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Abstract

We analyze the large-time behavior of various kinetic models for the redistribution of
wealth in simple market economies introduced in the pertinent literature in recent years. As
specific examples, we study models with fixed saving propensity introduced by A. Chakraborty
and B.K. Chakrabarthi [11], as well as models involving both exchange between agents and
speculative trading as considered by S. Cordier, L. Pareschi and one of the authors [13]. We
derive a sufficient criterion under which a unique non-trivial stationary state exists, and pro-
vide criteria under which these steady states do or do not possess a Pareto tail. In particu-
lar, we prove the absence of Pareto tails in pointwise conservative models, like the one in
[11], while models with speculative trades introduced in [13] develop fat tails if the market
is “risky enough”. The results are derived by a Fourier-based technique first developed for
the Maxwell-Boltzmann equation [24, 1, 37], and from a recursive relation which allows to
calculate arbitrary moments of the stationary state.

Keywords. Econophysics, Boltzmann equation, wealth and income distributions, Pareto dis-
tribution.

1 Introduction

In recent years, various kinetic models of Boltzmann type have been introduced to study the evolu-
tion of the distribution of wealth in a simple market economy [28, 19, 11, 10, 27, 45, 13]. In most
of these models, the market is represented as an ideal gas, agents correspond to molecules, and
each trading event between two agents is considered to be an elastic – or rather money conserving
– collision of two molecules. The founding idea is that a trading market composed of a sufficiently
large number of agents can essentially be described using the same laws of statistical mechanics
which govern the behavior of a physical system composed of many interacting particles.

In these models, the knowledge of the large-wealth behavior of the steady state density is
of primary importance, since it determines a posteriori if the model fits data of real economies.
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More than a hundred years ago, the Italian economist Vilfredo Pareto [38] first quantified the
large-wealth behavior of the income distribution in a society and found it to follow a power-
law distribution. More precisely, if f (w) denotes the density of agents with wealth w, and w is
sufficiently large, then

∫ ∞

w
f (w∗)dw∗ ∼ w−µ . (1)

Pareto mistakenly believed that power laws apply to the whole distribution with a universal expo-
nent µ approximatively equal to 1.5. Later, Mandelbrot proposed a weak Pareto law that applies
only to high incomes [34]. The exponent µ , usually called the Pareto index, was initially found
to have a value between 1 and 3. Numerous investigations with real data during the last ten years
revealed that the tails of the income distribution indeed behave as indicated above, and the value
of the Pareto index varies between 1 and 2.5 (USA ∼ 1.6, Japan ∼ 1.8− 2.2 [19, 32, 20]). Typ-
ically, the weak Pareto law applies to the richest 10% of the population – which possesses about
40% of the total wealth of that country. The mid- and low-income population, in fact the majority
(90% or more), follow a different distribution which is debated to be either Gibbs [31, 28, 19] or
log-normal [17].

In any kinetic description, the dynamics is defined through the microscopic interactions. In
the econophysical context, the model is specified by the rules according to which agents perform
their trades. A seemingly important and very sensible ingredient is the saving factor. This means
that each of the interacting individuals keeps a certain fraction of his current wealth, and only puts
the remaining part into the trade – at the risk of losing it. The first extensive studies of this class of
models are probably due to Chakraborti and Chakrabarti [11], and to Chatterjee, Chakrabarti and
Manna [12]. Indeed, some of their numerical experiments reproduce a wealth distribution similar
to that of a real economy. Mainly two variants to introduce saving propensities have been studied:
In the first, all agents have the same fixed saving factor [11], while in the second, the saving
propensity has a quenched random distribution [12]. The fixed-rate model has been understood to
a certain extent (see e.g, [14, 39]); its stationary state resembles a gamma distribution [39]. On the
other hand, there is no complete analysis available for the model with randomly distributed saving
factor (see however, [42, 36, 35]).

A somewhat different approach to trades was made by Cordier, Pareschi, and the second author
in [13]. There, a very simple model of an open market economy involving both assets exchanges
between individuals and speculative trading was introduced. The model is such that the average
wealth is not conserved due to a random dynamics. The latter describes the spontaneous growth
or decrease of wealth related to investments in the stock market, housing, and other factors. This
mechanism corresponds to the effects of an open market economy where the investments cause
the total economy to grow; more precisely the rich would get richer and the poor would get poorer.
In the absence of conservation of the total wealth, the best way to extract information on the large-
time behavior is to scale the solution in a way which keeps the total wealth constant. Nevertheless,
analytical studies of the resulting kinetic model remained difficult (although a thorough analysis
of the continuous trading limit could be performed). For a determination of the shape of the limit
distribution, the authors made use of suitable numerical methods.

Concerning the use of numerical methods in the study of steady states to kinetic equations (and
in particular the tails of these solutions), we recall that one is faced with delicate problems. In fact,
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the numerical reconstruction of tails in self-similar profiles of non-linear evolution equations has a
long history, especially in the field of diffusion processes. The main numerical difficulty originates
from the so-called retention property, which means that the support of the solution is growing in
time. Indeed, because of its spreading dynamics, diffusion equations will ask for repetitive re-
gridding. For some recent developments in this area we refer to [26], where a new tool has been
proposed, which allows to achieve precise numerical results in the case of fast diffusion equations.
An analogous problem exists in the kinetic context, and has been recently apparent in the studies
of the long-time behavior of a dissipative Maxwell gas [21, 22]. Despite the fact that the self-
similar profiles are know to exhibit overpopulated tails, a numerical reconstruction of the latter is
difficult to obtain. The available methods, principally Montecarlo ones, are oscillating exactly in
the interesting large velocities part of the density profile [43, 25].

In conclusion of the preceding remarks, one should treat the output of numerical experiments
with care, when it comes to determine the structure of tails. Rigorous analytical information is
of high importance in this discussion. The intention of the present paper is to bridge the gap
between the numerical observations and their analytical understanding, at least for some of the
available models. First of all, we investigate under which assumptions on the model one may
rightfully speak of a stationary wealth distribution. More precisely, we prove the existence and
uniqueness of a steady state, and we obtain results about the convergence of the dynamics towards
it in the long-time limit. Subsequently, we investigate the regularity of the steady state; recall that
a sensible wealth distribution curve should be smooth. Surprisingly, for a variety of models, we
find that the steady state is extremely singular, like that all agents possess exactly the same amount
of money – and possibly no money at all. Finally – and most importantly – we provide a method
to calculate the Pareto index from the model parameters alone.

In order to extract information on the large-time behavior of the economic system, we adopt
ideas from [37]. The two main ingredients are the use of Fourier metrics and estimates on the
evolution of moments. In fact, this strategy is well-known in dissipative kinetic theory, where the
large-time behavior of the solution to the dissipative Boltzmann equation for Maxwell molecules
[4] has been investigated by exactly the same means [21, 22, 1]. We would like to stress, however,
that our investigations here go far beyond a trivial extension of the mentioned results. In fact,
the models of interest here do not fit into the “classical picture” of kinetic equations. As we do
not allow debts, the wealth of our agents is always positive; this corresponds to a kinetic model
which forbids negative velocities. In particular, we cannot assume that the distribution function
is isotropic. Moreover, the role played by the second moment, i.e. the energy, in the classical
picture is now played the first moment, which is the mean wealth of the society. It is unnatural to
rescale the economic model in a way to keep the second moment constant, as this would destroy
conservation of the mean wealth. We chose to compensate the lack of conserved second moment
otherwise.

For the sake of completeness, we mention that alternative strategies have been used before
in order to obtain analytical information about the tails of the steady wealth distribution. For
instance, in [13], the kinetic equation was replaced by a (simpler) Fokker-Planck-type equation.
This was justified by proving that the latter constitutes the limit of the first in a suitable regime. The
equilibrium state of the Fokker-Planck equation can be computed explicitly and is of Pareto type,
i.e. it exhibits the power-law tail for the richest individuals. The same Fokker-Planck equation was
obtained in [7] as the mean field limit of a stochastic dynamical equation, as well as in [46, 33] in
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the context of a generalized Lotka-Volterra dynamic. The mathematical methods used in [13] are
close to those used in the context of kinetic theory for granular flows. Analogous methods have
been used for a kinetic model of a simple market economy with a constant growth mechanism by
Slanina [45], and generalized to a one-dimensional kinetic model with mixing interaction in [37].

Below, we provide more specific description of the setup and summary of our results.
In section 2, we define the class of models to study. The time evolution of the wealth distri-

bution f (v, t) is based on the assumption of collision-like trade events. In a suitable scaling, the
effect of collisions is quantitatively described by a Boltzmann-like equation [9],

∂ f
∂ t

= Q( f , f ). (2)

Here f = f (v, t) is the distribution of wealth v ∈ R+ at time t ≥ 0, and Q is a bilinear operator
which describes the change of f due to trades among agents. The binary trade is determined by
the linear exchange rules

v∗ = p1v+q1w; w∗ = p2v+q2w. (3)

Here (v,w) denote the (positive) money of two arbitrary individuals before the trade, and (v∗,w∗)
the money after the trade. The transaction coefficients pi,qi, i = 1,2 can be either given constant
or random quantities, with the obvious constraint to be nonnegative. In the present paper – except
for section 4.2 – the random distribution (or collision kernel, in the kinetic language) is assumed
to be independent of the wealth variables v and w, and independent of time. Moreover, we restrict
ourselves to conservative models, characterized by the further property

〈p1 + p2〉= 1, 〈q1 +q2〉= 1,

where 〈·〉 denotes the expectation value. Such interactions define a dynamic for the distribution
functions f (v, t), i.e. for appropriate initial conditions, there exists a unique solution. This solution
is continuous in a suitable Fourier metric for probability measures, see Theorem 2.3.

In section 3, we study the large-time behavior of solutions to (2), in particular their conver-
gence towards a steady state, and the qualitative properties of the latter. The main result of this
paper is given in Theorem 3.3: generically, the distribution functions f (v, t) do converge towards
a steady state f∞(v) as t → ∞, and this steady state is unique. Moreover, we prove that the Pareto
index µ of f∞ in (1) is given by the non-trivial root s̄ > 1 of the quantity

S(s) :=
1
2

〈
2

∑
i=1

(pi +qi)

〉
−1. (4)

This quantity is directly accessible once the interaction coefficients in (3) are made explicit. If
no non-trivial root s̄ > 1 exists, then the limiting distribution is either trivial, or its tail decays
super-algebraically. Finally, Theorem 3.5 provides C∞-smoothness of the steady state under very
general assumptions. In fact, the steady state belongs to a Gevrey class.

In addition to Fourier metrics, the other key tool in the proof of Theorem 3.3 is an investigation
of the evolution of moments. The results are summarized in Theorem 3.2: if S(s) is negative,
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then the sth moment of f (v, t) remains uniformly bounded in time; if S(s) is positive, then the sth
moment diverges exponentially fast as t → ∞.

In section 4, the behavior of the function S is various special cases is analyzed, and additional
information about the shape of the tails is derived. For instance, in example 2, we choose the
collision kernel in way that allows to control its degree of randomness by a parameter µ . The
typical behavior we find (see Figure 1) is that for small randomness, the tails of the steady state
decay super-algebraically; in fact, they decay exponentially by Theorem 4.4. On the other hand,
for large randomness, the steady state is trivial. Pareto tails form exactly in the intermediate
regime. Likewise, a small saving propensity λ results in slim tails, while for large values λ ≈ 1,
the stationary state collapses to into the trivial solution. We conclude that a good adjustment of
both randomness and saving play a pivotal role in the definition of suitable models.

Another observation concerns pointwise conservative trades, where the total of money is con-
served not only in the mean, but in each interaction. Then (generically) the tail of f∞ is slim, see
Theorem 4.1. Hence, in order to obtain the natural wealth structure in the long-time limit, the
respective model must allow the total money to increase during an individual trade with a certain
probability; likewise, it must allow the total to decrease. This behavior is most easily interpreted
as a combination of trades with risky investments, as discussed above in the context of the model
of Cordier et al.

Finally, we mention how our results are useful to understand the outcome of numerical exper-
iments. By Theorem 3.3, a variety of models allows only for trivial steady distribution of wealth
(namely, that all agents are truly pauper). However, the convergence of the money distribution
f (v, t) towards this pathological limit f∞(v) goes via the blow-up of all moments above the first,
i.e. while an increasing majority of agents accumulates in the pauper region, fewer and fewer
individuals become extremely rich, because the total wealth of the society is preserved. On the
other hand, in the long-time limit, the total wealth is zero (the convergence is really weak in this
case). In a simple numerical experiment, in which finite-size effects play a role, one could mis-
takenly interpret the blow-up of all moments above the first as convergence to a steady state with
Pareto-index µ ≈ 1. This gives a possible explanation of why so many numerical studies report a
critical index of approximately one.

In summary, our results improve the understanding of the trade-mechanisms which are respon-
sible for the creation of Pareto tails. In particular, we prove that the large-wealth behavior of the
steady distribution heavily dependent on the degree of randomness in the microscopic trade, and
on the propensity of agents to save.

2 The kinetic equation

2.1 Collision rules in conservative economies

A kinetic model of a simple market economy describes the redistribution of wealth by means of
microscopic binary interactions among agents or individuals which perform exchange of money.
These interactions are interpreted as trades. One generally assumes that the outcome of each trade
is non-negative for both agents, imposing that no debts are allowed. This rule emphasizes the
difference between economic interactions and the classical interactions between molecules, where
no positivity restriction applies.
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On the microscopic level, we consider binary interactions described by the rules

v∗ = p1v+q1w; w∗ = p2v+q2w, (5)

where (v,w) and (v∗,w∗) denote the money of two arbitrary individuals before and after the trade,
respectively. The interaction coefficients pi,qi for i = 1,2 can be either given constant or random
quantities. Here random means with respect to an a priori given probability distribution for the pi

and qi, which does not depend on time t, or on v and w. As debts are not allowed, the interaction
coefficients are constrained to be nonnegative. The total amount of money involved in the trade
changes from v+w into

v∗+w∗ = (p1 + p2)v+(q1 +q2)w, (6)

so that, unless a.s. both

p1 + p2 = 1, q1 +q2 = 1, (7)

money is generally not conserved. Condition (7) can be relaxed in presence of random coefficients:
we require that the total money is conserved in the mean, that is the random coefficients pi,qi,
i = 1,2 satisfy

〈p1 + p2〉= 1, 〈q1 +q2〉= 1. (8)

Both conditions (7) and (8) define conservative trades, and we refer to an interaction with (7) as
pointwise conservative. These interactions are such that the mean wealth

M =
∫

v f (v)dv

is a conserved in time.

Remark 2.1 We shall frequently use the abbreviation

〈Ψ(pi,qi)〉+ := 1
2〈Ψ(p1,q1)+Ψ(p2,q2)〉 (9)

for expressions Ψ involving pi and qi. Note that (8) implies the weaker condition

〈pi +qi〉+ = 1, (10)

which will be sufficient for most of our considerations.

Both types of conservative interaction allow for a similar (and almost complete) study. Various
models in the literature define conservative trades. In their pioneering paper A. Chakraborty and
B.K. Chakrabarthi [11] imposed that the agents taking part in a trade change money according to
the rule

v∗ = v+∆(v,w); w∗ = w−∆(v,w), (11)

where ∆(v,w) represents the amount of money to be exchanged,

∆(v,w) = (1−λ ) [(ε−1)v+ εw] , (12)
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with a constant saving propensity λ ∈ [0,1], and a random fraction ε with given distribution on
[0,1]. The introduction of λ in the definition of ∆(v,w) takes into account the basic fact that
rational agents always retain some money when trading; the saving rate λ (or sometimes s) denotes
the ratio of the withheld to all the money possessed. This trade corresponds to

p1 = 1− (1−λ )(1− ε), q1 = (1−λ )ε
(13)

p2 = (1−λ )(1− ε), q2 = 1− (1−λ )ε,

and is pointwise conservative.
We remark that the model has been further developed [12]: instead of prescribing a “global”

saving rate for all agents, an individual saving propensity λi ∈ [0,1] is randomly assigned to each
individual agent. This rate is then held fix during the time evolution. The rules (13) change
accordingly into

p1 = 1− (1−λA)(1− ε), q1 = (1−λB)ε
p2 = (1−λA)(1− ε), q2 = 1− (1−λB)ε, (14)

where the quantities λA and λB denote the saving rates of the two interacting individuals A and
B, possessing the wealth v and w, respectively. Despite its pointwise conservative character, this
model does not fit into the current framework. Note that the interaction coefficients are not dis-
tributed according to an a priori law; rather, finding the (time- and wealth-depending) law for λ
becomes part of the problem here. Some remarks are given in section 4.2. However, a thorough
analysis of this model will be subject of a separate paper [35].

Another kind of trade was considered in [13]. Its rules read

v∗ = λv+(1−λ )w+ηv; w∗ = (1−λ )v+λw+ η̃w. (15)

The saving rate λ is a global constant, as in the rules (13), while η and η̃ are independent random
variables with the same distribution and zero mean. This random term introduces the effects of an
open economy describing the market returns. Provided that η , η̃ ≥−λ almost surely, the random
coefficients pi,qi, i = 1,2 in (15) are nonnegative, since

p1 = λ +η , q1 = 1−λ
(16)

p2 = 1−λ , q2 = λ + η̃ .

However, this trade is conservative only in the mean, since 〈p1 + p2〉= 1, but p1 + p2 = 1+η 6= 1
with probability one.

For the sake of completeness, we mention some non-conservative models. F. Slanina recently
introduced an increasing wealth model [45] where

p1 = λ , q1 = 1−λ + ε; p2 = 1−λ + ε, q2 = λ . (17)

In the rules (17), the growth parameter ε is a fixed positive constant, hence the total money has
increased after the trade,

v∗+w∗ = (1+ ε)(v+w). (18)
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These rules introduce (artificially) the effects of a strong economy into the game, making the total
wealth grow with time. The same effect can be obtained in a more natural way: allow the random
variables in (15) to attain arbitrary real values, but discard all trades for which the post-trade money
are negative (see the discussion in [13]). The same idea was used in the original transfer model
proposed by A. Drăgulesku and V. Yakovenko [19], where the amount of money exchanged is

∆(v,w) =
ε
2
(v+w) (19)

with a random number 0 ≤ ε ≤ 1. If the “loser” cannot afford the money to be exchanged, the
trade does not take place.

Non-conservative kinetic models for trades of the type considered by Slanina [45] have been
recently studied in [37] by means of mathematical methods first applied to the Boltzmann equation
for Maxwell molecules. In the forthcoming section, we will show how these techniques generalize
to treat the conservative models introduced so far.

2.2 Weak form of the Boltzmann equation

Let f (v, t) denote the distribution of agents with wealth v ∈ IR+ at time t ≥ 0. A Boltzmann-like
equation for the time evolution of f (v, t) can be easily derived by standard methods of kinetic
theory, considering that the temporal change of f (v, t) depends on a balance between the gain and
loss of wealth among agents due to trades. A useful way of writing this equation is to use the
so-called weak form: for all smooth functions Φ(v), consider

d
dt

∫

IR+

f (v)Φ(v)dv =
∫

IR+

Q( f , f )(v)Φ(v)dv, (20)

where the collision operator Q( f , f ) is defined by

∫

IR+

Q( f , f )(v)Φ(v)dv =
1
2

〈∫

IR+

∫

IR+

(Φ(v∗)+Φ(w∗)−Φ(v)−Φ(w)) f (v) f (w)dvdw
〉

. (21)

The kinetic equation (20) is the analogue of the Boltzmann equation for Maxwell molecules [3, 9],
where the collision frequency is assumed to be constant. It is well-known in kinetic theory that
this simplification allows for a better understanding of the qualitative behavior of the solutions.
Among other properties, it can be shown that higher order moments can be evaluated recursively,
since the integrals

∫
vn f (v, t)dv obey a closed hierarchy of equations.

Without loss of generality, we can fix the initial density to satisfy
∫

IR+

f0(v)dv = 1;
∫

IR+

v f0(v)dv = M. (22)

Choosing Φ(v) = 1, (respectively Φ(v) = v) into (20) shows that conditions (22) are propagated
in time, so that, for all t > 0

∫

IR+

f (v, t)dv = 1;
∫

IR+

v f (v, t)dv = M (23)
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The initial value problem can be easily studied in the weak form (20). Denote by M0 the space of
all probability measures in IR+, and for α ≥ 0 by

Mα =
{

µ ∈M0 :
∫

IR+

|v|α µ(dv) < +∞
}

, (24)

the space of all Borel probability measures of finite moment of order α , equipped with the topology
of the weak convergence of measures.

A weak solution to the initial value problem for equation (20), with initial probability density
f0(v) ∈Mα ,α > 0 is a probability density f ∈C1(IR+,Mα) which satisfies (20) for t > 0 and all
smooth functions Φ, and the initial condition is realized as

lim
t→0

∫

IR+

Φ(v) f (v, t)dv =
∫

IR+

Φ(v) f0(v)dv (25)

for all Φ.

2.3 The Boltzmann equation in Fourier representation

From the kinetic theory of rarefied gases it is well-known that Boltzmann-like equations are often
conveniently studied in Fourier space, see e.g. [3]. This is particularly true for the model under
consideration, since its collision kernel (the probability measure) is independent of v. In fact, the
weak formulation (20) is equivalent to the Fourier transformed equation:

∂ f̂ (ξ , t)
∂ t

= Q̂
(

f̂ , f̂
)

(ξ , t), (26)

where f̂ (ξ , t) is the Fourier transform of f (x, t),

f̂ (ξ , t) =
∫

IR+

e−iξ v f (v, t)dv.

According to the collision rule (5), the transformed kernel reads

Q̂
(

f̂ , f̂
)

(ξ ) =
1
2

〈
f̂ (p1ξ ) f̂ (q1ξ )+ f̂ (p2ξ ) f̂ (q2ξ )

〉
− f̂ (ξ ) f̂ (0). (27)

The initial conditions (22) turn into

f̂0(0) = 1 and f̂0
′
(0) = iM.

Hence equation (26) can be rewritten as

∂ f̂ (ξ , t)
∂ t

+ f̂ (ξ , t) =
〈

f̂ (piξ ) f̂ (qiξ )
〉

+
. (28)

Equation (28) is a generalization of equation (43) in [37], as we allow random variables for the
mixing parameters pi and qi. Further, (28) is connected to equation (4.8) considered by Bobylev
and Cercignani in [5]. The difference is that in our situation v is restricted to the positive real
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axis, which makes it impossible to apply most of the techniques from [5]. In particular, we cannot
rescale our model in such a way that both the first and the second moment are preserved.

To prove existence of solutions to equation (28) is rather classical; e.g., the same methods
available for the elastic Kac model [29] apply, expressing the solution as a Wild sum [3]. In
order to show uniqueness of the solution, we use the idea from [24]: it is proven that the collision
operator Q is Lipschitz continuous in a suitable metric.

Introduce for arbitrary s > 0 the Fourier metric on Mα by

ds( f ,g) = sup
ξ∈R

| f̂ (ξ )− ĝ(ξ )|
|ξ |s . (29)

Write s = m + β , where m is an integer and 0 ≤ β < 1. Two functions f and g have a finite
distance, ds( f ,g) < ∞, if and only if their moments up to order m agree.

The metric (29) has been introduced in [24] to investigate the trend to equilibrium of the
solutions to the Boltzmann equation for Maxwell molecules. There, the case s = 2+β with β > 0
was considered. Further applications of ds to various kinetic models can be found in [1, 37, 41].

In order to show Lipschitz-continuity, let f1 and f2 be two solutions of the kinetic equation
(28), corresponding to initial values f1,0 and f2,0 satisfying conditions (22), and denote by f̂1, f̂2
their Fourier transforms. Let s≥ 1 be such that ds( f1,0, f2,0) is finite. Then

∂
∂ t

(
f̂1(ξ )− f̂2(ξ )

)

|ξ |s +
f̂1(ξ )− f̂2(ξ )

|ξ |s =

〈
f̂1(piξ ) f̂1(qiξ )− f̂2(piξ ) f̂2(qiξ )

〉
+

|ξ |s . (30)

Now, since | f̂1(ξ , t)| ≤ 1 and | f̂2(ξ , t)| ≤ 1 for all ξ ∈ R, we obtain
∣∣∣∣∣
〈 f̂1(piξ ) f̂1(qiξ )− f̂2(piξ ) f̂2(qiξ )〉+

|ξ |s

∣∣∣∣∣

≤
〈
| f̂1(piξ )|

∣∣∣∣∣
f̂1(qiξ )− f̂2(qiξ )

|qiξ |s

∣∣∣∣∣qs
i

〉

+

+

〈
| f̂2(qiξ )|

∣∣∣∣∣
f̂1(piξ )− f̂2(piξ )

|piξ |s

∣∣∣∣∣ ps
i

〉

+

≤ sup

∣∣∣∣∣
f̂1(ξ )− f̂2(ξ )

|ξ |s

∣∣∣∣∣〈p
s
i +qs

i 〉+.

In terms of the auxiliary quantity

h(t,ξ ) =
f̂1(ξ )− f̂2(ξ )

|ξ |s ,

the preceding computation shows that
∣∣∣∣
∂h
∂ t

+h
∣∣∣∣≤ 〈ps

i +qs
i 〉+‖h‖∞.

Gronwall’s lemma yields at once that

‖h(t)‖∞ ≤ exp
{
(〈ps

i +qs
i 〉+−1)t

}‖h0‖∞. (31)
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Below and the following chapters, the quantity in round brackets,

S(s) =
1
2

2

∑
i=1
〈ps

i +qs
i 〉−1, (32)

plays a major role. Since ‖h(t)‖∞ = ds
(

f1(t), f2(t)
)
, we obtain from (31)

Theorem 2.2 Let f1(t) and f2(t) be two solutions of the Boltzmann equation (20), corresponding
to initial values f1,0 and f2,0 satisfying conditions (22). Let s≥ 1 be such that ds( f1,0, f2,0) is finite.
Then, for all times t ≥ 0,

ds( f1(t), f2(t))≤ exp{S(s) · t}ds( f1,0, f2,0). (33)

In particular, if S(s) is negative, then the ds-distance of f1 and f2 decays exponentially in time.

Putting f1,0 = f2,0 = f0 in (33), and using s = 1 yields

Corollary 2.3 If f0 is a nonnegative density satisfying conditions (22), then there exists a unique
weak solution f (t) of the Boltzmann equation with f (0) = f0.

3 Existence, uniqueness and smoothness of the steady state

In order to discuss the shape of the tail in the stationary distribution, we first need to establish the
existence of the latter. This chapter provides two approaches to this: the first is to prove – under
suitable hypotheses – convergence of the distribution function f (v, t) to a long-time limit f∞(v),
and to show that this constitutes the unique stationary state. We point out that the existence of the
long-time limit cannot be directly concluded from the contractivity of the kinetic equation in some
ds-norm. Unfortunately, one needs additional information on the boundedness of higher moments;
for further discussion on the lack of completeness w.r.t. Fourier distance, see [8]. Therefore, the
temporal evolution of moments of f (v, t) is investigated first. The second approach follows the idea
of Bobylev and Cercignani [5] to approximate the steady state by using the stationary equation as
an iteration scheme.

3.1 Evolution of moments

In Theorem 2.2 about the large-time behavior of solutions to (20), the essential quantity S has
been introduced. Below, we prove that if S(s) is negative for some s > 0, then the s-th moment of
the solution,

Ms(t) =
∫

R+

vs f (v; t)dv,

remains bounded for all times. On the other hand, if S(s) is positive for some s ≥ 2, then Ms(t)
diverges exponentially fast as t → ∞. We exploit this information to prove existence and decay
properties of the steady state.
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To start with, we note that conservation of the total wealth allows to conclude that at least all
moments of order s≤ 1 remain uniformly bounded. In fact, by Hölder’s inequality,

∫

R+

vs f (v)dv≤
(∫

R+

v f (v)dv
)s

·
(∫

R+

f (v)dv
)1−s

= Ms (0 < s < 1).

Now, let s > 1 and suppose that the initial density f0(v) satisfies

Ms(0) =
∫

IR+

vs f0(v)dv < ∞. (34)

Then, putting Φ(v) = vs in the weak form (20), we obtain

d
dt

∫

IR+

vs f (v, t)dv =
1
2

〈∫

IR2
+

dvdw

(
2

∑
i=1

(piv+qiw)s− vs−ws

)
f (v) f (w)

〉

+

. (35)

In the following, we establish upper and lower bounds for the right-hand side of (35). These
bounds rely on the following elementary inequality:

Lemma 3.1 For arbitrary non-negative real numbers a and b, and s > 1,

as +bs +θs(as−1b+abs−1)≤ (a+b)s ≤ as +bs +Θs(as−1b+abs−1), (36)

with θs =





s (s > 3)
2s−3s (2≤ s≤ 3)
0 (1 < s < 2)

and Θs =
{

s (2≤ s≤ 3)
2s−3s (otherwise)

Remark: An investigation of the limit behavior as a ↘ 0 and b > 0 makes clear that θs = 0 for
1 < s < 2 cannot be improved in general.
Proof By homogeneity, it suffices to prove the inequality for a+b = 1. Define for s > 1,

φ(s) := as +bs + sab.

A calculation yields φ(2) = φ(3) = 1, independently of a and b = 1−a. Furthermore, φ is convex
in s since

φ ′′(s) = as ln2 a+bs ln2 b≥ 0.

Hence φ(s)≤ 1 if and only if 2≤ s≤ 3. Observe that as−2 +bs−2 is concave w.r.t. a = 1−b∈ (0,1)
for 2 ≤ s ≤ 3, and convex for all other s > 1; the expression attains its extremal value 23−s at
a = b = 1

2 . Hence

as−1b+abs−1 = ab(as−2 +bs−2)
{ ≤ 23−sab (2≤ s≤ 3)
≥ 23−sab (otherwise)

Thus we obtain, for 2≤ s≤ 3

as +bs +2s−3s(as−1b+abs−1)≤ φ(s)≤ 1 = (a+b)s,

12



and with reversed inequalities for 1 < s < 2 or s > 3.
Now let s > 1 be fixed and consider for a ∈ [0,1]

fs(a) := as +bs + s(as−1b+abs−1),

with b = 1−a. Observe that fs(0) = fs(1) = 1, and furthermore

f ′s(a) = s(s−1)(as−2b−abs−2),

so that f has ā = 1
2 as the only critical point in (0,1). For s < 3, one has fs(ā) = (s+1)21−s > 1,

so ā is a maximum point and hence fs(a) ≥ 1 for a ∈ [0,1]; for s > 3, it is a minimum point and
fs(a)≤ 1. Consequently, for s≤ 3,

as +bs + s(as−1b+abs−1) = fs(a)≥ 1 = (a+b)s;

the reversed inequality holds for s≥ 3.

Using the upper bound in (36), estimate

(piv+qiw)s ≤ ps
i v

s +qs
i w

s +Θs(ps−1
i qivs−1w+ piqs−1

i vws−1)

under the integral in (35), leading to

d
dt

Ms(t)≤ 1
2

〈∫

R2
+

dvdw((ps
1 + ps

2−1)vs +(qs
1 +qs

2−1)ws) f (v) f (w)
〉

(37)

+
1
2

Θs

〈∫

R2
+

dvdw
(
(ps−1

1 q1 + ps−1
2 q2)vs−1w+(p1qs−1

1 + p2qs−1
2 )vws−1) f (v) f (w)

〉

=S(s)
∫

R+

vs f (v)dv+Θs〈ps−1
i qi + piqs−1

i 〉+
∫

R+

v f (v)dv
∫

IR+

ws−1 f (w)dw.

Recall that the total wealth
∫

v f (v)dv = M is conserved in time. Further, by Hölder’s inequality,
it follows that

∫

IR+

ws−1 f (w)dw≤
(∫

IR+

ws f (w)dw
)1− 1

s

Hence, we obtain

d
dt

∫

R+

vs f (v)dv≤S(s)
∫

R+

vs f (v)dv+Θs ·K(s) ·M ·
(∫

R+

vs f (v)dv
)1− 1

s

, (38)

where

K(s) := 〈ps−1
i qi + piqs−1

i 〉+ ≤ 〈ps
i +qs

i 〉+ = S(s)+1. (39)

In particular, if S(s) is a finite number, then so is K(s). In this case, the sth moment grows at most
exponentially, with rate S(s), if it was finite initially. Moreover, if S(s) < 0, then the sth moment
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remains uniformly bounded for all times. In fact, an upper bound on the sth moment is determined
by the solution of the associated ordinary differential equation

ẏ = S · y+Θs ·K(s) ·M · y1− 1
s

with initial condition y(0) = Ms(0). The solution is explicitly given by

y(t) =
[(

Ms · exp
{

t ·S(s)
})1/s +

Θs ·K(s) ·M
S(s)

(
exp

{ t
s
·S(s)

}−1
)]s

.

Notice that the first term in the square bracket vanishes for t → ∞ if S(s) < 0, so that the limiting
value depends on the initial condition f0 only through the total wealth M.

By the same reasoning as above, we construct a bound from below on the time-derivative of
the integral. For this, we use the lower bound given in the elementary inequality (36). Replacing
the respective expressions under the integral, we obtain

d
dt

Ms(t)≥ 1
2

∫

R2
+

dvdw(〈ps
1 + ps

2−1〉vs + 〈qs
1 +qs

2−1〉ws) f (v) f (w)

+θs

〈∫

R2
+

dvdw
(
(ps−1

1 q1 + ps−1
2 q2)vs−1w+(p1qs−1

1 + p2qs−1
2 )vws−1) f (v) f (w)

〉

= S(s) ·
∫

vs f (v, t)dv+θs ·K(s) ·
∫

R+

v f (v)dv
∫

R+

ws−1 f (w)dw.

We use Hölder’s inequality to estimate

∫

R+

ws−1 f (w)dw≥
(∫

R+

w f (w)dw
)s−1

= Ms−1.

By Gronwall’s inequality, a lower bound is given by

Ms(t)≥Ms(0) · exp
{

t ·S(s)
}

+
θs ·K(s) ·Ms

S(s)
(
exp

{
t ·S(s)

}−1
)
.

We conclude that if S(s) > 0, then the moment Ms diverges exponentially in time.
In the special case that S(s) = 0, similar but simpler arguments give that the corresponding

moment remains either bounded (iff K (s) = 0) or diverges, but at only at the algebraic rate ts.
Finally, if S(s) = +∞, an easy argument shows that the sth moment of f (v, t) must be infinite for
all positive times.

Theorem 3.2 Consider a solution f to the Boltzmann equation (20). Let s > 1 be such that
Ms(0) =

∫
IR+

vs f0(v)dv < ∞.

1. If 0 < S(s) < +∞, then the sth moment diverges exponentially fast as t → ∞:

Ms +
θsK(s)
S(s)

·Ms +o(1)≤
∫
R+

vs f (v, t)dv

exp{t ·S(s)} ≤
[

M1/s
s +

ΘsK(s)
S(s)

·M
]s

+o(1). (40)
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2. If S(s) < 0, then the sth moment remains uniformly bounded as t → ∞:

θsK(s)
|S(s)| ·M

s +o(1)≤
∫

R+

vs f (v, t)dv≤
(

ΘsK(s)
|S(s)|

)s

·Ms +o(1). (41)

3. If S(s) = 0, then the sth moment either remains bounded or diverges at an algebraic rate:
(

θsK(s)
s

)s

·Ms +o(1)≤ t−s ·
∫

R+

vs f (v, t)dv≤
(

ΘsK(s)
s

)s

·Ms +o(1). (42)

4. Finally, if S(s) = +∞, then the sth moment is infinite for all t > 0.

3.2 Steady state as the long-time limit

Below, the unique steady state f∞ to the kinetic equation (20) is obtained as the limit of an arbitrary
solution f (v, t) for t → ∞ in a suitable ds-norm. Since the long-time behavior of solutions is
essentially determined by the quantity S, we need to start by investigating this function in further
detail.

First recall that for an arbitrary non-negative number p, the exponential s 7→ ps is convex
in s > 0. Hence S(s), which is the average of convex functions, is convex on its domain. By
the dominated convergence theorem, S(s) is well-defined at least for 0 < s ≤ 1, but possibly
S(s) = +∞ for all s > s∞ > 1. Since S(1) = 0, convexity leaves only three possibilities for the
behavior of S:

1. S(s) is non-negative for all s > 0.

2. S(s) is negative for some s ∈ (0,1), and positive for all s > 1.

3. S(s) is negative for all 1 < s < s̄, and positive for all s < 1 and all s > s̄; here either s̄ = +∞,
or S(s̄) = 0, or S(s) = +∞ for s > s̄.

If S is differentiable at s = 1, then the first case corresponds to S′(1) = 0, the second to S′(1) > 0,
and the last to S′(1) < 0. These four cases are now discussed in detail.

In the first case, no information about the existence of a long-time limit can be extracted.
In the second case, r := −S(s) > 0 for some s ∈ (0,1). Then the solution f (v, t) has the

Cauchy-property w.r.t. t ≥ 0, i.e., for each ε > 0, there exists a time T (ε) such that

ds
(

f (t1), f (t2)
)≤ ε for all t1, t2 ≥ T (ε). (43)

To prove this, let t1 > t2 ≥ 0 be arbitrary, and write t1 = t2 +n∆ with some 1
2 ≤ ∆≤ 1 and n ∈ N.

By the triangle inequality and the contraction estimate from Theorem 2.2,

ds
(

f (t1), f (t2)
)≤

n−1

∑
k=0

ds
(

f (t2 +(k +1)∆), f (t2 + k∆)
)

≤
n−1

∑
k=0

e−r(t2+k∆)ds
(

f (∆), f (0)
)

≤ e−rt2

1− e−r∆ ds
(

f (∆), f0
)≤ e−rt2 sup

1/2≤∆′≤1

ds
(

f (∆′), f0
)

1− e−r∆′ .
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As f (t) is continuous in the ds-metric, the last supremum is finite, which implies (43). In addition,
the first moment of f (v, t) equals M for all t ≥ 0. The Cauchy property together with this uniform
bound on moments is enough to conclude convergence of f (v, t) to a limit f∞(v) in ds as t →+∞,
see [8]. This limit is a probability density with first moment less or equal to M.

Now let f ′(t) be another solution to the Boltzmann equation (20), with first moment equal to
M′. Then f ′(t) converges to a limit f ′∞ as t → +∞, with first moment less or equal to M′. On the
other hand, as two probability measures always have finite ds-distance for s < 1, it follows from
Theorem 2.2 that ds

(
f (t), f ′(t)

)→ 0 as t →+∞. Consequently, f∞ = f ′∞, and the first moment is
less or equal than the minimum of M and M′.

It follows that for an arbitrary initial distribution f0, the solution f (t) converges to the same
limit f∞. This limit is a probability density with first moment equal to zero, i.e., it is a Dirac
distribution centered at v = 0. Notice that, although f∞ possesses finite moments of arbitrary order
while S(s) > 0 for s > 1, this is not in contradiction to Theorem (3.2), since also M = 0.

The third case is the most interesting one. Choose some s ∈ (1,2) with s < s̄; then r :=
−S(s) > 0. Assume that the initial datum of f possesses a moment of order S > s. By the same
argument as above, it follows that f (v, t) has the Cauchy property in ds; notice that ds

(
f (t), f0

)
is always finite since s < 2 and the first moment (mean wealth) is conserved under evolution.
Moreover, as we required s < s̄, there exists a s′ with s < s′ < min(s̄,S); by Theorem 3.2, the
moment of order s′ remains uniformly bounded. It follows that f (t) converges in ds to a limit
distribution f∞(v), which is normalized and has the same first moment as the f (t).

This convergence implies that f∞ is a steady state for the kinetic equation (20). Indeed, denote
by f∞(t) the solution to (20) with initial datum f∞, then Theorem 2.2 gives

ds
(

f∞(t), f∞
)≤ ds

(
f∞(t), f (t +T )

)
+ds

(
f (t +T ), f∞

)

≤ e−rtds
(

f∞, f (T )
)
+ds

(
f (t +T ), f∞

)
.

The last expression can be made arbitrarily small by choosing T large enough, so that f∞(t) = f∞
for all t ≥ 0. In fact, f∞ is the only steady state with the respective value of the first moment; for
if f ′∞ is another steady state with the same first moment, then ds( f∞, f ′∞) is finite, and so, invoking
Theorem 2.2 again,

ds( f∞, f ′∞)≤ e−rds( f∞, f ′∞),

which forces f∞ = f ′∞. Finally, consider a solution f which has arbitrary moments bounded ini-
tially. Theorem 3.2 gives a time-uniform bound for moments of order less than s̄. Since conver-
gence f (t)→ f∞ in ds implies weak* convergence of the associated measures, it follows that f∞
has finite moments of all orders less than s̄. On the other hand, no moment of order larger than
s̄ can be finite. To see this, simply apply Theorem 3.2 to the steady state solution f∞(t) ≡ f∞ to
derive a contradiction.

We summarize the results of this section:

Theorem 3.3 Let f (v, t) be a weak solution of the Boltzmann equation (20), which has initially
finite moments up to order S > 0. Further assume that S(s) < 0 for some s ∈ (0,S). Then f
converges exponentially fast in ds to a steady state f∞,

ds( f (t), f∞)≤ ds( f0, f∞)exp{−|S(s)|t} . (44)
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If s < 1, then f∞ is a Dirac distribution centered at v = 0, and there are no other steady states. If
s > 1, then f∞ has mean wealth equal to M, and it is the only steady state with this mean wealth.
Moreover, if S(s′) < 0 exactly for 1 < s′ < s̄, possibly with s̄ = +∞, then f∞ has finite moments of
all orders less than s̄, while moments of order larger than s̄ are infinite.

Remark 3.4 It is possible that ds( f (t), f∞) is infinite in (44); this simply means that also ds( f0, f∞)
is infinite.

3.3 Smoothness of the steady state

Theorem 3.5 Assume that there are positive numbers r and δ such that

pr
i +qr

i ≥ 1+δ r a.s. (45)

Assume further that S(σ) < 0 for some 1 < σ < 2, so that a non-trivial steady state f∞ to the
kinetic equation (20) exists. Then either f∞ is a Dirac distribution centered at v = M, or f∞ is a
smooth function and belongs to the r-th Gevrey class, i.e.

∣∣ f̂∞(ξ )
∣∣≤ exp

(−µ|ξ |r), for |ξ | ≥ ρ ,

with suitable positive numbers ρ and µ .

Remark 3.6 Since the mean wealth is preserved, i.e. 〈pi + qi〉+ = 1, it follows that r < 1. No-
tice that condition (45) imposes no serious restrictions on the distribution of the interaction co-
efficients. For instance, it allows any probability measure which is compactly supported in the
interior of the first quadrant of the pi−qi–plane.

The proof of Theorem 3.5 is done on the level of Fourier transforms, and is divided into a series
of Lemmas. The first is concerned with the behavior of f̂∞ near the origin:

Lemma 3.7 Under the hypotheses of Theorem 3.5, either f∞ is a Dirac distribution, i.e. | f̂ | ≡ 1,
or there exist positive numbers ρ and κ s.t.

| f̂∞(ξ )| ≤ exp(−κξ 2), for |ξ |< ρ . (46)

Proof First assume that f∞ has finite second moment. Then f̂∞ is twice differentiable at ξ = 0,
and

f̂∞(ξ ) = 1− iMξ − 1
2

Qξ 2 +o(ξ 2),

where M and Q denote the first and second moment of f∞, respectively. This means that

| f̂∞(ξ )|2 = 1− (Q−M2)ξ 2 +o(ξ 2).

Now either Q = M2, which implies that f∞ is concentrated at ξ = M, or κ := 1
4(Q−M2) > 0

makes (46) true for some small ρ > 0.
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In the case that the second moment of f̂∞ is infinite, we write

f̂∞(ξ ) =
∫

R
f∞(v)e−iξ v dv = 1−

∫

R

(
1− cos(ξ v)

)
d f∞(v)

︸ ︷︷ ︸
=:H1(ξ )

−i
∫

R
sin(ξ v)d f∞(v)

︸ ︷︷ ︸
=:H2(ξ )

,

so that

| f̂∞(ξ )|2 = 1−2H1(ξ )+H1(ξ )2 +H2(ξ )2.

The elementary inequalities 1− cosx≤ |x| and |sinx| ≤ |x| for x ∈ R imply

H1(ξ )≤ |ξ |
∫

R
vd f∞(v) = M|ξ |, |H2(ξ )| ≤ |ξ |

∫

R
vd f∞(v) = M|ξ |.

On the other hand, with the elementary inequalities

1− cosx≥ 1
3

x2 for |x| ≤ 1, 1− cosx≥ 0 for x ∈ R,

one obtains for arbitrary ξ ∈ R

H1 ≥ ξ 2

3

∫

|ξ v|<1
v2d f∞(v) = A(ξ )ξ 2.

Here A(ξ ) is a positive, non-increasing function with limξ→0 A(ξ ) = +∞, since the second mo-
ment of f∞ diverges. Choosing ρ > 0 so small that A(ρ)≥ 2M2, it follows that

| f̂∞(ξ )|2 ≤ 1−2M2ξ 2, for |ξ |< ρ.

Hence (46) holds with κ := 1
2 M2, possibly after diminishing ρ suitably.

Inspired by the ideas of Bobylev et al in [5], and those of Desvillettes at al in [16], we introduce
the fixed point operator

R[ψ](ξ ) :=
{

f̂∞(ξ ) if |ξ |< ρ
〈ψ(piξ )ψ(qiξ )〉+ if |ξ | ≥ ρ .

on bounded complex functions ψ :R→C. Notice that R is closely related to the Fourier transform
of the collision kernel. Furthermore, for µ > 0, define Kµ as the set of functions ψ with ψ(0) = 1,
ψ ′(0) = f̂ ′∞(0), and satisfying the estimates

|ψ(ξ )| ≤ exp(−κξ 2) for |ξ |< ρ, |ψ(ξ )| ≤ exp(−µ|ξ |r) for |ξ | ≥ ρ. (47)

Here q and ρ are the constants from Lemma 3.7 above. Eventually, we wish to prove that f̂∞ ∈ Kµ
for a suitable µ > 0.

Lemma 3.8 Under the hypotheses of Theorem 3.5, and assuming that f∞ is not a Dirac distribu-
tion, there exists some µ > 0, depending only on ρ and κ , such that R maps Kµ into itself.
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Proof By definition of R, it is obvious that R[ψ](0) = 1 and R[ψ]′(0) = f̂ ′∞(0). Moreover,
Lemma 3.7 assures that the first estimate in (47) holds. Now let ψ ∈ Kµ and ξ ∈ R with |ξ | ≥ ρ
be arbitrary. We show that

eµ|ξ |r · ∣∣R[ψ](ξ )
∣∣≤ 〈eµ|ξ |r · |ψ(piξ )| · |ψ(qiξ )|〉+ ≤ 1. (48)

To this end, we prove that the term inside the expectation value is less/equal one a.s. We distinguish
four cases:

1. If both pi|ξ | ≥ ρ and qi|ξ | ≥ ρ , then the hypothesis (45) yields

eµ|ξ |r · |ψ(piξ )| · |ψ(qiξ )| ≤ eµ|ξ |r−µ pr
i |ξ |r−µqr

i |ξ |r ≤ e−µ|ξ |rδ r ≤ 1.

2. If both pi|ξ |< ρ and qi|ξ |< ρ , then we conclude from (45) that p2
i +q2

i ≥ 21−2/r, so

eµ|ξ |r · |ψ(piξ )| · |ψ(qiξ )| ≤ eµ|ξ |r−κ p2
i |ξ |2−κq2

i |ξ |2 ≤ e−|ξ |
r(µ−κ·21−2/rρ2−r) ≤ 1,

provided that µ ≤ 21−2/rρ2−r ·κ .

3. Now assume that pi|ξ |< ρ while qi|ξ | ≥ ρ . Using (45) once again, one finds

eµ|ξ |r · |ψ(piξ )| · |ψ(qiξ )| ≤ eµ|ξ |r−κ p2
i |ξ |2−µqr

i |ξ |r ≤ eµ(pr
i−δ r)|ξ |r−κ p2

i |ξ |2

Obviously, the last expression is less than one if pi < δ . Assume now that pi ≥ δ . Since
|ξ | ≥ ρ , one has pi|ξ | ≥ δρ and hence the exponent can be estimated by

µ pr
i |ξ |r−κ p2

i |ξ |2 ≤ pr
i |ξ |r(µ−κδ 2−rρ2−r).

The last expression is negative provided that µ ≤ (δρ)2−r ·κ .

4. The last case, pi|ξ | ≥ ρ and qi|ξ | < ρ , is treated in the same way and yields the same
condition on µ .

In summary, (48) holds if µ is the minimum of 21−2/rρ2−r ·κ and (δρ)2−r ·κ .

Lemma 3.9 Under the hypotheses of Theorem 3.5, and assuming that f∞ is not a Dirac distribu-
tion, f∞ ∈ Kµ with the µ from Lemma 3.8 above.

Proof Let ψ0(ξ ) = f̂∞(ξ ) for |ξ | < ρ , and ψ0(ξ ) = 0 for |ξ | ≥ ρ . Define inductively the
sequence ψn+1 = R[ψn]. By Lemma 3.8, each ψn belongs to Kµ . Moreover, by the same estimates
that lead to Theorem 2.2, one proves that R acts as a contraction on functions ψ , ϕ with |ψ| ≤ 1,
|ϕ| ≤ 1 and ψ(0) = ϕ(0) = 1, ψ ′(0) = ϕ ′(0) = f̂ ′∞(0). In fact,

∣∣R[ψ](ξ )−R[φ ](ξ )
∣∣ = 0 for

|ξ |< ρ , while for ξ ≥ ρ , one finds

∣∣R[ψ](ξ )−R[ϕ](ξ )
∣∣≤ sup

ξ ′ 6=0

( |ψ(ξ ′)−ϕ(ξ ′)|
|ξ ′|σ

)
· 〈pσ

i +qσ
i 〉+ · |ξ |σ . (49)
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The supremum on the right-hand side is finite (recall that 1 < σ < 2). By definition of Kµ , in-
equality (49) applies in particular to any pair ψn, ψm, yielding

∣∣ψn+1(ξ )−ψn(ξ )
∣∣≤C · 〈pσ

i +qσ
i 〉n+ · |ξ |σ

with some finite constant C. By hypothesis, S(σ) < 0, so 0 < 〈pσ
i + qσ

i 〉+ < 1, implying local
uniform convergence of the sequence ψn to a limit function ψ∞. Observe that ψ∞ satisfies the same
pointwise estimates (47) as the ψn, i.e. ψ∞ ∈ Kµ . Moreover, ψ∞(ξ ) = f̂∞(ξ ) for |ξ |< ρ . Finally,
local uniform convergence in combination with the pointwise estimates (47) is more than enough
to invoke Lebesgue’s dominated convergence theorem and conclude

ψ∞(ξ ) = 〈ψ∞(piξ )ψ∞(qiξ )〉+, for |ξ | ≥ ρ , (50)

i.e. ψ∞ is a fixed point of the operator R. By (49), we conclude that ψ∞ is in fact the unique fixed
point of R among the functions ψ with |ψ| ≤ 1, ψ(0) = 1 and ψ ′(0) = f̂ ′∞(0).

Obviously, f̂∞ is also a fixed point of R, as (50) is nothing but the equation for the stationary
state in Fourier representation, i.e. (28) with ∂t f̂ = 0. So f̂∞ = ψ∞ ∈ Kµ , which finishes the proof.

By definition of Kµ , Theorem 3.5 now follows immediately from Lemma 3.9.

4 Shape of the tails

We are eventually in the situation to study the behavior of the steady state f∞(v) for large values
of the wealth v.

4.1 Non-pointwise conservative trades

In this section we study the formation of tails in models which conserve money only in the mean.
For certain probability distributions of the interaction coefficients, these tails are of Pareto type.
Recall that the decay behavior of the steady state f∞ is essentially determined by the function

S(s) =
1
2
〈ps

1 + ps
2 +qs

1 +qs
2〉−1.

Algebraic decay corresponds to S(s) being negative on a finite interval (1, s̄) with s̄ > 1. In view
of (1), we define the Pareto index of the stationary distribution f∞ as the number µ > 0 such that
all moments of f∞ of order less than µ are finite, while f∞ possesses no moments of order larger
than µ . From Theorem 3.3, it is immediate to conclude that the Pareto index µ coincides with the
non-trivial zero s̄ > 1 of S.

We focus on various special cases of the trade given by the model (15) in the following. The
saving propensity 0 < λ < 1 is fixed, and we assume that the probability variables η and η̃ are
independent and identically distributed. Under these assumptions,

S(s) = 〈ps
1 + ps

2〉−1 = (1−λ )s−1+
∫ +∞

−λ
(λ +ω)sdρ(s), (51)

where ρ(s) is the probability density of η and η̃ on [−λ ,+∞).
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Figure 1: Left Regions for the parameter µ and saving rate λ in Example 2. Pareto Tails are found
in zone III. Right Critical value of the saving rate λ in Example 4. Pareto tails form for λ lying
below the curve.

Example 1 If the distribution of η is so tame that η ≤ λ −δ a.s. for some 0 < δ < λ , then

p1, p2,q1,q2 ≤ 1−δ a.s. (52)

Consequently S(s) ≤ 2(1−δ )s−1, and this expression converges to −1 as s→ ∞. By the basic
properties of S, it follows that S(s) < 0 for all s > 1. This corresponds to a dynamic in which all
moments remain uniformly bounded in time; the steady state has no Pareto tails.

Example 2 Assume η only takes values +µ and −µ , with probability 1
2 each, where 0≤ µ ≤ λ .

By varying the parameters λ and µ , one encounters the whole variety of possible shapes of the
tail of f∞. If λ + µ < 1, then we are back in the trivial scenario (52), where all moments of f∞ are
finite. Hence we assume λ + µ > 1 from now on. We calculate

S(s) = (1−λ )s−1+
1
2
(λ −µ)s +

1
2
(λ + µ)s. (53)

The term (λ + µ)s grows exponentially with s and eventually dominates, making the expression
(53) positive. So moments of order higher than s̄ diverge, where s̄ ≥ 1 depends on λ and µ . It
remains to decide whether s̄ > 1 (formation of Pareto tails) or s̄ = 1 (all moments above one
diverge). To this end, we evaluate the derivative

d
ds

S(1) = (1−λ ) ln(1−λ )+
1
2
(λ −µ) ln(λ −µ)+

1
2
(λ + µ) ln(λ + µ). (54)

The result is displayed in figure 1: in region II, all moments remain uniformly bounded in time,
whereas in regions III and IV, sufficiently high or all moments above one, respectively, diverge.
Notice that the parameter region I is excluded by the condition µ ≤ λ .

In the following two examples, η takes arbitrarily large values.

Example 3 Assume a density with exponential decay,

dρ(ω) =
1

λe
exp

(− ω
λ

)
1(−λ ,+∞)(ω)dω.
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The integral in (51) converges for all s > 0. One obtains

S(s) = (1−λ )s−1+λ s ·
∫ ∞

0
tse−tdt = (1−λ )s−1+λ s ·Γ(1+ s).

The Gamma function grows faster than any exponential, so it eventually dominates the expression,
causing high moments to diverge in time. The derivative at s = 1 reads

d
ds

S(1) = (1−λ ) ln(1−λ )+λ lnλ +(1− γ)λ . (55)

Here γ = 0.577 . . . is Euler’s constant. The expression (55) is strictly convex in λ ∈ [0,1], vanishes
at λ = 0, and has a unique positive root λ0 = 0.877 . . .. Consequently, Pareto tails form in the
regime λ < λ0 for saving rates.

Example 4 Finally, take p > 1 and define

dρ(ω) =
1
p

λ−p(1− 1
p

)p · (λ +ω)−(p+1)1(−λ/p,+∞)(ω)dω.

It is clear that the integral in (51) diverges to +∞ when s↗ p, so that at least the moments higher
than p become infinite in the long-time limit. Hence p constitutes an upper bound for the Pareto
index. For s < p,

S(s) = (1−λ )s−1+
p

p− s

(
1− 1

p

)sλ s.

Numerical investigations indicate that Pareto tails form for λ < λp, with λp ≈ 1 for p > 2. In
Figure 1, the values of λp are displayed for p < 2.

4.2 Pointwise conservative trades and their nonlinear generalizations

The main result about pointwise conservative trades – satisfying (5) and (7) – is that they cannot
form Pareto tails in the long-time limit.

Theorem 4.1 For each trade of type (5) which is pointwise conservative (7), exactly one of the
following is true:

1. Any solution f converges exponentially fast (in any ds with s > 1) to the unique steady state
f∞, which possesses finite moments of all orders.

2. Any solution f is constant in time, i.e. f (t,v) = fo(v) for all t > 0.

3. Along any solution f , all moments above the first diverge at an algebraic rate, and the only
stationary state is given by the Dirac distribution centered at v = 0.

Proof From the behavior of the functions s 7→ ps +(1− p)s with 0≤ p≤ 1 one easily concludes
that S(s) is well-defined and non-positive for all s≥ 1. Furthermore, S(s) is zero for some s > 1
exactly if it is identically zero for all s.
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The first case in the Theorem is the generic one, where S is not identically zero. The claim
follows immediately from Theorem 3.3.

If S≡ 0, then p1 p2 = q1q2 = 0 a.s. Consider the quantity K defined in (39). This quantity is
non-negative. Moreover, it is zero for some s > 1 exactly if it is zero for all s, and the latter is the
case if (almost surely) one of the following is true:

p1 = q2 = 1 and p2 = q1 = 0, or p1 = q2 = 0 and p2 = q1 = 1. (56)

The corresponding dynamics is trivial, i.e. f (v, t) = f (v) for all t ≥ 0. If (56) does not hold almost
surely, then K (s) is positive for all s > 1. By Theorem 3.2, all moments of f above the first
diverge at algebraic rate. The only possible steady state is the Dirac distribution at v = 0.

The following three examples illustrate the three cases of qualitative behavior.

Example 5 For a fixed positive number λ > 0, consider the special (deterministic) case of the
trade (15)

v∗ = λv+(1−λ )w, w∗ = (1−λ )v+λw.

Each agent possesses the same global saving propensity λ . It is easily checked that S(s) < 0
for all s > 1, so the associated steady state f∞ possesses a thin tail, for which all moments are
finite. Actually, more can be said: With this radical choice, the model describes a granular gas,
for which the Dirac distribution is known to constitute the steady state. In fact, using Φ(v) = v2

as test function in the weak formulation (20), one learns that the variance V (t) of f (v, t) obeys

d
dt

V (t) =−2λ (1−λ )V (t), (57)

and thus decays to zero at rate 2λ (1−λ ), The solution f (v, t) concentrates in a Dirac distribution
centered at v = M, where M denotes the (conserved) mean wealth. In the long-time limit, all
agents end up with the same amount of money.

Example 6 Consider the limit cases λ = 1 and λ = 0 in example 5. These correspond to no
trading and pure exchange, respectively. One calculates that both S and K are identically zero
here. Note that also the estimate (57) becomes void. These are situations where any probability
distribution f (v) constitutes a stationary solution of equation (20).

Example 7 Finally, consider the “Winner takes all” dynamics,

v∗ = v+w, w∗ = 0,

where in every interaction, one agent loses all of his money to the other one. Again, one finds that
S is identically zero, but now K is identically one. The following formal argument indicates how
f (v, t) concentrates at v = 0. Denote by m(t) the mass that has concentrated in v = 0 at time t > 0,
i.e. the fraction of truly pauper agents. An equation for m(t) is formally obtained by using the
indicator functions of the point v = 0 for Φ in (20). After algebraic manipulations, one arrives at

d
dt

m(t) =
1
2
(
1−m(t)

)2
.
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This differential equation has the solution m(t) = t/(t +2). At the same time, the mean wealth M
is conserved. While an increasing majority of agents possesses no money at all, the small fraction
of 2/(t +2) agents has become incredibly rich at time t > 0.

In the pertinent literature, a variety of pointwise conservative trades is proposed, which are not of
the type considered here. Such generalized pointwise conservative trades are defined as binary
interactions (5) where the sum of the wealth of the agents is maintained. In contrast to the models
considered up to here, the degree of randomness is more general in these models. The probabil-
ity measure according to which the interaction coefficients pi and qi are distributed may depend
on the wealth v, w of the interacting agents, and also (in a very sophisticated manner) on time.
One example is the minimum exchange model, where pi and qi are non-linear functions of v/w.
Even more complicated is the model with “personalized” saving propensities from [12]; here the
probability measure for the interaction coefficients constitutes a time-dependent solution of some
auxiliary partial differential equation. (For a rigorous discussion, see [35].) Formally, however,
these models can still be written in the form of a weak Boltzmann equation,

d
dt

∫
Φ(v)d f (v) =

1
2

∫ ∫ (〈
Φ(p1v+q1w)+Φ(p2v+q2w)

〉
∗−Φ(v)−Φ(w)

)
d f (v)d f (w),

(58)

where 〈·〉∗ denotes integration against the probability measure, and one has p1 + p2 = q1 = q2 =
1 almost surely. The essential difference to (20) is that the two appearing integrations do not
commute. Proving existence and uniqueness of solutions f (v, t) to such kinetic models is beyond
the scope of this paper. We shall simply assume that a solution f (v, t) of (58) is given.

Theorem 4.2 Assume that f is one solution to a generalized pointwise conservative trade. Then
the first moment of f is conserved, and higher moments diverge not faster than algebraically. In
fact, if the trade rules are such that there exists a δ > 0 for which

min(v∗,w∗)≥ δ ·w, (59)

then all moments of f remain uniformly bounded in time, provided they are finite initially.

Condition (59) expresses that the second agent always saves a tiny portion of his money when
trading, and that at least a minimal fraction is passed to the first agent. Solutions to a generalized
pointwise conservative trade which obey this sensible rule do not develop Pareto tails in the long-
time limit. All pointwise conservative trade which do create fat tails for large t can only do so
because they violate (59).
Proof This is an extension of the proof for the upper bounds in Theorem 3.2, so we only sketch
the necessary changes in the argument. Since p1 + p2 = q1 +q2 = 1 almost surely, one has in the
pointwise estimate under the integral in (37)

ps
1 + ps

2−1≤ 0, qs
1 +qs

2−1≤ 0, ps−1
1 q1 + p1qs−1

1 + ps−1
2 q2 + p2qs−1

2 ≤ 2

for all s > 1. This is enough to conclude, with exactly the same reasoning, algebraic bounds on
the divergence of the moments. If moreover (59) holds, then δ ≤ qi ≤ 1− δ for i = 1,2, leading
to qs

1 +qs
2−1≤ δ s +(1−δ )s < 1 a.s., and thus to uniform boundedness of all moments.
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Example 8 Consider model (14) with quenched saving propensities, and assume for simplicity
that ε ≡ 1

2 ,

v∗ =
1
2
(1+λA)v+

1
2
(1−λB)w, w∗ =

1
2
(1−λA)v+

1
2
(1+λB)w.

The individual saving propensities λi are drawn from the interval [0,1] according to a given prob-
ability measure P. If λ < 1−2δ holds P-almost surely, then (59) is satisfied, since then v∗ ≥ δw
and w∗ ≥ 1

2 w, and the tail of the wealth distribution remains thin for all times.
On the other hand, allowing saving propensities arbitrarily close to one, the distribution f (v, t)

may develop a Pareto tail for t → ∞, see [12] (rather slowly, since this happens on the algebraic
time scale). In fact, there is an intimate relation between the density of the probability measure
P near λ = 0 and the shape of the tail of f for large times; basically, tails of arbitrary shape
can be produced by choosing P appropriately. This has been formally observed in [36], and the
convergence of f will be investigated in detail in [35].

Observe that any small perturbation of the model, i.e., any small change of the probability
distribution P near λ = 0, will change the long-time behavior of the solutions f completely. The
Pareto behavior is structurally unstable.

Example 9 A possible generalized pointwise conservative trade with non-constant transaction
coefficients is defined by

v∗ = v+ψ(v/w) ·w, w∗ =
(
1−ψ(v/w)

) ·w,

where ψ : R+ → R is a given continuous non-linear function satisfying the obvious constraint
0≤ ψ ≤ 1. Independent of the actual shape of ψ , the solution f (v, t) to the corresponding kinetic
equation will have uniformly bounded moments of all orders if additionally δ ≤ ψ ≤ 1− δ . A
trivial example that satisfies this condition is the full exchange model with ψ ≡ 1

2 .
An example which does notsatisfy this requirement is provided by the minimum exchange

model where ψ(r) = 1
2 min(1,r), or by the asymmetric exchange model [44], which interpolates

between full and minimum exchange. For the latter, ψ(r) = 1
2 min

(
1,1−τ(1− r)

)
with τ ∈ (0,1),

and Pareto tails are observed for τ ≈ 1 in numerical simulations.

4.3 Shape of thin tails

Finally, we investigate in more detail the situation where

S(s) < 0 for all s > 1. (60)

Here all initially finite moments of the wealth distribution remain uniformly bounded in time, so
that the steady state f∞ has finite moments of all orders. Still, there is no information available on
the actual shape of the “slim” tail of f∞(v), apart for that fact that the associated law falls off faster
than any negative power of v as v → +∞. Below, we investigate in more detail the evolution of
moments, and obtain a criterion under which the tail is exponentially small.

The evolution of the principal moments Mn(t), with 2≤ n ∈ N, is determined by

d
dt

Mn(t) = 〈(pn
i + pn

i −1)〉+ Mn(t)+
n−1

∑
k=1

(
n
k

)〈
pk

i qn−k
i

〉
+

Mk(t)Mn−k(t). (61)
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Taking into account that the first moment is conserved, M1(t) = M, equation (61) allows for a
recursive computation of the principal moments of the stationary solution,

Mn =
∑n−1

k=1

(
n
k

)〈
pk

i qn−k
i

〉
+ MkMn−k

1−〈pn
i +qn

i 〉+
, n = 2,3, . . . (62)

In particular, starting from M1 = M, one can calculate – one by one – a sequence of bounded
constants cn such that

Mn = cnMn. (63)

Observe that the denominator in (62) equals −S(n), and hence is positive by assumption (60).

Theorem 4.3 Assume (60). Then the steady state f∞ is a Dirac distribution centered at v = M if
and only if p1 +q1 = p2 +q2 = 1 almost surely.

Proof f∞ is a Dirac distribution iff its variance is zero, i.e. M2 = M2. By (62), this means that

1 = c2 =

〈
(pi +qi)2

〉
+−

〈
p2

i +q2
i
〉
+

1−〈
p2

i +q2
i

〉
+

,

which is equivalent to 〈(pi + qi)2〉+ = 1. Taking into account that the trade is conservative in the
mean, i.e. (10) holds, a standard argument yields further equivalence to pi +qi = 1 for i = 1,2.

Under the hypotheses of the Theorem, all agents will eventually end up with exactly the same
amount of money. In the framework of the model (13) by Chakraborty and Chakrabarthi, c2 = 1
is realized exactly iff ε = 1/2 with probability one. In the model (15) of Cordier, Pareschi and
Toscani, c2 = 1 corresponds exactly to the degenerate situation η ≡ η̃ ≡ 0 almost surely. The
corresponding solutions were studied in Example 5.

In the generic case c2 > 1, the variance of the stationary solution is positive, and information on
higher moments is needed in order to extract further properties of the steady state. Unfortunately,
even if the recursive computation of the moments is explicit, it is quite difficult to extract from (62)
their precise growth. We can, however, establish a criterion under which the tail shows exponential
decay.

Theorem 4.4 Let f∞(v) be the unique stationary solution to equation (20), corresponding to a
trade satisfying condition (60). Assume further that for n≥ n̄, with a suitable n̄ ∈ N,

〈 n

∑
k=0

pn−k
i qk

i

〉
+
≤ 1. (64)

Then the tail of f∞(v) is exponentially small for v→ ∞ in the sense that
∫

IR+

exp(βv) f∞(v, t)dv < ∞,

for a positive constant β = β (n̄).
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Proof Since all moments Mn of the steady state are bounded, Mn = cnMn, it is always possible
to estimate the first n̄−1 coefficients cn from above as follows:

cn ≤ n!αn for n < n̄.

We assume that α = α(n̄) is the smallest possible constant. Then, for all n < n̄,

Mn ≤ n!(αM)n. (65)

Bringing together the relations (64) and (65), we obtain from (62)

Mn̄ =
∑n̄−1

k=1

(
n̄
k

)〈
pk

i qn̄−k
i

〉
+ MkMn̄−k

1−〈pn̄
i qn̄

i 〉

≤ n̄!(αM)n̄ ∑n̄−1
k=1

〈
pk

i qn̄−k
i

〉
+

1−〈pn̄
i +qn̄

i 〉+

= n̄!(αM)n̄ ∑n̄
k=0

〈
pk

i qn̄−k
i

〉
+−

〈
pn̄

i +qn̄
i
〉
+

1−〈pn̄
i +qn̄

i 〉+
≤ n̄!(αM)n̄.

Thus condition (65) holds for n = n̄. By induction, we conclude (65) for all n ≥ 1. Hence, for
arbitrary positive β < 1/(αM), and for any N ≥ 1,

∫ +∞

0

N

∑
n=0

(βv)n

n!
f∞(v)dv =

N

∑
n=0

β n

n!
Mn ≤

N

∑
n=0

(βαM)n ≤ 1
1−βαM

< ∞.

An application of the monotone convergence theorem finishes the proof:

∫ +∞

0
exp(βv) f∞(v)dv = lim

N→∞

∫ +∞

0

N

∑
n=0

(βv)n

n!
f∞(v)dv < ∞. (66)

Under the hypotheses of the Theorem, the steady state decays at least as rapidly as a Gibbs distri-
bution

g(v) =
1

(αM)
exp{−v/(αM)}.

This decay behavior is typical for the steady state corresponding to a non realistic pointwise con-
servative trade with Jacobian equal to 1. We investigate under which additional assumptions con-
dition (64) is satisfied for the trades (13) of A. Chakraborty and B.K. Chakrabarthi, and (15) of S.
Cordier, L. Pareschi and G. Toscani, respectively.

Recall that in (13),
p1−q1 = q2− p2 = λ , (67)

which implies p1 > q1 and q2 > p2. Therefore

〈 n

∑
k=0

pk
1qn−k

1

〉
=

〈 pn+1
1 −qn+1

1
p1−q1

〉
=
〈pn+1

1

(
1− (q1/p1)n+1

)〉
λ

≤ 1
λ
〈pn+1

1 〉.
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In analogous way, we find 〈 n

∑
k=0

pk
2qn−k

2

〉
≤ 1

λ
〈qn+1

2 〉.

In order to verify condition (64) it will be enough to prove that, for n ≥ n̄ sufficiently large, both
〈pn+1

1 〉 and 〈qn+1
2 〉 are less than λ . Assume the random fraction ε is absolutely continuous w.r.t.

Lebesgue measure dε , and let gλ (p)d p be the corresponding measure for p1. Then, there is a
bλ ∈ (λ ,1) such that ∫ 1

bλ

gλ (p)d p≤ λ
2

.

On the other hand, ∫ bλ

λ
pngλ (p)d p≤ bn

λ .

Now choose n̄ large enough so that bn0
λ ≤ λ/2. Then, for all n≥ n̄,

〈pn
1〉=

∫ 1

λ
pngλ (p)d p≤ bn

λ +
λ
2
≤ λ .

The previous argument allows to choose the exponent n0 (and hence the constant α) the smaller,
the higher the saving rate λ is.

Corollary 4.5 Assume that the random fraction ε in the pointwise conservative trade (13) pos-
sesses a Lebesgue integrable density function. Then condition (64) holds, and the stationary state
has an exponentially small tail.

Example 10 It is worthwhile to investigate the particular case in which ε is uniformly distributed
on the unit interval. By the considerations above,

〈
n

∑
k=0

pk
1qn−k

1

〉
=

(1−λ )n+2 +1−λ n+2

(n+2)λ (1−λ )
.

The latter expression is smaller than one exactly if

φ(λ ) :=
1

n+2
[
(1−λ )n+2 +1−λ n+2]−λ (1−λ )≤ 0.

Obviously, φ(0) = φ(1) = 0, and it is easily checked that φ is convex for n ≥ 1. In conclusion,
φ(λ ) ≤ 0 for all λ ∈ [0,1] and arbitrary n = 1,2, . . . One may choose n̄ = 2 in (64), and conse-
quently α = 1 in (65). The corresponding steady state f∞ of the economic model decays at least
as fast as 1

M exp(−v/M).

We turn to investigate the trade (15). As discussed in Subsection 5.1, if η and η̃ distributed on the
interval [−µ,+µ], where 0 < µ ≤ λ , for µ +λ ≤ 1, we are back in the trivial situation (52) which
ensure boundedness of all moments. We prove property (64) under the assumption that λ < 1 and
that η has a Lebesgue integrable density function. By the same argument that lead to Corollary
4.5, there is a (smallest) integer n0 such that

〈(λ +η)k〉 ≤ λ
2

for all k ≥ n0.
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Define further n̄≥ n0 as the smallest integer satisfying

(1−λ )n̄−n0 ≤ λ
2

.

Then, for all n≥ n̄, one has
〈

n

∑
k=0

pk
1qn−k

1

〉
=

n

∑
k=0
〈(λ +η)k〉(1−λ )n−k

≤
n0

∑
k=0

(1−λ )n−k +
n

∑
k=n0

λ
2

(1−λ )n−k

≤ (1−λ )n−n0
n0

∑
k=0

(1−λ )k +
λ
2

n−n0

∑
k=0

(1−λ )k ≤ λ
2
· 1

λ
+

λ
2
· 1

λ
= 1.

Corollary 4.6 Assume that the random variables η and η̃ in the conservative trade (15) are
centered and distributed on an interval [−µ,+µ], where 0 < µ ≤ λ , and µ + λ ≤ 1, with a
Lebesgue integrable density function. Then condition (64) holds, and the stationary state has an
exponentially small tail.

Example 11 Again, we provide an explicit calculation that leads to an estimate on the index n̄.
Namely, assume that η and η̃ are uniformly distributed in the interval [−µ,+µ]. For definiteness,
assume further that 1

2 < λ < 1 (the case 0 < λ < 1
2 is analogous). Then

〈
n

∑
k=0

pk
1qn−k

1

〉
=

n

∑
k=0

(1−λ )n−k
∫ +µ

−µ
(λ +η)k dη

2µ

=
n

∑
k=0

(1−λ )n−k (λ + µ)k+1− (λ −µ)k+1

2µ(k +1)

≤
n

∑
k=0

(1−λ )n−k(λ + µ)k ≤ (λ + µ)n+1

(λ + µ)− (1−λ )
.

The last expression is smaller than one for all n≥ n̄ where

n̄ :=
log((λ + µ)− (1−λ ))

log(λ + µ)
−1.

A situation of special interest is where one may choose n̄ = 2, because then α = 1 is allowed
in (65), and the steady state decays at least like M−1 exp(v/M). The corresponding sufficient
condition in the regime λ ≥ 1

2 can be solved w.r.t. µ , and is equivalent to the inequality

µ ≤ 1
2
(√

1+6λ −3λ 2− (1+λ )
)
.
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5 Conclusions

We investigated the large–time behavior of various kinetic models describing the fluctuation of
wealth in conservative economies. The existence of a unique stationary wealth distribution has
been proven. It has been shown that the shape of the tail of this stationary distribution depends on
the details of the microscopic interaction. More specifically, we have found that both randomness,
e.g. in the form of risky investments, and the agents’ propensity to save money play a crucial role
in the formation of Pareto tails. In particular, Pareto tails are not present in pointwise conserva-
tive models, but appear in models which are conservative in the mean only, when the effects of
randomness and saving are well-balanced. Our analysis has been based on the possibility to apply
Fourier transform techniques, and it is reminiscent of previous results for the Boltzmann equation
for Maxwell molecules [1, 2]. In order to simplify the analysis, we have restricted ourselves to
trades where the random distribution (collision kernel) was independent of the wealth of the in-
teracting agents. Specific econophysical models with more complicated collision kernels will be
studied in future work.
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