM for model (4.1) can be expressed as Y(~)(A) = X(~)fl + r 
and Y(~) = Xfl  + 7d~ + c respectively, where Y(~)(~) is obtained from Y(A) with 
i-th element deleted. Tsai and Wu (1990) reported by numerical examples that 
the MLE i ~  based on MSOM is not necessarily equal to the MLE i(~) based on 
CDM. Now we give a theoretical analysis for this statement. 

By the equivalence of CDM and MSOM in linear regression, for every fixed 
A, the MLEs of fl and the residual sum of squares in CDM and MSOM are equal, 
which are denoted by/3(~) C A) and 

RSS(i)(~) = E ( y  j - xy~(~)(~)} 2. 
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According to the results given by Cook and Weisberg (1982), the log likelihood of 
A associated with CDM is 

L({)(/) - (n-l) log{ J({)(1)-2/(~-I)RSS({)(l)}, 

= l-I 0h(yj, 
jCi 

the log likelihood of A associated with MSOM is 

nmi(t) = --2n log{g(t)_2/nRSS({)(1)}, J(A) = l~I Oh(yj, A)/Oy]. 
j = l  

),(i) and l,~i minimize S(i)(),) : J({)(),)-2/(~-1)RSS({)(),) and S,~{ (A) : J (1) -2 /~ .  

RSS(i) (A) respectively, therefore, Imi is not necessarily equal to i(i). But when n 

is sufficiently large, we have J(i)(1) 1/(~-1) ~ j( t) l /~ and therefore A,~i ~ J,({). In 
the example given by Tsai and Wu (1990), because n = 11 is relatively small, the 
difference of ),-~i and A(i) is relatively large. 

It is very interesting that  we have a different result for regression transforma- 
tion model of explanatory variables 

(4.2) r : X(1)~  + e, 

where some columns of X are transformed and denoted by X(A). The log- 
likelihood of ), for model (4.2) is L(1) : - (n/2)log[RSS() ,)] ,  where RSS(1) is 
the residual sum of squares given by 

n 

a s s ( h )  2 : - , 

i=1 

~( t )  is the MLE of p for fixed A in (4.2). So the MLE of A minimizes RSS(1). 
For model (4.2), its associated CDM and MSOM are respectively expressed 

as Y({) = X(0(A ) + ((i), and Y = X(A) + ~/d{ + e, where X({)(A) is obtained from 
X(1) with i-th row deleted. It is easily seen that  for any fixed A, the residual sum 
of squares and the MLEs of/3 are exactly equal for above two models, which are 
denoted by/3({)(A) and RSS(i)(A) respectively. Because the MLEs of A for both 
CDM and MSOM minimize the same residual sum of squares RSS({)(I), these two 
MLEs of A are exactly equal. 

Now we investigate the proportional hazards model described by McCullagh 
and Nelder ((1989), pp. 421-422), the hazards function is represented as 

(4.3) h(t{, xi) = l(t{) exp(~h), rJi = G(x{,/3), i : 1 , . . . ,  n, 

where l ( t )  is a positive continuous function indexed by an unknown parameter a, 
and ~ is a p-vector of unknown parameters. The log-likelihood for (13, a) can be 
expressed as 

n n 

(4.4) L(~, a) = E ( 6 j  log #j - #j) + E 6j log[l(tj)/A(tj)], 
j = l  j : l  
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where A(t) = f too  A(u)du, #j = A(t j )exp(~j ) .  The MLEs of parameters  (~,c~) 
must  satisfy following equations: 

n n 

j = l  j = l  

where cj = e j f l j  + 5j f2j ,  ej = 5 j -  p j ,  f l j  = Olog[A(tj)J/Oa, and f2j = 
Olog[)~(tj)/A(tj)l/O(~. Similarly, the MLEs of (~, c~) for CDM of (4.4) satisfy 

(4.6) e j 0 v j / 0 / 3  - e~0v~/0r = 0, ~ cj = 0. 

The log-likelihood of MSOM associated (4.4) is given by 

n 

Lmi(/~, a, 7) = E ( S j  log #j  - #j)  + E gJ log{A( t j ) /A( t j ) }  + 5i log p~ - #~, 
j # i  j = l  

where p~ = A(ti) exp(~i +7 ) .  It is easy to show that  L,~(fl ,  a ,  7) = L(r a)  + & 7 +  
( 1  - e~)p~. So the MLEs of (/~, a) for MSOM of (4.4) satisfy following equations 

(4.7) eicgrli/Oj~ = O, ej - e i f l i  = 0 

where we use the fact tha t  OLm~/O~/ = 5~ - p ~  exp(7) = 0. Comparing (4.6) 
and (4.7), it is easily seen tha t  if i- th case is a censored observation (i.e. 5i = 
0) or A(t) = A which corresponds to exponential distribution, then  MSOM is 
equivalent to CDM; if the model  has Weibull distribution and the  i - th  case is an 
uncensored observation (i.e. 5i = 1), then the second equations of (4.6) and (4.7) 
are respectively expressed as 

~ f l ~  - ~ f l ~  + (,~ - 1 ) / ~  = 0, Y ~  ~ j f l j  - ~ f l ~  + m / ~  = 0. 
j = l  j = l  

Clearly, if the number  of uncensored observations m is sufficiently large, above 
two equations are approximately equivalent, therefore, the  MLEs of (~, c~) are 
approximately equal for CDM and MSOM. It is easy to show tha t  similar result 
holds for extreme-value distribution. 

It is easily seen tha t  for proportional hazards model (4.3), if a is a known 
parameter  or A(t) is a known positive continuous function, then (4.4) is the  special 
case of (3.3). According to Theorem 3.1, the MLEs of j3 are equal for CDM and 
MSOM. 
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5. D i s c u s s i o n  

To assess the influence of individual cases on the estimates in regression anal- 
ysis, CDM and MSOM are commonly used. In most of situations, MSOM is 
usually easier to deal with than CDM, so we often use MSOM instead of CDM to 
get diagnostic statistics in practice. Many authors have mentioned and used this 
fact in the literature, such as Cook and Wang (1983), Storer and Crowley (1985), 
Williams (1987), Ross (1987), Tsai and Wu (1990), Dzieciolowski and Ross (1990) 
and so on. But there have been almost no proofs outside of linear regression mod- 
els about that. In this paper, we have clarified this fact and shown that for several 
commonly encountered practical models, the estimates of CDM are equal to the 
estimates of MSOM, which may help us to derive diagnostic measures. 

On the other hand, as shown by numerical example in Section 3 and as dis- 
cussed in Sections 3 and 4, MSOM is not always equivalent to CDM. In some 
situations, it may cause problems if one use MSOM instead of CDM as pointed 
out by Tsai and Wu (1990). 
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PROOF OF THEOREM 2.1. 
satisfy following equations: 

(A.1) 

(A.2) 

where 

(A.3) 

Appendix 

I t  is similar to (2.3) and (2.4) that and 

T 
- r o1(3 - G 0 )  = o, 

cr 2 = (n + p  + b - 1)-lM(i)(3),  

M(~)(/3) = (b - 1)a 2 + (J  - / ~ 0 ) T E o l ( J  - J0) + e~)(/~)e(i)(J), 

V(i ) (~) and e(i)(~) are obtained from V(~) and e(/)) with i-th row and i-th element 
deleted respectively. 

For model (2.6), it is similar to (2.2) that 

p(cr,/~, ~/I Y) c~ a -(n+p+b) exp{-M(f l ,  7)/(2cr2)}, 

(A.4) M(fl, V) = (b - 1)a 2 + ( f l -  f l o )TEol ( f l  -- rio) 

+ {e(/~) - "ydi}T{e(/~) -- "/d~}. 

Differentiating L(~,/~,~/ l Y) -- log{p(a,/~,-~ l Y)} with respect to Z, ~/ and a, we 
have 

(A.5) O n / o ~  : - a - 2 { E o l ( f l  -/~o) - vT( /~ ) (e (P)  -- vd{)}, 

0 L / 0 ~ / =  --a-2dT{e(/~) -- "/d{}, 

(A.6) on~oct  = - ( n  + p + b)cr -1 + a - 3 M ( ~ ,  @. 
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cgL/&y = 0 gives 7 = e~(fl) which is the i-th element of e(fl). Substi tuting "7 = 
ei(fl) into (A.5) shows that  fl,~i satisfies 

(A.7) OL/OZ = _ o r 2 { m g l ( Z  _ 9 0 )  - Y(~ ( 9 ) r  = 0. 

Since we assume that  flmi and /3(,~) exist and are unique, we get flmi = fl(i) by 
comparing (A.1) and (A.7). Substituting -~ = ei(flmi) into equation (A.4) and 
comparing with equation (A.3) we get M(/3m~, ~) = M(i)(/3(i)). Combining (A.2) 
and (A.6), the second equation of (2.7) is proved. 

PROOF OF THEOREM 3.1. Differentiating (3.4) with respect to fl and or 
shows that/)(i)  and ~(i) satisfy following equations: 

[op;(D(z),or) af~(a) ] 

[ Opj(f j(fl), a) ] (A.m ~ k ~ - o .  

= 0, a = 1 , . . . , p ,  

Similarly,/3mi, ") and ~r~i for (3.5) satisfy following equations: 

[opj(D(Z) ,or)o ._ . j  = 0, a =  1, .,p, f~(2) l 
(A.IO) E cgfj ~ J "" 

(A.11) cgpi(fi(fl) + 7, or) = O, 
of~ 

(A.12) E [[ ~ or)] + Opi(fi(fl)&r + 7, or) = O, 
j#i 

where (A.10)is obtained from {OQmi(fl, % or)/Ofla} = 0 and using {OQmi(fl, 7, a)/  
or} = 0. 

If or is known, (A.8) and (A.10) show that/3mi = r 
Now we prove case (a) of Theorem 3.1. (A.11) shows that  Di(ai+g(or)"/) = 0 at 

/~m~, ; /and  ~mi, where Pi (fi (fl) +7, or) = Pi (ai +g (or)"/, or) and Pi (ai) =- Opi (a~)/Oai. 
Then we have OPi(fi(fl) + 7, cQ/cgor = 0 in (A.12). Thus (A.9) and (A.12) are 
identical for case (a), which results in ~,~ = &(~). It follows from (A.8) and (A.10) 

that  f),~i =/3(i). 
For case (b) of Theorem 3.1, since Opj (fd (fl), or)/Ofj = g(or)O~j (fj (fl))/Ofj, 

equations (A.8) and (A.10) are independent of or, which results in flmi = fl(i). 
Since (A.9) and (A.12) are not necessary identical in this case, we may have not 
&m~ = &(~). 
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